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1 Introduction

Regression discontinuity design is a commonly used method to estimate treatment e¤ects

in a non-experimental setting. In an RDD, the researcher searches for a forcing variable

that shifts the regressor of interest discontinuously at a known cuto¤. If such a variable

can be found, an RDD generates a consistent estimate so long as the continuity condition

holds (see Hahn, Todd, and Van der Klaauw, 2001). A number of researchers have pointed

out that this condition may fail if the forcing variable can be manipulated by an agent

(see McCrary, 2008; Lee and Lemieux, 2010; Imbens and Lemieux, 2008). Urquiola and

Verhoogen (2009) demonstrate that previously proposed RDD identi�cation strategies in

hedonic regressions and public �nance may not be valid because economic theories of

sorting may predict failure of the continuity condition.

In this paper, we examine one interesting set of economic models with such a feature.

They are models where there is a structural relationship between the forcing variable

and the outcome variable because the two are determined simultaneously. For instance,

suppose that a hospital chooses the optimal level of health care expenditure for a patient

given a piecewise linear reimbursement schedule. If a researcher is interested in how reim-

bursement rates a¤ect the hospital�s health care provision, she could potentially exploit

discontinuous changes in marginal reimbursement rates to identify the e¤ect. Since mar-

ginal reimbursement rates are a function of health care expenditure, health care expendi-

ture would be both the forcing variable and the outcome variable while the reimbursement

rate would be the regressor of interest. This is an extreme case of simultaneity since the

forcing variable and the outcome variable are identical. Here the forcing variable can

clearly be manipulated by the hospital and a standard RDD would not yield consistent

estimates.

In this paper, we propose a modi�ed RDD strategy that can be applied to such a

model and discuss a set of conditions under which our estimator is consistent. A key idea

is that for many choice models, including the one considered in our paper, the optimal
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solution implies a strictly monotonic relationship between the type of the agent and the

agent�s choice, except at a point in which di¤erent types of agents will behave identically

and will bunch. We exploit this monotonicity to recast the problem such that the type of

the agent is seen as the forcing variable. Our estimator is an RDD-style estimator applied

to this reformulated problem, and the key idea behind it is that a discontinuous change in

the density of the outcome variable at the cuto¤ can tell us something about the incentive

e¤ects.

We apply our estimator to understand a fundamental question in health economics�

the responsiveness of health care providers to �nancial incentives. Hospitals, physicians

and other health care providers possess more information about the appropriateness and

necessity of care than the patient or, importantly, their insurer. This fact combined with

the likelihood that health care providers are concerned with their own �nancial well-being

implies that �rst-best contracts may be di¢ cult to implement. Understanding the magni-

tude of this agency problem is a requisite step to both assessing the welfare consequences

of provider agency and designing the optimal contracts in health care settings. A central

parameter in understanding the importance of provider agency is the responsiveness of

providers to changes in reimbursements. Physicians and hospitals control most of the �ow

of resources in the health care system and medical care expenditures are a large com-

ponent of most industrialized countries�GDP� in the U.S., health care expenditures are

currently over 16% of GDP (Congressional Budget O¢ ce, 2008). Thus, the welfare gain

from better aligning incentives in these contracts with societal objectives is potentially

very large. Despite the importance of this issue and the existence of a large theoretical

literature (McGuire, 2000), the convincing empirical literature examining the role of the

reimbursement contract structure in a¤ecting provider behavior is relatively sparse.

We have collected a unique data set on contracts between hospitals and one of the

largest U.S. health insurers for organ and tissue transplants for all of the hospitals in its

network. Organ and tissue transplants are an extremely expensive and rare procedure. In

2007, 27,578 organs were transplanted in the U.S. and the average total billed charges for
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kidney transplantation in our data, the least expensive and most commonly transplanted

organ, exceed $140,000. The infrequency and complexity of the procedures likely lead

to informational asymmetry between hospitals and insurers, making organ transplants

an interesting place to examine provider agency. To the best of our knowledge, no other

study in the literature has assembled a panel data set of reimbursement contracts between

a major private insurer and hospitals of this scope and detail.

The form of the contracts in our data is fairly simple. As a hospital treats patients,

it uses its information system to keep track of all reimbursable expenses, which include,

but are not limited to, drugs and nights in the hospital. Our hospitals have standard �list

prices�for each of these reimbursable expenses. The sum of all of these list prices times

the reimbursable items is referred to as �charges.� The contract speci�es what fraction of

the charges submitted by the hospital for each patient will be reimbursed by the insurer.

A key feature of the reimbursement schedules is that the total reimbursement amount

for each patient follows a piecewise linear schedule: the marginal reimbursement rate

changes discontinuously when certain levels of expenditure are reached. This generates

discontinuities in the marginal price received by the hospital for its provision of health

care.

Using a model of hospitals�optimal health care provision, we verify that in the model

the key conditions required for our estimator are satis�ed at one of the discontinuity

points in the reimbursement schedule. We then apply our estimator to that discontinuity

point to estimate the sensitivity of health care provision to the reimbursement rate. Our

results clearly show that hospitals will submit signi�cantly larger bills if they face a higher

reimbursement rate. When the marginal reimbursement rate changes from 0% to 50%, a

magnitude of change typically found in our contracts, the marginal increase in hospitals�

expenditures for a given increase in patients�illness severity becomes 2 to 14 times larger.

These results suggest that hospitals�behavior is strongly in�uenced by �nancial incentives.

The rest of this paper proceeds as follows. In Section 2, we present a model of hos-

pitals�health care choice. In Section 3, we propose our estimation strategy and discuss
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its sampling properties. Section 4 provides a literature review on agency problems in

health care markets. Section 5 describes our data and Section 6 presents model estimates.

Section 7 concludes the paper.

2 Model

2.1 The Agency Problem

Consider a health insurer (the principal) that designs compensation contracts for the

provider of a medical service (the agent). The insurer�s enrolled patients arrive at the

hospitals and need potentially costly treatment. Patients di¤er in their severity of illness

which is denoted � � 0, where � is a random variable with a continuous density function

f (�) and cdf F (�). The health shock, which is determined prior to admission, captures

patient heterogeneity in the demand for health care. Patients are passive players in this

framework. A central assumption is that patients�heterogeneity is one-dimensional, fully

captured by �.2 The provider then chooses a level of treatment q � 0. The value of the

health outcome to the patient is given by v(q; �); which is twice continuously di¤erentiable.

The cost of providing treatment at level q is given by c(q).

The agent (the hospital) observes � and chooses the level of health care q. The principal

(the insurer) cannot observe � but can observe the hospital�s choice of q. Hence, the

principal cannot directly contract on the optimal level of q, and instead must rely on a

compensation scheme to the agent of the general form r(q) in order to implement the

desired q.

To continue, one needs to specify the payo¤ functions of the principal and the agent.

Naturally, the cost of treatment is borne by the agent, and r(q) is paid to the agent by

the principal. We assume that the net monetary bene�ts of the principal are k � r(q);
2In health settings, patients�heterogeneity is likely to be multi-dimensional. Our analysis assumes

that we can summarize the multi-dimensional heterogeneity into a single index.
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where k is some �xed payment that he receives from the patient (insurance premium).

We assume that the agent�s net monetary bene�ts are just r(q) � c(q). Furthermore,

we assume that each party receives a non-pecuniary bene�t that is proportional to the

patient�s payo¤. This captures the idea that both the principal and the agent bene�t from

successful health outcomes.3 We also assume quasi-linear utility functions so that there

are no income e¤ects. We can write the payo¤s of the principal and the agent as

up = 
pv(q; �) + k � r(q);

ua = 
av(q; �)� c(q) + r(q):

Thus, the agent maximizes 
av(q; �)� c(q) + r(q) and the FOC is (for now, ignoring

potential non-di¤erentiability in r(q)),


a
@v(q; �)

@q
= c0(q)� r0(q): (1)

The equality in (1) has a simple economic interpretation: the left hand side is the agent�s

marginal bene�t from treatment while the right hand side is her net marginal cost (total

marginal costs less marginal reimbursement).

