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1 Introduction

The theory of Expected Utility (EU) is among the most elegant and esthetically pleas-

ing results in all of economics. It shows that if a preference ordering over a given set of

gambles is complete, transitive, continuous, and, in addition, it satisfies the indepen-

dence axiom, then utility is linear in objective probabilities.1 The idea that a gamble’s

utility could be represented by the mathematical expectation of its utility outcomes

dates to the St. Petersburg Paradox (Bernouilli, 1738). The idea that a gamble’s

utility was necessarily such an expectation if independence and the other axioms were

satisfied became clear only in the 1950’s (Samuelson, 1952, 1953).2

Two parallel research tracks have developed with respect to the independence ax-

iom. The first takes linearity-in-probabilities as given and fits functional forms of the

utility of consumption to experimental data (Birnbaum, 1992; Kachelmeier and She-

hata, 1992; Holt and Laury, 2002).3 The second track focuses on identifying violations

of independence.4 Principal among these are Allais’ (1953b) well documented and

extensively replicated common consequence and common ratio paradoxes.5

These and other violations of EU motivated new theoretical and experimental ex-

ercises, the most noteworthy being Cumulative Prospect Theory’s (CPT) inverted S -

1Subjective Expected Utility is not discussed in this paper. All results will pertain only to objective
probabilities.

2The independence axiom is closely related to the Savage (1954) ‘sure-thing principle’ for subjective
expected utility (Samuelson, 1952). Expected utility became known as von Neumann-Morgenstern
(vNM) preferences after the publication of von Neumann and Morgenstern (1944). Independence,
however, was not among the discussed axioms, but rather implicitly assumed. Samuelson (1952,
1953) discusses the resulting confusion and his suspicion of an implicit assumption of independence in
the vNM treatment. Samuelson’s suspicion was then confirmed in a note by Malinvaud (1952). For
an excellent discussion of the history of the independence axiom, see Fishburn and Wakker (1995).

3Harrison and Rutstrom (2008) provide a detailed summary of both the experimental methods and
estimation exercises associated with this literature.

4This second line of research began contemporaneously with the recognition of the importance
of the independence axiom. Indeed Allais’ presentation of Allais (1953a) was in the same session
as Samuelson’s presentation of Samuelson (1953) and the day after Savage’s presentation of Savage
(1953) at the Colloque Internationale d’Econométrie in Paris in May of 1952.

5In addition to the laboratory replications of Kahneman and Tversky (1979); Tversky and Kah-
neman (1992), there is now an extensive catalogue of Allais style violations of EU (Camerer, 1992;
Harless and Camerer, 1994; Starmer, 2000).
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shaped non-linear probability weighting (Kahneman and Tversky, 1979; Quiggin, 1982;

Tversky and Kahneman, 1992; Tversky and Fox, 1995). In a series of experiments elicit-

ing certainty equivalents for gambles, Tversky and Kahneman (1992) and Tversky and

Fox (1995) estimated utility parameters supporting a model in which subjects “edit”

probabilities by down-weighting high probabilities and up-weighting low probabilities.

Identifying the S -shape of the weighting function and determining its parameter val-

ues has received significant attention both theoretically and in experiments (Wu and

Gonzalez, 1996; Prelec, 1998; Gonzalez and Wu, 1999; Abdellaoui, 2000).6

Perhaps suprisingly, there are few direct tests of the independence axiom’s most

critical implication: linearity-in-probabilities of the expected utility function. If, as in

the first branch of literature, the independence axiom is assumed for identification of

utility parameters, then the axiom cannot be rejected. Likewise, in the second branch,

tests of probability weighting are not separate from functional form assumptions and

thus are unlikely to confirm the independence axiom if it in fact holds unless, of course,

both consumption utility and the weighting function are correctly specified.7 Other

tests have, however, demonstrated important failures of EU beyond the Allais Paradox

(Allais, 1953b). These include the calibration theorem (Rabin, 2000a,b), and goodness-

of-fit comparisons (Camerer, 1992; Hey and Orme, 1994; Harless and Camerer, 1994).

In this paper, we provide a simple direct test of linearity-in-probabilities that reveals

when independence holds, how it fails, and the nature of violations. We reintroduce an

experimental method, which we call the uncertainty equivalent. Whereas a certainty

equivalent identifies the certain amount that generates indifference to a given gamble,

the uncertainty equivalent identifies the probability mixture over the gamble’s best

outcome and zero that generates indifference. For example, consider a (p, 1−p) gamble

6Based upon the strength of these findings researchers have developed new methodology for eliciting
risk preferences such as the ‘trade-off’ method (Wakker and Deneffe, 1996) that is robust to non-linear
probability weighting.

7This observation is made by Abdellaoui (2000). Notable exceptions are the non-parametric prob-
ability weighting estimates of Gonzalez and Wu (1999); Bleichrodt and Pinto (2000) and Abdellaoui
(2000) which find support for non-linearity-in-probabilities (see sub-section 4.2.1 for discussion).

2



over $10 and $30, (p; 10, 30). The uncertainty equivalent identifies the (q, 1−q) gamble

over $30 and $0, (q; 30, 0), that generates indifference.8 Independence implies a linear

relationship between p and q.

The uncertainty equivalent draws its motivation from the derivation of expected

utility, where the cardinal index for a gamble is derived as the probability mixture over

the best and worst options in the space of gambles.9 This means that in an uncertainty

equivalent measure, the elicited q in (q;Y, 0) can be interpreted as a utility index for

the p gamble, (p;X, Y ), when Y > X > 0.

The uncertainty equivalent can also be used to inform the discussion of a variety

of non-EU preference models including S -shaped probability weighting, expectations-

based reference-dependence such as disappointment aversion (Bell, 1985; Loomes and

Sugden, 1986; Gul, 1991; Koszegi and Rabin, 2006, 2007)10, and “u-v” preferences

(Neilson, 1992; Schmidt, 1998; Diecidue, Schmidt and Wakker, 2004).11 Though these

models are often motivated by violations of independence and the Allais (1953b) para-

dox, they have both divergent psychological accounts of the phenomenon and divergent

predictions in the uncertainty equivalent environment. Probability weighting explains

8We recognize that it is a slight abuse of traditional notation to have the probability refer to
the lower outcome in the given gamble and the higher outcome in the uncertainty equivalent. It
does, however, ease explication to have p refer to the probability of the low value and q refer to the
probability of the high value.

9Such derivations are provided in most textbook treatments of expected utility. See, e.g. Varian
(1992). Our research has uncovered that methods like our uncertainty equivalent were discussed
in Farquhar’s (1984) excellent survey of utility assessment methods and, to our knowledge, were
implemented experimentally in only one study of nine subjects using hypothetical monetary rewards
(McCord and de Neufville, 1986), and a number of medical questionnaires (Magat, Viscusi and Huber,
1996; Oliver, 2005, 2007; Bleichrodt, Abellan-Perinan, Pinto-Prades and Mendez-Martinez, 2007).

10We include the Koszegi and Rabin (2006, 2007) model in the broad class of expectations-based
reference dependence as the model’s predictions will closely resemble those of standard disappointment
aversion in the present context as well as most other experimental environments (Ericson and Fuster,
Forthcoming; Gill and Prowse, 2010; Abeler, Falk, Goette and Huffman, Forthcoming). For specific
evidence distinguishing Koszegi and Rabin (2006, 2007) preferences from disappointment aversion, see
Sprenger (2010).

11u-v preferences are less well-known than the other preference models. For a discussion of the
early history of u-v preferences, see Schoemaker (1982). These models capture the intuition of Allais
(1953b) that when options are far from certain, individuals act effectively as EU maximizers but, when
certainty is available, it is disproportionately preferred. The u-v model differs in important ways from
extreme or even discontinuous probability weighting and prior experiments have demonstrated these
differences (Andreoni and Sprenger, 2011).
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the Allais paradox with non-linear probability distortions, disappointment aversion

relies instead on reference-dependence around an expectations-based reference point,

and u-v preferences rely on a direct preference for certainty. Importantly, in the uncer-

tainty equivalent environment these three models have different predictions that can

be examined without relying on functional form assumptions for utility.

