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ABSTRACT

R&D is an uncertain activity with highly skewed outcomes.  Nonetheless, most recent empirical studies
and modeling estimates of the potential of technological change focus on the average returns to research
and development (R&D) for a composite technology and contain little or no information about the
distribution of returns to R&D—which could be important for capturing the range of costs associated
with climate change mitigation policies—by individual technologies.  Through an empirical study
of patent citation data, this paper adds to the literature on returns to energy R&D by focusing on the
behavior of the most successful innovations for six energy technologies, allowing us to determine
whether uncertainty or differences in technologies matter most for success.  We highlight two key
results.  First, we compare the results from an aggregate analysis of six energy technologies to technology-by-technology
results.  Our results show that existing work that assumes diminishing returns but assumes one generic
technology is too simplistic and misses important differences between more successful and less successful
technologies.  Second, we use quantile regression techniques to learn more about patents that have
a high positive error term in our regressions – that is, patents that receive many more citations than
predicted based on observable characteristics.  We find that differences across technologies, rather
than differences across quantiles within technologies, are more important.  The value of successful
technologies persists longer than those of less successful technologies, providing evidence that success
is the culmination of several advances building upon one another, rather than resulting from one single
breakthrough.  Diminishing returns to research efforts appear most problematic during rapid increases
of research investment, such as experienced by solar energy in the 1970s.
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I. Introduction 

Technological change will play a key role in any attempt to reduce greenhouse gas 

emissions that lead to climate change.  For example, European Union proposals to stabilize 

global average temperatures at two degrees Celsius over pre-Industrial Revolution levels imply 

stabilizing atmospheric carbon dioxide (CO2) concentrations at 450 parts per million (ppm).  

Current levels already exceed 380 ppm.  To meet such targets, annual CO2 emissions would need 

to peak at about 9 billion tons of carbon per year by about 2012, and fall to as little as 3.5 billion 

tons per year by 2100 (Clarke et al., 2007).  Meeting emission reduction targets such as these 

will not be possible without major changes in the way that energy is produced and consumed.  

Given the current status of alternative technologies, making such changes will be costly. 

Generation of electricity and heat is the largest source of carbon emissions, accounting for 41% 

of carbon emissions worldwide in 2006, followed by transportation at 23% (IEA 2008).  In both 

cases, alternative carbon-free energy sources such as wind, solar, or hydrogen fuels all are priced 

higher than traditional fossil fuels (IEA 2006).  However, technological improvements are likely 

to occur, leading to lower costs.  Much uncertainty surrounds the potential for technological 

change.  In its latest report on climate change, the Intergovernmental Panel on Climate Change 

(IPCC) summarizes estimates of the costs of stabilizing global carbon concentrations from a 

variety of climate models.  To stabilize concentrations at a level of 550 parts per million (ppm), 

the estimated costs, in terms of lost GDP in the year 2050, range from a four percent loss to a 

slight increase in GDP, relative to baseline growth (IPCC 2007).  Future technological change is 

an important driver of this uncertainty, and affects not only the cost of reducing emissions, but 

also predictions of what emissions levels will occur in the absence of climate policy initiatives.  
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Despite this uncertainty, most recent empirical studies and modeling estimates of the 

potential of technological change focus on the average returns to research and development 

(R&D), but contain little or no information about the distribution of returns to R&D, which is 

important for capturing the range of costs associated with climate change mitigation policies.  

The true nature of innovation and the R&D process is inherently uncertain and thus can be best 

described by a probability distribution (Mansfield, 1968; Evenson and Kislev, 1975).  More 

importantly, this probability distribution is highly skewed (Jaffe and Trajtenberg, 2002; Pakes, 

1986), suggesting that models focusing on average returns may severely underestimate the 

potential for significant innovations. Except for work by Baker (e.g., Baker and Solak, 2011; 

Baker and Adu-Bonnah, 2008), however, few studies in the climate policy literature have 

assumed that investment in R&D influences the level of uncertainty associated with the 

magnitude of the returns to R&D.  This is in part due to a lack of empirical support for 

calibrating R&D models based on anything other than average returns.  Due to the highly skewed 

returns to R&D, deterministic models based on average returns could underestimate the value of 

R&D investments as part of a strategy to avoid extreme climate impacts in the future.  Through 

an empirical study of patent citation data, this paper adds to the literature on returns to energy 

R&D by focusing on the behavior of the most successful innovations.  Moreover, we are 

interested in understanding whether this behavior differs across energy technologies.  The 

objective of this work is to provide an empirical basis for better modeling of the uncertain returns 

to energy R&D. 

Our paper builds on existing work using patent citations to study the returns to innovation 

(e.g., Popp 2002, 2006a, Caballero and Jaffe 1993).  A common finding in this literature is that 

research experiences diminishing returns – it gets more difficult to make additional advances as 
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technology improves.1   We make two contributions.  First, in contrast to Popp (2006a), we 

compare the results from analyzing an aggregate of six energy technologies to technology-by-

technology results.  Our results show that existing work that assumes diminishing returns for one 

generic technology is too simplistic and misses differences between more successful and less 

successful technologies.   

Second, given the importance of differences across technologies, is there any new 

information we can cull from looking at the most successful patents within each technology?  To 

measure the relative importance of differences across technologies versus the uncertainty of 

R&D, we apply quantile regression techniques to learn more about patents that have a high 

positive error term in our regressions – that is, patents that receive many more citations than 

predicted based on observable characteristics. It is these patents that are the high value patents in 

the distribution of possible outcomes.  While standard regression estimates give the change in the 

conditional mean of the dependent variable as we change a variable by one unit, quantile 

regression allows for an examination of inter-variable relationships at various parts of the 

conditional distribution by allowing estimates of the coefficients to vary based across quantiles 

of the distribution.  Using quantile techniques, we consider the following questions: 

• How does the likelihood of receiving a highly cited patent vary with research 

effort?2   

                                                 
1 Note that claims of diminishing returns to research within a field need not be inconsistent with the more general 
notion that there are increasing returns to research at the macroeconomic level. As new research makes the 
technologies in a given field obsolete, research efforts should switch to other, more productive areas. Such a general 
equilibrium analysis is beyond the scope of this research. 
2  Lanjouw and Schankerman (2004) suggest that the expected value of research is independent of the amount of 
research spending by a firm.  That is, increased firm R&D expenditures do not increase the average value of a firm’s 
patents.  Our question is slightly different, as we focus on those patents in the upper tail of the value distribution, as 
these are the patents that move knowledge forward.  Because additional R&D projects increase the likelihood that 
any one research draw will be high valued, Lanjouw and Schankerman’s findings do not rule out the possibility that 
more R&D effort would increase the probability of observing a single high-valued invention.  See, for example, the 
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• Does it become harder to achieve a highly cited patent over time?  I.e., is the 

distribution of potential ideas replenished over time, or does success become more 

difficult as high-valued opportunities are depleted? 

• Do these results differ across energy technologies? 

We find that higher R&D spending does not necessarily lead to highly cited patents 

(“breakthroughs”).  We also find no evidence that highly cited patents or breakthroughs are more 

difficult to achieve over time.  Interestingly, we find that increases in subsequent patents lead to 

a proportionally higher increase in citations to earlier high quality patents, suggesting that these 

high quality patents may induce subsequent innovations.  Lastly, comparing the results from 

technology-by-technology regressions to those pooling our six energy technologies, we find that 

differences across quantiles only hold for select technologies and are smaller in magnitude than 

differences across technologies.  Thus, differences in technologies seem to be more important 

than R&D uncertainty in explaining patent behavior.   

 

II. Literature Review 

A survey of the recent climate policy and energy modeling literature shows that a decade 

after the work of researchers such as Goulder and Mathai (2000) and Goulder and Schneider 

(1999), the induced technical change climate policy and energy planning research community 

still has a long way to go in representing technology-by-technology variation and uncertain 

returns to R&D in its analyses.  Goulder and Mathai (2000) presented a new analytic framework 

for characterizing optimal carbon emissions abatement and carbon taxes under learning-by-

searching technical change.  In their simplified framework, they considered a single 

                                                                                                                                                             
model in Evenson and Kislev (1975).  However, if firms invest in the most promising research projects first, one 
would expect the probability of highly valued research to decrease as research effort increases. 
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representative emission abating technology affected by R&D investments.  Alternatively, 

Goulder and Schneider (1999) considered multiple technologies in their study of the impact of 

carbon policy on energy R&D investments, but they too made an important simplifying 

assumption (for the sake of focusing on their contribution) by assigning their technology groups 

the same parameter value for R&D program effectiveness.  Goulder and Schneider (1999) 

comment on their decision and perform key sensitivity analyses, citing the lack of available 

empirical data for doing otherwise.  Even today, the majority of researchers in the induced 

technical change climate policy and energy planning research community continue to make very 

similar assumptions about R&D-based technical change. 

Within a sampling of the last five to seven years of the numerical modeling literature, the 

same distinct categories of assumptions arise.  Bosetti et al. (2006) present WITCH, an optimal 

growth model that endogenously accounts for R&D-based technological learning.  However, 

while retaining the typical technological detail of bottom-up models, WITCH considers a single 

R&D-influenced technology category (advanced biofuels).  Later, Bosetti and Tavoni (2009) use 

a stochastic version of WITCH to determine optimal investment in an uncertain backstop 

technology R&D program under stringent carbon policies.  They, too, use a single representative 

carbon-free backstop.  Schwoon and Tol (2006) use a formulation of the Goulder and Mathai 

(2000) model to study the impact of socio-economic inertia in optimal carbon abatement in the 

presence of induced-technical change.  Their model consists of a single learning sector, and 

therefore one parameter value for the inertia and R&D learning parameters.  Moreover, in their 

future research discussion the authors point to the need to break the economy up into additional 

sectors, because they can have quite different inertias and parameters.  Finally, most recently 

Bye and Jacobsen (2011) use a numerical energy-climate CGE model to study how to divide 
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R&D investment dollars between general and emission-saving technologies under various carbon 

tax magnitudes.  However, in doing so, they use a single representative backstop technology 

(CCS) to differentiate between general R&D and emission saving R&D technology programs. 

