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I. Introduction 
 

 The debate over climate change policy has largely focused on the design of instruments 

that will impose a price on the emission of carbon dioxide (CO2) and other greenhouse gases.  In 

the context of this debate, attention has turned to the prospect that the cost of using fossil fuels 

could increase under various climate change policy instruments, including economy-wide cap-

and-trade and carbon tax policies, as well as state cap-and-trade programs (such as in California 

and the northeastern states), state renewable and alternative energy mandates in the power sector, 

and greenhouse gas regulatory mandates under the Clean Air Act. The policy-induced higher 

energy prices could cause adverse competitiveness effects for energy-intensive firms in 

developed countries, such as in Western Europe and the United States, if they move forward with 

mitigation efforts while major developing countries postpone action.  

The concerns about competitiveness are consistent with the pollution haven hypothesis 

that suggests that firms relocate economic activity from high regulatory cost to low regulatory 

cost countries.  While sometimes framed as an “economy versus the environment” question with 

regard to conventional pollution (Morgenstern et al. 2002), this effect is especially troubling in 

the context of climate change policy.  The relocation of economic activity would increase CO2 

emissions in developing countries, thereby undermining the global environmental benefits of the 

developed country's emission mitigation policy.  That is, it is an “economy and the environment” 

problem.   

In this paper, we present evidence that energy price increases due to carbon pricing 

($15/tCO2) lead to declines in output of as much as 5 percent for the most energy-intensive 

manufacturing industries – one-sixth of which is due to competitiveness effects. To draw these 

conclusions, we begin by defining the competitiveness effect as the change in net imports due to 

the implementation of a domestic carbon pricing policy. We employ an empirical strategy that 

examines the historical relationship between energy prices and production and net imports in the 

U.S. manufacturing sector.  Taking advantage of the fact that market-based CO2 policy 

instruments such as cap-and-trade and emission taxes operate primarily by raising energy prices, 

as would a carbon performance standard under the Clean Air Act (U.S. EPA 2014), we use this 

estimation to infer the competitiveness effect of U.S.-only CO2 regulation.   
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Our approach uses within-industry energy price variation over time to identify the 

competitiveness effect, variation that arises from both geographical differences in industry 

location (and energy prices) as well as differences in each industry’s energy mix.  This is akin to 

estimating the various elasticities related to energy prices underlying the computable general 

equilibrium models that have yielded previous economy-wide competitiveness and emission 

leakage estimates.  However, we generate results in a reduced-form regression framework of 

equilibrium outcomes at a much more disaggregated level (4-digit industry).1  In particular, 

through interaction terms, we allow the estimated effects to vary with the energy intensity of 

production, allowing us to differentiate impacts among more or less energy-intensive industries. 

Our analysis employs manufacturing industry data over the 1974-2009 period and employs 

industry-specific energy prices as a proxy for market-based carbon pricing regulation. Like much 

of the literature on estimating energy price elasticities, we estimate output and competitiveness 

effects in an empirical framework that focuses on short-run responses to a change in energy 

prices. In practice, a firm may respond to a carbon price – expecting it to be permanent – 

differently than to an idiosyncratic energy price shock. We note, however, that the volatility in 

allowance market prices, such as in the EU Emission Trading Scheme for carbon dioxide and 

other cap-and-trade programs (Aldy and Viscusi 2014), may undermine firms’ abilities to predict 

and plan for carbon prices. In this case, a short-run response through our empirical approach may 

provide a plausible simulation of firm behavior under climate change regulation characterized by 

volatile carbon prices. 

 We use our estimated model to simulate the impacts of a U.S.-only $15 per ton CO2 

price, translated into the likely changes in energy prices.  We focus on $15 per ton CO2 because 

the energy price changes are consistent with the observed variation in our historic energy price 

data; $15 per ton is also in line with prices expected under various cap-and-trade and carbon tax 

legislative proposals in recent years. Moreover, the California cap-and-trade program has had 

allowance prices in this range in recent years (allowances traded for $12 per ton on average in 

2014) and the proposed electricity price impacts under the Environmental Protection Agency’s 

                                                 
1 Emission leakage is typically a broader concept than the competitiveness measure we define and estimate in this 
paper.  Emission leakage includes the relocation of emissions associated with a change in net imports as we describe 
here, but can also include an increase in emissions in countries without carbon mitigation policy as a result of 
changes in world energy prices and / or changes in the terms of trade.  
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proposed Clean Power Plan are consistent with this carbon price (Aldy and Pizer 2015).2 We 

apply this price to an economy-wide carbon price simulation, consistent with an economy-wide 

tax or cap-and-trade program.  

We find that the higher energy prices associated with this carbon price would lead to a 

production decline of as much as 5 percent among key energy-intensive sectors (e.g., iron and 

steel, aluminum, cement, etc.).  We also find, however, that this energy price increase would 

translate into a smaller-than-one-percent increase in net imports, reflecting either a lack of 

substitutability with foreign goods or a lack of additional global capacity over the horizon we 

examine (one to three years via various lagged models). The approximately eight-tenths of a 

percent shift in energy-intensive production overseas is our estimated adverse competitiveness 

effect.  Put another way, as a share of the total 5 percent effect on the most energy-intensive 

industries, the “competitiveness” component is only about one-sixth. 

Quantitatively, the overall results suggest the competitiveness effects associated with a 

$15 per ton CO2 price is consistently no more than 1 percent of production.  To put this estimated 

impact in context, consider that the standard deviation of the annual growth rate in the value of 

shipments was 12.9 percent during our sample.  Some energy-intensive industries, such as iron 

and steel and aluminum, experienced variation in growth in excess of the manufacturing sector 

average.  For other energy-intensive industries, including paper, cement, and bulk glass, the 

variation was in the 10 to 12 percent range, on average.   

 Our work builds on a substantial literature that has examined the question of whether 

environmental regulations adversely affect the competitive position of American industry.  

Numerous theoretical analyses have suggested that environmental policy could create so-called 

“pollution havens” in developing countries: 

“The conventional wisdom is that environmental regulations impose significant 

costs, slow productivity growth, and thereby hinder the ability of U.S. firms to 

compete in international markets.  This loss of competitiveness is believed to be 

reflected in declining exports, increasing imports, and a long-term movement of 

manufacturing capacity from the United States to other countries, particularly in 

‘pollution-intensive’ industries” (Jaffe et al. 1995, p. 133). 

                                                 
2 U.S. EIA (2013) estimates that an economy-wide $15/tCO2 price would increase all-sector retail electricity prices 
by 0.6 ¢/kWh on average nationwide. U.S. EPA (2014) estimates that the proposed Clean Power Plan would 
increase all-sector retail electricity prices by 0.4-0.7 ¢/kWh across four scenarios. 
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 Empirically evaluating this conventional wisdom has proven challenging (Jaffe et al. 

1995; Levinson and Taylor 2008).  A variety of factors may mitigate or dominate the effect of 

environmental regulatory costs in determining manufacturing location decisions.  First, the 

availability of relevant factors of production, such as appropriately skilled labor, natural 

resources, and capital, can play a more significant role than pollution control costs (Antweiler et 

al. 2001).  Second, transportation costs may discourage relocation to countries far from the major 

markets for manufactured goods (Ederington et al. 2005).  Third, firms with a significant share of 

their investments in large, fixed physical structures also appear to move activity less in response 

to environmental regulations (Ederington et al. 2005).  Fourth, proximity to firms that produce 

inputs or purchase outputs – e.g., agglomeration economies – also discourages relocation 

(Jeppesen et al. 2002).   