2.2 Assumptions

We shall assume that the payo¤s obey the following conditions:

3For example, the hospital will value positive patient outcomes if for no other reason than concerns
over attracting future patients or de�ecting scrutiny by regulators.
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@v(q; �)

@q
> 0 (2)

@2v(q; �)

@2q
< 0 (3)

@v(q; �)

@�
< 0 (4)

@2v(q; �)

@�@q
> 0 (5)

@c(q)

@q
> 0 (6)

@2c(q)

@2q
� 0 (7)

Assumptions (2) and (3) state that the value of the health outcome to the patient is

increasing and strictly concave in q. Assumption (4) implies that health shocks adversely

a¤ect utility. Assumption (5) implies that the value of the health outcome to the patient

exhibits strictly increasing di¤erences in (q; �): the marginal utility of health care increases

as agents receive more adverse health shocks. According to assumptions (6) and (7), the

cost of providing treatment is an increasing and (weakly) convex function in q.

This structure captures the intuitive idea that (i) extra treatments lead to a better

health outcome, and the marginal bene�t of extra treatments becomes lower as the level

of treatment increases; (ii) a more severe condition has a higher marginal bene�t of

extra treatments; and (iii) providing more treatment costs more money, and marginal

treatments are (weakly) more expensive. As a result, when a patient�s condition is more

severe she should be o¤ered more treatment.

When the agent consumes q dollars of health care to treat a patient, the agent is

reimbursed r(q) by the principal. As we discussed in the introduction, we are interested

in situations where the constraint set faced by the agent displays kinks. Re�ecting the

typical reimbursement schedules used by the health insurer in our data, we shall assume
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that r(q) satis�es:

r(0) = 0 (8)

r0(q) = �1 for 0 < q < q1 (9)

r0(q) = 0 for q1 � q � q2 (10)

r0(q) = �2 for q > q2: (11)

This assumption implies that the amount of reimbursement for each patient is piece-

wise linear. For expenditures between 0 and q1, the hospital is reimbursed �1 for every

dollar spent to treat the patient. Once expenditures exceed q1, the hospital hits what is

called the donut hole and is forced to bear all of its health care expenses at the margin.

Finally, for expenditures above q2, the hospital is reimbursed �2 for every dollar spent.

Figure 1 illustrates a reimbursement scheme implied by assumptions (8)�(11). The region

[q1; q2] is often referred to as the �donut hole.�Donut holes are observed in other health

care settings as well, most notably Medicare Part D and high deductible health plans

with an attached health savings account.

[Figure 1 about here]

In this paper, our main interest lies in understanding hospitals�behavioral responses

to the reimbursement structure, not in understanding what the optimal reimbursement

scheme should look like. Although the question of if and why the observed contract di¤ers

from the optimal one is a very interesting topic,4 we abstract away from the optimal

contract design problem faced by the principal and just condition on the existence of

donut holes to learn about the impact of �nancial incentives on hospital behavior. We

note that in reality we might observe an incentive scheme that departs from the optimal

4For instance, researchers have argued that optimal health contracts should not have donut holes as
they pose excessive risk and there are better ways of dealing with moral hazard (Rosenthal, 2004).
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one for various reasons, such as institutional constraints or complexity in implementing

the optimal contract.5

2.3 Optimal Decision Rule

Under the assumptions written above, the optimal decision rule of an agent who treats a

pool of patients exhibits the following features:

1. There will be bunching at q1.

2. There will be a gap near q2 and the size of the gap crucially depends on the shape

of ua(q; �).

3. The optimal choice of q is strictly increasing in � except for bunching at q1.

Figure 2 illustrates these observations. In drawing the �gure, we assume that 0 < �2 <

�1 < 1, which is what we typically observe in the data. The marginal bene�t curve for a

given level of � is decreasing in q, and is given by 
a @v(q;�)
@q

. The lower is 
a, the �atter are

the marginal bene�t curves. A higher � is associated with a marginal bene�t curve that

is more to the right. The net marginal cost curve is just c0(q)� r0(q). For this �gure, we

assume that c0(q) is constant, which is not crucial for any of our results but simpli�es the

graphical analysis.

[Figure 2 about here]

Imagine a level of � that corresponds to an optimal choice below q1. As � increases,

the optimal choice will also increase until some level �1 at which it will be exactly q1.

Given the kink in the incentive scheme, there is an upward jump in the net marginal cost

5In case of Medicare Part D, a donut hole was introduced due to limited government budget available
for the program.
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curve, causing bunching at q1 for levels higher than �1. At some point, however, high

enough levels of � above �1 will cause the marginal bene�t curve to shift enough so that

optimal choices will exceed q1 and be on the part of the net marginal cost curve that is

c0(q) (i.e., r0(q) = 0). The choice of q then continues to rise monotonically with � until

we hit a gap in choices just around q2, where the net marginal cost drops. To see why we

have a gap, consider the level �� that is depicted in Figure 2. For this level of severity

the agent is indi¤erent between choosing two levels of health care, one strictly below q2

(say qL) and another strictly above (say qH). By the monotonicity of q(�) which follows

from the assumption of increasing di¤erences in (q; �), there will not be any choices of

treatment that correspond to expenditures within the interval (qL; qH). Finally, for all

� > ��, q(�) is strictly increasing.

In Figure 3, an agent with a higher level of 
a is depicted. The marginal bene�t curves

of this agent will be shifted up and right compared to those in Figure 2, and they become

steeper (a consequence of v(q; �) being multiplied by 
a). This implies that all choices

will be shifted to the right (higher levels of q for any given �), and the steepness of the

marginal bene�t curves implies that the gap will be small. In this particular example,

the size of the gap [qL; qH ] is almost negligible. The graphical analysis of Figures 2 and

3 o¤ers a complete treatment of what the agent�s behavior would be in face of a kinked

incentive scheme as described in Figure 1.

[Figure 3 about here]

Throughout our discussion, we have assumed that the agent cannot �cheat�and fraud-

ulently announce costs that were not incurred. If this can happen, then we might observe

patterns that are not implied by the optimal decision rule. Although such a fraudulent

reporting is not impossible, we think it is uncommon among the hospitals in our data

because they are large, established hospitals that are subject to regular audits.
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3 Estimation

In this section we propose an estimator that will yield consistent estimates of the agent�s

behavioral responses when the forcing variable is endogenously chosen by the agent. We

�rst discuss the key intuition behind our approach and then outline our estimation pro-

cedures.

3.1 Using Discontinuous Changes for Identi�cation

At the two discontinuity points q1 and q2, the marginal reimbursement rate faced by

the hospital changes discontinuously. These discontinuities seem to present a natural

setting for an RDD. Our problem, however, di¤ers from typical RDD settings because q

is both the forcing variable (the level of q determines the marginal reimbursement rate)

and the dependent variable (our goal is to estimate how the level of q responds to the

marginal reimbursement rate). In this canonical choice model, the forcing variable is

clearly endogenous.

One might think that an RDD estimator might be still consistent if there is �optimiza-

tion error� that prevents agents from precisely controlling the forcing variable (see Lee

and Lemieux, 2010). This solution to the problem of an endogenous forcing variable does

not work if the forcing variable is structurally related to the dependent variable. If the

forcing variable and the outcome variable are structurally related (in our problem, they

are the same), when we add optimization error to the forcing variable, we are adding the

same optimization error or some transformation of it to the dependent variable. Thus,

patients who are on the left hand side of a discontinuity and patients who are on the

right hand side of the discontinuity will have systematically di¤erent optimization errors

added to their outcomes, which will lead to inconsistent estimates under standard RDD

estimation.