We conducted a within-subject experiment with 76 undergraduates at the Univer-

sity of California, San Diego, using both uncertainty and certainty equivalents. We find

that that the model of Expected Utility does strikingly well, except near certainty. At

probabilities of 0.95 and above, the independence axiom fails for about 40 percent of

subjects, and in a very systematic way. A closer examination of the data strongly re-

jects prospect theory, and finds the data are most parsimoniously captured by a model

of u-v preferences.

We demonstrate this finding in four steps. First, using uncertainty equivalents we

find that p and q are, quite strikingly, related linearly for values of p away from cer-

tainty. Second, linearity breaks down as probabilities approach 1, and in a way that

strongly contradicts S -shaped probability weighting. Third, 38 percent of subjects

violate stochastic dominance at certainty, providing a within-subject example of the

recently debated ‘uncertainty effect’ (Gneezy, List and Wu, 2006; Rydval, Ortmann,

Prokosheva and Hertwig, 2009; Keren and Willemsen, 2008; Simonsohn, 2009). Such

violations are a prediction of both the u-v model and some formulations of disappoint-

ment aversion, and are indicative of a disproportionate preference for certainty. Fourth,

in the certainty equivalents tasks, subjects show both small stakes risk aversion and

apparent S -shaped probability weighting, reproducing prior findings. We show, how-

ever, that these phenomena are driven by subjects who violate stochastic dominance

in uncertainty equivalents. This suggests that extreme experimental risk aversion and

probability weighting may be artifacts of a disproportionate preference for certainty

coupled with specification error. For instance, a model of u-v preferences can pro-
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duce certainty equivalent data that would generate an S -shaped weighting function if

the econometrician estimated the functional forms of Tversky and coauthors, and also

explain the data found in uncertainty equivalents. The opposite, however is not true.

Our experiment casts a new light on previous findings and raises new challenges for

research on risk. The fact that we use non-parametric tests to find the independence

axiom fails only near certainty, thus dramatically contradicting Cumulative Prospect

Theory, shows the potential pitfalls of using parametric assumptions and model-fitting

to identify a theory. The fact that a sizable minority of our subjects violate first order

stochastic dominance at certainty is a second surprising but important element of the

data. The violations are frequent and significant enough to deserve to be addressed by

both further replication and by theoretical analysis. Both of these findings point to a

special role for certainty in individual preferences.

Our experiments are, of course, not the first to recognize the importance of cer-

tainty. The original Allais (1953b) paradoxes drew attention to certainty being “dis-

proportionately preferred,” and others have noted the preponderance of the evidence

against EU also implicates certainty as an aider and abettor (Conlisk, 1989; Camerer,

1992; Harless and Camerer, 1994; Starmer, 2000). In related work on time preferences,

Andreoni and Sprenger (2011), we document intertemporal results consistent with a

specific preference for certainty. Recognizing that certainty may be disproportionately

preferred gives a reason, perhaps, to expect non-EU behavior in experimental method-

ologies such as certainty equivalents, as certainty effects are built into the experimental

design.12

The paper continues as follows. Section 2 discusses the uncertainty equivalent

methodology and develops predictions based on different preference models. Section 3

presents experimental design details. Section 4 presents results and Section 5 concludes.

12Relatedly, one should also expect present-biased intertemporal behavior in designs that provide
certain sooner payments and risky later payments. See Andreoni and Sprenger (2011) for further
discussion.
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2 The Uncertainty Equivalent

Consider a lottery (p;X, Y ) which provides $X with probability p and $Y > $X with

probability 1 − p. A certainty equivalent task elicits the certain amount, $C, that is

indifferent to this gamble. The uncertainty equivalent elicits the q-gamble over $Y and

$0, (q;Y, 0), that is indifferent to this gamble. Take for example a 50%-50% gamble

paying either $10 or $30. The uncertainty equivalent is the q-gamble over $30 and $0

that generates indifference.13

Under standard preference models, a more risk averse individual will, for a given

gamble, have a lower certainty equivalent, C, and a higher uncertainty equivalent, q.

A powerful distinction of the uncertainty equivalent is, however, that it is well-suited

to identifying alternative preference models such as S -shaped probability weighting,

where the non-linearity of the weighting function can be recovered directly, disappoint-

ment aversion, and u-v preferences. If preferences under certainty differ from those

under uncertainty as in both disappointment aversion and u-v models, then certainty

equivalent methodology assuming a single utility function is misspecified.14 Risk pref-

erences or probability weights are not identified separately from differential preferences

over certainty and uncertainty.

2.1 Empirical Predictions

We present empirical predictions in the uncertainty equivalent environment for ex-

pected utility, S -shaped probability weighting, disappointment aversion, and u-v pref-

erences.15 Unlike experimental contexts that require functional form assumptions for

13We should be clear to distinguish the uncertainty equivalent from a probability equivalent. A
probability equivalent elicits the probability of winning that makes a gamble indifferent to a sure
amount. Uncertainty equivalents have risk on both sides of the indifference condition.

14In the u-v model, the differential preferences over certainty and uncertainty are delivered via a
discontinuity. In disappointment aversion, choice under uncertainty involves disappointment and so
an extra utility parameter not present in choice under certainty. See sub-sections 2.1.3 and 2.1.4 for
further discussion.

15This is, of course, a limited list of the set of potentially testable decision models. For example,
we do not discuss ambiguity aversion or the anticipatory utility specifications of Kreps and Porteus
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model identification, the uncertainty equivalent can generally provide tests of utility

specifications based on the relationship between p and q without appeal to specific

functional form for utility.

2.1.1 Expected Utility

Consider a gamble with probability p of $X and probability 1− p of a larger payment

$Y > $X. The uncertainty equivalent of this prospect is the value q satisfying

p · u(X) + (1− p) · u(Y ) = q · u(Y ) + (1− q) · u(0).

Assuming u(0) = 0, u(Y ) > u(X), and letting θ = u(X)/u(Y ) < 1, then

q = p · u(X)

u(Y )
+ 1− p = 1− p · (1− θ),

and
dq

dp
=

u(X)

u(Y )
− 1 = −(1− θ) < 0.

Thus, expected utility generates a negative linear relationship between the probability

p of $X and the probability q of $Y . This is an easily testable prediction.

2.1.2 Cumulative Prospect Theory Probability Weighting

Under Cumulative Prospect Theory, probabilities are weighted by the non-linear func-

tion π(p). One popular functional form is the one parameter function used in Tversky

and Kahneman (1992)16, π(p) = pγ/(pγ + (1 − p)γ)1/γ , 0 < γ < 1. This inverted

S -shaped function, as with others used in the literature, has the property that π′(p)

approaches infinity as p approaches 0 or 1. Probability weights are imposed on the

(1978) and Epstein and Zin (1989) as experimental uncertainty was resolved during the experimental
sessions. These models generally reduce to expected utility when uncertainty is resolved immediately.

16Tversky and Fox (1995) and Gonzalez and Wu (1999) employ a similar two parameter π(p)
function. See Prelec (1998) for alternative specifications.
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higher of the two utility values.17

Under this CPT formulation, the uncertainty equivalent indifference condition is

(1− π(1− p)) · u(X) + π(1− p) · u(Y ) = π(q) · u(Y ) + (1− π(q)) · u(0).

Again letting u(0) = 0 and θ = u(X)/u(Y ) < 1,

(1− π(1− p)) · θ + π(1− p) = π(q).

This implicitly defines q as a function of p, yielding

dq

dp
= −π′(1− p)

π′(q)
· [1− θ] < 0.