 Since the most pollution-intensive industries tend to be relatively immobile by these 

measures of “footlooseness,” the empirical literature typically finds quite limited impacts of 

environmental regulations on international competitiveness.  Levinson and Taylor (2008) show 

that U.S. pollution abatement costs in the 1970s and 1980s increased net imports in the 

manufacturing sector from Mexico and Canada.  The estimated increase in net imports roughly 

equaled about 10 percent of the total increase in bilateral trade for both Mexico and Canada, 

suggesting that other factors played much more substantial roles in the evolution of trade among 

the North American trading partners.  An extensive literature on the competitiveness effects of 

variation in environmental policies across the U.S. states has shown more significant impacts on 

domestic firm relocation resulting from variation in the stringency of environmental regulations 

(Henderson 1996; Greenstone 2002).  Kahn and Mansur (2013) find even larger effects looking 

at adjacent counties.  The larger domestic competitiveness effects may reflect the fact that labor 

costs and availability of capital do not vary much across the U.S. states and counties, and 

transportation costs are less important, relative to the international context. 

 This empirical literature has focused on retrospective analyses of U.S. environmental 

regulations.  The absence of a domestic CO2 regulatory or taxation regime precludes us from 

taking exactly the same approach.  The popular alternative has been to use applied computable 

general equilibrium models to simulate potential competitiveness impacts of pricing carbon 

(IPCC 2001).  These CGE models have been useful in quantifying aggregate leakage rates as 
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well as important interaction effects across markets that only a general equilibrium model can 

capture.  A limitation of these models is their focus on aggregate effects that obscures effects on 

individual industries. While informative, this approach provides little to no differentiation among 

industries with different energy intensities and elasticities with respect to energy prices.  Indeed, 

it is typical to make a common set of assumptions that yield a common response across the entire 

manufacturing industry to a carbon pricing policy.  As our analysis shows below, this approach 

can underestimate the impacts on the more energy-intensive manufacturing industries.   In this 

way, our work is a natural complement to this literature. 

 The next section presents our empirical methods and data.  Section three presents the 

results of our empirical analyses of the relationships between energy prices and net imports and 

production.  Section four illustrates the results of our simulation of a near-term unilateral U.S. 

CO2 mitigation policy on the U.S. manufacturing sector.  The final section concludes with 

comments on future research and implications for policy design. 

  

II. Methods and Data for Empirical Analysis 

 

The pollution haven hypothesis suggests that a climate change policy would impose 

significant economic costs on carbon-intensive industries, resulting in declining output and 

increasing net imports. In order to evaluate this hypothesis, we undertake a two-step empirical 

analysis. First, we use historic energy prices as a proxy for climate change mitigation policy. We 

estimate how production and net imports change in response to energy prices in the U.S. 

manufacturing sector. Second, we take these estimated relationships to simulate the impacts of 

changes in energy prices resulting from a climate change mitigation policy that effectively prices 

CO2 emissions.  

 In evaluating the pollution haven hypothesis, we take two issues into consideration. The 

costs of climate policy are anticipated to be greater for carbon-intensive industries. With 80+ 

percent of U.S. greenhouse gas emissions occurring as a result of fossil fuel combustion, carbon 

intensity and energy intensity are effectively the same in the context of domestic mitigation 

policy. Thus, we test for how energy prices affect production and net imports as a function of 

industries’ energy intensity. Moreover, we explicitly discern impacts on production from impacts 

on net imports. The change in net imports reflects the adverse competitiveness impacts of a 
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domestic mitigation policy. The change in production could reflect these competitiveness effects 

– and a one-for-one substitution of net imports for domestic production would suggest that the 

entire change in production was driven by competitiveness pressures. It is possible, however, that 

domestic production could decline more than the change in net imports, representing a decline in 

domestic consumption. For example, customers of energy-intensive manufactured goods could 

exploit opportunities for economizing on their consumption – e.g., an auto manufacturer may use 

less steel in response to climate policy induced increases in steel prices.  At the same time, 

frictions in trade and differences between domestic and imported goods may preclude one-for-

one substitution by net imports.  

 As a result, our empirical strategy tests two hypotheses. First, do idiosyncratic energy 

price changes cause manufacturing production to decline? Second, do idiosyncratic energy price 

changes cause manufacturing net imports to increase? In investigating these hypotheses 

empirically, we will allow for energy price impacts to vary with industry energy intensity. We 

will also assess the ratio of these two effects.  That is, the fraction of changes in production 

resulting from changes in net imports, i.e., from competitiveness effects. Understanding these 

two impacts will provide a better understanding of the likely economic mechanisms driving 

changes in U.S. manufacturing under a climate change mitigation policy. Discerning 

international competitiveness effects from reduced domestic consumption effects would also 

inform very different policy responses, as discussed in our final section.  

To estimate production and competitiveness effects, we use a sample of nearly 450 U.S. 

industries at the 4-digit industry (SIC 1987) level of disaggregation over the 1974-2009 period, 

with a primary sample over 1979-2005 given data limitations.  The general reduced-form 

regression specification takes this form: 

 

(1) ܻ௧ ൌ ,௧ߙ  ௧ߠ  ݂൫ߛ, ݁,௧ିଵ൯  ݂൫ߚ, ݁,௧ିଵ൯ ln ܲ,௧
௬  ᇱߜ ܺ,௧  ߳,௧  

 

Where Yit represents the outcome measure – either the natural logarithm of production or the 

ratio of net imports to lagged production – for 4-digit industry i and year t; the α’s and θ’s are 

fixed effects for industries and years, respectively; the function f(⋅ ) defines the responsiveness of 

the outcome to energy prices as a flexible function of lagged energy intensity ei,t-1 and parameters 

γ and β; ln ܲ,௧
௬represents the level of U.S. carbon regulation – which we proxy with the 
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natural logarithm of domestic industry-specific energy prices; and Xit  is a vector of additional 

determinants of the industry outcome measures. In our preferred model specifications reported 

below, we estimate (1) as the following:  

 

(1ʹ) ܻ௧ ൌ ߙ  ሺሻ,௧ߠ  ୪୬ߛ ln ݁,௧ିଵ  ሺߚ୪୬  ୪୬ൈ୪୬ߚ  ln ݁,௧ିଵሻ ln ܲ,௧
௬ 

																				ߜ 	 ln ௧ܲ
 ln ݁,௧ିଵ 		 ,௧ܴܣ௧ܶߜ  ܥ௦ܲߜ ܵ,௧  ܥܪ௦ߜ ܵ,௧  ߳,௧  

 

where Xit includes the interaction of the world oil price and lagged energy intensity, average 

industry tariffs (TAR) and factor intensity variables (to estimate the returns to physical capital, 

PCS, and human capital, HCS).  The fixed effects ߠሺሻ,௧ represent year by 2-digit industry group 

fixed effects (the grouping function ݃ሺ݅ሻ݃ሺ݅ሻ maps each of the 448 4-digit industries into 20 2-

digit aggregates).3 Including the interaction of the world oil price and lagged energy intensity 

permits us to control for energy price impacts in foreign trade partners that might vary based on 

energy intensity (versus non-varying effects picked up by ߠሺሻ,௧). In effect, our models attempt 

to estimate the impact of domestic industry energy prices on industry outcomes conditional on 

the energy prices faced by foreign manufacturers. Note that the energy intensity function is 

included alone, as well as interacted with energy prices.  The use of lagged energy intensity is 

designed to limit potential endogeneity, described below. In estimating (1ʹ), we weight each 

observation by the 1974-2009 average value of shipments for that industry.  This solves the 

empirical problem that industries with very small shipment values can have explosive net import 

values, an issue we test in our robustness checks.  Summary statistics for our data are presented 

in Table 1.We now describe our model specification and variable construction in more detail.   