In our paper, we propose an alternative solution to the problem. A key step in our
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approach is to transform the problem so that we make the type of the patient � a forcing

variable. From the earlier discussion, and more generally the monotone comparative

statics literature of Topkis (1978) and Milgrom and Shannon (1994), we know that the

assumption of strictly increasing di¤erences in (�; q) implies that the optimal health care

provision q is a strictly increasing function of patient type �, with the exception of where

there is bunching at q1. As a result, the percentiles of q will identify �. That is, if we

see a patient with the 5th percentile of health expenditure within a hospital, that patient

will have the 5th percentile of health shock within that hospital. This means that for

all practical purposes, the health shocks are observable to the econometrician. Since q

is only weakly increasing in � around the �rst discontinuity point due to the presence of

bunching, the econometrician cannot infer � from the cdf of q in the region. Hence, our

estimation procedure can be applied to the second kink, but not the �rst one.

Once we reformulate the problem so that the patient type � is viewed as a forcing

variable (which is exogenously endowed and cannot be manipulated), a shift in the patient

type � determines whether the hospital�s choice of q for that patient will be on the left

hand side or right hand side of the second discontinuity point. This then generates an

exogenous change in the marginal price faced by the hospital, allowing for identi�cation of

the hospital�s response to incentives. Our approach boils down to estimating a variant of

regression discontinuity models in the empirical quantile function of the hospital�s choice

q.

Figure 4 illustrates the idea behind our approach. Among patients who come to the

hospital with a realization of health shock �, there will be a value of � at which the hospital

is indi¤erent between choosing qL (< q2) and qH (> q2). Let �
� denote the level of severity

which leads to such an indi¤erence. Then for all patients whose � is greater than ��, the

hospital will choose q larger than qH and will face a marginal reimbursement rate of �2.

For patients whose � is smaller than ��, the hospital will choose q smaller than qL and

will face a marginal reimbursement rate of 0. Thus, the hospital�s supply of health care

services will be more responsive to an increase in � on the right hand side of �� than on the
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left hand side of �� as long as the hospital is price sensitive. Therefore, by comparing how

quickly q rises with an increase in � for values of � just below and just above ��, we can

infer how the total claims �led by the hospital depend on the reimbursement structure.

We let �SLOPE denote the change in the slope of the quantile function, q
0(�), at ��. Note

that the slope of the quantile function q0(�) is by de�nition equal to the inverse of density.

[Figure 4 about here]

The �gure also shows a possibility of gap �GAP = qH � qL at ��. As discussed earlier,

for a high value of 
a the gap could be very small, while for a low value of 
a the gap

might be large.

It is worthwhile to note key underlying assumptions behind our approach. A key

identifying assumption is that the slope of the quantile function would be the same at ��

from both sides if there were no change in the marginal reimbursement rate at ��. In other

words, the density of q would be continuous at �� in the absence of a discrete change in

incentives at ��. This assumption allows us to attribute any discrete change in the slope

of the quantile function at �� to a discrete change in the �nancial incentive. A similar type

of continuity assumption is found in the conventional RDD (Hahn, Todd, and Van der

Klaauw, 2001) and in McCrary (2008) who proposes a test for manipulation of a forcing

variable by examining discontinuity in the density function of the forcing variable at the

cuto¤ point.

In order to correctly map q to �, we also require that there be no error in the hospital�s

choice of q(�). If q(�) contains error in it, we cannot infer patient type � from the observed

q. In reality, q(�) is very likely to have error in it since hospitals cannot perfectly control

the level of treatment: there is lumpiness in treatments, there could be some unforeseen

events that make it more costly to treat a less sick patient, etc. Since such error would

lead to measurement error in inferred �, we expect that our estimator could su¤er from

a downward bias. Intuitively, when � is measured with error, the di¤erence between the
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slopes of the quantile function on the LHS and RHS of the threshold will be smoothed

out, leading to a downward bias. In the extreme case, if q is determined entirely randomly

without any relation to patient sickness and the hospitals have no control over q, we would

not observe any di¤erence in the slopes of the quantile function between the two sides of

��.

3.2 Estimation

We consider several di¤erent estimation approaches that deal with di¤erent levels of hos-

pital heterogeneities. The �rst method applies to individual hospital data. The second

method makes use of a global parametric assumption to pool information from data across

all hospitals.

3.2.1 Individual Hospital Estimates

Suppose that there are i = 1; :::; n individuals treated in the hospital under consideration.

Let qi denote the health expenditure of individual i. Let F̂ (�) denote the empirical distri-

bution of the observed q�s for the hospital. We propose estimators for �GAP and �SLOPE

at the upper regression discontinuity point of q2 and derive the asymptotic distribution

of the estimators.

The incentive scheme is such that for � approaching a cuto¤ value ��, q(�) approaches

a limit value qL. As soon as � moves to the right of �
�, q(�) takes a discrete jump at the

point of �� by an amount �GAP > 0 to qH .

By normalization, � is estimated as the empirical CDF of the observed q. Hence �� is

estimated by

�̂
�
= F̂ (q2) =

1

n

nX
i=1

1(qi � q2);

where F̂ (�) is the empirical distribution of the observed q�s. Given that we de�ne �� =

14



F (q2) where F (�) is the true distribution function of q, the asymptotic distribution of �̂
�

is immediate:
p
n(�̂

� � ��) d�! N (0; F (q2)(1� F (q2))) :

We are interested in estimating the magnitude of the discontinuity �GAP . This is

estimated by

�̂GAP = q̂H � q̂L = minfqi : qi > q2g �maxfqi : qi � q2g:

The goal is to derive the asymptotic distribution of �̂GAP � �GAP . It su¢ ces to show

that the joint distribution of n(q̂L � qL) and n(q̂H � qH) are independent exponential

distributions. To see this, note that

P (n(q̂L � qL) � �x; n(q̂H � qH) � y)

= P (qi � qL � x=n; qi � qH + y=n; 8i)

= (1� P (qL � x=n � qi � qH + y=n))n

=
�
1� f�x=n� f+y=n+ o(1)=n

�n n!1�! e�f
�x�f+y:

In other words, n(q̂L� qL) and n(q̂H � qH) converge to two independent (negative and

positive) exponential random variables with hazard rates f� = f(qL) and f+ = f(qH),

where we have used f� and f+ to denote the (left and right) densities at qL and qH . The

limiting distribution of n(�̂GAP � �GAP ) is therefore the sum of these two independent

exponential random variables.

Next we turn to the estimation of di¤erence between the slopes of q(�) at qH and qL,

de�ned as �SLOPE = lim�!��+ q
0(�) � lim�!��� q

0(�). Note that �SLOPE =
1
f+
� 1

f� : Hence

it su¢ ces to obtain consistent nonparametric estimators for f+ and f�. This can be done

using standard one sided kernel smoothing methods.
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De�ne

f̂� =
1

n

nX
i=1

1

h
k(
q̂L � qi
h

)1(qi � q̂L);

and

f̂+ =
1

n

nX
i=1

1

h
k(
qi � q̂H
h

)1(qi � q̂H):

In the above, k(�) is a one-sided density function supported on (0;1), and h is a sequence

of bandwidth parameters used in typical kernel smoothing. It is straightforward to show

that as long as nh �!1 and nh3 �! 0,

p
nh
�
f̂� � f�

�
d�! N

�
0; f�

Z
K(u)2du

�
;

and
p
nh
�
f̂+ � f+

�
d�! N

�
0; f+

Z
K(u)2du

�
and that they are asymptotically independent. Therefore

p
nh
�
�̂SLOPE � �SLOPE

�
d�! N

�
0;

1

f�3

Z
K(u)2du+

1

f+3

Z
K(u)2du

�
:

3.2.2 A Parametric Model Using Multiple Hospital Data

Now we consider how to extend the previous method to allow for pooling information from

data across multiple hospitals. Consider �rst �GAP = qH�qL. We de�ne yi = qi1(qi � q2)

and zi = qi1(qi > q2) +M1(qi � q2). In the homogeneous case, we have de�ned q̂L =

maxfyig and q̂H = minfzig, where M is a number that is larger than any of the data

points. This de�nition of the estimators can be extended to incorporate heterogeneous

data from all hospitals.