During this time, other studies considered multiple technology categories, but used 

essentially the same values and assumptions about the process of innovation across them.  In 

their R&D investment analysis for general versus emission-saving technologies, Bye and 

Jacobsen (2011) also use identical functional forms and assumptions for decreasing returns to 

knowledge for the backstop and general technology R&D processes.  The authors comment on 

the general fact that different R&D industries must have important differences, but that they 

found no empirical research supporting using a different structure or parameter values.  Several 

other important economic models introduced and used within the last decade to study energy 

technology R&D investment and climate policies, either in the context of the entire energy sector 

or specific sectors such as electricity, also make similar assumptions.  Popp (2006b) uses the 

same parameters for the innovation possibilities frontier and diminishing returns to research in 

ENTICE-BR for both types of innovation processes included (energy efficiency and carbon-free 

backstop technology).  Miketa and Schrattenholzer (2004) use the same learning rate for both 

wind and solar technologies in determining the optimal allocation of R&D funds to the two 

electricity technologies using a learning-by-searching modified version of the MESSAGE 

electricity sub-model.  Finally, Otto et. al. (2008) study cost-effectiveness of climate policy 

under technology externalities, and use a CGE model to show that it is second-best optimal to 

subsidize emission intensive R&D when combined with a carbon pricing scheme.  However, for 

their two R&D-affected industries (a non-carbon intensive industry and a carbon-intensive 

industry), they assume that knowledge accumulates as a deterministic function of investment. 
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Even studies that allow for uncertain returns to research focus on average returns to R&D 

during calibration.  First, in determining the optimal R&D allocation between three different 

technologies (fossil, renewables, and CCS) in a climate-energy-economic model under 

uncertainty (MERGE), Blanford (2009) utilizes the same parameter values for the return on 

investment, diminishing returns, and limiting probability for the different technologies (although 

alternate values are tested across different model runs).  The behavior of all technologies in the 

analysis are therefore effectively treated the same.  Second, Baker and Adu-Bonnah (2008) 

consider two R&D-affected technology categories (alternative non-fossil and conventional 

fossil), use different structures to model technical change, and allow for differing probabilities 

for program riskiness to study the socially optimal level of R&D investment in the two 

technologies.  However, investment in R&D in the model results in one of only three outcomes: 

a deterministic “target” amount of technical change, total failure, or a “breakthrough.”  

Moreover, a one-to-one relationship between R&D investment dollars and the target amount of 

technical change is used for both technology groups, and sensitivity analyses are run on 

important innovation parameters such as the cost coefficient using a wide value range.   

In an effort to help close these research gaps, Baker et al. (2008, 2009a, 2009b) perform a 

comprehensive data collection using expert elicitations for how government funding 

differentially impacts the probability of success for three key alternative energy technologies: 

CCS, solar photovoltaic, and nuclear.  Their findings allow for technology-specific calibration of 

induced innovation and technical change in certain types of climate policy assessments, as shown 

in Baker and Solak (2011).  The current paper addresses another key gap in the empirical 

literature, also with an aim to support calibration in climate policy modeling.  Using the 

historical record on technology-specific knowledge flows as measured via patent data, we 
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examine the variation in the behavior of potential “breakthrough” innovations through time for a 

wide variety of technologies, focusing both on differences across technologies and between 

successful and unsuccessful patents within technology groups. 

 

III. Estimation Framework 

To envision the research process, consider a distribution representing the possible 

outcomes from a project.  We use forward patent citations as a measure of the value of these 

outcomes.  When a patent is granted, it contains citations to earlier patents that are related to the 

current invention.  The citations are placed in the patent after consultations among the applicant, 

his or her patent attorney, and the patent examiner. Citations received by a patent indicate that 

the knowledge represented in the patent was utilized in a subsequent invention.3 Because we are 

interested in the social value of invention, we prefer the use of citations as a measure of value 

over alternatives such as patent renewals and stock market returns, both of which focus primarily 

on the returns of innovation to the inventing firm.  Lanjouw & Schankerman (2004) compare 

numbers of claims, forward citations, backward citations, and patent family size, and find that 

forward citations are the most reliable measure of patent quality.  Moreover, Popp (2002) shows 

that (a) the likelihood of citation to patents for a given technology and year can be used to 

measure the quality of the knowledge stock on which future inventors build and (b) that 

increasing quality of the knowledge stock leads to more inventions in future years.  Popp (2006a) 

suggests that the likelihood of citation falls over time, suggesting that research success does 

become more difficult as knowledge progresses.  This paper also provides evidence that the 

                                                 
3 The key assumption here is that a citation made to a previous patent indicates a flow of knowledge from the cited 
patent to the citing patent, so that patents cited more frequently are considered more valuable to future inventors.  
Jaffe, Fogarty, and Banks (1998) investigate the validity of this assumption, using evidence from citations made to 
NASA patents. They conclude that, although there is noise in the citation process, aggregate citation patterns 
represent knowledge spillovers, although the spillover may be indirect. 
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expected number of citations per patent falls in years when many other patents are granted in the 

field, suggesting that there are also diminishing returns to research in any given time period.  

However, neither of these papers considers the uncertainty inherent in the research process, as 

they focus on average returns within a given year and constrain the results to be the same for all 

technologies.   

We build on this work by considering the entire distribution of research outcomes, 

focusing on the characteristics of high-value (e.g. highly cited) patents.  It is these high-value 

patents that will have the most impact on climate change.  Note, however, that a simple count of 

patent citations is not sufficient.  The number of subsequent citations received by a patent is a 

function of, among other things, the number of patents that are granted in subsequent years.  

More citations will be received by patents in active fields.  Thus, following the model in Popp 

(2006a), we estimate the predicted number of citations for each patent.  However, whereas Popp 

(2006a) only focused on mean values and assumed common parameter values across 

technologies, we (1) allow the results to vary across technologies and (2) use quantile regression 

to provide additional information on patents that are highly cited.  Defining citesi,j,s,t as the 

number of citations made to patent i in technology group j with grant year t, by patents with 

application year s, and NCTGj,s as the number of successful patent applications pertaining to 

technology j filed by U.S. inventors in year s, the predicted total number of citations to each 

patent/year pair are: 

tsjisji
NCTG

sjtsji eeNCTGcites ,,,,, )ln(
,,,,

ελ ++== ts,j,iXβ'   (1) 

NCTGj,s controls for the opportunities for citation available to each patent.  Because our 

observations are count data, we use negative binomial regression to estimate equation (1).   

Following Popp (2006a), the vector of explanatory variables, Xi,j,s,t, controls for features 
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of the citing and cited patent.  Most importantly, we include two tests for diminishing returns.  

First, we ask whether the likelihood of citation falls when more patents are granted within a 

specific technology group in the same year as the cited patent.  This variable, NCTDj,t, tests for 

diminishing returns to research within a given year, t.  A negative coefficient on this variable 

suggests that any individual patent will receive fewer citations, after controlling for each patent’s 

characteristics, if it is granted in a year with many other patents in the same technology.  

Diminishing returns here may imply that the additional research done in such years is of lower 

quality.  The assumption is that researchers choose the most fruitful projects first.  When the 

demand for energy R&D increases (for example, when energy prices are higher), marginal 

projects that weren’t viewed as profitable before now appear worthwhile.  Alternatively, it may 

be the case that there are fewer citations per patent because the patents overlap.  This suggests 

that the extra research done in years with many patents is of less social value, since the unique 

contribution of each patent is smaller. 

Second, we ask whether the probability of citation falls as the cumulative number of 

patents in a field increases.  Cumulative patents Kj,t, defined below, tests for diminishing returns 

across time.  Diminishing returns across time could occur if there is a limited pool of potential 

inventions in a given field.  As the technological frontier moves outward, it becomes increasingly 

difficult to create new inventions that exceed the current standard.  To test this, we create a stock 

of existing patents for each technology, using patent data from 1900-2007.  In any year t, the 

stock of existing patents is calculated as:   

 
=

+−−−−−=
t

l
ljtj ltltPATK

0
21,, )]}1(exp[1)]{(exp[ ββ  (1) 

In this equation, β1 represents a rate of decay, and β2 a rate of diffusion.  We choose a 

decay rate of 0.1 and a rate of diffusion of 0.25.  Such rates are commonly found in the literature 
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on technological change, and imply that a patent has its maximum effect on the stock about 4 

years after the patent was granted (see, for example, Griliches, 1995).  For each technology, the 

stocks are normalized so that the level of the stock in 1980 equals 100.  Thus, a one-unit change 

in the stock indicates a one percent increase in the knowledge stock for that technology. 

In addition to these controls for the returns to research over time, we also consider several 

variables that control for the characteristics of individual potentially cited patents.  In particular, 

to capture the level and direction of government-sponsored R&D, we include two variables to 

ascertain the effect of government research on the knowledge stock.  The first is a dummy 

variable set equal to 1 if the cited patent is assigned to the U.S. government.  This includes 

patents assigned to a government laboratory.  The second is a dummy variable set equal to 1 if 

the cited patent is a child of a U.S. government patent.  These are defined as patents that are not 

assigned to the U.S. government, but that cite at least one patent assigned to the U.S. 

government.4  In addition, we include controls for patent features such as the number of claims 

and the number of citations made by the patent.  The complete list of explanatory variables 

appears below: 

• NCTGj,s represents the total number of successful U.S. patent applications per 

citing year, s: This controls for opportunities for future citations.  Separate counts 

are made for each technology group, j. 

• NCTDj,t represents the total number of patents granted in the technology 

group in the same year, t, as the cited patent.  As noted, this controls for 

diminishing returns within a given year. 

                                                 
4 I label these patents as “children” so as to provide a short label for discussion.  It need not be the case, however, 
that child patents are direct descendants of government research, meaning that they need not result from work 
directly related to the government’s research efforts.  Citations may result simply because both patents are in similar 
areas, so that there is an indirect knowledge spillover, but no intentional technology transfer between the 
government and the private patent. 
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• Kj,t-1 is the lagged value of the stock of accumulated patents granted in 

technology j by year t, where year t represents the issue year of the cited patent.  

This controls for diminishing returns across time. 