 

Domestic Production 

Our outcome variables are constructed from the NBER-CES manufacturing database 

(Bartlesman et al. 2000) and from Schott (2008, 2010).  We use the value of shipments by 

industry from the NBER-CES Manufacturing Industry Database (SIC-87 version) as our measure 

of domestic production. This provides value of shipments data for 459 industries over the 1958-

                                                 
3 We appreciate a referee’s suggestion that we should account for aggregated industry-specific trends in our 
empirical model. 
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2009 period in millions of dollars. Given the significant variation in size of U.S. manufacturing 

industries, we estimate all production models with the natural logarithm of value of shipments.4   

 

Net Imports 

For net imports, we use Peter Schott’s public database (2008, 2010) on SIC-87-level 

trade data. This provides gross imports and gross exports data for 403 industries over the 1972-

2005 period and 446 industries over the 1972-1989 period measured in millions of dollars. We 

constructed net imports as the difference between the gross imports and gross exports variables 

and then scaled this value by the lagged value of shipments measure (we examine these variables 

separately in our robustness checks). Scaling by production addresses the significant variation in 

size of U.S. manufacturing industries, and is the norm in this literature (e.g., Ederington et al. 

2005). We use lagged, rather than current, value of shipments because of the endogeneity of 

domestic production and net imports.     

 

Energy Prices 

We use energy prices as a proxy for regulation under a hypothetical carbon pricing 

regime because both cap-and-trade programs, including the EPA Clean Power Plan, and carbon 

taxes affect behavior by raising energy prices.  While historic price changes were not caused by 

carbon pricing, we hypothesize that future carbon pricing would have a similar effect.  We 

construct an energy price index, ܲ௧, that varies by 4-digit industry and year: 

 

(2) ܲ௧ ൌ ൫ ܲ௧
ா൯ ቆ

ொೕሺሻ
ಶ

∑ ொೕሺሻ
ಷ


ቇ  ∑ ቊ∑ ൫ ௦ܲ௧

൯ ൬
ீௌೞೕሺሻషభ

∑ ீௌೞೕሺሻషభ
ೄ
ೞ

൰ௌ
௦ ൨ ቆ

ொೕሺሻ


∑ ொೕሺሻ
ಷ


ቇቋி

  

ܲሺሻ௧
  

 

where ݆ሺ݅ሻ denotes the 2-digit SIC-87 industry corresponding to 4-digit industry i, s denotes 

state, ݂ ∈  ,denotes fuel, which includes coal, distillate oil, natural gas, residual oil, coke ܨ

liquefied petroleum gas, and electricity, and (as before) t is year. At the top level, to aggregate 

prices across the set of fuels, F, we estimate 2-digit-industry-by-year fuel shares, 
ொೕ


∑ ொೕ
ಷ


. The U.S. 

                                                 
4 All measures of output, net imports, and prices have been deflated to constant 2009 dollars. 
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Energy Information Administration Manufacturing Energy Consumption Survey provides annual 

fuel consumption by 2-digit SIC-87 manufacturing industry and fuel, ܳ௧
 , for 1974-1990 and 

1991, 1994, 1998, 2002, 2006, and 2010. We construct fuel shares as the ratio of consumption 

(in MMBTU) for a specific fuel to all energy consumption (in MMBTU) by that 2-digit industry 

in that year. We use linear interpolation to construct fuel shares in non-survey years of the 

MECS post-1991. 

To construct a 4-digit industry electricity price, ܲ௧
ா, we use the Annual Survey of 

Manufactures SIC-87 classified electricity expenditures and quantity of electricity consumed by 

4-digit industry for 1974-2001.  Wayne Gray provided the same data from the Annual Survey of 

Manufactures for 1978 and 1997-2009. We construct the electricity price as the ratio of 

expenditure to quantity. We convert electricity prices to dollars per million BTU to permit 

comparability with the fuel price data described below. Refer to the data appendix for further 

details.  

For all other fuels, we construct a 2-digit-industry-by year fuel price ܲ௧
.  We use state-

by-year industrial energy prices by fuel, ௦ܲ௧
, for 1970-2009 from the U.S. Energy Information 

Administration State Energy Data System (measured in dollars per million BTU).5 We map 

state-by-year fuel prices to 2-digit-industry-by-year fuel prices using 2-digit industry-by-state-

by-year output. We construct a state’s share of 2-digit industry national output, 
ீௌೞೕషభ

∑ ீௌೞೕషభ
ೄ
ೞ

, using 

U.S. Bureau of Economic Analysis gross state product data. Summing the product of the state-

by-year fuel price and the industry-by-year state shares of national output yields 2-digit-industry-

by-year fuel prices. To address potential endogeneity concerns of using output to construct 

energy prices, we employ the one year lag of state industry share of national output.6  In sum, we 

use 4-digit industry electricity prices and 2-digit industry state-weighted non-electricity fuel 

prices aggregated by 2-digit industry fuel consumption weights to produce our energy price 

variable. 

 

Energy price – energy intensity interaction 

                                                 
5 The Annual Survey of Manufactures collects expenditures but not physical quantities or prices of non-electricity 
fuel inputs.  
6 We thank an anonymous referee for this suggestion. 
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The flexible function f(⋅ ) captures the variation across industries and time in the net 

import and production elasticities with respect to energy prices in our estimation equation (1ʹ). 

We expect energy intensity is the key driver of this variation, as higher energy intensities imply 

larger cost impacts from rising energy prices.  Without knowing exactly how the elasticities 

would vary, we considered various specifications ranging from a constant value, to linear and 

quadratic functions of energy intensity.  We are unable to reject that the hypothesis that the 

quadratic simplifies to a linear function of logged energy intensity (f(⋅ )) and that remains our 

preferred specification.  

We define energy intensity as the ratio of all energy expenditures to value of shipments.  

Energy costs are reported in the Annual Survey of Manufactures and Bartlesman et al. (2000).  

To address endogeneity concerns, we employ the one-year lag of energy intensity in our various 

specifications.  Figure 1 presents the cumulative distribution function for each industry’s average 

energy intensity in 2009. 

 

Other determinants of industry outcomes 

We also control for average industry tariff rates, the physical capital share of value added, 

and the human capital share of value added, consistent with Ederington et al.’s (2005) analysis of 

the impacts of domestic environmental regulation on net imports, as well as world oil prices.  

The average tariff is expressed in percentage points, and represents the average industry-level 

tariff based on the total duties collected scaled by total customs value and multiplied by 100 

(constructed from data provided by Schott 2008, 2010).  The physical capital share is represented 

by one minus the ratio of total payroll to value added (constructed from data provided by 

Bartlesman et al. 2000).  The human capital share is calculated as total payroll minus payments 

to unskilled labor, scaled by industry value added.  Payments of unskilled labor are estimated 

from the Current Population Survey Merged Outgoing Rotation Group data files as the number 

of workers, multiplied by average annual income of workers with less than a high school 

diploma (constructed from NBER n.d. and Bartlesman et al. 2000).  The oil price variable is 

defined as the crude oil acquisition cost from EIA’s Annual Energy Review.  See the data 

appendix for more details.   