With cross-hospital data, the observed threshold value q2 can be hospital dependent,

which we will denote as q2(t), where we have used t to index hospitals. Suppose hospital

heterogeneity is captured by covariates xt, where xt can be q2(t) itself. Let It be the
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number of patient observations for each hospital. We specify the following parametric

assumption that

qL(t) � qL(xt) = gL(xt; �L) and qH(t) � qH(xt) = gH(xt; �H).

In the above, we can use a �exible series expansion functional form of gL(xt; �L) and

gH(xt; �H) so that they are linear in the parameters �L and �H . The structure of this

problem �ts into the boundary parameter estimation method studied in the literature.

Possible estimators include the linear programming approach and nonstandard likelihood

estimator (c.f. Donald and Paarsch, 1996; Chernozhukov and Hong, 2004) and the extreme

quantile regression approach of Chernozhukov (2005). We describe these alternatives in

the following.

The linear (or quadratic, etc.) programming approach estimates the parameters by

�̂L = argmin
�L

TX
t=1

ILt gL(xt; �L); where ILt =
ItX
i=1

1(yi > 0);

such that yi � gL(xt; �L);8i = 1; :::; ILt ; t = 1; :::; T; (ordering implicitly understood)

and

�̂H = argmax
�H

TX
t=1

IHt gH(xt; �H); where IHt =
ItX
i=1

1(zi < M);

such that zi � gH(xt; �H);8i = 1; :::; IHt ; t = 1; :::; T: (ordering implicitly understood)

The objective functions
PT

t=1 I
L
t gL(xt; �L) and

PT
t=1 I

H
t gH(xt; �H) can be replaced by

TX
t=1

ItX
i=1

1(yi > 0)(yi � gL(xt; �L))2 and
TX
t=1

ItX
i=1

1(zi < M)(zi � gH(xt; �H))2

or other types of penalization functions. The linear programming approach however seems

to be the easiest to implement.
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Alternatively, �L and �H can be estimated by the extreme quantile regression method

of Chernozhukov (2005):

�̂L = argmin
�L

TX
t=1

ItX
i=1

1(yi > 0)��L(yi � gL(xt; �L));

where �� (u) = (� � 1(u � 0))u is the check function of Koenker and Bassett (1978), such

that

�L ! 1 as nL =
X
t

ILt !1:

Similarly, �̂H = argmin�H
PT

t=1

PIt
i=1 1(zi < M)��H (zi � gH(xt; �H)), where

�H ! 0 as nH =
X
t

IHt !1:

The quantile regression approach has the advantage of being robust against a cer-

tain fraction of outliers in the data. On the other hand, the programming estimators

always satisfy the constraints of the relation between yi and gL(xt; �L) and between zi

and gH(xt; �H):

By adopting a parametric functional form on qL(xt) and qH(xt) we are maintaining a

strong speci�cation assumption which can potentially be tested by the data. An implicit

assumption of the parametric functional form is that gL(xt; �
0
L) � q2(t) � gH(xt; �0H) for

all t at the true parameters �0L and �
0
H . Of course their estimates introduce sampling

noise, but we still expect that it should be largely true for most t:

gL(xt; �̂L) � q2(t) � gH(xt; �̂H):

The approximate validity of this condition can be used as the basis of a model speci-

�cation test.

18



Then �GAP (xt) will be estimated consistently by

�̂GAP (xt) = gH(xt; �̂H)� gL(xt; �̂L):

Conducting statistical inference on �̂GAP (xt) requires the limiting joint distribution of

�̂L and �̂H . They converge to a nonstandard distribution at a fast 1=n rate for n =
P

t It.

The limiting distribution can be obtained by simulation which we will describe below in

the context of the parametric likelihood approach.

In fact we can also adopt a maximum likelihood approach. This will be useful in case

we are interested in the shape of the distribution of qit in order to conduct counter-factual

welfare calculations. To this end, assume that

�Lit = gL(xt; �L)� yit � fL(�Lit; xt; �L) for yit � gL(xt; �L);

and

�Hit = zit � gH(xt; �H) � fH(�Hit ; xt; �H) for zit � gH(xt; �H):

The maximum likelihood estimator for �L; �H and �L; �H can then be written as

(�̂L; �̂L) = arg max
�L;�L

TX
t=1

ItX
i=1

1(yit > 0) log fL(gL(xt; �L)� yit; xt; �L)

such that yit � gL(xt; �L);8i = 1; :::; It; t = 1; :::; T;

and

(�̂H ; �̂H) = arg max
�H ;�H

TX
t=1

ItX
i=1

1(zit < M) log fH(zit � gH(xt; �H); xt; �H)

such that zit � gH(xt; �H);8i = 1; :::; It; t = 1; :::; T:

In fact the linear programming estimator is a special case of the above maximum likelihood

estimator when the densities fL(�Lit; xt; �L) and fH(�
H
it ; xt; �H) are exponential distribution
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with a homogeneous hazard rate parameter: f(�) = �e���. In this case, in addition to

obtaining �̂L and �̂H from the linear programming estimators, we also estimate the hazard

parameters by

1=�̂L =

PT
t=1

PIt
i=1 1(yit > 0)

�
gL(xt; �̂L)� yit

�
PT

t=1

PIt
i=1 1(yit > 0)

and

1=�̂H =

PT
t=1

PIt
i=1 1(zit < M)

�
zit � gH(xt; �̂H)

�
PT

t=1

PIt
i=1 1(zit < M)

Even though �̂L and �̂H converge at 1=n rate to a nonstandard limit distribution, �̂L and

�̂H are still root n consistent and asymptotically normal, as long as there is no functional

relations between � and �.

To estimate �SLOPE(xt), we can use

�̂SLOPE(xt) =
1

fH(0; xt; �̂H)
� 1

fL(0; xt; �̂L)
:

Since �̂SLOPE(xt) is root n consistent and asymptotically normal, its limiting distribution

can be obtained by the delta method combined with the standard sandwich formula, or

by simulation or bootstrap, in which �̂L and �̂H can be held �xed because they do not

a¤ect the asymptotic distribution.

The joint asymptotic distribution for �̂L and �̂H can be obtained by parametric sim-

ulations. Given the assumption that the parametric model is correctly speci�ed, it is

possible to simulate from the model using the estimated parameters �̂L, �̂H , �̂L and �̂H .

The approximate distribution can be obtained from repeated simulations. Instead of re-

computing the maximum likelihood estimator at each simulation, it su¢ ces to recompute

weighted programming estimators of �L and �H at each simulation:

~�L = argmin
�L

TX
t=1

ItX
i=1

fL(0; xt; �̂L)
@gL(xt; �̂L)

0

@�L
�L

such that yit � gL(xt; �L) 8i; t;
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and

~�H = argmax
�H

TX
t=1

ItX
i=1

fH(0; xt; �̂H)
@gH(xt; �̂H)

0

@�H
�H

such that zit � gH(xt; �H) 8i; t:

We can also consider the possibility that gL(xt; �L) and gH(xt; �H) are correctly spec-

i�ed but fL(�Lit; xt; �L) and fH(�
H
it ; xt; �H) are misspeci�ed. In this case, each of the above

methods (linear and quadratic programmings, extreme quantile regression, (pseudo) max-

imum likelihood estimation) will still deliver consistent estimates of �L and �H and hence

�GAP . But the estimates for �L, �H and hence �SLOPE are clearly inconsistent.

In this case, if we are willing to impose parametric assumptions on �GAP through

gL(xt; �L) and gH(xt; �H), but are not willing to make parametric assumption on �SLOPE,

we can still estimate �SLOPE using nonparametric density estimators. We can also use

nonparametric density estimators to perform semiparametric simulations for consistent

inference about �̂SLOPE. Suppose xt is continuously distributed with dimension d. Let

f̂�(x) =
1

n

TX
t=1

ItX
i=1

1

h
w(xt; x)k(

gL(xt; �̂L)� qit
h

)1(qit � gL(xt; �̂L));

and

f̂+(x) =
1

n

TX
t=1

ItX
i=1

1

h
w(xt; x)k(

qit � gH(xt; �̂H)
h

)1(qit � gH(xt; �̂H));

where

w(xt; x) = k
d(
xt � x
h

)=
TX
t=1

kd(
xt � x
h

):

Then we can form the estimate �̂SLOPE(xt) = 1=f̂
+(xt)� 1=f̂�(xt).