• ASSIGNEEi is a set of dummy variables defining the patent assignee of the 

cited patent.  Potential assignee types are corporate, individual, government, 

university, other research institution, and child of a government patent.  For each 

type, we include separate dummy variables for U.S. and foreign assignees (e.g. 

there is a dummy variable for U.S. corporations and a second for foreign 

corporations).  U.S. corporations are the excluded category. 

• CLAIMSi represents the number of claims on each cited patent.  Other things 

equal, patents with more claims should be cited more frequently. 

• CITEMADEi is the number of citations made by the cited patent.  Patents may 

generate more subsequent citations simply because they are in more crowded 

areas.  The number of citations made by these patents controls for this. 

• CITELAGs,t is the difference between the citing patent’s application year, s, and 

the cited patent’s grant year, t.  This allows for declining probabilities of citation 

over time, as the cited patents gradually become obsolete.  To allow for non-linear 

effects, we also include CITELAG2
s,t. 

• CITINGYRs is a vector of year dummies defined based on the application year of 

the citing patents.  1990 is the excluded year.  This captures any fixed effects in 
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citations common to a grant year.  Over time, the number of citations per patent 

have increased due to changes in citing behavior.5   

• TECHNOLOGYj is a vector of energy technology group dummies. About half of 

all patent citations are to patents in the same classification (Jaffe et al. 1993). 

However, the technology groups in this paper range from groups with one or two 

subclassifications to groups with patents from many different broad 

classifications. Technology groups with broad definitions are more likely to 

include subclasses that are not strongly related, which means that citations to 

other patents in the group are less likely in those groups.  The excluded group is 

nuclear power. 

We are particularly interested in patents that have a high positive error term from this 

regression – that is, patents that receive many more citations than predicted based on observable 

characteristics. It is these patents that are the high value patents in the distribution of possible 

outcomes.  Quantile regression techniques allow us to learn more about these patents.  While 

standard regression estimates give the change in the conditional mean of the dependent variable 

as we change a variable by one unit, quantile regression allows examination of inter-variable 

relationships at various parts of the conditional distribution by allowing estimates of the 

coefficients to vary across quantiles of the distribution.6  Using quantile regression, we can, for 

example, ask whether additional research effort (measured by the total number of patents in a 

field) increases the likelihood of highly valuable patents, and whether this likelihood varies over 

                                                 
5 Changes in citing behavior over time must be accounted for because of institutional changes at the patent office 
that make patents more likely to cite earlier patents than was previously true, even if all other factors are equal. In 
particular, two changes have played an important role. First, computerization of patent office records has made it 
easier for both patent examiners and inventors to locate other patents similar to the current invention. Second, 
increasing legal pressure has made it more important for examiners to be sure that all relevant patents are cited. 
6 Koenker and Hallock (2001) provide a review of quantile regression techniques.  
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time.  This last question addresses whether the distribution of potential ideas is replenished over 

time, or if success becomes more difficult as high-valued opportunities are depleted.  

In addition we also explore the potential sources of high-valued innovations, asking 

whether these highly cited patents come from particular institutions, and whether increased 

government R&D spending can affect the likelihood of discovering high-value inventions.  For 

example, Popp (2006a) finds that government patents are not more likely to be cited than other 

patents.  This result is surprising, as one expects government research to focus on more basic 

needs, which should be cited more frequently.  One possible explanation for this could be that 

government research projects are more risky.  If the government does research that private firms 

won’t do because of greater risk, government research could have a similar expected value to 

private research, while at the same time resulting in both more high-value innovations and low-

value innovations. Quantile regression allows us to identify such differences across high- and 

low-valued patents. 

 

IV. Data 

Our data include all patents for our selected technologies granted by the U.S. Patent and 

Trademark Office (USPTO) with priority dates ranging from 1971 to 2008.7  We focus on 

granted patents because, until 2000, only patents granted by the USPTO were made public.8  

This also ensures that all the patents in our sample have met a minimum quality threshold.  To 

identify patents, we use a combination of the International Patent Classification (IPC) codes on 

                                                 
7 To calculate the stocks described in section II, we use patents dating back to 1900.  However, the citation data 
needed for the remaining analysis is not available until patents granted in 1975, limiting the citation analysis to 
patents from the 1970s forward.  Note that, because we observe granted patents, patent counts in recent years are 
truncated, since the average patent takes 2-3 years to go through the examination process.  Year effects will account 
for this truncation bias. 
8 This is different from most countries, where patent applications are published 18 months after they are filed.  Even 
today, while most U.S. applications are published after 18 months, an inventor can request that the application not 
be published as long as the applicant agrees not to pursue patent protection in other countries. 
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the patent and keyword searches of the title and abstract.  The IPC classes and keyword searches 

used are listed in Appendix A.9  We include patents related to six technologies that either provide 

cleaner energy or reduce energy consumption: wind, solar, fuel cells, nuclear, hybrid autos, and 

energy efficiency.  We obtained the patent data using Delphion, a commercially-available 

database that allows searching and downloading of patent records from patent offices 

worldwide.10   

Patents are sorted by the priority year, which is the year in which the initial application 

pertaining to this patent was filed.  If a patent is granted, protection begins from the priority date.  

This date corresponds to when the inventive activity took place, as patent applications are 

usually filed early in the inventive process (see, e.g., Griliches, 1990).  Figure 1 shows the trends 

in each technology across time.  Invention in nuclear technologies was strong throughout the 

1970s until 1990, at which point patent counts begin to decline.  Patent counts in both solar and 

wind energy have two peaks – one during the 1970s energy crisis and a second in the 21st century 

as climate policy brings renewed interest to renewable energy.  Interestingly, the 1970s peak is 

larger for solar energy, whereas for wind the more recent peak is larger.  The trend for energy 

efficiency is similar to wind, although the 1970s peak is less notable.  Both fuel cells and hybrid 

vehicle patents remain relatively flat until 1990 and peak around the year 2000. 

The Delphion database includes rich descriptive data for each patent, including patent 

citations made by each patent and the number of claims.  Using this citation data, we are able to 

                                                 
9 The IPC system is used by patent offices around the world to classify patents based on their intended use.  We 
begin by using a combination of keyword and IPC class searches to identify patent classes that both include relevant 
patents and that do not also include irrelevant patents.  We prefer to omit classes that contain a mix of relevant and 
irrelevant patents.  While this may cause us to omit some relevant patents, this is preferred to including irrelevant 
patents that would simply add noise to our data without adding additional information.  For most technologies, this 
resulted in a set of IPC classes that were used to identify relevant technologies.  In the case of energy efficiency, we 
could not identify relevant classes, as these patents are spread throughout various end use technologies.  Thus, we 
instead use a keyword search to identify these patents.   
10 http://www.delphion.com.  
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obtain forward citations received by each of our energy patents by other patents within the same 

technology field.  Table 1 and Figure 2 provide descriptive statistics on forward citations 

received by patents in each of our technology groups.  Note that the distribution of citations is 

highly skewed.  Many patents are never cited.  For every technology, the 25th percentile of 

citations received is 0.  The median for the aggregate of all technologies is just one citation 

received. Across technologies, the median ranges from 0 for efficiency patents to 3 for wind 

patents.  Even at the 75th percentile, forward citations received range from 1 for energy 

efficiency to 7 for wind.  However, there is a long tail with a select group of highly cited patents, 

as the maximum number of citations received ranges from 47 in nuclear energy to 210 for energy 

efficiency and for hybrid vehicle technologies.   

The three panels of Figure 2 provide a visual representation of three typical distributions 

of patent citations.  Each shows, on the y-axis, the number of patents from a given year and 

technology that receive a specific number of forward citations.  Panel A represents citations 

received by a successful technology, hybrid vehicles.  Here we see the distribution of citations 

received by hybrid vehicle patents from 1991.  Note that while over half of the 80 patents from 

this year receive five citations or less, there is a very long tail, including one patent that receives 

76 citations.  The pattern of another successful technology, wind energy patents from 1981, is 

similar, as shown in panel B.  Of particular note here is that, compared to the two other panels, 

most of these patents receive at least one citation.  Only 4 of 76 wind patents from that year 

receive no citations.  Most patents receive a few citations, but the tail is noticeably shorter than 

for hybrid vehicles.  Finally, panel C shows citations received by solar energy patents in 1981.  

Compared to hybrid vehicles and wind energy, solar energy has received less commercial 

success.  The patent citations received are consistent with these patents having lower social 
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value.  Of the 337 solar energy patents from 1981, 193 receive two or fewer citations.  Moreover, 

while the distribution is still skewed, there are no large outliers, unlike the hybrid vehicle case. 

Table 2 provides descriptive data by technology for other patent characteristics.  The 

number of claims per patent is relatively stable, with the average ranging from 11.5 for nuclear to 

17.0 for fuel cells.  The number of cited references to earlier patents ranges from 7.7 for nuclear 

to 12.3 for efficiency.  In both cases, these data suggest that nuclear energy patents are narrower 

in scope than their counterparts in fields such as fuel cells or energy efficiency.  Interestingly, 

while the greater breadth of fuel cell patents also results in a high average number of future 

citations received, that is not the case for energy efficiency patents.  Finally, note that the size of 

each technology group does vary, as there are only 47.5 wind patents per year on average, 

compared to 469.5 energy efficiency patents per year.  Nonetheless, wind patents are very likely 

to receive citations from future wind patents, whereas energy efficiency patents are less likely 

than our other technologies to receive a future citation from a patent within the same group.  This 

suggests that it is not just the size of each group that matters, but the quality of the innovations 

that influence future usefulness. 

To consider whether patents from some institutions are more valuable than others, we use 

data from the NBER patent database to identify the type of assignee for each patent (e.g., 

corporate, individual, government, university, other research institution, and child of a 

government patent, as well as foreign or domestic).11  Table 3 shows the percentage of patents 

from various assignees.  The first rows show these data for the overall sample, followed by 

percentages for selected single years.  Overall, nuclear and solar are most likely to have patents 

                                                 
11 We used an updated version of the NBER database that includes data on assignees for all patents granted through 
2006, available at https://sites.google.com/site/patentdataproject/Home.  For patents from 2007 onward, we matched 
assignee characteristics with patents from the same assignee from earlier years when possible and then manually 
coded patents for which the assignee did not appear in the NBER database. 
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assigned to government.  Except for hybrid vehicles, about 40% of patents come from foreign 

inventors.  Largely due to innovation from Japanese auto manufacturers, over two-thirds of 

hybrid vehicle patents granted in the U.S. go to foreign inventors.  Looking across time, 

government patents were more prevalent in the 1970s and 1980s, and the share of foreign patents 

is growing for every technology.   