As with expected utility, q and p are negatively related. Contrary to expected

utility, the rate of change, dq/dp, depends on both p and q. Importantly, as p ap-

proaches 1, π′(1 − p) approaches infinity and, provided finite π′(q), the slope dq/dp

becomes increasingly negative.18 This is a clearly testable alternative to expected util-

ity. Importantly, the argument does not rest on the derivatives of the probability

weighting function. Any modified S -shaped weighting function featuring up-weighting

17This formulation is assumed for binary gambles over strictly positive outcomes in Kahneman
and Tversky (1979) and for all gambles in Tversky and Kahneman (1992). We abstract away from
prospect theory’s fixed reference point formulation as static reference points do not alter the analysis.
Changing reference points, as in disappointment aversion, are discussed in sub-section 2.1.3.

18It is difficult to create a general statement for all probabilities between zero and one based upon
the second derivative d2q/dp2, as the second derivatives of the weighting function can be positive or
negative depending on the concavity or convexity of the S -shaped distortion. The second derivative
is

d2q

dp2
=

π′′(1− p) · [1− θ] · π′(q) + π′′(q) dqdp · π′(1− p) · [1− θ]

π′(q)2
.

However, for p near 1, the sign is partially determined by π′′(q) which may be negative or positive.
For S -shaped weighting, π′′(1 − p) will be negative in the concave region of low probabilities, and
dq/dp will be negative from the development above. If q lies in the convex weighting region, such
that π′′(q) > 0, then d2q/dp2 < 0 and the relationship is concave and may remain so with π′′(q) < 0.
Consensus puts the concave region between probability 0 and around 1/3 (Tversky and Kahneman,
1992; Tversky and Fox, 1995; Prelec, 1998). As will be seen, the uncertainty equivalents for p = 1 lie
substantially above 1/3 for all of our experimental conditions such that a concave relationship between
p and q would be expected.
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of low probabilities and down-weighting of high probabilities will share the character-

istic that the relationship between q and p will become more negative as p approaches

1.19

2.1.3 Disappointment Aversion

We use the term disappointment aversion to refer to a broad class of reference-

dependent models with expectations-based reference points where a gamble’s outcomes

are evaluated relative to the gamble’s EU certainty equivalent (Bell, 1985; Loomes and

Sugden, 1986; Gul, 1991). Recent research on expectations-based reference depen-

dence extends the notion of reference points to reference distributions (Koszegi and

Rabin, 2006, 2007). In the environment described in this paper, models with reference

distributions and models with reference points generate very similar predictions. For

simplicity, we present the analysis in terms of expectations-based reference points.20

Consider a p-gamble over $X and $Y > $X. Let Cp be the standard EU certainty

equivalent satisfying

p · u(X) + (1− p) · u(Y ) = u(Cp).

Taking Cp as the reference point, the reference-dependent utility of the p-gamble is

Up = p · ũ(X|Cp) + (1− p) · ũ(Y |Cp)

where ũ(·|Cp) is the reference-dependent utility function with a reference point at Cp.

We assume a standard specification for u(·|Cp) (Bell, 1985; Loomes and Sugden,

19This would be the case for virtually all functional forms and parameter values discussed in Prelec
(1998) and for functions respecting condition (A) of the Quiggin (1982) weighting function. Take p
close to 1 and (1− p) close to zero, u(Y ) will be up-weighted and u(X) will be down-weighted on the
left hand side of the above indifference condition. In order to compensate for the up-weighting of the
good outcome on the left hand side, q on the right hand side must be high. At p = 1, the up-weighting
of u(Y ) disappears precipitously and so q decreases precipitously to maintain indifference.

20For analysis focusing on the distinction between Koszegi and Rabin (2006, 2007) preferences and
other models of disappointment aversion as well as discussion of the different equilibrium and utility
maximization concepts across the models, see Sprenger (2010).
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1986),

ũ(z|Cp) = u(z) + µ(u(z)− u(Cp)),

where the function u(z) represents consumption utility for some outcome, z, and µ(·)

represents disappointment-elation utility relative to the referent, Cp. Several simpli-

fying assumptions are made. Following Koszegi and Rabin (2006, 2007) we assume a

piecewise-linear disappointment-elation function,

µ(u(z)− u(Cp)) =






η · (u(z)− u(Cp)) if u(z)− u(Cp) ≥ 0

η · λ · (u(z)− u(Cp)) if u(z)− u(Cp) < 0





,

where the utility parameter with λ > 1 indicates disappointment aversion. Without

loss of generality, let η = 1. The disappointment averse utility of the (p;X, Y ) gamble

can be written as

Up = p · [u(X) + λ · (u(X)− u(Cp))] + (1− p) · [u(Y ) + 1 · (u(Y )− u(Cp))].

Replacing u(Cp) = p · u(X) + (1− p) · u(Y ) , this becomes

Up = [p+ p · (1− p) · (λ− 1)] · u(X) + [(1− p)− p · (1− p) · (λ− 1)] · u(Y ).

Note that this implies that disappointment aversion is another version of a probability

weighted utility function with weighting function

π̃(1− p) = (1− p)− p · (1− p) · (λ− 1).

In addition π̃(1 − p) ≤ 1 − p if λ > 1, and π̃(1 − p) is a convex function.21 Hence

disappointment aversion is equivalent to a specific form of probability weighting that

21π̃(1− p) describes a parabola with a critical point at 1− p = (λ− 2)/(2λ− 2).
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is not S -shaped, but rather downweights all probabilities.22 Following identical logic

to that of the previous section the uncertainty equivalent indifference relation again

implies
dq

dp
= − π̃′(1− p)

π̃′(q)
· [1− θ] .

Because the weighting function, π̃(·), is convex, one can easily check that the second

derivative, d2q
dp2 , is greater than zero, implying that disappointment aversion predicts a

convex relationship between p and q for λ > 1.23

Of additional interest is that as p approaches 1, π̃′(1−p) approaches 2−λ under our

formulation. For sufficiently disappointment averse individuals (λ > 2 in this example)

the relationship between p and q will become positive as p approaches 1, provided

π̃′(q) > 0. This is an important prediction of disappointment aversion. A positive

relationship between p and q near certainty implies violations of first order stochastic

22Loomes and Sugden (1986) and Gul (1991) provide similar demonstrations that disappointment
aversion is observationally equivalent to down-weighting of all probabilities.

23Note that π̃(q) ≥ π̃(1 − p) is implied from the above indifference condition, and, for a weakly
increasing π̃(·), q ≥ 1 − p. Convexity implies π̃′(q) ≥ π̃′(1 − p). For the employed specification
π̃′(1− p) = 2− λ+ 2(1− p)(λ− 1) and π̃′′(·) is a constant, such that π̃′′(1− p) = π̃′′(q) = 2(λ− 1).
This second derivative is positive under the assumption λ > 1. Hence, the sign of

d2q

dp2
=

π̃′′(1− p) · [1− θ] · π̃′(q) + π̃′′(q) dqdp · π̃′(1− p) · [1− θ]

π̃′(q)2
.

depends on the sign of

π̃′(q) +
dq

dp
· π̃′(1− p).

Plugging in for dq/dp

π̃′(q)− π̃′(1− p)

π̃′(q)
· [1− θ] · π̃′(1− p),

and dividing by π̃′(q) we obtain

1− π̃′(1− p)

π̃′(q)
· [1− θ] · π̃

′(1− p)

π̃′(q)
.

Because convexity of π̃(·) and q ≥ (1− p) implies π̃′(q) ≥ π̃′(1− p), π̃′(1− p)/π̃′(q) ≤ 1. Additionally
1− θ < 1, by the assumption of monotonicity. The second term is therefore a multiplication of three
terms that are less than or equal to 1 and one concludes

1− π̃′(1− p)

π̃′(q)
· [1− θ] · π̃

′(1− p)

π̃′(q)
> 0,

d2q/dp2 > 0, the relationship is convex.
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dominance as certainty is approached. The uncertainty equivalent, q, acts as a utility

index of the p-gamble. Given two offered gambles, p and p′, with p > p′, and two

associated uncertainty equivalents, q and q′, a subject violates first order stochastic

dominance if q > q′ as this indirectly reveals a preference for a gamble with higher

probability of a lower prize.