 

Fixed effects and identification 
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Finally in our specification, industry fixed effects capture time-invariant characteristics of 

industries that may affect these measures of competitiveness and year fixed effects account for 

common shocks, such as those from monetary policy, tax policy, etc. that affect all industries in a 

given period of time.  In addition, we correct the standard error estimates to control for 

heteroskedasticity across industries as well as auto-correlation within industries.       

Given that our sample spans  35 years, we chose a preferred specification with distinct 

year-fixed effects for each of 20 2-digit industry classifications (2-digit-industry-by-year) in 

order to address the possibility of slow moving trends in manufacturing and energy prices that 

might confound our estimation.7  In Section III, we verify that our results are robust to a simpler 

model with only a single set of aggregate year effects.  This specification of fixed effects reduces 

the remaining energy price variation to identify the relationship with our outcome variables. 

Nonetheless, the variation that remains – a standard deviation of 8 percent (evident in the column 

reporting standard deviations when accounting for 2-digit SIC-by-year fixed effects in Table 1) – 

is still consistent with the magnitude of a price effect we wish to simulate, as discussed in 

Section IV.  Qualitatively, we are using variation over time within a 4-digit industry relative to 

the average variation for that industry’s 2-digit SIC aggregate.     

With these flexible trends at the 2-digit SIC level, one might question the use of our 

industry-specific fuel prices that are constructed at approximately the 2-digit SIC level (refer to 

the data appendix for details regarding the exception in the classification of SIC-87 industry 37 

by the U.S. Bureau of Economic Analysis). Even without price variation beyond the 2-digit 

level, however, we can still identify the difference in the energy price elasticity between more or 

less energy intensive industries.  The term ln ݁,௧ିଵ ln ܲ,௧
௬ in (1') contains variation in the 

presence of 2-digit-industry-by-year fixed effects ߠሺሻ,௧ even if aggregate energy prices 

ln ܲ,௧
௬ varied only at the 2-digit SIC level.  Within 2-digit SIC classifications, if the high 

energy intensity industries are more sensitive to price changes, that will show up as a significant 

୪୬ൈ୪୬ߚ  parameter estimate without requiring any within-2-digit SIC energy price variation.  

Variation in energy prices in the presence of 2-digit-industry-by-year fixed effects is necessary to 

estimate ߚ୪୬ in (1'). The 4-digit industry electricity component of ܲ௧ thus plays an important 

                                                 
7 We thank an anonymous referee for this suggestion. 
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role in estimating this coefficient, noting that electricity represents a majority of energy 

expenditures for 88 percent of the industries in our sample.  

Ultimately, our use of energy prices as a proxy for regulatory stringency circumvents a 

number of problems noted in the empirical pollution haven literature, which typically uses the 

ratio of regulatory compliance costs to value added as a proxy for the stringency of 

environmental regulations.  Levinson and Taylor (2008) note that changes in production levels 

can affect this ratio of pollution abatement cost expenditures (PACE) to output and create an 

endogeneity problem.  Production levels change this regulatory cost burden measure directly, as 

production or a related variable is the denominator of the PACE share.  Production levels can 

also change the numerator of the PACE share indirectly, as changes in production affect plant 

turnover, scale economies, and the difficulty in meeting regulatory standards – all of which affect 

regulatory compliance costs.   In contrast, energy prices are less likely to be endogenous to 

individual industry production decisions. In related work, we find that most of the variation over 

time in industry-level energy prices (which represent production-weighted state energy prices) 

comes from variation in state energy prices, not changes in relative production levels across 

states (Aldy and Pizer 2015). 

 

III. Empirical Estimates of the Effects of Energy Prices on Production and Net Imports 

 

 Table 2 presents our main results estimating the relationship between energy prices and 

production (left side of table) and net import share (right side of table).  We focus on the results 

using data from 1979-2005, which permits us to account for available trade and human capital 

data. We present constant, linear, and quadratic specifications for f(⋅), describing the elasticity as 

a function of logged energy intensity. The models (columns 1 and 4) specifying a constant 

elasticity are akin to previous papers that regress domestic production and/or net imports on the 

level of environmental compliance costs or on the ratio of environmental compliance costs to the 

value of shipments (for example, Levinson and Taylor, 2008; Ederington et al., 2005; and 

Grossman and Krueger, 1991).  In each of these three previous papers, the ratio of net imports to 

value of shipments is regressed on the ratio of pollution abatement costs to value of shipments 

(or value added), as well as other controls that enter the regression equation linearly.  Our 

estimated net import share elasticity with respect to energy prices is small and not statistically 
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distinguishable from zero (column 4).  Considering a 95 percent confidence interval, we would 

rule out an elasticity of more than +0.06.  This is true despite a large and statistically significant 

elasticity of -0.14 on production (column 1); that is, production clearly declines in response to 

higher domestic energy prices but it is not replaced by higher imports. One could interpret these 

estimates as the average manufacturing sector impacts resulting from changes in energy prices.  

 Our more flexible regression specifications (columns 2-3 and 5-6) allow these elasticities 

to vary with the previous year’s energy intensity through interaction terms between ln ܲ,௧
௬ 

and ln ݁,௧ିଵ.  The energy intensity variable is the log of the percentage value and equals 0 when 

the energy share is 1 percent.  Examining the more flexible specifications, the linear terms, 

݈݊ ܲ,௧
௬ ൈ ݈݊ ݁,௧ିଵ, are statistically significant and have signs consistent with hypothesized 

competitiveness impacts.  Industries that use more energy per unit of output are more sensitive, 

in terms of production and net imports, to energy price changes.  The negative production-energy 

price elasticity becomes more negative and the net import-energy price elasticity becomes more 

positive with higher energy intensity.  Neither of the quadratic interaction estimates, 	

ln ܲ,௧
௬ ൈ ሺln ݁,௧ିଵሻଶ, are statistically significant (columns 3 and 6).  The direct effect of 

energy intensity is negative and statistically significant in the production models (columns 1-3), 

but generally not statistically significant in the net import models (columns 4-6).  

We find that changes in physical capital and human capital shares are positively 

associated with higher production, but have no statistically meaningful impacts on net imports. 

The interaction of the world oil price and energy intensity is also statistically significant and 

positive for the production models, but small and not statistically different from zero in the net 

imports models.  Our results for tariffs in the net imports models – small, statistical zeroes – are 

consistent with the results in Ederington et al. (2005), who evaluate the impacts of environmental 

regulatory costs on net imports while controlling for tariffs in the same way as in our model. We 

find that tariffs are associated with reduced production, which may reflect the political economy 

of declining industries fighting against trade liberalization. In our robustness checks (see below), 

we find that inclusion of tariffs does not materially impact the estimation of our energy price and 

price interacted with energy intensity coefficients of interest. We chose the linear-interaction 

models (2 and 5) as our preferred specifications for the illustration of elasticities and policy 

simulations.   
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Figure 2 presents the elasticity estimates from models 2 and 5, with associated 95 percent 

confidence intervals, over the range of energy intensities for the manufacturing industries in our 

sample in 2009. The point estimates of the domestic production-energy price elasticity (top 

panel) are negative for all industries with an energy intensity greater than 0.7 percent (which 

corresponds to about 86 percent of our sample industries in 2009) and statistically significant 

when greater than 2.5 percent.  Estimates for the most energy-intensive industries are nearly 

triple the constant elasticity estimate of -0.14 in column 1.  In particular, we estimate an 

elasticity slightly larger in magnitude than -0.4 for industries with an energy intensity exceeding 

15 percent, and the lower bound of the 95 percent confidence interval exceeds the constant 

elasticity of -0.14. The differences between models 1 and 2 for the production-energy price 

elasticity are statistically and economically significant.  