Finally, the right-hand columns of Table 3 show the average number of citations received 

by patents with different assignees.  Except for wind, children of government patents receive the 

most citations.  There is variation in the quality of government patents across technologies.  

Government wind patents receive, on average, more citations than any other type of wind patent.  

However, just 1.44% of wind patents are assigned to the government.  Government patents also 

receive more citations than the average patent for fuel cells and solar energy.  For the remaining 

technologies, government patents receive fewer citations than average.  In all cases, foreign 

patents receive fewer citations. 

 

V. Estimation 

Because most patents are never cited, we use count data regression techniques.  For the 

quantile regressions, we use a method suggested by Machado and Santos Silva (2005) and 

developed for Stata by Miranda (2006, 2008).12  To overcome the problem of having a discrete 

dependent variable when doing the quantile regression, this method smooths the data by adding a 

uniform random variable to each dependent variable.  With appropriate assumptions (discussed 

in Machado and Santos Silva 2005), standard quantile regression techniques can be applied to a 

monotonic transformation of this smoothed variable. Because the “jitters” to the data are 

                                                 
12 QCOUNT, the Stata software for quantile regressions using count data is available from 
http://ideas.repec.org/c/boc/bocode/s456714.html.  
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randomly added, 100 draws of the random variable u are taken and an average of the jittered 

sample is created. 

Our regressions include patents granted in the U.S. for six technologies (wind, solar, fuel 

cells, nuclear, hybrid autos, and energy efficiency).  We consider cited patents with initial 

priority dates from 1971 to 2004, and citing patents with priority dates ranging from 1972 to 

2008.   

Table 4 presents regression results pooling all technologies.  Except for the coefficient for 

ln(# of citing patents), results are shown as incidence rate ratios, eβ.  Moreover, to aid 

interpretation and make comparisons across technologies, the number of patents, the number of 

claims, and the number of citations made by each patent are normalized so that a one-unit change 

equals a ten percent deviation from the mean.13  For example, an incidence rate ratio of 1.2 

implies that a ten percent deviation from the mean for that variable results in 20 percent more 

citations to the patent.  The first four columns present the 25th, 50th, 75th, and 90th quantiles, and 

the final column presents the results from a standard generalized negative binomial regression.  

Our primary focus is on the behavior of patents in the higher quantiles.  Indeed, descriptive data 

suggest that the mean number of citations falls near the 75th quantile for most technologies, as 

most patents are never cited.  The interpretation for each quantile is that these represent patents 

with unobserved characteristics in quantile x.  Intuitively, this can be thought of as the 

unobserved quality of each patent, so that patents in higher quantiles have higher unobserved 

quality. 

Note that ln(# of citing patents) controls for the number of opportunities for a patent to be 

cited.  In a standard count model, this coefficient should equal 1.  Indeed, it is not significantly 

                                                 
13 The normalization first divides each continuous variable by its mean, multiplies by 10, and then takes deviations 
from the mean by subtracting 10.  This procedure is introduced in Kerr and Newell (2003), and results in normalized 
variables that have a mean of 0.   
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different from 1 in column 5.  Interestingly, its value grows in the quantile models, with a value 

of 1.493 for the 90th quantile, indicating that increases in subsequent patents more than 

proportionally increase citations to high quality patents.  This suggests that high quality patents 

may be the cause of these subsequent patents – that is, the value of high quality knowledge leads 

to additional patents in subsequent years.  Also interesting is that the cite lag, or the time that 

passes between the cited and citing patents, is twice as short for high quality patents, suggesting 

that the value of these patents is revealed quickly.  While statistically significant due to the large 

number of observations, the squared term for the cite lag has almost no meaningful effect, with a 

value of 0.999 or 1.0 in all cases. 

The accumulated stock of past patents (“stock of patents”) and the number of patents 

granted in the same year as the cited patent (“# of patents in cited year”) are important for 

calibration of climate models, as they control for potential diminishing returns to innovation.  

The only evidence for diminishing returns is in a given year, as suggested by the significant 

value of 0.962 associated with “# of patents in cited year” in the last column.  Thus, as more 

patent applications are filed in a given year, the probability of any one patent receiving a citation 

falls (by 3.8% for a 10% increase in patent applications). This effect is twice as large for the 

highest quality patents (i.e., a 10% increase in the number of patents in the cited year reduces the 

probability of citation by 6.2% in the 90th quantile, compared to just 3.3% in the 25th quantile), 

suggesting that additional research effort is applied to marginal projects with less potential value.  

Thus, the pooled regression results suggest that large increases in research spending do not 

necessarily make it easier to obtain breakthrough results, as the most promising projects are 

pursued first. 
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Finally, we control for several possible patent assignee characteristics.  While the effect 

of most characteristics is similar across quantiles, we do find that patents assigned to government 

agencies are less likely to receive citations in the highest quality quantile.  Moreover, as in Popp 

(2006a), children of government patents are the most valuable.  This suggests that the value of 

government research is enhanced once acted upon by the private sector.  Moreover, while the 

differences are small, nearly all assignee effects are smallest in the 90th quantile.  Since corporate 

patents are the excluded category, this suggests that those patents are most likely to result in high 

value outcomes. 

While we find some differences across quantiles, the results in Table 4 constrain the 

effects to be the same across all technologies.  However, our data include a range of 

technologies.  Some, such as wind and hybrid vehicles, have moved from experimental 

technologies to (at least limited) commercial success.  Solar, in contrast, remains a high-cost 

niche technology.  Others, such as energy efficiency and nuclear, have been mature for some 

time.  Therefore, we also estimate separate regressions for each individual technology.14  Table 5 

presents results for the generalized negative binomial regression by technology.  This suggests 

that there are important differences across technologies.  Of particular note is the effect of the 

cite lag variable.  Using coefficient estimates for citelag and citelag2 from the individual 

technology regressions, Figure 3 shows how the probability of citation changes after x years. As 

shown in panel A of Figure 3, the probability of citation trends downward monotonically over 

time for most technologies.  However, for wind and hybrid vehicles, the probability of citation 

initially increases, peaking after six years for wind and three years for hybrids.  Indeed, the 

combined effect of the cite lag variables for wind does not become negative until year 12.  As 

                                                 
14 We drop the variable NCTGt from these regressions, as it is perfectly collinear with the individual year dummies 
for citing patents. 
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these two technologies are the most successful of our six energy technologies, this suggests that 

the value of patents last longer for successful technologies. For instance, evidence from a history 

of wind technology innovation (Dykes, 2010a; Dykes, 2010b) demonstrates that success in wind 

is cumulative.  There is not a single breakthrough invention, but rather a series of successful 

innovations that build on the last major improvement.  At each step, innovations such as variable 

speed, improved power electronics, better materials for rotors, and the ability to “feather” rotors 

required success of the previous innovation. The persistent value of wind patents over time is 

consistent with such behavior. 

Regarding diminishing returns, once again the only meaningful evidence is found within 

a given year.  Wind, solar, and fuel cells all experience diminishing returns within a given year, 

as suggested by the significant <1 coefficient associated with “# of patents in cited year” in Table 

5.  A ten percent increase in patents in the cited year reduces the probability of receiving a 

citation by 2.6% for wind, 4.3% for solar and 2.1% for fuel cells.  In contrast, both hybrids and 

energy efficiency show evidence of positive spillovers within a given year, as the probability of 

citation increases for patents from years with higher patenting activity.  There are few noticeable 

differences for assignee types across technologies, except that the low value of U.S. government 

patents found in the pooled regression appears to be almost entirely a result of nuclear energy 

patents, as this is the only technology for which this coefficient is significant.   

To help reconcile the differences regarding diminishing returns across different 

technologies, Table 6 includes the results of an additional regression adding a squared term for 

the number of patents in the cited year.15  To be able to interpret the squared term, we do not 

normalize the data in this regression, and thus only use this approach for single technology 

                                                 
15 Results for other coefficients remain the same and are not reported. 
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regressions.16  As shown in Table 6, diminishing returns are an issue for all technologies when 

the level of innovation is high enough, as the squared term is negative for all technologies in 

which the linear term is not negative.  This holds true for wind, nuclear, and hybrid vehicles.  

Moreover, for all three of these technologies, the turning point at which increased patenting leads 

to diminishing returns occurs at reasonable values, either slightly above or slightly below the 

average number of patents per year for these technologies.  Figure 4 shows the patent counts for 

each technology, with years affected by diminishing returns represented by dashed lines.  These 

dashed lines represent years where the number of patents is above the turning point calculated in 

Table 6.  In each case, it is the years of peak patenting activity that experience diminishing 

returns within a given year. 

The other notable change in Table 6 is that the coefficient on cite lag increases for hybrid 

patents.  As a result, while hybrid and wind patents are still the only two technologies for which 

the probability of citation does not decay immediately, it is now hybrid patents that see the 

probability of citation increase more strongly over time.  This is shown in panel B of Figure 3, 

where the combined effect of the cite lag variables for hybrid patents does not become negative 

until year 19.  As we will show below, this result is driven by the most successful hybrid patents. 

Tables 7 and 8 present the quantile results for each technology.  Table 7 includes patent 

characteristics (including our tests for diminishing returns) and Table 8 includes assignee 

characteristics.  Comparisons across technologies can be seen by reading across, and 

comparisons across quantiles for a given technology can be seen by reading downward.  What is 

notable here is that the differences across quantiles found in the pooled regression only hold up 

in select technologies and are generally of a smaller magnitude.  The most notable difference is 

that the cite lag for hybrids only increases the probability of citation in the 90th quantile, 
                                                 
16 However, we do divide the number of patents by 10 to obtain reasonable magnitudes on the coefficients. 
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suggesting that the result found for hybrids in Table 6 is driven by the highest quality patents.  