Importantly, some disappointment averse models are constructed with assumptions

guaranteeing that the underlying preferences satisfy stochastic dominance, taking viola-

tions of stochastic dominance as a disqualifying feature of a model of behavior (Loomes

and Sugden, 1986; Gul, 1991), while others are not (Bell, 1985; Koszegi and Rabin,

2006, 2007). Hence, whether the data show significant violations of stochastic domi-

nance can be informative for the constraints placed on models of expectations-based

reference dependence.

2.1.4 u-v Preferences

The u-v model (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004) is designed to

capture Allais’ (1953b) intuition of a disproportionate preference for security in the

‘neighborhood of certainty.’ Let u(X) be the utility of $X with uncertainty and v(X)

be the utility of $X with certainty. Assume v(X) > u(X) for $X > 0. Under such

u-v preferences, p and q will have a linear relationship away from p = 1. At p = 1, the

discontinuity in utility introduces a discontinuity in the relationship between p and q.

At p = 1, the q that solves the indifference condition

v(X) = q · u(Y )

will be

q =
v(X)

u(Y )
>

u(X)

u(Y )
.
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With the u-v specification, q will be linearly decreasing in p and then discontinuously

increase at p = 1.

Importantly, if the neighborhood of certainty is understood to begin at probabilities

less than one, the discontinuity may appear below p = 1. Instead of a discontinuity at

certainty, however, one could imagine a less rigid model of preferences where the rela-

tionship between p and q is continuous but non-linear as p approaches 1. Distinguishing

between such a representation and disappointment aversion would be virtually impos-

sible. In this sense, discontinuous u-v preferences could act as a simple, parsimonious

representation of disappointment averse decision-making without making appeals to

an expectations-based reference point. All uncertainty entails disappointment and so

lower utility. This is similar in spirit to the β-δ representation of time preferences to

usefully approximate hyperbolic discounting.

Similar to some versions of disappointment aversion, the u-v preference model vio-

lates first order stochastic dominance if there exists a disproportionate preference for

certainty, v(X) > u(X). Certainty of a small payment will be preferred to near certain

gambles paying this small amount with sufficiently high probability and something

larger with low probability.

Though such a property can be viewed as a weakness of the u-v preference model

(Diecidue et al., 2004), we again take the view that violating stochastic dominance is

an implication of the model that can easily be used to test and reject it.

2.2 Summary

Figure 1 presents the theoretical predictions of the four models just discussed. Impor-

tantly, the uncertainty equivalent environment provides clear separation between the

models. Under expected utility, q should be a linear function of p. Under S -shaped

probability weighting q should be a concave function of p with the relationship growing

more negative as p approaches 1. Under disappointment aversion q should be a convex
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Figure 1: Empirical Predictions
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Note: Empirical predictions of the relationship between given gambles, (p;X, Y ),
and uncertainty equivalents (q;Y, 0) for Expected Utility, S -shaped CPT probability
weighting, disappointment aversion, and u-v preferences. A linear prediction is ob-
tained for EU, a concave relationship for S -shaped CPT probability weighting, and a
convex relationship for disappointment aversion. For u-v preferences a linear negative
relationship between (p;X, Y ) and (q;Y, 0) is obtained for p < 1, with a discontinuous
increase in (q;Y, 0) at certainty, p = 1.

function of p, perhaps with sharper convexity as p approaches 1, and with indirect vi-

olations of stochastic dominance. Under u-v preferences, q should be a linear function

of p until certainty, with convexity appearing near certainty and being associated with

indirect violations of stochastic dominance.
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3 Experimental Design

Eight uncertainty equivalents were implemented with probabilities p ∈

{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1} in three different payment sets,

(X, Y ) ∈ {(10, 30), (30, 50), (10, 50)}, yielding 24 total uncertainty equivalents.

The experiment was conducted with paper-and-pencil and each payment set (X, Y )

was presented as a packet of 8 pages. The uncertainty equivalents were presented in

increasing order from p = 0.05 to p = 1 in a single packet.

On each page, subjects were informed that they would be making a series of de-

cisions between two options. Option A was a p chance of receiving $X and a 1 − p

chance of receiving $Y . Option A remained the same throughout the page. Option

B varied in steps from a 5 percent chance of receiving $Y and a 95 percent chance of

receiving $0 to a 99 percent chance of receiving $Y and a 1 percent chance of receiving

$0. Figure 2 provides a sample decision task. In this price list style experiment, the

row at which a subject switches from preferring Option A to Option B indicates the

range of values within which the uncertainty equivalent, q, lies.

A common frustration with price lists is that anywhere from 10 to 50 percent of

subjects can be expected to switch columns multiple times.24 Because such multiple

switch points are difficult to rationalize and may indicate subject confusion, it is com-

mon for researchers to drop these subjects from the sample.25 Instead, we augmented

the standard price list with a simple framing device designed to clarify the decision

process. In particular, we added a line to both the top and bottom of each price list

in which the choices were clear, and illustrated this by checking the obvious best op-

tion. The top line shows that each p-gamble is preferred to a 100 percent chance of

receiving $0 while the bottom line shows that a 100 percent chance of receiving $Y is

24Holt and Laury (2002) and had around 10 percent and Jacobson and Petrie (2009) had nearly 50
percent multiple switchers. An approximation of a typical fraction of subjects lost to multiple switch
points in an MPL is around 15 percent.

25Other options include selecting one switch point to be the “true point” (Meier and Sprenger, 2010)
or constraining subjects to a single switch point (Harrison, Lau, Rutstrom and Williams, 2005).
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Figure 2: Sample Uncertainty Equivalent Task

TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 50 in
100 chance of $10 and a 50 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

50 in 100 50 in 100 !" or 100 in 100 0 in 100 !
1) 50 in 100 50 in 100 ! or 95 in 100 5 in 100 !
2) 50 in 100 50 in 100 ! or 90 in 100 10 in 100 !
3) 50 in 100 50 in 100 ! or 85 in 100 15 in 100 !
4) 50 in 100 50 in 100 ! or 80 in 100 20 in 100 !
5) 50 in 100 50 in 100 ! or 75 in 100 25 in 100 !
6) 50 in 100 50 in 100 ! or 70 in 100 30 in 100 !
7) 50 in 100 50 in 100 ! or 65 in 100 35 in 100 !
8) 50 in 100 50 in 100 ! or 60 in 100 40 in 100 !
9) 50 in 100 50 in 100 ! or 55 in 100 45 in 100 !
10) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
11) 50 in 100 50 in 100 ! or 45 in 100 55 in 100 !
12) 50 in 100 50 in 100 ! or 40 in 100 60 in 100 !
13) 50 in 100 50 in 100 ! or 35 in 100 65 in 100 !
14) 50 in 100 50 in 100 ! or 30 in 100 70 in 100 !
15) 50 in 100 50 in 100 ! or 25 in 100 75 in 100 !
16) 50 in 100 50 in 100 ! or 20 in 100 80 in 100 !
17) 50 in 100 50 in 100 ! or 15 in 100 85 in 100 !
18) 50 in 100 50 in 100 ! or 10 in 100 90 in 100 !
19) 50 in 100 50 in 100 ! or 5 in 100 95 in 100 !
20) 50 in 100 50 in 100 ! or 1 in 100 99 in 100 !

50 in 100 50 in 100 ! or 0 in 100 100 in 100 !"

Note: Sample uncertainty equivalent task for (p;X, Y ) = (0.5, 10, 30) eliciting (q; 30, 0).

preferred to each p-gamble. These pre-checked gambles were not available for payment,

but were used to clarify the decision task. This methodology is close to the clarifying

instructions from the original Holt and Laury (2002), where subjects were described a

10 lottery choice task and random die roll payment mechanism and then told, “In fact,

for Decision 10 in the bottom row, the die will not be needed since each option pays

the highest payoff for sure, so your choice here is between 200 pennies or 385 pennies.”