The limiting distribution of the MLE�s �̂L and �̂H can be obtained by recomputing
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the following weighted programming estimators with simulated data:

��L = argmin
�L

TX
t=1

ItX
i=1

f�(xt)
@gL(xt; �̂L)

0

@�L
�L

such that yi � gL(xt; �L) 8i; t;

and

��H = argmax
�H

TX
t=1

ItX
i=1

f+(xt)
@gH(xt; �̂H)

0

@�H
�H

such that zi � gH(xt; �H) 8i; t:

As before, the simulated distributions of n(��L � �̂L) and n(��H � �̂H) should ap-

proximate the limit distributions of the maximum likelihood estimates n(�̂L � �0L) and

n(�̂H � �0H).

4 Literature on Provider Agency in Health CareMar-

kets

Health care markets are rife with informational asymmetries which can be leveraged by

health care providers to increase incomes relative to full information, �rst-best equilib-

rium. Arrow (1963) noted that a �rst-best insurance contract would specify a state-

dependent payment. However, these contracts are not generally negotiated because health

states are not readily observed. Since the work of Arrow (1963), a large theoretical litera-

ture has arisen characterizing the optimal payment contract under di¤erent informational,

preference and market structure scenarios.6 However, most current provider-insurer con-

tracts do not correspond to the structures generally prescribed by theory.7 The failure

6McGuire (2000) provides an excellent review of this literature.
7For example, private insurers generally pay physicians on a fee-for-service or percentages of billed

charges basis, while Medicare pays physicians on a fee-for-service basis and hospitals by groupings of
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of insurers to negotiate �rst-best contracts suggests that there is meaningful scope for

provider agency. Given the size of the health care sector (approximately 16% of GDP in

the U.S.), the potential welfare consequences of provider agency are extremely large.

Empirical analyses of the magnitude of the agency problem date to the work on physi-

cian induced demand of Fuchs (1978). Strong circumstantial evidence that provider be-

havior deviates from the socially optimal one is provided by the Dartmouth Atlas Project.

They �nd that there are large geographic variations in utilization by Medicare enrollees

that are unrelated to health status. The Dartmouth Atlas Project suggests (but only

provides limited econometric evidence) that the geographic di¤erences are driven by ge-

ographic variation across providers in demand inducement. Following Fuchs (1978) a

literature has arisen that attempts to estimate the degree of physician demand induce-

ment, but the identi�cation strategies employed in these papers are generally suspect.8

There are important exceptions, however. Gruber and Owings (1996) �nd that within

state declines in fertility are associated with increases in cesarean sections. Yip (1997)

shows that cardiac surgeons responded to payment reductions by increasing the number of

procedures they performed. During the 1980s, Medicare changed its hospital reimburse-

ment system from retrospective to prospective using Diagnostic Related Groups (DRG)

as the basis of the payment. The incentive under prospective payment is to reduce the

length of stay of Medicare bene�ciaries and the policy appeared to have had the expected

impact (Hodgkin and McGuire, 1994) without dramatically impacting the quality of care

(Cutler, 1995). Even within the DRG system, hospitals appear to leverage their supe-

rior information into more generous payments. Dafny (2005) �nds that when Medicare

changed the structure of the DRG payment generosity, hospitals responded by upcoding

patients into more generous payment groups.

There has been little detailed analysis of the response of providers to the speci�c in-

diagnoses (Diagnosis Related Groups). Generally, these contract structures are not optimal under most
contracting models.

8See Dranove andWehner (1994) for a discussion of the limitation of the attempts to estimate physician
agency.
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centives embedded in reimbursement and remuneration contracts.9 Gaynor and Gertler

(1995) �nd that physicians reduce their e¤ort when faced with lower powered incentives.

Gaynor, Rebitzer and Taylor (2004) analyze a model of physician behavior under group

incentives and test the predictions using detailed contract and �nancial data from a net-

work HMO. They rely on variation in the size of the panel over which the group incentive

is implemented to identify the parameters. They �nd that the HMO�s incentive con-

tract provides a typical physician with an increase, at the margin, of $0.10 in income

for each $1.00 reduction in medical utilization expenditures. The presence of these high

powered incentives reduced medical expenditures by 5%. More recently, Ketcham, Léger

and Lucarelli (2011) examine the impact of physician gainsharing on the use of medical

devices. In a gainsharing arrangement hospitals pay physician groups if they reduce the

hospital�s cost of medical device acquisition and utilization. They �nd that gainsharing

arrangements yield signi�cant reductions in hospitals�medical device costs.

5 Data

The focus of our empirical analysis is organ and tissue transplants, and this choice is mo-

tivated by the following considerations. For the purpose of our study, we need reimburse-

ment schedules that have discrete changes in marginal reimbursement rates. Furthermore,

we need to study the type of procedures that have potentially signi�cant informational

asymmetries between hospitals and insurers and thus leave ample opportunity for provider

agency. Finally, we need detailed data on the shape of the reimbursement schedule that

each hospital faces as well as data on patients treated in each hospital. Organ and tissue

transplants �t all these criteria� piecewise linear reimbursement schedule, signi�cant in-

formational asymmetry due to the complexity of the procedures, and availability of data

on contracts and patients from a leading insurer.

9The state of the empirical literature is well summarized by Glied (2000), �There is very little empirical
evidence on the behavior of physicians paid using di¤erent payment arrangements.�
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Our estimation uses two data sets from the same source. The �rst data set comes

from one of the largest private health insurers in the U.S. and has information on its

contracts with 127 hospitals which specify reimbursement schedules for transplants. The

second data set contains information on the set of patients who received organ or tissue

transplants in each of the 127 hospitals. We merge the two, and the resulting data set has

(i) claim-level information, such as the admission and discharge dates of the patient, the

type of transplant received by the patient, the size of the bill submitted by the hospital

to the insurer and the reimbursement amount paid by the insurer, as well as (ii) hospital-

level information, such as the name and location of the hospital and the reimbursement

schedule the hospital faces for each type of organ transplant surgery it performs. The

data run from 2004 through 2007.

The insurer uses this network of hospitals for its own enrollees and also sells access to

this network to other health insurers and self-insured employers. This insurer is a major

player in the organ transplant market, with 80% market share among private vendors.

There are various types of organ and tissue transplants covered by the contracts, major

ones being bone marrow transplant (BMT), kidney transplant, liver transplant, heart

transplant and lung transplant. Organ and tissue transplants are a rare and exceedingly

expensive procedure. In 2007, 27,578 organs were transplanted in the U.S. and the average

total billed charges for kidney transplantation in our data, the least expensive and most

commonly transplanted organ, exceed $140,000. Between 2005 and 2008, the cost of organ

transplant rose at an annual rate of 14%� a rate that is larger than general health care cost

in�ation. An organ transplant is an extremely challenging and complex procedure taking

anywhere from 3 (kidney) to 14 hours (liver). Organ transplants usually require signi�cant

post-operative care (up to 3 weeks of inpatient care) and careful medical management to

prevent rejection. The infrequency of the procedures, the complexity of the treatments

and the large variation across patients in their response to transplantation make it di¢ cult

for insurers to determine the appropriateness of the care for a given episode. That, in

turn, implies that hospitals are in a position to engage in agency behavior in response to
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the incentives embodied in their contracts.