Similarly, for three less successful technologies – solar, fuel cells, and nuclear – patents in the 

90th percentile decay more quickly.  However, it is clear that the major differences are driven by 

technology, rather than by quantiles.  For example, for the three technologies in which the effect 

of number of patents in the cited year is positive, the coefficient is positive across all quantiles.  

Moreover, for each of these three technologies, the turning point of the net effect of number of 

patents in the cited year is similar across all quantiles.  The largest spread is for hybrids, where 

the turning point ranges from 271.9 patents in the 50th quantile to 302.9 patents in the 90th 

quantile.  Thus, it is not that more valuable wind patents behave differently than less valuable 

wind technologies, but rather that patents from successful technologies such as wind and hybrids 

behave differently than other technologies. 

 

VI. Discussion 

Reducing carbon emissions will require a diverse set of energy technologies. As the costs 

of many alternative technologies are high, innovation will play an important role in efforts to 

reduce carbon emissions.  While climate models are beginning to reflect the diverse nature of the 

technologies required to reduce emissions, efforts to calibrate R&D-driven innovation on these 

technologies lag behind.  Most empirical papers on energy innovation pool technologies 

together, and to our knowledge, all existing work focuses on the average returns to innovation on 

alternative energy technologies.  By estimating separate equations for each technology and using 

quantile regression techniques to focus on the characteristics of high-value energy patents, we 

are able to determine whether R&D uncertainty or differences in technologies matter most for 

patent success. 
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By testing for the impact of patent characteristics on patent value by technology, we find 

that there are differences between successful and less successful technologies.  In particular, the 

value of successful technologies persists longer than those of less successful technologies, 

providing evidence that success is the culmination of several advances building upon one 

another, rather than resulting from one big hit.  Our evidence on diminishing returns suggests 

that diminishing returns within a given year are an issue when inventive activity is particularly 

high.  However, at low levels of activity, some technologies, such as hybrid vehicles, experience 

increasing returns, suggesting benefits to positive spillovers are possible with just moderate 

levels of research investment. 

By using quantile regression techniques, we explore whether high value patents have 

different observable characteristics than other patents.  When pooled across technologies, we do 

find evidence that the magnitude of diminishing returns within a given year is larger for the most 

successful innovations.  However, using quantile regressions for individual technologies, this 

result only holds for solar energy.  While this may suggest that solar energy innovation was hurt 

by moving too quickly in the 1970s, the biggest takeaway point from this research is that it is 

differences across technologies, rather than among high and low impact innovations within a 

technology, that are most important.   

Our results suggest that allowing for different behavior across technologies is important 

when modeling R&D-based innovation in climate models, and we provide empirical evidence 

for such calibration.  In particular, it would be useful to classify technologies based on their 

likelihood of success, with knowledge based on technologies perceived to be successful decaying 

more slowly.  Such technologies are also likely to have slow, steady improvement over time, 

rather than large discrete jumps in knowledge.  The results on diminishing returns by quantiles 
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and technology suggest that diminishing returns will be most problematic during rapid increases 

of research investment, such as experienced by solar energy in the 1970s, but that it need not be 

universal.  Finally, that decay rates fall monotonically for less successful technologies suggests 

that data patent citations received just a few years after a patent’s initial filing data could provide 

researchers and policymakers information on the research avenues most likely to be successful.   

Our results also provide qualitative insights for policy.  Diminishing returns within a 

given year but not necessarily over time, as in the wind and hybrid cases, suggest that long-term 

sustained incentives to innovate may be more effective than short bursts of support.  Moving 

advanced technologies to large-scale commercial deployment will likely require a sequence of 

innovations over a number of years.  This sequence suggests that research prizes, which offer 

large rewards for a single technological breakthrough, will be less effective, as they do not 

provide incentives for the series of incremental gains needed to make successful energy 

technologies possible.  The differences between technologies also supports economic theory, 

which would indicate that technology neutral policy instruments be used where possible.  In the 

1970s it would have been difficult to predict that wind and hybrid technologies would evolve 

differently from solar and fuel cells.  Technology-specific support can lead to spending on low-

value innovations, as in the case of federal support for nuclear.  Finally, as suggested above, 

some evidence of which technologies are higher-value can sometimes be apparent after several 

years, and policies that can adjust to new information will lead to more efficient outcomes. 
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Table 1 – Descriptive data: number of citations per patent, 1971-2008 

    
No. of 

Citations       
No. of 

Citations       
No. of 

Citations 
                      
Efficiency Mean 1.212   Hybrid Mean 4.928   Solar Mean 3.830 
  SD 4.473     SD 10.219     SD 5.761 
  Max 210     Max 210     Max 69 
  Min 0     Min 0     Min 0 
  5_percentile 0     5_percentile 0     5_percentile 0 
  25_percentile 0     25_percentile 0     25_percentile 0 
  50_percentile 0     50_percentile 1     50_percentile 2 
  75_percentile 1     75_percentile 5     75_percentile 5 
  95_percentile 5     95_percentile 22     95_percentile 15 
  99_percentile 15     99_percentile 46     99_percentile 29 
                      
Fuel Cells Mean 5.378   Nuclear Mean 3.187   Wind Mean 4.912 
  SD 10.325     SD 4.367     SD 6.492 
  Max 119     Max 47     Max 62 
  Min 0     Min 0     Min 0 
  5_percentile 0     5_percentile 0     5_percentile 0 
  25_percentile 0     25_percentile 0     25_percentile 0 
  50_percentile 1     50_percentile 2     50_percentile 3 
  75_percentile 6     75_percentile 4     75_percentile 7 
  95_percentile 25     95_percentile 12     95_percentile 18 
  99_percentile 49     99_percentile 20     99_percentile 31 
                      
Total Mean 2.967                 
  SD 6.673                 
  Max 210                 
  Min 0                 
  5_percentile 0                 
  25_percentile 0                 
  50_percentile 1                 
  75_percentile 3                 
  95_percentile 14                 

  99_percentile 31                 
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Table 2 – Other descriptive data, 1971-2008 

    Citations Claims 
Cited 

References 
Patents Per 

Year 
            
Efficiency Mean 1.212 15.731 12.322 469.510 
  SD 4.473 13.672 21.037 424.155 
  Max 210 318 641 1421 
  Min 0 1 0 1 
            
Fuel Cells Mean 5.378 16.957 11.481 172.020 
  SD 10.325 14.661 19.337 233.436 
  Max 119 300 479 912 
  Min 0 0 0 2 
            
Hybrid Mean 4.928 14.371 11.501 81.596 
  SD 10.219 11.937 18.050 109.167 
  Max 210 167 395 379 
  Min 0 1 0 1 
            
Nuclear Mean 3.187 11.536 7.702 176.542 
  SD 4.367 10.531 8.615 119.899 
  Max 47 499 201 330 
  Min 0 0 0 1 
            
Solar Mean 3.830 14.135 8.118 151.365 
  SD 5.761 13.030 8.707 150.767 
  Max 69 236 140 542 
  Min 0 0 0 1 
            
Wind Mean 4.912 14.067 11.483 47.523 
  SD 6.492 11.558 15.426 38.885 
  Max 62 138 327 145 
  Min 0 1 0 1 
            
Total Mean 2.967 14.823 10.711 134.689 
  SD 6.673 13.182 17.437 227.498 
  Max 210 499 641 1421 
  Min 0 0 0 1 
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Table 3 – Descriptive data: granted patents and citations by assignee 

  

  
 % of granted patents by assignee  

   
Average number of cites received by assignee 

 

  N 
% 

private % gov 
% other 
public 

% 
foreign 

% gov 
child   

average 
cites Private Government 

Other 
Public Foreign Child 

                            
Entire Sample                          
Efficiency 23005 96.03 1.05 2.91 42.97 0.76   1.21 1.22 0.76 1.26 1.15 7.25 
Fuel Cells 8429 89.54 2.64 7.88 49.63 16.41   5.38 5.24 8.82 5.71 4.29 9.32 
Hybrid 3835 95.56 0.54 3.84 67.57 3.68   4.93 5.03 4.10 2.61 4.76 12.24 
Nuclear 10416 84.65 12.09 3.31 46.47 28.82   3.19 3.28 2.96 1.58 2.58 3.76 
Solar 7871 92.12 3.84 3.97 39.82 15.48   3.19 3.81 4.63 3.49 2.42 4.81 
Wind 2091 96.04 1.44 2.67 41.47 9.20   4.91 4.87 7.21 4.83 3.12 5.25 
                            
1971                           
Efficiency 66 98.48 0.00 1.52 34.85 0.00   1.08 1.06 0.00 2.00 0.48 0.00 
Fuel Cells 32 88.00 10.00 2.00 34.00 0.00   6.16 6.52 3.60 3.00 7.94 0.00 
Hybrid 30 100.00 0.00 0.00 43.33 3.33   5.70 5.70 0.00 0.00 6.92 0.00 
Nuclear 12 67.44 27.91 4.65 43.41 16.28   5.05 5.83 3.50 3.00 3.81 4.76 
Solar 27 75.00 25.00 0.00 37.50 25.00   8.63 6.25 15.75 0.00 13.33 9.50 
Wind 72 100.00 0.00 0.00 33.33 0.00   10.33 10.33 0.00 0.00 5.00 0.00 
                            
1981                           
Efficiency 558 96.95 1.25 1.79 36.02 0.18   1.12 1.14 1.00 0.20 1.18 0.00 
Fuel Cells 73 76.00 9.33 14.67 22.67 13.33   9.75 9.77 8.43 10.45 9.06 9.44 
Hybrid 22 96.15 3.85 0.00 26.92 3.85   5.46 5.24 11.00 0.00 1.86 8.00 
Nuclear 247 80.59 18.32 1.10 58.24 37.00   3.84 4.00 2.92 7.00 3.00 4.01 
Solar 542 93.18 5.04 2.08 33.23 14.84   3.03 2.97 3.18 5.57 2.35 3.39 
Wind 36 96.05 0.00 3.95 30.26 5.26   5.93 6.11 0.00 1.67 2.87 9.00 
                            