The point estimates of the net import-energy price elasticity (bottom panel of Figure 2) 

are all statistically indistinguishable from zero, although those for the most energy-intensive 

industries rise to almost 0.1.  Moreover, the upper end of a 95 percent confidence interval 

approaches 0.2 for the most energy-intensive industries, nearly ten times the upper end for the 

median industry (measured along the left vertical line).  While neither model 4 nor model 5 

produces statistically significant elasticity estimates within the observed range for energy 

intensity, model 5 does reveal statistically that energy intensity makes it more likely that an 

energy price increase would increase net imports.  

Figure 3 presents what may be the most relevant results for the competitiveness debate, 

the fraction of domestic production impacts that are associated with increased net imports.  The 

point estimates range from negative values for the median industry to 15 percent for the most 

energy intensive.  Driven by the net import results, none of the estimates are statistically 

significant.  The upper bound of the 95 percent confidence interval, however, is consistently 

about 50 percent for energy-intensive industries, suggesting a useful upper bound based on our 

model.  In other words, for an industry with 15 percent energy intensity, we can observe that a 10 

percent increase in energy prices would (a) lower production by about 4 percent and (b) raise net 

imports by about 0.4 percent.  This suggests (c) that shifts to foreign production account for 

around 10 percent of the domestic decline and (d) a reasonable upper limit based on sampling 

variability is 50 percent.  The share of production decline offset by rising net imports increases to 
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about one-sixth for the most energy-intensive industries. We now turn to various empirical 

questions and address the robustness of these estimates. 

 

Robustness checks 

We undertook an array of robustness checks regarding data and model construction. 

Table 3a presents the robustness checks for the production model and Table 3b presents the 

robustness checks for the net imports model. In each table, column 1 represents our preferred 

specification for production (Table 2, column 2) and net imports (Table 2, column 5). Our first 

check, for both production and net imports, considers whether the results are affected by the 

missing observations associated with tariffs and human capital variables.  As Table 1 indicates, 

most of the data are relatively balanced, but we do not have human capital data before 1979 or 

tariff and trade data after 2005 (and after 1989 for 43 industries). Excluding these two variables 

permits us to estimate the production model over 1975-2009 (the use of lagged energy intensity 

precludes inclusion of 1974 data in the estimation) and the net imports model over 1975-2005. 

Those results, in column 2 of Tables 3a and 3b, are qualitatively similar to the preferred 

estimates in column 1. The coefficient estimate on the price-intensity interaction term in the 

production model is a statistically significant -0.192. This would increase the price elasticity of 

the most energy intensive industries in our sample from about -0.4 in our preferred model to 

about -0.6 in this specification. The coefficient estimates for net imports suggest that net imports 

increase with energy intensity, but still cannot be statistically distinguished from zero. 

In our second check, we further streamline the specification by dropping the physical 

capital share and the oil price-energy intensity interaction. Column 3 presents qualitatively 

similar results for the energy price and energy price-energy intensity interaction coefficient 

estimates.  

Our third check examines whether there is temporal dynamic pattern to the results we are 

estimating.  In column 4 of Tables 3a and 3b, we estimate a model that includes 2 lagged values 

of energy prices as well as interactions of those lagged energy prices with our lagged energy 

intensity variable.  If there is any change in the effect of energy prices on production or net 

imports over time, either positive or negative, we would see that in the estimated coefficients on 

lagged prices (Tables 3a and 3b report the sum of the coefficient on those two lagged price 

variables and the two lagged price interactions).  None of the individual coefficients is 
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statistically significant, nor is the sum of each pair reported in the table, nor is a joint test of all 

four coefficients (p-values of 54 percent for the production regression and 49 percent for the net 

import regression).  Similar results were obtained with regressions including anywhere from 1 to 

3 lags. 

Our fourth check employs lagged physical capital and human capital shares. To address 

concerns about endogeneity, we include one-year lagged measures of these two variables in the 

models presented in column 4 of Tables 3a and 3b. Accounting for lagged capital shares results 

in no qualitative changes to the magnitudes or statistical significance of the energy price and 

price-intensity interaction coefficient estimates.  

In our fifth check, we substitute year fixed effects for the 2-digit industry-by-year fixed 

effects (column 6). The 2-digit-industry-by-year fixed effects are intended to control for (2-digit) 

industry time trends that might otherwise confound estimation. By omitting these, we implement 

a more restrictive model (year effects that do not vary by industry) but increase the remaining 

price variation used to estimate the elasticities of interest. In doing so, we find that production 

still declines as energy intensity increases – the price-intensity interaction terms have statistically 

significant coefficient estimates – but  theelasticity function is positive for a large fraction of the 

range of energy intensity (e.g., those industries where energy intensity < 10 percent). Likewise, 

for the net imports specification, we observe the same relationship with respect to energy 

intensity as with our preferred specification, although the change in magnitudes suggests that a 

larger fraction of the sample of industries experience negative net import changes.  These results 

are consistent with the idea that there are long-term trends where industrial activity and energy 

prices are rising together in some areas, hence the more positive association on average (negative 

for net imports), but this is unrelated to the pattern of energy intensity, which still finds a more 

negative effect (positive for net imports) for more energy-intensive industries. 

In the sixth check, we estimate our preferred specification without regression weights. 

Regression weights based on the value of shipments are used partly to capture the idea that in our 

simulations (e.g., Table 4), we weight based on value of shipments to construct both an overall 

industry average and averages for various sub-groups of industries.  Regression weights also deal 

with an empirical problem that net import values can be explosive when the denominator, value 
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of shipments, is small.  This weighting scheme effectively downweights those observations so 

they do not dominate the regression (which otherwise requires censoring or robust regression).8   

For the production model (Table 3a column 7), we again find a statistically significant 

estimate on the price-intensity interaction term, and the magnitudes of the price and interaction 

coefficient estimates are larger. As a result, an even larger fraction of the sample of industries – 

more than 94 percent – have energy intensities associated with a negative elasticity with respect 

to energy prices. The elasticity for the industry with the median energy intensity is about -0.14 

and the elasticity exceeds -0.55 in magnitude for the most energy-intensive industries. For the net 

imports model (Table 3b, column 7), the price and price-intensity interaction coefficient 

estimates are each statistically significant and larger than in the preferred specification. The 

relationship continues to show how net imports increase with energy intensity and the elasticity 

is about 0.13 for the most energy-intensive industries.  The point estimate for those industries 

with low energy intensity, however, is negative and statistically significant—reflecting 

sensitivity to a small number of relatively extreme net import values. 

In our seventh check, we address concerns about an unbalanced sample by imputing 

values for missing observations to construct a balanced sample. For all variables, we impute 

values for missing observations via linear interpolation of nearest observations.9  The results for 

the balanced with interpolated observations sample in column 8 of Tables 3a and 3b are nearly 

identical for both models. 