The insurer negotiates a separate contract with each individual hospital, instead of

having one common contract applied to all participating hospitals. As a result, the re-

imbursement schedule di¤ers across hospitals. For about 75% of hospitals in our original

sample, the reimbursement schedule takes a form as shown in Figure 1 with two kinks

(the marginal reimbursement rate starts at positive, becomes zero for a certain range and

then becomes positive again). The remaining 25% of hospitals have contracts that have

only one kink (the marginal reimbursement rate starts at positive and then remains at

zero above a certain expenditure level). Under the second type of contract, the maximum

amount of reimbursement is capped at a �xed level, while the maximum reimbursement

increases with billed charges under the �rst type of contract. As a result, hospitals are

exposed to greater risk under the second type of contract. Even among hospitals that

have the �rst type of contract, there is a large variation in the locations of the �rst kink

(q1) and the second kink (q2), the marginal reimbursement rate for each of the segments

(�1 and �2) and the height of the donut hole (�1q1). These di¤erences in the contract type

and contract terms likely re�ect variation in bargaining power as well as heterogeneity

in the patient pool across hospitals. For instance, we �nd that larger hospitals (presum-

ably with greater bargaining power) are more likely to have the �rst type of contract.

Also, conditional on having the �rst type of contract, larger hospitals are likely to have

higher marginal reimbursement rates �1 and �2 (see Ho (2009) for a nice discussion of

hospitals�bargaining power and markups). In our analysis, we focus on hospitals whose

reimbursement schedules display two kinks.

Our empirical measure of q is charges that hospitals submit to the insurer, which is

the sum of list prices times the quantities of all reimbursable items.10 Since the list prices

10To be precise, q measures charges incurred between admission and 90 days after discharge. This
period includes most of the major components related to transplant care, such as organ procurement,
transplant operation, inpatient care and necessary follow-ups within 90 days post discharge. Typically,
75% of the total costs associated with transplant care occur during this period. The reimbursement
schedules we examine apply to charges incurred during this period only, and there are separate provisions
for charges incurred prior to admission or after more than 90 days post discharge.
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of reimbursable items are set above their marginal costs, the charges are higher than the

costs that hospitals incur to treat the patients. While q represents �quantity� in our

model in Section 2, our empirical measure of q is in dollars. As a result, one might worry

about potential discrepancies between the two. For instance, it is well known that the

chargemaster (the �le in which list prices are kept) varies signi�cantly across hospitals, in

which case we would observe di¤erent charges for two patients in two di¤erent hospitals

even if they received the same level of treatment. Or if newer drugs cost more even though

they treat less severe conditions, the ordering of patients based on our empirical q would

di¤er from the ordering based on patient sickness, violating the monotonicity condition

required for our approach. In our analysis, ordering of patients will be done separately

for each hospital and organ type in order to partially address the concern.

One practical issue we encounter is that the number of patients who receive a certain

type of organ transplant within a hospital is typically small. To deal with this issue,

we pool observations across years for a given hospital and organ type (as long as the

reimbursement structure does not change over time) since it seems plausible to expect

that a given hospital�s price sensitivity does not change during the short sample period.

To further reduce the potential bias arising from the small number of patients, we restrict

our attention to (hospital, organ) pairs that have enough observations.11 Table 1 presents

summary statistics for our estimation sample.

[Table 1 about here]

From the table, it is clear that there is a huge variation in charges. A simple regression

shows that about 15%-25% of variation in charges is explained by hospital dummies for

each of the organ types. This could be due to di¤erences across hospitals in patient pool,

list prices or innate resource use intensity. Ideally, we would closely examine the various

components of the charges� the costs of organ procurement, hospitalization, tests, drugs,

11In our result tables below we report how many patients each hospital has.
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etc. for each patient. Our data essentially is the information that the insurer receives

from the hospital and such detail is not transmitted to the insurer and is generally not

available.

The lack of information on detailed components of charges also prevents us from

empirically examining what hospitals do in practice to adjust their level of care q in face of

�nancial incentives. However, we believe that there are margins that can be moved around

to control charges. Note that the q measure in our application includes post-operative care

for some period of time. During this time period, hospitals have signi�cant discretion over

q. Hospitals can release patients earlier or later, depending on how sick the patient is, and

also potentially depending on the reimbursement structure. Hospitals have case managers

who are keenly aware of the reimbursement structure and monitor how long patients have

stayed, the associated costs, etc. Transplant surgeons we interviewed highlighted that

there is signi�cant variation in resource use that is attributable to testing and many of

these tests are, in fact, discretionary with modest expected bene�t. A hospital sta¤ also

mentioned another interesting example of an action hospitals take that a¤ects the charges

for a given patient. Hospitals often contract with nearby hotels and step-down facilities

and place transplant patients in the advanced stages of their recovery in them instead of

keeping inpatient setting. The sta¤ also noted that the utilization of those facilities is

often discretionary and �nancial incentives can a¤ect their use.

6 Results

We apply our proposed estimators to the second discontinuity point q2 in order to estimate

how the amount of health care provision depends on the reimbursement structure. In the

�rst set of results, we apply maximum likelihood estimation to data pooled across multiple

hospitals. The maximum likelihood estimation will yield �̂L; �̂H ; �̂L and �̂H , and these

allow us to obtain the size of gap, �̂GAP (xt) = gH(xt; �̂H)� gL(xt; �̂L), and the change in

the slope of the quantile function, �̂SLOPE(xt) =
1

fH(0;xt;�̂H)
� 1
fL(0;xt;�̂L)

, at the discontinuity
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point for each hospital characterized by xt. We use exponential distribution for densities fL

and fH with hazard rate parameter �L(xt; �L) and �H(xt; �H), respectively. All contract

variables that potentially di¤er across hospitals, such as the locations of the �rst and

second kinks (q1 and q2) and the marginal reimbursement rates (�1 and �2), are included

in xt. We also include higher-order polynomials of these variables in xt to �exibly capture

the distribution of q for multiple hospitals. To compute standard errors, we use parametric

bootstrap using 500 simulations. We apply MLE to each organ type separately.

In Tables 2-4, we report maximum likelihood estimates of �GAP and �SLOPE for each

hospital in the data, along with hospital characteristics.12 We report the number of

patients treated in each hospital as well. Since our maximum likelihood estimation is

applied to pooled observations across hospitals within a given organ type, the relevant

number of observations used in estimation is much higher than that indicated by each

individual hospital. Table 2 reports estimates for BMT, Table 3 for kidney transplants,

and Table 4 for liver transplants.

[Tables 2, 3 and 4 about here]

From the results in Tables 2-4, we see that �̂SLOPE is positive and statistically sig-

ni�cant for almost all cases. This suggests that for a given increase in the severity of

patient health shock, hospitals tend to increase their health care spending by a larger

amount when they face a positive marginal reimbursement rate than when the marginal

reimbursement rate is zero. To interpret the magnitude of the coe¢ cients, take the results

for hospital 1 in Table 2. The hospital increases its bone marrow transplant spending by

$252.1 for one percentile increase in patient illness severity when it is on the LHS of the

kink (marginal reimbursement rate = 0%), while it increases its spending by $494.5 for

one percentile increase in illness severity when it is on the RHS of the kink (marginal

reimbursement rate = 50%). This amounts to approximately two times larger sensitivity

12We know hospital names as well but we are not allowed to divulge them.
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of the hospital�s health care spending to BMT patients�health condition due to the hike

in the reimbursement rate. Similarly, take the results for hospital 1 in Table 3.13 The

hospital increases its kidney transplant spending by $113 for one percentile increase in

illness severity when it is on the LHS of the kink (marginal reimbursement rate = 0%),

while it increases its spending by $515.4 for one percentile increase in illness severity when

it is on the RHS of the kink (marginal reimbursement rate = 55%). This amounts to ap-

proximately four and a half times larger sensitivity of the hospital�s health care spending

to kidney transplant patients�health condition due to the increase in the reimbursement

rate. Similar results hold for liver transplants as well.