Since the economist is primarily interested in the price list method as a means of

measuring a single choice – the switching point – it seemed natural to include language
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to this end. Hence, in directions subjects were told “Most people begin by preferring

Option A and then switch to Option B, so one way to view this task is to determine the

best row to switch from Option A to Option B.” Our efforts appear to have reduced

the volume of multiple switching dramatically, to less than 1 percent of total responses.

Observations with multiple switch points were removed from analysis and are noted.

In order to provide an incentive for truthful revelation of uncertainty equivalents,

subjects were randomly paid one of their choices in cash at the end of the experimental

session.26 This random-lottery mechanism, which is widely used in experimental eco-

nomics, does introduce a compound lottery to the decision environment. Starmer and

Sugden (1991) demonstrate that this mechanism does not create a bias in experimental

response. Seventy-six subjects were recruited from the undergraduate population at

University of California, San Diego. The experiment lasted about one hour and average

earnings were $24.50, including a $5 minimum payment.

3.1 Additional Risk Preference Measures

In addition to the uncertainty equivalents discussed above, subjects were also admin-

istered two Holt and Laury (2002) risk measures over payment values of $10 and $30

as well as 7 standard certainty equivalents tasks with p gambles over $30 from the

set p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1}. These probabilities are identical to

those used in the original probability weighting experiments of Tversky and Kahne-

man (1992) and Tversky and Fox (1995). The certainty equivalents were also presented

in price list style with similar language to the uncertainty equivalents and could also

be chosen for payment.27 Examples of these additional risk measures are provided in

the appendix. Two orders of the tasks were implemented: 1) UE, HL, CE and 2) CE,

26Please see the instructions in the Appendix for payment information provided to subjects.
27Multiple switching was again greatly reduced relative to prior studies to less than 1 percent of

responses. Observations with multiple switch points were removed from analysis and are noted. As
will be seen, results of the CE task reproduce the results of others. This increases our confidence that
our innovations with respect to the price lists did not result in biased or peculiar measurement of
behavior.
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HL, UE to examine order effects, and none were found.28

4 Results

We present our analysis in three sub-sections. First, we look at the uncertainty equiv-

alents and provide tests of four models of utility. Second, we consider the standard

certainty equivalents, reproducing the usual probability weighting phenomenon, and

contradicting the results of the first sub-section. Third, we reconcile the uncertainty

and certainty equivalent data, showing that a parsimonious model of a special prefer-

ence for certainty can explain both sets of results, while Prospect Theory cannot.

4.1 Uncertainty Equivalents and Tests of Linearity

To provide estimates of the mean uncertainty equivalent and the appropriate standard

error for each of the 24 uncertainty equivalent tasks, we first estimate non-parametric

interval regressions (Stewart, 1983).29 The interval response of q is regressed on indica-

tors for all probability and payment-set interactions with standard errors clustered on

the subject level. We calculate the relevant coefficients as linear combinations of inter-

action terms and present these in Table 1, Panel A. Figure 3 graphs the corresponding

mean uncertainty equivalent, q, for each p, shown as dots with error bars.30

The first question we ask is: are p and q in an exact linear relationship, as predicted

28Though we used the HL task primarily as a buffer between certainty and uncertainty equivalents,
a high degree of correlation is obtained across elicitation techniques. As the paper is already long,
correlations with HL data are discussed primarily in footnotes.

29Identical results are obtained when using OLS and the midpoint of the interval.
30Uncertainty equivalents correlate significantly with the number of safe choices chosen in the Holt-

Laury risk tasks. For example, for p = 0.5 the individual correlations between the uncertainty equiv-
alent q and the number of safe choices, S10, in the $10 HL task are ρq(10,30),S10

= 0.52 (p < 0.01),
ρq(30,50),S10

= 0.38 (p < 0.01), and ρq(10,50),S10
= 0.54 (p < 0.01). The individual correlations be-

tween the uncertainty equivalent, q, and the number of safe choices, S30, in the $30 HL task are
ρq(10,30),S30

= 0.54 (p < 0.01), ρq(30,50),S30
= 0.45 (p < 0.01), and ρq(10,50),S30

= 0.67 (p < 0.01). The
correlation between the number of safe choices in the HL tasks is also high,ρS10,S30 = 0.72 (p < 0.01).
These results demonstrate consistency across elicitation techniques as higher elicited q and a higher
number of safe HL choices both indicate more risk aversion.
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Figure 3: Uncertainty Equivalent Responses40
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the quadratic model fit of Table 1, Panel B. The solid black line corresponds to a linear
projection based upon data from p ≤ 0.75, indicating the degree to which the data
adhere to the expected utility prediction of linearity away from certainty.

by expected utility? To answer this we conducted a linear interval regression of q on p

for only those p ≤ 0.75, with a linear projection to p = 1. This is presented as the solid
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line in Figure 3. Figure 3 shows a clear pattern. The data fit the linear relationship

extremely well for the bottom panel, the (X, Y ) = (10, 50) condition, but as we move up

the linear fit begins to fail for probabilities of 0.90 and above, and becomes increasingly

bad as p approaches certainty. In the (10, 30) condition (top panel), EU fails to the

point that the mean behavior violates stochastic dominance: the q for p = 1 is above

the q for p = 0.95. Since q is a utility index for the p-gamble, this implies that a low

outcome of $10 for sure is worth more than a gamble with a 95 percent chance of $10

and a 5 percent chance of $30.

To explore the apparent non-linearity near p = 1, Table 1, Panels B and C present

estimates of the relationship between q and p. Panel B estimates interval regressions

assuming a quadratic relationship, and Panel C assumes a linear relationship. Expected

utility is consistent with a square term of zero, S -shaped probability weighting with a

negative square term, and disappointment aversion and u-v preferences with a positive

square term. Panel B reveals a zero square term for the (10, 50) condition, but positive

and significant square terms for both (30, 50) and (10, 30) conditions.31

The parametric specifications of Panels B and C can be compared to the non-

parametric specification presented in Panel A with simple likelihood ratio chi-square

tests. Neither the quadratic nor the linear specification can be rejected relative to the

fully non-parametric model: χ2(15)A,B = 8.23, (p = 0.91); χ2(18)A,C = 23.66, (p =

0.17). However, the linear specification of Panel C can be rejected relative to the

parsimonious quadratic specification of Panel B, χ2(3)B,C = 15.43, (p < 0.01). We

reject expected utility’s linear prediction in favor of a convex relationship between p

and q.

Our results are important for evaluating linearity-in-probabilities, and for under-

31One can also interpret the coefficients on p × 100 as a measure of utility function curvature at
p = 0 where dq/dp = −(1 − u(X)/u(Y )). Under risk neutrality, this coefficient should be −0.66
for (X,Y ) = (10, 30), −0.4 for (X,Y ) = (30, 50) and −0.8 for (X,Y ) = (10, 50). Though the
estimates in the (X,Y ) = (10, 30) and (30, 50) conditions are close to the risk neutral prediction,
the (X,Y ) = (10, 50) condition differs substantially from risk neutrality.
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Table 1: Estimates of the Relationship Between q and p
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Dependent Variable: Interval Response of Uncertainty Equivalent (q × 100)

Panel A: Non-Parametric Estimates

p× 100 = 10 -3.623*** -2.575*** -3.869***
(0.291) (0.321) (0.413)

p× 100 = 25 -13.270*** -8.867*** -11.840***
(0.719) (0.716) (0.748)

p× 100 = 50 -24.119*** -13.486*** -22.282***
(1.476) (0.916) (1.293)

p× 100 = 75 -34.575*** -17.790*** -30.769***
(2.109) (1.226) (1.777)

p× 100 = 90 -39.316*** -19.171*** -36.463***
(2.445) (1.305) (2.190)

p× 100 = 95 -41.491*** -20.164*** -39.721***
(2.635) (1.411) (2.425)

p× 100 = 100 -41.219*** -21.747*** -43.800***
(2.626) (1.536) (2.454)