In addition, Table 3b includes three net imports-specific robustness checks. We reran the 

net imports models using average production as opposed to lagged production as the 

denominator (Table 3b, column 9). Endogeneity concerns motivated our use of lagged rather 

than current production, and one might worry that persistent errors would make even this lagged 

approach problematic.  Average production over 25 years is unlikely to be as sensitive—but can 

be increasingly irrelevant for industries that have undergone significant changes.  In any case, 

this does not qualitatively change the magnitudes or statistical significance of the coefficient 

estimates relative to the preferred specification.  

Finally, we estimate the competitiveness model with gross imports (Table 3b column 10) 

and the negative of gross exports (Table 3b column 11). We find a very similar relationship – in 

                                                 
8 We thank an anonymous referee for this suggestion. 
9 We thank an anonymous referee for this suggestion. 
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magnitudes and statistical significance – in the gross imports model as in the net imports model. 

The gross exports model yields small and statistically insignificant coefficient estimates on price 

and price interacted with lagged energy intensity. 

  

Summary 

In summary, our preferred models suggest a statistically significant effect of higher 

energy prices on domestic production.  Our best estimate is an elasticity of -0.08 for the industry 

with the median energy intensity of 1.5 percent, rising in excess of -0.4 for the most energy-

intensive industries, as reflected in Figure 2.  We do not find a statistically significant increase in 

net imports, however, suggesting that the production decline primarily reflects a decline in 

domestic consumption.  Our best estimate is a negative elasticity for the least energy-intensive 

industry (i.e., a decrease in net imports as domestic energy prices rise) rising to 0.07 for the most 

energy-intensive industry.  This means that for the most energy-intensive firms, we estimate one-

sixth of the reduced production arising from higher domestic energy prices will be offset by 

increased net imports, with a 95 percent confidence interval being as high as 50 percent.   

  

IV. Simulation of Near-term Effects of a CO2 Mitigation Policy 

 

 We can use these statistically-estimated relationships to simulate the effects of a 

unilateral U.S. climate change policy. In particular, we illustrate the potential manufacturing 

sector competitiveness impacts of an economy-wide $15 per ton CO2 price. This carbon price is 

similar to allowance prices expected at the start of cap-and-trade programs proposed in recent 

legislation, including U.S. EPA’s (2009) estimate of a $13 per ton CO2 price under the Waxman-

Markey Bill (H.R. 2454, 111th Congress), U.S. EPA’s (2010) estimate of a $17 per ton CO2 price 

under the American Power Act (draft legislation from Senators Kerry and Lieberman) as well as 

the first year carbon tax of $15 per ton CO2 in a 2009 Republican-sponsored carbon tax bill 

(H.R. 2380, 111th Congress).10  The $15 per ton CO2 price is also generally consistent with state-

level efforts, ongoing in California cap-and-trade (with allowance prices averaging $12/tCO2 in 

                                                 
10 The simulation focuses only on carbon dioxide emissions from fossil fuels.  Since this represents 98 percent of all 
carbon dioxide emissions, and more than 80 percent of all greenhouse gas emissions in the United States, this should 
serve as a sufficient simulation of the impact of climate policy on U.S. manufacturing industries competitiveness.  
The key exception may be the cement industry, which has substantial process emissions of carbon dioxide. 
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2014) and what is expected for the power sector under the proposed Clean Power Plan (U.S. 

EPA 2014).  

Based on the U.S. Energy Information Administration (2013) modeling of an economy-

wide cap-and-trade program, a $15 per ton CO2 price would increase industrial sector energy 

prices by about 11 percent, which is slightly larger than a one standard deviation increase in 

energy prices in our sample.11  Based on these estimated model parameters, this energy price 

increase then drives the domestic production and competitiveness impacts in our simulation.   

 We multiply the elasticity estimates in Figure 2 from our preferred model of net import 

share by 11 percent to obtain the estimated competitiveness effects shown in the top panel of 

Figure 4.  Along with the estimated domestic production effect, shown in the bottom panel, these 

estimates are exactly a rescaled version of Figure 2.  We see a net import effect of between 

negative 2 and (positive) 1 percent while the production effect is on the order of (negative) 2-4 

percent for most industries but rises to more than (negative) 4 percent for the most energy-

intensive industries. 

 Table 4 summarizes the results in Figure 4 for all manufacturing and for several of the 

most energy-intensive industries, with the results weighted by industry-specific value of 

shipments (Columns 3 and 5). 12  The energy-intensive industries of iron and steel, aluminum, 

pulp and paper, cement, glass, and industrial chemicals would bear total percentage declines in 

domestic production, on the order of 3 to 5 percent, in excess of the manufacturing sector 

average of 1.5 percent.  Most of the lower domestic production apparently reflects lower 

demand, however, not an influx of net imports; the net import effect ranges from -0.1 to 0.8 

percent for these energy intensive industries.  That is, in these industries no more than about one-

sixth of the decline in domestic production results from an increase in net imports (column 6).  If 

we consider a 95 percent confidence interval for this ratio, it might be as high as 50 percent. 

Given the empirical model’s structure that yields common production and net import 

elasticities with respect to energy prices for all industries with comparable energy intensity, the 

simulation produces similar outcomes for industries with similar energy intensity.  Therefore, we 
                                                 
11 From Table 1, the standard deviation of logged energy prices after removing industry fixed effects and 2-digit 
SIC-by-year fixed effects is 0.08 or 8 percent.  We could examine larger effects, but that would involve 
extrapolating impacts for price changes beyond the scope of this analysis since it would reflect an out-of-sample 
prediction.  
12 In constructing the group aggregates, we estimate each of the component-industry percentage change based on 
that industry’s energy intensity, and then add up these changes based on the component-industry’s share of domestic 
production within the industry group. 
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cannot rule out that some individual industries with a particular energy intensity may face a 

larger or smaller impact than the average that we calculate.   

 

  

V. Policy Implications and Further Research  

 

 These results suggest that consumers of energy-intensive goods do not respond to higher 

energy prices by proportionally consuming more imports.  To a large part, they economize on 

their use of these higher-priced manufactured goods, perhaps by using less of the good in the 

manufacture of their finished products or by substituting with other, less energy-intensive 

materials.  This suggests that the imported versions of domestically-produced goods may be 

imperfect substitutes.  Such imports may represent different products or it may be that other 

determinants of trade flows – such as transport costs, tariffs, etc. – may limit the substitution 

possibilities.  Quantitatively, competitiveness effects are less than 1 percent of production, even 

among energy-intensive industries, for the carbon dioxide prices that we examined.  A 1 percent 

change in production due to carbon pricing induced competitiveness impacts is smaller than the 

annual fluctuations in production, whose standard deviation during our sample period ranged 

from 10 to 15 percent for energy-intensive industries.  Compared to the overall effect on 

production from proposed policies, this competitiveness effect still counts for roughly one-sixth 

of the production effect among energy-intensive domestic suppliers.   

Based on our findings, attempting to “protect” energy-intensive U.S. manufacturing firms 

from international competitive pressures through various policies may have only a limited impact 

on these firms.  The estimated competitiveness impacts, while fairly modest at $15 per ton CO2, 

suggest the need to target policies to those most likely to face adverse impacts, such as some 

narrowly defined industries that may face competitive pressures from abroad as their energy 

costs rise with a greenhouse gas mitigation policy. Indeed, given the magnitude of the 

competitiveness impacts on climate policy in our simulation, the potential economic and 

diplomatic costs of such policies may outweigh the benefits and justify no action.   