Overall, the sensitivity of health care spending to patient illness is 2 to 13 times larger

on the RHS than on the LHS for bone marrow transplants, 2 to 7 times larger on the RHS

than on the LHS for kidney transplants, and 3 to 14 times larger on the RHS than on

the LHS for liver transplants. What is also interesting is that �̂SLOPE tends to be larger

when �2 is larger, which again suggests that hospitals are sensitive to reimbursement

rates in their health care provision decision. For instance, In Table 2, �̂SLOPE is largest

for Hospital 3, which has largest �2, and �̂SLOPE is smallest for Hospital 1, which has

smallest �2. Similar patterns hold for liver transplants (Table 4) although the picture is

less clear for kidney transplants (Table 3). Due to lack of data on patient outcomes, we

cannot convert these numbers to the �nal health outcomes of patients. Nonetheless, these

results strongly suggest that �nancial incentives matter for hospitals�decision on resource

use.

Another pattern we observe in Tables 2-4 is that �̂GAP is always positive, although

insigni�cant most of the time. The fact that �̂GAP is always positive alleviates concerns

about possible model misspeci�cation. As we discussed in Section 3.2.2, an implicit

assumption of the parametric functional form is that gL(xt; �
0
L) � q2(t) � gH(xt; �

0
H)

for all t at the true parameters �0L and �
0
H . Since we �nd that gL(xt; �̂L) < gH(xt; �̂H)

holds for all hospitals in the data, there is no evidence of model misspeci�cation. In terms

13The kth hospital in Table 2 is di¤erent from the kth hospital in Table 3 or 4.
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of sheer magnitudes, the estimates of �̂GAP are quite large. For instance, the size of gap

for hospital 1 in Table 2 is $8610. But due to large standard errors, most estimates of

�̂GAP are statistically indistinguishable from zero. In light of these results, we mainly

focus on interpretation of �̂SLOPE in the remainder of this paper.

In order to test the robustness of our results, we perform our analysis at a �ner level

of aggregation: at the individual hospital level. In this second set of results, we apply

kernel estimator as discussed in Section 3.2.1 to estimate �SLOPE separately for each pair

of hospital and organ. This approach also allows us to use only local variation around

the cuto¤ for identi�cation of incentive e¤ects. We do not estimate �GAP , taking our

earlier results into account.14 In our estimates, half-normal kernels with various choices

of bandwidth were used to construct the weights. We use Silverman�s plug-in estimates

for bandwidths and also try using twice and half the plug-in estimates to test robustness.

Table 5 reports kernel estimates of �SLOPE for each hospital and each organ type.
15

[Table 5 about here]

The results in Table 5 are similar to our earlier results, although the magnitudes and

signi�cance di¤er. The fact that our global estimator (MLE) and local estimator (kernel)

lead to similar conclusions is reassuring.

An overall picture that consistently appears in all these results is that hospitals tend

to submit much larger bills when marginal reimbursement rates are higher. Although

we cannot determine whether this is mainly due to underprovision below the threshold

(necessary care is withheld) or overprovision above the threshold (unnecessary care is

provided) due to lack of information on components of the �nal charges, the �nding

that hospitals are highly sensitive to �nancial incentives in their health care decisions is

14As the discussion in Section 3.2.1 makes clear, ignoring �GAP does not a¤ect our kernel estimation
of �SLOPE .
15Since estimation is done separately for each hospital, only those hospitals with su¢ cient numbers of

observations are used in Table 5. As a result, the number of hospitals reported in Table 5 is smaller than
those in Tables 2-4. In Table 5, we report the number of patients treated by each hospital.
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very interesting. We also emphasize that our estimates are valid only locally around the

threshold point, and do not allow us to infer the general price sensitivity of hospitals over

a wide range of expenditures. This limitation of local validity is an inherent feature of

RDD-type estimators.

If we had in�nitely many data points, our approach outlined in Section 3.1 would

suggest that we look for a �break�in the slope of the quantile function in an arbitrarily

small neighborhood around ��. Due to the sparseness of our data, however, it is hard to tell

from the raw data whether the density function has a discontinuous change at ��. Thus,

essentially our estimates simply tell us that the average density on the RHS is smaller

than the average density on the LHS within a small window around the cuto¤point. Then

a question that could potentially arise is whether we can interpret the observed change

in the density as a result of the change in the marginal reimbursement rate. This kind of

interpretational issue often arises in RDD applications since researchers frequently need

to deal with small data.

To address this potential concern, we run the same type of analysis for a �control

group.�We have a set of hospitals whose contracts have only one kink point (they have

the �rst kink point, but after the �rst kink point, the marginal reimbursement rate is

always zero). We then impose an arti�cial cuto¤ point, similar in location to the cuto¤

point for our estimation sample of hospitals, and perform similar analysis as in Table 5.

If our earlier results are an artifact of e.g. the right-skewed distribution of expenditures

or something else unrelated to �nancial incentives, we might expect to �nd similar results

for this control group. Estimation results for this control group of hospitals are reported

in Table 6.

[Table 6 about here]

A comparison of Table 6 against Table 5 indicates that our earlier results were likely

re�ective of hospitals� true behavioral responses to �nancial incentives. In Table 5 we
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saw that the estimates of �SLOPE were positive and statistically signi�cant for 6 out of

7 hospitals, while the only negative estimate was not statistically signi�cantly di¤erent

from zero. In contrast, we see that 3 out of 4 hospitals have negative estimates for �SLOPE

in our control group. Thus, we conclude that our kernel estimates of �SLOPE in Table 5

mostly re�ect true behavioral responses of hospitals to reimbursement structures.

7 Conclusion

In this paper, we propose a modi�ed RDD estimator that will be consistent when the

forcing variable can be manipulated by agents. Our proposed estimator can be applied to

many interesting settings that have been considered to be outside of the RDD framework.

For instance, it is not possible to use standard RDDs to recover consumers�price sensitiv-

ity in the presence of non-linear budget constraints or workers�labor supply elasticity in

the presence of higher marginal tax rates for higher income brackets, because agents opti-

mally choose their forcing variable. Our paper shows that a modi�cation to the standard

RDDs allows us to consider these types of problems within an RDD-style framework. An

application of our estimator to contracts in the health care market reveals that hospitals�

health care spending is signi�cantly in�uenced by �nancial incentives.

The assumptions required for our estimator are unlikely to hold for all settings, and

thus it is important for researchers to examine whether the assumptions hold for their

problems of interest. A key assumption is the strict monotonicity between the type and

the dependent variable. This is likely to be violated if the type is multi-dimensional or

if there is optimization error. In future work, we plan to investigate the performance of

our estimator under more general conditions and improve our estimator to make it robust

against these complications.
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Table 1: Summary Statistics

BMT Kidney Liver

Total # Patients 511 265 344

Total # Hospitals 7 6 7

Avg. Charge per Patient (in $1000) 168.56 (114.87) 140.74 (84) 319.63 (246.4)

Avg. Reimbursement per Patient (in $1000) 100.27 (67.98) 76.5 (42.12) 196.12 (145.61)

Avg. # Patients per Hospital 73 (36.82) 44.17 (11.57) 49.14 (30.39)

Avg. q1 across Hospitals (in $1000) 121.97 (13.65) 80.09 (9.42) 181.57 (17.34)

Avg. q2 across Hospitals (in $1000) 163.10 (22.44) 128.24 (12.63) 248.37 (28.57)

Avg. �1 across Hospitals 0.75 (0.08) 0.82 (0.08) 0.79 (0.07)

Avg. �2 across Hospitals 0.56 (0.06) 0.51 (0.05) 0.58 (0.06)

Avg. % Patients with q < q1 37.39 (16.22) 8.92 (5.62) 10.33 (6.58)

Avg. % Patients with q1 � q � q2 24.76 (11.45) 42.20 (15.76) 33.98 (15.55)

Avg. % Patients with q > q2 37.85 (20.33) 48.88 (11.02) 55.69 (12.21)

Inside the parentheses are standard deviations.
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Table 2: Maximum Likelihood Estimates, Bone Marrow Transplant (q measured in $1,000)

Obs q1 q2 �1 �2 �̂GAP Slope L Slope R �̂SLOPE

H1 28 135.71 190 0.7 0.5 8.61 (78.46) 25.21 49.45 24.24 (14.93)

H2 73 133.33 181.82 0.75 0.55 5.13 (4.05) 22.40 58.00 35.59 (10.38) ***

H3 74 107.33 123.85 0.75 0.65 4.70 (8.42) 11.28 146.29 135.01 (21.35) ***

H4 148 120 150 0.75 0.6 7.10 (2.63) ** 15.42 95.99 80.57 (7.46) ***

H5 64 126.67 172.73 0.75 0.55 35.22 (16.23) * 20.31 66.21 45.91 (7.45) ***

H6 71 130.77 170 0.65 0.5 3.44 (3.62) 20.31 66.19 45.87 (14.04) ***

H7 53 100 153.33 0.92 0.6 10.27 (16.63) 15.98 91.44 75.46 (7.71) ***

Inside the parentheses are bootstrapped standard errors.