Constant 95.298*** 96.822*** 96.230***
(0.628) (0.290) (0.497)

Log-Likelihood = -4498.66
AIC = -9047.32, BIC = 9185.02

Panel B: Quadratic Estimates

p× 100 -0.660*** -0.376*** -0.482***
(0.060) (0.035) (0.047)

(p× 100)2 0.002*** 0.002*** 0.001
(0.001) (0.000) (0.000)

Constant 98.125*** 97.855*** 97.440***
(0.885) (0.436) (0.642)

Log-Likelihood = -4502.77
AIC = -9025.55, BIC = 9080.63

Panel C: Linear Estimates

p× 100 -0.435*** -0.209*** -0.428***
(0.027) (0.016) (0.027)

Constant 95.091*** 95.603*** 96.718***
(0.678) (0.512) (0.714)

Log-Likelihood = -4510.49
AIC = -9034.98, BIC = 9073.54

Notes : Coefficients from single interval regression for each panel (Stewart, 1983) with 1823 obser-
vations. Standard errors clustered at the subject level in parentheses. 76 clusters. The regressions
feature 1823 observations because one individual had a multiple switch point in one uncertainty
equivalent in the (X,Y ) = ($10, $50) condition.

Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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standing the robustness of the standard probability weighting phenomenon. The data

indicate that expected utility performs well away from certainty where the data ad-

here closely to linearity. However, the data deviate from linearity as p approaches 1,

generating a convex relationship between p and q. This is a strong and significant

rejection of the S -shaped probability weighting model. The finding is notable as the

uncertainty equivalent is only a small deviation from standard certainty equivalents,

where probability weighting has often been demonstrated.

While the data reject S -shaped probability weighting, both disappointment aversion

and u-v preferences predict the convex relationship between p and q with sharpened

convexity at p = 1. The difference between the models arises in that u-v preferences

predicts a strictly linear relationship away from certainty while disappointment aversion

predicts convexity throughout. Though the data adhere closely to linearity for p ≤ 0.75

in Figure 3, significant positive square terms are obtained for p ≤ 0.75 in regressions

corresponding to Table 1, and the the linear specification can be rejected relative to the

quadratic specification, χ2(3) = 20.07, (p < 0.01). Supporting disappointment aver-

sion, we reject linearity for probabilities away from certainty. However, linearity does

provide surprisingly good model fit. Hence, EU can parsimoniously explain the data

in this region, suggesting that deviations from EU, though econometrically significant,

may not be economically significant away from certainty.

The analysis of this sub-section generates two results. First, expected utility per-

forms remarkably well away from certainty. Second, at certainty behavior deviates from

expected utility in a surprising way, rejecting Cumulative Prospect Theory.32 Taken

32Hints of these results exist in the prior literature. McCord and de Neufville (1986), with nine
experimental subjects and a related construct they called a lottery equivalent, document no systematic
difference in utilities elicited below probability 1, but that elicited utility at probability one was
“consistently above and to the right of the other functions” [p. 60]. Bleichrodt et al. (2007) use
five methods of utility elicitation for health outcomes including certainty equivalents and lottery
equivalents. Expected utility was found to perform poorly in decisions involving certainty, but well in
comparisons involving only uncertain prospects. Additionally the utilities elicited with certainty were
generally above those elicited with uncertainty. Though these results and other certainty effects are
often argued to be supportive of S -shaped probability weighting, careful consideration of our results
suggests otherwise.
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together, the data are most consistent with disappointment aversion, though u-v could

also provide a parsimonious explanation. The challenge for some formulations of dis-

appointment aversion is the significant presence of violations of first order stochastic

dominance as p approaches 1. Next, we explore this in detail.

4.1.1 Violations of Stochastic Dominance

A substantial portion of our subjects violate first order stochastic dominance. These

violations are organized close to certainty consistent with u-v preferences and some for-

mulations of disappointment aversion. Since the q elicited in an uncertainty equivalent

acts as a utility index, dominance violations are identified when a subject reports a

higher q for a higher p, indicating that they prefer a greater chance of a smaller prize.

Each individual has 84 opportunities to violate first order stochastic dominance in

such a way.33 We can identify the percentage of choices violating stochastic dominance

at the individual level and so develop an individual violation rate. To begin, away

from certainty, violations of stochastic dominance are few, averaging only 4.3% (s.d. =

6.4%). In the 21 cases per subject when certainty, p = 1, is involved, the individual

violation rate increases significantly to 9.7% (15.8%), (t = 3.88, p < 0.001). When

examining only the three comparisons of p = 1 to p′ = 0.95, the individual violation

rate increases further to 17.5% (25.8%), (t = 3.95, p < 0.001). Additionally, 38 percent

(29 of 76) of subjects demonstrate at least one violation of stochastic dominance when

comparing p = 1 to p′ = 0.95. This finding suggests that violations of stochastic

dominance are prevalent and tend to be localized close to certainty.34

33Identifying violations in this way recognizes the interval nature of the data as it is determined by
price list switching points. We consider violations within each payment set (X,Y ). With 8 probabilities
in each set, seven comparison can be made for p = 1 : p′ ∈ {0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05}. Six
comparisons can be made for p = 0.95 and so on, leading to 28 comparisons for each payment set and
84 within-set comparisons of this form.

34It is important to note that the violations of stochastic dominance that we document are indi-
rect measures of violation. We hypothesize that violations of stochastic dominance would be less
prevalent in direct preference rankings of gambles with a dominance relation. Though we believe the
presence of dominance violations can be influenced by frames, this is likely true for the presence of
many decision phenomena. In the following sub-section we present data from certainty equivalents
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To simplify discussion, we will refer to individuals who violate stochastic dominance

between p = 1 and p′ = 0.95 as Certainty Preferring. The remaining 62 percent of

subjects are classified as Certainty Neutral.35

Figure 4 reproduces Figure 3, but splits the sample by certainty preference. First,

this shows the roughly 60% of subjects that are classified as Certainty Neutral demon-

strate a linear relationship between q and p throughout. In estimates corresponding to

Table 1, Panel B, negligible and insignificant square terms are obtained and quadratic

and linear specifications cannot be distinguished (χ2(3)B,C = 0.69, p = 0.88).36 These

data show that without a specific minority of individuals who exhibit a disproportion-

ate preference for certainty, expected utility organizes the data extremely well. This

finding of linearity is additionally important because eliminating the convexity of Cer-

tainty Preferring individuals should, in principle, give S -shaped probability weighting’s

concave prediction the best opportunity to be revealed.

Second, the mean uncertainty equivalents in Figure 4, Panels A and B coincide

away from certainty and decline linearly with p. However, the uncertainty equivalents

for subjects with a disproportionate preference for certainty peel away as certainty is

approached.

Third, for Certainty Preferring subjects aggregate violations of stochastic domi-

nance are less pronounced in the (X, Y ) = (10, 50) condition. Andreoni and Sprenger

(2009c) discuss experimental conditions when violations of stochastic dominance are

more or less likely to be observed in experimental data and demonstrate that for one

demonstrating that one cannot likely consider near-certainty dominance violations as an error and
probability weighting as a true preference. The two phenomena correlate highly at the individual
level.

35This is not a complete taxonomy of types as one could imagine a classification for Certainty Averse.
A full axiomatic development of Certainty Preferent, Neutral and Averse is left for future work and
the present classifications are consistent with violation and non-violation of stochastic dominance
between p = 1 and p′ = 0.95. There were no session or order effects obtained for stochastic dominance
violation rates or categorization of certainty preference. Certainty Preferring individuals are also more
likely to violate stochastic dominance away from certainty. Their violation rate away from certainty is
8.2% (7.5%) versus 1.9% (4.1%) for Certainty Neutral subjects, (t = 4.70, p < 0.001). This, however,
is largely driven by violations close to certainty.