 Regardless, energy-intensive firms operating under the EU Emission Trading Scheme, a 

CO2 cap-and-trade program, have lobbied extensively to receive free allowances in the post-2012 

ETS.  Similar firms in the U.S. have echoed this request as they lobbied Congress during its 
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deliberations of a U.S. cap-and-trade program in 2009 and 2010 (see Interagency 

Competitiveness Analysis Team 2009).  The estimated competitiveness impacts in this analysis 

could provide a basis for the amount of the gratis allowance allocation necessary to offset output 

losses associated with a reduced competitive position under climate policy.  For example, if 

primary aluminum production declines 0.8 percent through competitiveness impacts (see Table 

4), then the government could grant free allowances equal in value to 0.8 percent of their output 

in order to secure broader political support for the cap-and-trade program.13   

There are limitations to these estimates.  First, given the historical experience represented 

in the data used to estimate our model, we cannot simulate the impacts of significantly higher 

CO2 prices.14  Second, our estimates represent near-term impacts over one (or perhaps a few 

years). Arguably with more time to adjust, beyond the horizon of our robustness checks using 

several years of lagged prices, U.S. industry could fare better (if they can reduce energy usage) 

or worse (if they have more time to move operations).  U.S. firms may respond differently to a 

change in long-run policy (and hence energy prices) than to the temporary variance in energy 

prices that serves as the basis for our identification. Third, even with our disaggregated data and 

flexible model, we still cannot flexibly capture all of the features relevant for every industry in 

every international trading situation.  The effects for some firms and sectors could be different 

than what we have estimated.  Fourth, in using historical data, we are necessarily assuming the 

past is a useful guide to future behavior.  To the extent there have been or will be substantial 

institutional or market changes, this assumption is flawed.   

Additional research can further inform our understanding of the competitiveness effects 

of climate policy.  First, the EU implemented in 2005 a CO2 cap-and-trade program covering the 

most energy-intensive manufacturing firms and the utility sector.  A similar analysis could be 

undertaken of the manufacturing sector in Europe and the simulated results could be compared 

with realized outcomes under the EU ETS.  Second, as emission-intensive firms shed some 

                                                 
13 This is analogous to Bovenberg and Goulder’s (2001) work showing the magnitude of free allowances necessary 
to fully compensate firms for the costs of climate policy.  Our estimates would represent a fraction of Bovenberg 
and Goulder’s since these would only offset losses associated with increased net imports and not the direct costs of 
modifying capital to mitigate emissions.  And, while such an allocation might address distributional impact, it will 
not avoid the underlying problem of some emissions reductions in the United States being thwarted by shifts in 
production overseas. 
14 It is important to note that our analysis identifies the effect of energy prices on impact and competitiveness 
measures after controlling for economy-wide factors.  It is the residual variation after accounting for economy-wide 
energy price shocks that drives our results. 
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capital and labor under climate policy, emission-lean firms may benefit by absorbing some of 

these factors.  While some proponents of climate policy have made anecdotal claims about 

economic winners under CO2 regulation, a rigorous econometric analysis of industries in and 

beyond manufacturing could explore whether the general equilibrium capital and labor effects 

dominate the modest burdens emission-lean firms bear under climate policy.  It may be 

especially interesting to also consider how a sectoral (as opposed to economy-wide) emission 

mitigation policy affects the allocation of capital and labor in the U.S. economy among regulated 

and non-regulated sectors.  This could complement one of the main findings of this work that the 

majority of the decline in domestic manufacturing production results from apparent declines in 

domestic consumption. 
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Tables 

Table 1.  Summary Statistics of Raw Data (1974-2009) 
 

Mean 
Standard 
deviation 

Standard 
deviation 
(within) 

s.d. ([2-digit 
SIC-by-year] 
and industry 
fixed effects) Minimum Maximum Observations Industries Average T 

Value of Shipments 
($2009 billion) 9.665 22.389 8.121 7.322 0.024 738.370 16415 459 35.76 
(logged) 1.476 1.228 0.359 0.290 -3.722 6.604 16415 459 35.76 
          
Net Imports (share of 
lagged value of 
shipments) 

0.183 1.109 0.816 0.706 -1.731 40.374 13034 448 29.09 

          
Total Energy Price 
(2009$/MMBTU) 10.717 4.305 2.877 1.655 0.795 181.804 16135 459 35.15 
(logged) 2.286 0.440 0.276 0.081 -0.229 5.203 16135 459 35.15 
          
Electricity Price 
(2009$/MMBTU) 23.575 6.818 5.918 4.358 1.702 362.365 16183 459 35.26 
(logged) 3.131 0.241 0.189 0.098 0.532 5.893    
          
Lagged energy intensity 
(% of value of 
shipments) 

2.314 3.161 0.923 0.778 0.108 34.139 15964 459 34.78 

(logged) 0.425 0.811 0.257 0.204 -2.227 3.530 15964 459 34.78 
          
Tariff (average rate, %) 1.565 3.310 2.722 1.715 0.000 100.080 13388 448 29.88 
          
Physical capital 0.615 0.121 0.067 0.051 -1.117 0.976 16415 459 35.76 
          
Human capital 0.120 0.050 0.031 0.023 -0.240 0.635 13485 459 29.38 
Notes: Production data from the NBER-CES database are available for 459 industries from 1974-2009.  Trade data from Schott (2008, 2010) are 
only available for a subset of 403 industries from 1974-2005 and another 43 industries from 1974-1989.  The disappearance of these 43 industries 
after 1989 arises from a change in the data source and concordance.  Human capital data are only available from 1979-2009.  
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Table 2.  Production and Net Import models, main parameter estimates (1979-2005) 
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Table 3a. Robustness checks – Production model 
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Table 3b. Robustness checks – Net import model 
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Table 4.    Predicted impacts of a $15/ton CO2 price on various manufacturing sectors 

  (1) (2) (3) (4) (5) (6) 
Industry Energy 

intensity 
(%) 

Production-
energy 

elasticity 

Production 
effect (%) 

Net import 
elasticity 

Net import 
effect (%) 

ΔNI as a 
% of Δ 

Production

Iron and Steel 5.39 -0.27*** -2.99 -0.01 -0.13 -0.04 
(0.09) (1.03) (0.06) (0.68) (0.23) 

Chemicals 10.47 -0.35*** -3.95 0.02 0.28 0.07 
(0.11) (1.20) (0.06) (0.72) (0.19) 

Paper 8.96 -0.33*** -3.73 0.02 0.18 0.05 
(0.10) (1.15) (0.06) (0.71) (0.19) 

Aluminum 23.51 -0.46*** -5.12 0.07 0.77 0.15 
(0.13) (1.46) (0.07) (0.82) (0.17) 

Cement 18.00 -0.42*** -4.74 0.05 0.61 0.13 
(0.12) (1.37) (0.07) (0.78) (0.18) 

Bulk Glass 16.99 -0.41*** -4.65 0.05 0.57 0.12 

    (0.12) (1.35) (0.07) (0.77) (0.18) 
Industry average 1.97 -0.14* -1.53 -0.07 -0.75 -0.49 
    (0.08) (0.88) (0.06) (0.68) (0.53) 