* Signi�cant at 10% ** Signi�cant at 5% *** Signi�cant at 1%

Table 3: Maximum Likelihood Estimates, Kidney Transplant (q measured in $1,000)

Obs q1 q2 �1 �2 �̂GAP Slope L Slope R �̂SLOPE

H1 29 97.14 123.64 0.7 0.55 0.78 (6.96) 11.30 51.53 40.23 (5.27) ***

H2 37 74.67 124.44 0.75 0.45 6.69 (25.01) 14.25 74.07 59.82 (24.72) **

H3 48 75.29 130.61 0.85 0.49 4.67 (3.98) 14.66 57.15 42.49 (14.41) ***

H4 47 79.41 137.78 0.85 0.49 3.80 (4.13) 16.75 50.41 33.65 (6.37) ***

H5 41 83.38 144.64 0.85 0.49 1.95 (4.97) 19.05 44.66 25.60 (8.13) ***

H6 63 70.65 108.33 0.92 0.6 1.44 (3.32) 7.62 55.86 48.24 (8.76) ***

Inside the parentheses are bootstrapped standard errors.

* Signi�cant at 10% ** Signi�cant at 5% *** Signi�cant at 1%
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Table 4: Maximum Likelihood Estimates, Liver Transplant (q measured in $1,000)

Obs q1 q2 �1 �2 �̂GAP Slope L Slope R �̂SLOPE

H1 95 178.53 206 0.75 0.65 2.39 (5.76) 13.05 181.72 168.67 (22.39) ***

H2 31 166.47 288.78 0.85 0.49 13.99 (17.21) 42.14 141.11 98.97 (25.58) ***

H3 23 160 218.18 0.75 0.55 10.01 (258.73) 14.77 155.15 140.37 (125.67)

H4 38 200 254.55 0.7 0.55 7.77 (12.08) 25.85 155.15 129.30 (17.6) ***

H5 42 198.8 271.09 0.75 0.55 26.02 (13.51) * 33.34 155.15 121.81 (16.72) ***

H6 90 198.72 250 0.78 0.62 6.54 (5.73) 25.19 173.30 148.11 (13.45) ***

H7 25 168.48 250 0.92 0.62 33.30 (29.81) 25.19 173.30 148.11 (13.45) ***

Inside the parentheses are bootstrapped standard errors.

* Signi�cant at 10% ** Signi�cant at 5% *** Signi�cant at 1%
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Table 5: Kernel Estimates (q measured in $1,000)

Obs Bandwidth Slope L Slope R �̂SLOPE

H2 (BMT) 73 Silverman�s Plug-In 34.70 (0.91) 51.87 (1.69) 17.17 (2.6) ***

H4 (BMT) 148 Silverman�s Plug-In 21.36 (0.48) 186.29 (9.01) 164.93 (9.48) ***

H3 (Kidney) 48 Silverman�s Plug-In 46.90 (3.59) 71.6 (2.03) 24.7 (5.63) ***

H5 (Kidney) 41 Silverman�s Plug-In 34.08 (0.79) 72.53 (5.7) 38.45 (6.48) ***

H6 (Kidney) 63 Silverman�s Plug-In 16.35 (0.26) 88.06 (2.75) 71.71 (3.0) ***

H2 (Liver) 31 Silverman�s Plug-In 130.71 (50.71) 109.98 (10.95) -20.73 (61.67)

H6 (Liver) 90 Silverman�s Plug-In 54.12 (4.81) 140.87 (5.88) 86.75 (10.7) ***

H2 (BMT) 73 1/2 � Silverman�s 37.04 (2.21) 42.72 (1.88) 5.67 (4.09)

H4 (BMT) 148 1/2 � Silverman�s 19.61 (0.74) 211.55 (26.38) 191.93 (27.11) ***

H3 (Kidney) 48 1/2 � Silverman�s 48.39 (7.89) 49.22 (1.32) 0.83 (9.21)

H5 (Kidney) 41 1/2 � Silverman�s 29.54 (1.02) 78.6 (14.5) 49.06 (15.52) ***

H6 (Kidney) 63 1/2 � Silverman�s 17.13 (0.59) 68.5 (2.59) 51.37 (3.18) ***

H2 (Liver) 31 1/2 � Silverman�s 323.97 (1544) 80.65 (8.64) -243.32 (1553)

H6 (Liver) 90 1/2 � Silverman�s 57.35 (11.46) 109.71 (5.56) 52.36 (17.02) ***

H2 (BMT) 73 2 � Silverman�s 39.54 (0.67) 71.25 (2.19) 31.7 (2.86) ***

H4 (BMT) 148 2 � Silverman�s 27.21 (0.49) 200.7 (5.63) 173.5 (6.12) ***

H3 (Kidney) 48 2 � Silverman�s 43.22 (1.41) 116.31 (4.36) 73.09 (5.76) ***

H5 (Kidney) 41 2 � Silverman�s 44.5 (0.87) 87.1 (4.93) 42.6 (5.81) ***

H6 (Kidney) 63 2 � Silverman�s 17.5 (0.16) 125.74 (4) 108.24 (4.16) ***

H2 (Liver) 31 2 � Silverman�s 113.66 (16.67) 170.64 (20.47) 56.99 (37.14)

H6 (Liver) 90 2 � Silverman�s 54.81 (2.5) 211.4 (9.94) 156.59 (12.44) ***

Inside the parentheses are standard errors.

* Signi�cant at 10% ** Signi�cant at 5% *** Signi�cant at 1%
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Table 6: Kernel Estimates, �Control�Group (q measured in $1,000)

Obs Bandwidth Slope L Slope R �̂SLOPE

H1 (BMT) 30 Silverman�s Plug-In 65 (6.55) 58.91 (3.27) -6.09 (9.81)

H1 (Kidney) 36 Silverman�s Plug-In 97.17 (32.18) 26.68 (1.12) -70.49 (33.3) **

H2 (Kidney) 46 Silverman�s Plug-In 27.92 (0.98) 69.59 (3.56) 41.67 (4.54) ***

H1 (Liver) 60 Silverman�s Plug-In 770.889 (5452) 422.43 (166.13) -348.46 (5618)

H1 (BMT) 30 1/2 � Silverman�s 73.62 (19.02) 43.34 (2.6) -30.29 (21.62)

H1 (Kidney) 36 1/2 � Silverman�s 295.37 (1807) 27.94 (2.57) -267.43 (1810)

H2 (Kidney) 46 1/2 � Silverman�s 29.62 (2.33) 55.24 (3.56) 25.62 (5.89) ***

H1 (BMT) 30 2 � Silverman�s 72.51 (4.54) 83.4 (4.63) 10.89 (9.18)

H1 (Kidney) 36 2 � Silverman�s 55.78 (3.04) 37.16 (1.51) -18.62 (4.56) ***

H2 (Kidney) 46 2 � Silverman�s 28.62 (0.53) 102 (5.61) 73.38 (6.14) ***

H1 (Liver) 60 2 � Silverman�s 290.81 (146.34) 581.06 (216.18) 290.25 (362.52)

Inside the parentheses are standard errors.

* Signi�cant at 10% ** Signi�cant at 5% *** Signi�cant at 1%
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