36See Appendix Tables A1 and A2 for full estimates.
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natural u-v specification one would expect less pronounced violations of stochastic

dominance as experimental stakes diverge in value.37

Figure 4: Uncertainty Equivalents and Certainty Preference40
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Note: Figure presents estimated uncertainty equivalent, (q;Y, 0), for each given gam-
ble, (p;X, Y ), of the experiment split by certainty preference, following methodology
from Table 1, Panel A. Dashed black line represents the quadratic model fit following
methodology from Table 1, Panel B. The solid black line corresponds to a linear projec-
tion based upon data from p ≤ 0.75, indicating the degree to which the data adhere to
the expected utility prediction of linearity away from certainty. See Appendix Tables
A1 and A2 for estimates.

Our finding of within-subject violations of stochastic dominance is support for the

hotly debated ‘uncertainty effect.’ Gneezy et al. (2006) discuss between-subject results

indicating that a gamble over book-store gift certificates is valued less than the cer-

tainty of the gamble’s worst outcome. Though the effect was reproduced in Simonsohn

37The Andreoni and Sprenger (2009c) specification is of u-v preferences with v(x) = xα, u(x) =
xα−β with β < α < 1. The differential curvature causes less pronounced violations of stochastic
dominance when stakes differ substantially.
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(2009), other work has challenged these results (Keren and Willemsen, 2008; Rydval

et al., 2009). While Gneezy et al. (2006) do not find within-subject examples of the

uncertainty effect, Sonsino (2008) finds a similar within-subject effect in the Internet

auction bidding behavior of around 30% of individuals. Additionally, the uncertainty

effect was thought not to be present for monetary payments (Gneezy et al., 2006). Our

findings may help to inform the debate on the uncertainty effect and its robustness to

the monetary domain. Additionally, our results may also help to identify the source

of the uncertainty effect: a disproportionate preference for certainty. Indeed, this view

is hypothesized by Gneezy et al. (2006), who suggest that “an individual posed with

a lottery that involves equal chance at a $50 and $100 gift certicate might code this

lottery as a $75 gift certicate plus some risk. She might then assign a value to a $75

gift certicate (say $35), and then reduce this amount (to say $15) to account for the

uncertainty.”[p. 1291]

4.2 Certainty Equivalents Data

Seven certainty equivalents tasks with p gambles over $30 and $0 from the set

p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95} were administered, following the probabil-

ities used in the original probability weighting experiments of Tversky and Kahneman

(1992) and Tversky and Fox (1995). The analysis also follows closely the presentation

and non-linear estimation techniques of Tversky and Kahneman (1992) and Tversky

and Fox (1995).

As noted in Section 2, certainty equivalent analysis estimating risk aversion or prob-

ability weighting parameters that assumes a single utility function will be misspecified

if there exists a disproportionate preference for certainty. As such, extreme small-stakes

risk aversion or non-linear probability weighting may be apparent when none actually

exists.38 We first document small stakes risk aversion and apparent probability weight-

38Diecidue et al. (2004) discuss potential functional forms that could deliver both apparent up-
weighting of low probabilities and down-weighting of high probabilities in certainty equivalents. One
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ing in our data and then correlate these phenomena with the violations of dominance

measured in Section 4.1.

4.2.1 Risk Aversion and Probability Weighting

The identification of probability weighting and small-stakes risk aversion from certainty

equivalents data normally relies on a range of experimental probabilities from near zero

to near one. Probability weighting is initially supported if, for fixed stakes, subjects

appear risk loving at low probabilities and risk averse at higher probabilities.39 Small-

stakes risk aversion would be viewed as the risk aversion aspect of this phenomenon.

Figure 5 presents a summary of the certainty equivalents.40 As in sub-section 4.1,

we first conducted an interval regression of the certainty equivalent, C, on indicators

for the experimental probabilities (corresponding estimates are provided in Appendix

Table A3, column 1). Following Tversky and Kahneman (1992), the data are presented

relative to a benchmark of risk neutrality such that, for a linear utility function, Figure

5 directly reveals the probability weighting function, π(p). The data show evidence of

both small stakes risk aversion and non-linear probability weighting. Subjects appear

significantly risk loving at low probabilities and significantly risk averse at intermediate

and high probabilities. These findings are in stark contrast to those obtained in the

uncertainty equivalents discussed in Section 4.1. Whereas in uncertainty equivalents

we obtain no support for S -shaped probability weighting, in certainty equivalents we

reproduce the probability weighting results generally found.41

possibility is the u-v parameterization discussed in Andreoni and Sprenger (2009c) with differential
curvature, v(x) = xα, u(x) = xα−β with β < α < 1, which produces both up-weighting of (very) low
probabilities and down-weighting of high probabilities.

39Because certainty equivalent responses are determined by both utility function curvature and
probability weighting, even risk aversion at low probabilities could be consistent with probability
weighting provided risk aversion was increasing in probability.

40Figure 5 excludes one subject with multiple switching in one task. Identical aggregate results are
obtained with the inclusion of this subject. However, we cannot estimate probability weighting at the
individual level for this subject.

41Certainty equivalents correlate significantly with the number of safe choices in the Holt-Laury risk
tasks. For example, for p = 0.5 the individual correlations between the midpoint certainty equivalent,
C, and the number of safe choices, S10 and S30, in the HL tasks are ρC,S10 = −0.24 (p < 0.05)
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Figure 5: Certainty Equivalent Responses0
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Dashed line corresponds to fitted values from non-linear least squares regression (1).

and ρC,S30 = −0.24 (p < 0.05). These results demonstrate consistency across elicitation techniques
as a lower certainty equivalent and a higher number of safe HL choices both indicate more risk
aversion. Additionally, the certainty equivalents correlate significantly with uncertainty equivalents.
For example, for p = 0.5 the individual correlations between the midpoint certainty equivalent, C,
and the midpoint of the uncertainty equivalent, q, are ρC,q(10,30) = −0.24 (p < 0.05), ρC,q(30,50) =
−0.25 (p < 0.05), and ρC,q(10,50) = −0.24 (p < 0.05).
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Tversky and Kahneman (1992) and Tversky and Fox (1995) obtain probability

weighting parameters from certainty equivalents data by parameterizing both the utility

and probability weighting functions and assuming the indifference condition

u(C) = π(p) · u(30)

is met for each observation. We follow the parameterization of Tversky and Kahneman

(1992) with power utility, u(X) = Xα, and the one-parameter weighting function

π(p) = pγ/(pγ + (1 − p)γ)1/γ .42 Lower γ corresponds to more intense probability

weighting. The parameters γ̂ and α̂ are then estimated as the values that minimize

the sum of squared residuals of the non-linear regression equation

C = [pγ/(pγ + (1− p)γ)1/γ × 30α]1/α + ε. (1)

When conducting such analysis on our aggregate data with standard errors clustered

on the subject level, we obtain α̂ = 1.07 (0.05) and γ̂ = 0.73 (0.03).43 The hypothesis

of linear utility, α = 1, is not rejected, (F1,74 = 2.18, p = 0.15), while linearity in

probability, γ = 1, is rejected at all conventional levels, (F1,74 = 106.36, p < 0.01). The

model fit is presented as the dashed line in Figure 5. The obtained probability weighting

estimate compares favorably with the Tversky and Kahneman (1992) estimate of γ̂ =

0.61 and other one-parameter estimates such as Wu and Gonzalez (1996) who estimate

γ̂ = 0.71.

42Tversky and Fox (1995) use power utility with curvature fixed at α = 0.88 from Tversky and
Kahneman (1992) and a two parameter π(·) function.