 
(continued on next page)
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 % of granted patents by assignee  

   
Average number of cites received by assignee 

 

  N 
% 

private % gov 
% other 
public 

% 
foreign 

% gov 
child   

average 
cites Private Government 

Other 
Public Foreign 

Child of 
government 

patent 

1991              
Efficiency 567 93.47 2.12 4.41 42.33 0.71   1.63 1.63 0.17 2.36 2.09 38.67 
Fuel Cells 150 89.06 5.47 5.47 55.47 37.50   15.21 14.33 15.71 29.00 15.49 23.74 
Hybrid 130 97.50 0.00 2.50 71.25 8.75   9.06 8.86 0.00 17.00 9.33 19.00 
Nuclear 241 92.53 6.17 1.30 44.81 30.19   2.63 2.71 1.79 1.25 1.90 2.63 
Solar 130 90.50 5.03 4.47 49.72 16.20   3.13 3.24 1.67 2.50 2.60 3.67 
Wind 30 100.00 0.00 0.00 34.38 12.50   9.53 9.53 0.00 0.00 4.27 13.25 
                            
2001                           
Efficiency 1360 95.59 0.81 3.90 47.21 1.10   0.65 0.65 0.27 0.79 0.42 1.33 
Fuel Cells 904 94.30 0.99 4.82 58.99 11.29   0.95 0.94 1.78 0.98 0.65 1.34 
Hybrid 346 97.31 0.00 2.69 73.12 1.61   1.74 1.76 0.00 0.80 1.44 1.00 
Nuclear 310 76.97 2.81 20.79 61.24 17.98   0.29 0.21 0.00 0.62 0.16 0.17 
Solar 222 93.58 1.89 4.53 52.08 15.47   0.65 0.69 0.00 0.08 0.41 0.89 
Wind 64 96.55 0.69 2.76 64.14 11.72   1.49 1.48 3.00 1.50 0.95 1.56 
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Table 4 – Pooled Technology Results 

Pooled q25 q 50 q75 q90 
 

gnbreg 
ln(# of citing patents) 0.907*** 0.914*** 1.147*** 1.493*** 

 
0.998*** 

 
(0.011) (0.010) (0.011) (0.013) 

 
(0.034) 

Cite lag 0.974*** 0.976*** 0.969*** 0.914*** 
 

0.964*** 

 
(0.003) (0.002) (0.003) (0.003) 

 
(0.003) 

Cite lag^2 0.999*** 0.999*** 0.999*** 1.000 
 

0.999*** 

 
(0.000) (0.000) (0.000) (0.000) 

 
(0.000) 

Stock of patents 0.999*** 0.999*** 0.998*** 0.999*** 
 

0.999*** 

 
(0.000) (0.000) (0.000) (0.000) 

 
(0.000) 

# of patents in cited yr. 0.967*** 0.967*** 0.968*** 0.938*** 
 

0.962*** 

 
(0.001) (0.001) (0.001) (0.002) 

 
(0.002) 

# of claims made 1.008*** 1.010*** 1.013*** 1.018*** 
 

1.012*** 

 
(0.001) (0.000) (0.001) (0.001) 

 
(0.001) 

# of cited references 0.996*** 0.996*** 0.996*** 0.997*** 
 

0.997*** 
  (0.000) (0.000) (0.000) (0.000) 

 
(0.001) 

Foreign corporation 
assignee 0.759*** 0.757*** 0.717*** 0.683*** 

 
0.722*** 

 
(0.008) (0.008) (0.009) (0.010) 

 
(0.014) 

US individual assignee 0.867*** 0.866*** 0.862*** 0.822*** 
 

0.829*** 

 
(0.012) (0.012) (0.013) (0.015) 

 
(0.022) 

Foreign individual assignee 0.570*** 0.573*** 0.519*** 0.463*** 
 

0.534*** 

 
(0.014) (0.013) (0.014) (0.015) 

 
(0.021) 

US government assignee 0.852*** 0.852*** 0.810*** 0.726*** 
 

0.799*** 

 
(0.023) (0.022) (0.022) (0.026) 

 
(0.041) 

Foreign government 
assignee 0.708*** 0.717*** 0.688*** 0.619*** 

 
0.693*** 

 
(0.021) (0.020) (0.020) (0.026) 

 
(0.037) 

US university assignee 0.863*** 0.860*** 0.895** 0.845*** 
 

0.903* 

 
(0.032) (0.031) (0.037) (0.038) 

 
(0.056) 

Foreign university assignee 0.451 0.492*** 0.451*** 0.426*** 
 

0.564*** 

 
(0.392) (0.047) (0.048) (0.063) 

 
(0.100) 

US institution assignee 0.852*** 0.848*** 0.838*** 0.766*** 
 

0.812** 

 
(0.042) (0.040) (0.044) (0.044) 

 
(0.069) 

Foreign institution assignee 0.524*** 0.557*** 0.511*** 0.452*** 
 

0.538*** 

 
(0.032) (0.027) (0.028) (0.032) 

 
(0.044) 

Child of US govt. patent 1.392*** 1.413*** 1.450*** 1.372*** 
 

1.279*** 

 
(0.021) (0.021) (0.025) (0.027) 

 
(0.032) 

Child of Foreign govt patent 1.274*** 1.270*** 1.337*** 1.410*** 
 

1.267*** 
  (0.022) (0.021) (0.025) (0.033) 

 
(0.035) 

Number of obs. 831678 831678 831678 831678 
 

831678 
Predicted quantile 0.26242 0.52377 0.78349 0.95075 

  log likelihood 
     

-303570.7 
NOTES: Standard errors in parentheses; * p<0.1, ** p<0.05, *** p<0.01. 
Except for the coefficient for ln(# of citing patents), results are shown as incidence rate ratios, 
e(beta).  Moreover, to aid interpretation and make comparisons across technologies, the number of 
patents, the number of claims, and the number of citations made by each patent are normalized so 
that a one-unit change equals a ten percent deviation from the mean (Kerr and Newell, 2003). 
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Table 5 – Generalized Negative Binomial Results by Technology 

 
wind solar fuelcell nuclear hybrid eff overall 

ln(# of citing patents) 
      

0.998*** 

       
(0.034) 

Cite lag 1.017* 0.975*** 0.940*** 0.984* 1.018 0.926*** 0.964*** 

 
(0.010) (0.006) (0.009) (0.008) (0.017) (0.015) (0.003) 

Cite lag^2 0.999*** 0.999*** 0.999*** 0.999*** 0.997*** 1.000 0.999*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Stock of patents 0.996*** 0.997*** 0.994*** 1.000 0.998*** 0.997*** 0.999*** 

 
(0.001) (0.001) (0.001) (0.003) (0.000) (0.001) (0.000) 

# of patents in cited yr. 0.974*** 0.957*** 0.979*** 0.986 1.027** 1.035*** 0.962*** 

 
(0.006) (0.004) (0.005) (0.012) (0.011) (0.009) (0.002) 

# of claims made 1.016*** 1.011*** 1.015*** 1.009*** 1.016*** 1.012*** 1.012*** 

 
(0.003) (0.002) (0.002) (0.002) (0.004) (0.002) (0.001) 

# of cited references 1.000 0.991*** 0.993*** 1.000 1.002 1.001 0.997*** 
  (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001) 
Foreign corporation assignee 0.584*** 0.708*** 0.654*** 0.635*** 1.112 0.914* 0.722*** 

 
(0.056) (0.032) (0.027) (0.020) (0.084) (0.043) (0.014) 

US individual assignee 0.790*** 0.800*** 0.592*** 0.763*** 1.054 1.183*** 0.829*** 

 
(0.058) (0.029) (0.061) (0.067) (0.152) (0.077) (0.022) 

Foreign individual assignee 0.636*** 0.543*** 0.446*** 0.493*** 0.617** 0.622*** 0.534*** 

 
(0.056) (0.032) (0.080) (0.060) (0.130) (0.054) (0.021) 

US government assignee 1.176 1.077 1.030 0.528*** 1.244 0.646 0.799*** 

 
(0.209) (0.114) (0.123) (0.030) (0.501) (0.215) (0.041) 

Foreign government assignee 0.804 0.733*** 0.567** 0.642*** 0.931 0.636* 0.693*** 

 
(0.221) (0.076) (0.143) (0.039) (0.358) (0.168) (0.037) 

US university assignee 0.526** 0.926 0.904 0.543*** 1.367 1.072 0.903* 

 
(0.168) (0.094) (0.084) (0.112) (0.420) (0.197) (0.056) 

Foreign university assignee 0.793 0.754 0.462** 0.203*** 0.000*** 0.267* 0.564*** 

 
(0.255) (0.179) (0.149) (0.067) (0.000) (0.188) (0.100) 

US institution assignee 0.765 0.919 0.744*** 0.557*** 1.002 0.838 0.812** 

 
(0.221) (0.266) (0.079) (0.096) (0.372) (0.167) (0.069) 

Foreign institution assignee 0.345** 0.420*** 0.494*** 0.577*** 0.680 1.080 0.538*** 

 
(0.153) (0.082) (0.059) (0.077) (0.277) (0.253) (0.044) 

Child of US govt. patent 1.285*** 1.395*** 1.447*** 1.028 1.356** 2.454*** 1.279*** 

 
(0.119) (0.073) (0.064) (0.040) (0.200) (0.553) (0.032) 

Child of Foreign govt. patent 1.622*** 1.397*** 1.595*** 1.202*** 1.232 0.791 1.267*** 
  (0.200) (0.075) (0.131) (0.044) (0.255) (0.169) (0.035) 
Number of obs. 31981 160773 86196 179506 39684 333538 831678 
log likelihood -20032.1 -64944.1 -59450.9 -69914.5 -24580.2 -61275.2 -303570.7 
NOTES: Standard errors in parentheses; * p<0.1, ** p<0.05, *** p<0.01; All e(beta) except ln_nctg 
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Table 6 – Impact of High Patenting Activity 

 

 
wind solar fuel cells nuclear hybrid efficiency 

ln(# of citing patents) 
      