Notes:  * p<0.10, ** p<0.05, *** p<0.01.  Columns (2) and (4) reflect a linear combination of the estimated logged energy price coefficients from Columns (2) and (5) in 
Table 2, based on the energy intensity in Column (1) (measured in 2009 for each industry).  These follow directly from Figure 2. Columns (3) and (5) convert elasticities 
into changes in production and net imports, expressed as a share of production, based on an estimated carbon dioxide price of $15/ton.  The $15/ton effect is translated 
into an 11% increase in average industrial energy prices predicted under a carbon pricing policy in U.S. EIA (2013), using a fuel-consumption weighted average.  Column 
(6) shows the net import effect (5) as a share of the overall supply effect (3) and is taken directly from Figure 3 (see notes for calculation of standard errors).  Chemicals 
includes industrial inorganic chemicals, SIC codes 2812-2819.  Paper includes pulp, paper, and paperboard mills, SIC codes 2611, 2621, and 2631.  Iron and steel 
includes SIC codes 3312, 3321-3325.  Aluminum includes primary production, SIC code 3334.  Cement includes hydraulic cement, SIC code 3241.  Bulk glass includes 
flat glass, SIC code 3211.  For multi-industry aggregates, results are weighted by the average value of shipments among constituent 4-digit SIC industries. 
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Figures  

Figure 1. Distribution of 2009 industry classifications by energy intensity (%)  

 

Notes: The vertical lines present the 50th and 90th percentiles of the manufacturing sector 
energy intensity distribution.   
Source: Constructed by authors from Annual Survey of Manufactures and Bartlesman et 
al. (2000). 
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Figure 2. Estimated energy price elasticities as a function of energy intensity (%)  

 

 
 
Notes: Based on columns (2) and (5) in Table 2.  Note that the linear relationship in the 
log of energy intensity becomes non-linear in levels.  The vertical lines present the 50th 
and 90th percentiles of the manufacturing sector energy intensity distribution in 2009.  
The dashed lines present the 95 percent confidence interval. 
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Figure 3. Net import effect as a share of production effect, versus energy intensity (%) 

 
Notes: Based the ratio of estimates in Figure 2.  The vertical lines present the 50th and 
90th percentiles of the manufacturing sector energy intensity distribution.  The dashed 
lines present the 95 percent confidence interval. Standard errors account for correlation 
across equations (by estimating the equations together, clustering the standard errors by SIC code 
across both equations, and using the delta method to compute the standard error of the ratio).  
Estimates for low energy intensity are not reported as the production effect tends to zero. 
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Figure 4. Estimated energy price effects on net imports and production for $15 CO2 price 
as a function of energy intensity  

 

 
Notes: Based on columns (2) and (5) in Table 2 and an 11% increase in energy prices.  
Note that the linear relationship in the log of energy intensity becomes non-linear in 
levels.  The vertical lines present the 50th and 90th percentiles of the manufacturing sector 
energy intensity distribution in 2009.  The dashed lines present the 95 percent confidence 
interval.
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Data Appendix 
 
Value of shipments: We use the SIC-87 classification version of the NBER-CES 
Manufacturing Industry Database. This provides value of shipments data for 459 
industries over the 1958-2009 period measured in millions of dollars.  
Internet: www.nber.org/data/nberces5809.html. 
 
Net imports: We use Peter Schott’s public database on SIC-87-level trade data. This 
provides gross imports and gross exports data for 403 industries over the 1972-2005 
period and 446 industries over the 1972-1989 period measured in millions of dollars. We 
constructed net imports from the gross imports and gross exports variables and then 
scaled this value by the lagged value of shipments measure.  
Internet:  faculty.som.yale.edu/peterschott/sub_international.htm and 
faculty.som.yale.edu/peterschott/files/research/data/sic_naics_trade_20100504.pdf. 
 
Energy price: The text describes the construction of the energy price measure. The source 
data include: the 4-digit SIC-87 electricity price described below; the U.S. EIA State 
Energy Data System, which provides state-by-year industrial energy prices by fuel for 
1970-2009; the U.S. Energy Information Administration Manufacturing Energy 
Consumption Survey, which provides annual fuel consumption by 2-digit SIC-87 
manufacturing industry and fuel for 1974-1990 and 1991, 1994, 1998, 2002, 2006, and 
2010; the Bureau of Economic Analysis, which provides gross state product with a data 
classification scheme very similar to the 2-digit SIC-87 over our sample period.For post-
1997 data, we merged two BEA categories (motor vehicles and other transport 
equipment) into one 2-digit SIC industry, 37. Over this same time period, we employ 
non-durables output as a proxy for SIC-87 industry 21 (tobacco products) and industry 31 
(leather and leather products), which are not reported separately in the BEA datasets.. We 
convert our 4-digit electricity prices to a dollars per million BTU basis (1¢/kWh = 
$293.297/MMBTU), to permit comparability with the fuel price data from the EIA State 
Energy Data System.  
Internet: www.eia.gov/state/seds/, www.eia.gov/consumption/manufacturing/index.cfm, 
and www.bea.gov/regional/downloadzip.cfm. 
 
Electricity price: We use the Annual Survey of Manufactures to extract SIC-87 classified 
electricity expenditures and quantity of electricity consumed by industry for 1974-2001. 
Wayne Gray provided the same data from the Annual Survey of Manufactures for 1978 
and 1997-2009. We construct the average electricity price as the ratio of expenditure to 
quantity.  
 
Energy intensity: We use the SIC-87 classification version of the NBER-CES 
Manufacturing Industry Database. This provides the cost of electricity and fuels in 
millions of dollars. We construct energy intensity as the ratio of this cost to the value of 
shipments and employ the lagged value of this in the empirical models.   
Internet: www.nber.org/data/nberces5809.html. 
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Oil price:  We use the real ($2005) composite price of crude refiner acquisition costs, 
from EIA’s Annual Energy Review 2011, Table 5.21. 
Internet:  http://www.eia.gov/totalenergy/data/annual/xls/stb0521.xls. 
 
Tariffs: We use Peter Schott’s public database on SIC-87-level trade data. This provides 
gross imports and duties charged data measured in millions of dollars. We constructed 
tariffs as 100*(duties/gross imports). See Ederington et al. (2005) for further details on 
the construction of this variable.  
Internet:  faculty.som.yale.edu/peterschott/sub_international.htm and 
faculty.som.yale.edu/peterschott/files/research/data/sic_naics_trade_20100504.pdf. 

Physical capital share: We use the SIC-87 classification version of the NBER-CES 
Manufacturing Industry Database. We employ the total payroll variable, measured in 
millions of dollars, and the total value added variable, also measured in millions of 
dollars, to construct the physical capital share as: 1 – payroll/value-added. See Ederington 
et al. (2005) for further details on the construction of this variable. 
Internet: www.nber.org/data/nberces5809.html. 
 
Human capital share: We use the SIC-87 classification version of the NBER-CES 
Manufacturing Industry Database and the Current Population Survey Multiple Outgoing 
Rotation Group data provided by the NBER. We employ the total payroll, total value 
added, and total employment (measured in 1000s) variables from the NBER-CES 
database. We estimate from the CPS MORG the industry-specific compensation (based 
on reported weekly earnings) to unskilled labor (education less than a high school 
diploma), which are converted into SIC87 based on NBER concordance files from CPS 
Census-based industry classifications to SIC87. We construct human capital share as: 
payroll – (unskilled-compensation*employment)/value-added. See Ederington et al. 
(2005) for further details on the construction of this variable.  
Internet: www.nber.org/data/nberces5809.html and www.nber.org/cps/.  
 
GDP implicit price deflator: We convert the nominal values of value of shipments, net 
imports, energy prices, electricity prices, and oil prices into 2009 dollars using the GDP 
implicit price deflator published in the 2014 Economic Report of the President (CEA 
2014). 