43For this analysis we estimate using the interval midpoint as the value of C, and note that the
dependent variable is measured with error.
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4.3 Reconciling Uncertainty and Certainty Equivalents

One hypothesis for the apparent presence of small stakes risk aversion and probabil-

ity weighting in the aggregate certainty equivalents data is that they are the result

of a bias due to misspecification. Could the estimates just presented be consistent

with a disproportionate preference for certainty? In order to test this hypothesis, we

define the variable Violation Rate as the stochastic dominance violation rate for the

21 comparisons involving certainty in the uncertainty equivalents.44 Violation Rate is

a continuous measure of the the degree to which individuals violate stochastic domi-

nance at certainty and so a continuous measure of the intensity of the preference for

certainty45, which we correlate with certainty equivalents. In Figure 6 we find signifi-

cant negative correlations between Violation Rate and certainty equivalents, primarily

at higher probabilities. Insignificant positive correlations are found at lower probabili-

ties. These results indicate that subjects with a more intense preference for certainty

display significantly more small stakes risk aversion. These results are confirmed in

regression, and we reject the null hypothesis that Violation Rate has no influence on

certainty equivalent responses, (χ2(7) = 18.06, p < 0.01, Appendix Table A3, Column

(5) provides the detail).

For subjects with a more intense preference for certainty, the significant increase in

risk aversion at high probabilities and the slight increase in risk loving at low probabili-

ties introduces more non-linearity into their estimated probability weighting functions.

Figure 6 also presents the correlation between individual probability weighting, γ̂, esti-

mated from (1) and the intensity of certainty preference, Violation Rate.46 The degree

44A small minority of Certainty Neutral subjects have non-zero violation rates, as their elicited q at
certainty is higher than that of some lower probability. The average certainty Violation Rate (0.069)
for the 19% of Certainty Neutral subjects (9 of 47) with positive Violation Rate values is about same
as their average violation rate away from certainty (0.060). For Certainty Preferring subjects, the
average certainty Violation Rate (0.235) is about three times their violation rate away from certainty
(0.082).

45We recognize that this is a rough measure of intensity of certainty preference in the sense that
individuals could have a non-monotonic relationship between p and q away from certainty. However,
given the low dominance violation rates away from certainty, this is not overly problematic.

46Following the aggregate estimate, α = 1 is assumed for the individual estimates.
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to which individuals disproportionately prefer certainty predicts the degree of certainty

equivalent-elicited probability weighting, (ρ = −0.29, p = 0.011).47 This gives support

to the claim that a disproportionate preference for certainty is conflated with non-linear

probability weighting in standard certainty-based experiments.48

It is critically important to contrast our results demonstrating the absence of prob-

ability weighting in uncertainty equivalents, its presence in certainty equivalents, and

its relationship to violations of stochastic dominance with the body of results that

find support for S -shaped probability weighting. Above we have discussed why stan-

dard estimation exercises assuming functional form for utility or probability weighting

cannot be used to directly test linearity-in-probabilities. However, there exist a num-

ber of studies parametrically investigating probability weighting in decisions without

certainty (Tanaka, Camerer and Nguyen, 2010; Booij, van Praag and van de Kuilen,

2010). These parametric estimates indicate that S -shaped probability weighting may

be observed in decisions without certainty and clearly points to the need for future

research. Additionally, attention must be given to the ‘parameter-free’ elicitation tech-

niques that find non-parametric support for non-linear probability weights (Gonzalez

and Wu, 1999; Abdellaoui, 2000; Bleichrodt and Pinto, 2000). Importantly, both Gon-

zalez and Wu (1999) and Abdellaoui (2000) make use of certainty equivalents or a

number of certain outcomes to identify probability weights, a technique that is mis-

47Additionally, the indicator for Certainty Preferent correlates with certainty equivalent response.
See Appendix Table A3, Column (3). Eleven subjects exhibited non-monotonic relationships between
experimental probabilities and elicited certainty equivalents. Though no systematic pattern was ob-
served, such behavior is another example of violating stochastic dominance in decisions involving cer-
tainty. Non-monotonicity correlates significantly with being Certainty Preferent, (ρ = 0.44, p < 0.01).
Eliminating these individuals leaves the results qualitatively unchanged. Certainty equivalent behav-
ior remains supportive of probability weighting and elicited probability weights remain significantly
correlated with Violation Rate, (ρ = −0.29, p < 0.05). Appendix Table A3, Columns (2), (4) and (6)
provide estimates.

48As a robustness test, we repeat the analysis with an alternate functional form Prelec (1998),
π(p) = exp(−(−lnp)γ), and obtain a correlation between γ̂ and Violation Rate of ρ = −0.25 p < 0.05.
Additionally, Appendix Tables A4 and A5 present results from the classification of risk attitudes based
on the interval of the certainty equivalent response. These data demonstrate that Certainty Preferring
subjects are more likely to be classified as risk loving at low probabilities and are more likely to be
classified as risk averse at higher probabilities. Additionally, Certainty Neutral subjects are more
likely to be risk neutral at higher probabilities.
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specified if there exists a specific preference for certainty. Bleichrodt and Pinto (2000)

do not use certainty equivalents techniques, but their experiment is designed not to

elicit preferences over monetary payments, but rather over hypothetical life years. It is

not clear the extent to which such findings apply to incentivized elicitation procedures

over money.49

5 Conclusion

Volumes of research exists exploring both the implications and violations of the inde-

pendence axiom. Surprisingly, little research exists directly testing the most critical

result of the independence axiom: linearity-in-probabilities of the Expected Utility

(EU) function. We present an experimental device that easily generates such a di-

rect test, the uncertainty equivalent. Uncertainty equivalents not only provide tests of

expected utility’s linearity-in-probabilities, but also provide separation between com-

peting alternative preference models such as Cumulative Prospect Theory’s (CPT)

inverted S -shaped probability weighting (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992), expectations-based reference dependence (Bell, 1985; Loomes and

Sugden, 1986; Gul, 1991; Koszegi and Rabin, 2006, 2007), and the u-v preference model

(Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004).

In a within-subject experiment with both uncertainty equivalents and standard cer-

tainty equivalent methodology we demonstrate four important results. First, indepen-

dence performs well away from certainty where probabilities are found to be weighted

nearly linearly. Second, independence breaks down close to certainty. The nature of

the violation is contrary to standard S -shaped probability weighting and consistent

with other alternative models such as disappointment aversion and u-v preferences,

49Abdellaoui (2000), Bleichrodt and Pinto (2000), Booij and van de Kuilen (2009) and Booij et al.
(2010) share a two-stage elicitation procedure which ‘chains’ responses in order to obtain utility or
probability weighting values. Such chained procedures are common to the ‘trade-off’ (Wakker and
Deneffe, 1996) method of utility assessment. A discussed problem with these chained methods is that
errors propagate through the experiment.
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which both feature a disproportionate preference for certainty. Third, nearly 40% of

experimental subjects indirectly violate first order stochastic dominance as probabil-

ities approach 1. These violations are a necessary prediction of the u-v model and

are accommodated in some versions of disappointment aversion. Fourth, in certainty

equivalents experiments, apparent S -shaped probability weighting and small stakes

risk aversion phenomena are observed, closely reproducing prior findings. However,

these phenomena are driven by individuals who exhibit a disproportionate preference

for certainty in uncertainty equivalents by violating stochastic dominance.

Our findings have critical implications for research on risk attitudes and have appli-

cations to a variety of economic problems. The results demonstrate that experimental

measures of risk attitudes and EU violations are dramatically influenced by the pres-

ence of certainty. Since the work of Allais (1953b) certainty has been known to play

a special role in decision-making and in generating non-EU behavior. Our results in-

dicate that a specific preference for certainty may be the key element in producing

such behavior. This suggests that empirical work should take great care to separate

certainty preferences from other phenomena under investigation. Additionally, theoret-

ical research should take seriously models with specific preferences for certainty, (small

scale) violations of stochastic dominance, and their implications for decision-making

under uncertainty.
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