       Cite lag 1.009 0.975*** 0.941*** 0.970*** 1.061*** 0.917*** 

 
(0.010) (0.006) (0.010) (0.010) (0.018) (0.019) 

Cite lag^2 0.999*** 0.999*** 0.999*** 0.999*** 0.997*** 1.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Stock of patents 0.996*** 0.997*** 0.994*** 0.996 0.999* 0.997*** 

 
(0.001) (0.001) (0.001) (0.004) (0.000) (0.001) 

# of patents in cited yr. X10 1.045 0.984*** 0.994 1.153*** 1.082*** 1.002 

 
(0.038) (0.006) (0.005) (0.060) (0.019) (0.005) 

(# of patents in cited yr. X10)^2 0.994** 1.000 1.000 0.997*** 0.999*** 1.000 

 
(0.002) (0.000) (0.000) (0.001) (0.000) (0.000) 

# of claims made 1.013*** 1.009*** 1.009*** 1.009*** 1.012*** 1.008*** 

 
(0.002) (0.001) (0.002) (0.002) (0.003) (0.002) 

# of cited references 1.001 0.988*** 0.992*** 0.999 1.002 1.001 
  (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) 

Turning point for nCTD effect 36.6 
  

260.5 268.1 
 Average patents/year 55.8 208.4 212.7 232.8 101.1 617.5 

Number of obs. 31981 160773 86196 179506 39684 333538 
log likelihood -20022.82 -64943.38 -59450.88 -69904.75 -24543.49 -61274.15 
NOTES: Standard errors in parentheses; * p<0.1, ** p<0.05, *** p<0.01; All e(beta) except ln_nctg 
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Table 7 – Patent Characteristic Quantile Results by Technology 

90th quantile wind solar fuel cells nuclear hybrid efficiency 
Cite lag 1.005 0.921*** 0.899*** 0.904*** 1.068*** 0.884*** 

 
(0.012) (0.009) (0.011) (0.011) (0.020) (0.008) 

Cite lag^2 0.999** 0.999 0.999** 0.999* 0.996*** 1.000 

 
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

Stock of patents 0.996*** 0.998*** 0.990*** 0.990** 0.999*** 0.994*** 

 
(0.001) (0.001) (0.001) (0.004) (0.000) (0.001) 

# of patents in cited yr. 1.083** 0.963*** 0.993 1.473*** 1.100*** 0.994** 

 
(0.033) (0.005) (0.005) (0.083) (0.014) (0.002) 

# of patents in cited yr.^2 0.992*** 1.000*** 1.000 0.993*** 0.998*** 1.000*** 

 
(0.002) (0.000) (0.000) (0.001) (0.000) (0.000) 

# of claims made 1.016*** 1.015*** 1.011*** 1.017*** 1.014*** 1.009*** 

 
(0.001) (0.001) (0.001) (0.002) (0.002) (0.001) 

# of cited references 1.002 0.983*** 0.991*** 0.998 1.003 1.001 
  (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) 
75th quantile 

      Cite lag 1.020 0.982*** 0.931*** 0.965*** 0.987 0.881*** 

 
(0.011) (0.005) (0.010) (0.007) (0.016) (0.008) 

Cite lag^2 0.998*** 0.999*** 0.998*** 0.999*** 0.999** 1.000 

 
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 

Stock of patents 0.995*** 0.997*** 0.994*** 0.992*** 0.998*** 0.994*** 

 
(0.001) (0.000) (0.001) (0.002) (0.000) (0.001) 

# of patents in cited yr. 1.105*** 0.989** 0.995 1.179*** 1.132*** 0.993** 

 
(0.031) (0.004) (0.004) (0.042) (0.013) (0.002) 

# of patents in cited yr.^2 0.989*** 1.000 1.000* 0.997*** 0.998*** 1.000*** 

 
(0.002) (0.000) (0.000) (0.001) (0.000) (0.000) 

# of claims made 1.017*** 1.009*** 1.010*** 1.011*** 1.012*** 1.006*** 

 
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) 

# of cited references 1.002 0.989*** 0.986*** 0.999 1.000 1.000 
  (0.002) (0.002) (0.001) (0.001) (0.002) (0.000) 
50th quantile 

      Cite lag 1.016 0.984** 0.950*** 0.963*** 1.015 0.884*** 

 
(0.009) (0.005) (0.008) (0.007) (0.013) (0.010) 

Cite lag^2 0.998*** 0.999*** 0.998*** 0.999*** 0.998*** 1.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Stock of patents 0.995*** 0.997*** 0.995*** 0.991*** 0.999** 0.994*** 

 
(0.001) (0.000) (0.001) (0.002) (0.000) (0.001) 

# of patents in cited yr. 1.079*** 0.998 0.996 1.199*** 1.072*** 0.993** 

 
(0.024) (0.004) (0.004) (0.044) (0.009) (0.002) 

# of patents in cited yr.^2 0.991*** 1.000* 1.000 0.997*** 0.999*** 1.000*** 

 
(0.002) (0.000) (0.000) (0.001) (0.000) (0.000) 

# of claims made 1.013*** 1.006*** 1.007*** 1.008*** 1.006*** 1.006*** 

 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

# of cited references 1.001 0.990*** 0.989*** 1.000 0.999 0.999 
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
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Table 7 – Patent Characteristic Quantile Results by Technology (continued) 
 
25th quantile 

      Cite lag 1.015 0.976*** 0.948*** 0.953*** 0.994 
 

 
(0.009) (0.006) (0.008) (0.007) (0.014) 

 Cite lag^2 0.998*** 0.999*** 0.999*** 0.999** 0.999** 
 

 
(0.000) (0.000) (0.000) (0.000) (0.001) 

 Stock of patents 0.996*** 0.998*** 0.995*** 0.992*** 0.999*** 
 

 
(0.001) (0.000) (0.001) (0.002) (0.000) 

 # of patents in cited yr. 1.075** 0.998 0.996 1.210*** 1.065*** 
 

 
(0.025) (0.004) (0.004) (0.052) (0.010) 

 # of patents in cited yr.^2 0.992*** 1.000* 1.000 0.997*** 0.999*** 
 

 
(0.002) (0.000) (0.000) (0.001) (0.000) 

 # of claims made 1.013*** 1.005*** 1.006*** 1.006*** 1.005*** 
 

 
(0.001) (0.001) (0.001) (0.001) (0.001) 

 # of cited references 1.000 0.991*** 0.990*** 0.999 0.999 
   (0.002) (0.002) (0.001) (0.002) (0.001)   

 

 

 

Table 8 – Assignee Characteristic Results by Technology 

90th quantile wind solar fuel cells nuclear hybrid efficiency 
Foreign corp. assignee 0.466*** 0.608*** 0.567*** 0.517*** 1.022 0.929** 

 
(0.041) (0.025) (0.017) (0.016) (0.051) (0.021) 

US individual assignee 0.737*** 0.747*** 0.505*** 0.650*** 1.130 1.188*** 

 
(0.038) (0.024) (0.036) (0.053) (0.095) (0.033) 

Foreign individual  0.573*** 0.461*** 0.342*** 0.290*** 0.516*** 0.707*** 

 
(0.040) (0.026) (0.057) (0.046) (0.077) (0.038) 

US government assignee 1.123 1.245* 0.956 0.371*** 1.463 0.613** 

 
(0.148) (0.130) (0.063) (0.024) (0.569) (0.105) 

Foreign government  0.862 0.685*** 0.427*** 0.520*** 0.689 0.623* 

 
(0.157) (0.058) (0.082) (0.031) (0.243) (0.136) 

US university assignee 0.334*** 0.942 0.890 0.328*** 1.519* 0.974 

 
(0.083) (0.085) (0.055) (0.092) (0.323) (0.093) 

Foreign university  0.905 0.506** 0.425*** 0.086 0.000 0.331 

 
(0.203) (0.134) (0.110) (172.546) (5.778) (0.305) 

US institution assignee 0.582** 0.865 0.693*** 0.383*** 0.945 0.937 

 
(0.097) (0.133) (0.050) (0.072) (0.276) (0.142) 

Foreign institution  0.243** 0.306*** 0.409*** 0.437*** 0.654 0.927 

 
(0.107) (0.070) (0.045) (0.079) (0.214) (0.098) 

Child of US govt. patent 1.259** 1.754*** 1.432*** 1.065 1.330** 4.942*** 

 
(0.105) (0.092) (0.043) (0.039) (0.121) (1.048) 

Child of For. govt. patent 1.680*** 1.768*** 1.624*** 1.332*** 1.361 0.909 
  (0.193) (0.096) (0.075) (0.045) (0.223) (0.239) 
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Table 8 – Assignee Characteristic Results by Technology (continued) 

75th quantile 
      Foreign corporation  0.454*** 0.707*** 0.575*** 0.639*** 1.232*** 0.922*** 

 
(0.034) (0.020) (0.017) (0.013) (0.062) (0.021) 

US individual assignee 0.774*** 0.843*** 0.448*** 0.717*** 1.035 1.170*** 

 
(0.038) (0.019) (0.032) (0.037) (0.096) (0.032) 

Foreign individual  0.581*** 0.574*** 0.303*** 0.465*** 0.574*** 0.685*** 

 
(0.039) (0.024) (0.046) (0.035) (0.068) (0.039) 

US government  1.457* 1.138* 1.209** 0.551*** 1.205 0.562 

 
(0.224) (0.068) (0.083) (0.020) (0.506) (0.284) 

Foreign government  0.898 0.756*** 0.415*** 0.660*** 0.887 0.580 

 
(0.206) (0.047) (0.048) (0.023) (0.259) (0.184) 

US university assignee 0.340*** 0.929 0.790*** 0.492*** 1.893 0.985 

 
(0.070) (0.068) (0.056) (0.090) (0.678) (0.098) 

Foreign university  0.763 0.570** 0.362*** 0.061 0.000 0.240 

 
(0.163) (0.108) (0.093) (20115.22) (209.060) (2.86e+05) 

US institution assignee 0.782 0.800 0.712*** 0.571*** 1.377 0.811 

 
(0.171) (0.108) (0.065) (0.063) (0.411) (0.227) 

Foreign institution  0.222 0.407*** 0.438*** 0.609*** 0.481** 0.862 

 
(59330.6) (0.061) (0.046) (0.053) (0.116) (0.123) 

Child of US govt. patent 1.505*** 1.474*** 2.009*** 1.033 1.593*** 2.435*** 

 
(0.124) (0.049) (0.067) (0.026) (0.193) (0.267) 

Child of For. govt. patent 1.974*** 1.391*** 1.819*** 1.268*** 1.484** 0.832 
  (0.198) (0.046) (0.106) (0.032) (0.218) (0.241) 
50th quantile 

      Foreign corporation  0.555*** 0.703*** 0.678*** 0.644*** 1.171*** 0.913*** 

 
(0.033) (0.019) (0.016) (0.013) (0.043) (0.023) 

US individual assignee 0.821*** 0.857*** 0.542*** 0.739*** 0.945 1.174*** 

 
(0.034) (0.019) (0.030) (0.038) (0.057) (0.034) 

Foreign individual  0.665*** 0.598*** 0.429*** 0.483*** 0.703*** 0.683*** 

 
(0.034) (0.024) (0.050) (0.037) (0.058) (0.064) 

US government assignee 1.397* 1.164* 1.157* 0.559*** 0.957 0.441 

 
(0.212) (0.069) (0.067) (0.021) (0.761) (1.13e+05) 

Foreign government  0.810 0.748*** 0.521*** 0.664*** 0.871 0.558 

 
(0.165) (0.048) (0.048) (0.024) (1.201) (0.488) 

US university assignee 0.403*** 0.929 0.781*** 0.295 1.068 0.749 

 
(0.108) (0.065) (0.045) (69439.18) (0.219) (2.57e+05) 

Foreign university  0.785 0.456 0.418*** 0.019 0.000 0.227 

 
(0.178) (67961.09) (0.083) (25929.77) (19382.3) (3.01e+05) 

US institution assignee 0.793 0.766* 0.719*** 0.567*** 1.278 0.785 

 
(0.186) (0.099) (0.054) (0.073) (0.457) (40.803) 

Foreign institution  0.119 0.377 0.542*** 0.611*** 0.609 0.780 

 
(7.9e+05) (0.263) (0.049) (0.058) (0.206) (90533.9) 

Child of US govt. patent 1.362*** 1.438*** 1.946*** 1.032 1.404*** 2.322*** 

 
(0.097) (0.046) (0.060) (0.025) (0.124) (0.291) 

Child of For. govt. patent 1.968*** 1.327*** 1.745*** 1.238*** 1.184 0.829 
  (0.181) (0.041) (0.092) (0.028) (0.132) (0.837) 
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Table 8 – Assignee Characteristic Results by Technology (continued) 

25th quantile 
      Foreign corporation  0.557*** 0.714*** 0.697*** 0.646*** 1.148*** 

 
 

(0.035) (0.020) (0.016) (0.013) (0.043) 
 US individual assignee 0.832*** 0.860*** 0.556*** 0.749*** 0.961 
 

 
(0.036) (0.020) (0.031) (0.042) (0.059) 

 Foreign individual  0.670*** 0.635*** 0.478*** 0.419 0.726*** 
 

 
(0.036) (0.026) (0.058) (5136.148) (0.065) 

 US government assignee 1.421* 1.158* 1.136* 0.571*** 0.544 
 

 
(0.235) (0.073) (0.063) (0.023) (1.37e+06) 

 Foreign government  0.786 0.732*** 0.555*** 0.649*** 0.572 
 

 
(0.203) (0.058) (0.055) (0.026) (2.62e+05) 

 US university assignee 0.206 0.930 0.794*** 0.334 0.936 
 

 
(7.79e+05) (0.069) (0.043) (99672.705) (1.152) 

 Foreign university  0.329 0.360 0.367 0.019 0.002 
 

 
(1.23e+06) (2.05e+05) (1.08e+05) (43248.828) (1.06e+05) 

 US institution assignee 0.768 0.679 0.747*** 0.542*** 0.522 
 

 
(0.246) (1.91e+05) (0.053) (0.086) (3.55e+06) 

 Foreign institution  0.027 0.230 0.532** 0.592*** 0.733 
 

 
(1.92e+05) (68282.460) (0.129) (0.076) (0.133) 

 Child of US govt. patent 1.358*** 1.414*** 1.822*** 1.042 1.397*** 
 

 
(0.102) (0.047) (0.052) (0.027) (0.125) 

 Child of For. govt. patent 1.923*** 1.298*** 1.691*** 1.213*** 1.214 
   (0.190) (0.042) (0.084) (0.030) (0.139)   
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Figure 1 – Successful U.S. Patent Applications by Priority Year 

 

 

The figure shows successful U.S. patent applications for each of our six technologies, sorted by 

priority date.  Note that our data only include granted patents.  Thus, patent counts in the last 

years of the sample are truncated, as some patent applications from these years have yet to be 

processed. 
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Figure 2 – Sample Citation Frequency Distributions 

A. Citations to hybrid patents,1991 

 

B. Citations to wind energy patents,1981 

 
 

(continued on next page) 
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C. Citations to solar energy patents,1981 

 
 

Each figure shows the distribution of forward citations received by patents from a given priority 

year and for a given technology.  The x-axis shows the number of forward citations received, and 

the y-axis shows the number of patents receiving that many forward citations. 
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Figure 3 – Effect of cite lag by technology 

A. Based on estimates from Table 5 

 

B. Based on estimates from Table 6 
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Figure 4 – Years affected by diminishing returns 

 

The figure shows patent counts sorted by priority year for the three technologies where 

diminishing returns varies depending on the number of patents.  Years affected by diminishing 

returns are shown with dashed lines. 
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Appendix A – List of IPC Classes Used 

Electric/Hybrid Vehicles 
B60W 20  VEHICLES IN GENERAL/CONJOINT CONTROL OF VEHICLE SUB-

UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; 

CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID 

VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR 

PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR 

SUB-UNIT /Control systems specially adapted for hybrid vehicles, i.e. 

vehicles having two or more prime movers of more than one type, e.g. 

electrical and internal combustion motors, all used for propulsion of the 

vehicle   

B60L 7 VEHICLES IN GENERAL/ELECTRIC EQUIPMENT OR 

PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; 

MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; 

ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN 

GENERAL/ Electrodynamic brake systems for vehicles in general   

B60L 8 VEHICLES IN GENERAL/ELECTRIC EQUIPMENT OR 

PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; 

MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; 

ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN 

GENERAL/ Electric propulsion with power supply from force of nature, 

e.g. sun, wind   

B60L 11 VEHICLES IN GENERAL/ELECTRIC EQUIPMENT OR 

PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; 

MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; 

ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN 

GENERAL/ Electric propulsion with power supplied within the vehicle   

NOT B60L 7/28 VEHICLES IN GENERAL/ELECTRIC EQUIPMENT OR 

PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; 

MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; 

ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN 

GENERAL/ Electrodynamic brake systems for vehicles in general/Eddy-

current braking 

 

Energy efficiency 
keywords only:  ((((((energy OR fuel OR gas* OR electric* OR petrol*) <near/1> 

(consum* OR use OR using OR usage OR burn*)) <near/3> (reduc* OR 

less OR lower)) <in> (AB, TI, BACKGROUND)) OR ((((energy OR fuel 

OR gas*) <near/1> (efficien* OR economy OR mileage OR productivity)) 

<near/3> (improv* OR increas* OR better OR greater)) <in> (AB, TI, 

BACKGROUND))) 
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Fuel cells 
H01M 8 PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT 

CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL 

ENERGY/Fuel cells; Manufacture thereof 

 
 
Nuclear Energy 
G21B NUCLEONICS/NUCLEAR PHYSICS; NUCLEAR ENGINEERING/ 

FUSION REACTORS 

G21C NUCLEONICS/NUCLEAR PHYSICS; NUCLEAR ENGINEERING/ 

NUCLEAR REACTORS 

G21D NUCLEONICS/NUCLEAR PHYSICS; NUCLEAR ENGINEERING/ 

NUCLEAR POWER PLANT 

 

 

Solar energy 
F03G 6 MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR 

WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A 

REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED 

FOR/ SPRING, WEIGHT, INERTIA, OR LIKE MOTORS; 

MECHANICAL-POWER-PRODUCING DEVICES OR MECHANISMS, 

NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES 

NOT OTHERWISE PROVIDED FOR /Devices for producing mechanical 

power from solar energy 
F24J 2 MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; 

BLASTING/HEATING, RANGES, VENTILATING/PRODUCTION OR 

USE OF HEAT NOT OTHERWISE PROVIDED FOR/Use of solar heat, 

e.g. solar heat collectors 

H01L 27/142 ELECTRICITY/BASIC ELECTRIC ELEMENTS/ SEMICONDUCTOR 

DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE 

PROVIDED FOR/ Devices consisting of a plurality of semiconductor or 

other solid-state components formed in or on a common 

substrate/including semiconductor components specially adapted for 

rectifying, oscillating, amplifying or switching and having at least one 

potential-jump barrier or surface barrier; including integrated passive 

circuit elements with at least one potential-jump barrier or surface 

barrier/energy conversion devices 

H01L 31/04-058 ELECTRICITY/BASIC ELECTRIC ELEMENTS/ SEMICONDUCTOR 

DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE 

PROVIDED FOR/ Semiconductor devices sensitive to infra-red radiation, 

light, electromagnetic radiation of shorter wavelength, or corpuscular 

radiation and specially adapted either for the conversion of the energy of 

such radiation into electrical energy or for the control of electrical energy 

by such radiation; Processes or apparatus specially adapted for the 

manufacture or treatment thereof or of parts thereof; Details 
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thereof/Adapted as conversion devices/ including a panel or array of 

photoelectric cells, e.g. solar cells 

H02N 6 ELECTRICITY/ GENERATION, CONVERSION, OR DISTRIBUTION 

OF ELECTRIC POWER/ELECTRIC MACHINES NOT OTHERWISE 

PROVIDED FOR/ Generators in which light radiation is directly 

converted into electrical energy 

 

 

Wind 
F03D MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR 

WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A 

REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED 

FOR/Wind Motors 

 

 




