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Andrew Capliny and Daniel Martinz
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Abstract

We introduce a rational choice theory that allows for many forms of imperfect perception,

including failures of memory, selective attention, and adherence to simplifying rules of thumb.

Despite its generality, the theory has strong, simple, and intuitive implications for standard

choice data and for more enriched choice data. The central assumption is rational expectations:

decision makers understand the relationship between their perceptions, however limited they

may be, and the (stochastic) consequences of their available choices. Our theory separately

identi�es two distinct �framing�e¤ects: standard e¤ects involving the layout of the prizes (e.g.

order in a list) and novel e¤ects relating to the information content of the environment (e.g.

how likely is the �rst in the list to be the best). Simple experimental tests both a¢ rm the basic

model and con�rm the existence of information-based framing e¤ects.

Key Words: Stochastic Choice, Bounded Rationality, Imperfect Perception, Rational Ex-

pectations, Framing E¤ects, Mistakes

1 Introduction

From Weber [1834] on, psychologists have explored the gap between subjective perceptions and

external reality (Glimcher [2010]). In recent years, economists have also worked to incorporate this

�We thank Nabil Al-Najjar, David Cesarini, Mark Dean, Je¤ Ely, Sen Geng, Paul Glimcher, Natalia Shestakova,

Jonathan Weinstein, and seminar participants at Northwestern University and University of Southern California for

valuable comments.
yCenter for Experimental Social Science and Department of Economics, New York University and National Bureau

of Economic Research.
zCenter for Experimental Social Science and Department of Economics, New York University.
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gap into the theory of rational decision making. To date, progress has typically involved making

various highly speci�c (and mutually incompatible) assumptions concerning perceptual limitations,

including bounds on memory, rigid mental accounts, incomplete and selective attention, incomplete

search, rule of thumb decision making protocols, algorithmic approximations, etc. (e.g. Thaler

[1985], Mullainathan [2002], Wilson [2002], Sims [2003], Manzini and Mariotti [2007], Rabin and

Weizsacker [2009], Masatlioglu and Nakajima [2009], Gennaioli and Shleifer [2010], Gottlieb [2010],

Schwartzstein [2010], Ergin and Sarver [2010], Caplin and Dean [2011], Compte and Postlewaite

[2011], and Gabaix [2011]).

An open question is how to introduce less circumscribed forms of imperfect perception into

decision theory. What makes this challenging is that, without some form of theoretical discipline,

rational choice theory becomes vacuous. Any pattern of behavior can be rationalized by some

distorted perception of reality. This is related to the di¢ culties in identifying �mistaken�decisions

from choice data, and the dangers of so doing without strong theoretical guidance.1

We introduce a model of rational decision making that allows for a wide array of perceptual lim-

itations and mistakes, yet has strong and intuitive testable implications. The main substantive as-

sumption is rational expectations. In the �rational expectations perception-based representations�

(RE-PREPs) that we study, decision makers (DMs) fully understand the relationship between their

subjective perceptions, however limited they may be, and the (stochastic) consequences of available

choices. The restrictions that our theory imposes on choice data are simple to understand: choices

must be �unimprovable�. The precise form of the improvements that are ruled out depend on the

data available for model testing. We produce separate results for �framed�stochastic choice data

and for standard stochastic choice data.

When the frame is observable, our theory separately identi�es two distinct framing e¤ects:

standard e¤ects involving the layout of the prizes (Rubinstein and Salant [2006], Salant and Ru-

binstein [2008], Bernheim and Rangel [2008], Reutskaja, Nagel, Camerer, and Rangel [2011]) and

novel e¤ects relating to the information content of the environment (e.g. the extent to which the

�rst in the list turns out to be the best). In this setting, we show that existence of a RE-PREP

representation is equivalent to a �No Improving Action Switches� (NIAS) condition: there must

be a utility function such that no action can be switched to an alternative action in a manner that

raises utility. This restriction corresponds to the non-emptiness of the feasible set for a data-de�ned

1See Koszegi and Rabin [2008], Bernheim and Rangel [2008], and Gul and Pesendorfer [2008].
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linear program.

We present experimental tests that a¢ rm the basic model and con�rm the importance of

information-based framing e¤ects. While subjects make substantial choice mistakes in all treat-

ments, we �nd that the NIAS inequalities are always satis�ed. Further, both of the framing e¤ects

allowed by our model are present in the experimental data. Our experiment provides proof-of-

concept that our information-based framing e¤ect can be experimentally identi�ed, and that such

identi�cation can further understanding of the perceptual process. It also highlights the symbiotic

relationship between decision theory and experiments that generate non-standard choice data (see

also Caplin [2008], Caplin and Dean [2011], and Caplin, Dean, and Martin [forthcoming]).

In addition to its implications for framed stochastic choice data, our theory places simple and

intuitive restrictions on standard stochastic choice data. These restrictions are weaker than those

imposed by stochastic utility models (e.g. Block and Marschak [1960], Luce [1959], McFadden

[1973], Falmange [1978], and Gul and Pesendorfer [2006]). By way of example, our theory covers

cases in which perceptual similarities between a very good prize and a very bad prize result in the

selection of a moderately good but distinctive prize when all three are available (e.g. Debreu [1960]

and Natenzon [2011]).2

In section 2 we introduce our formal model and de�ne RE-PREP representations. In sections

3 and 4 we provide the observable restrictions associated with the model in cases in which the

decision making environment can be fully observed: the NIAS conditions. In section 5 we consider

the various framing e¤ects that our model encompasses. In section 6 we characterize the restric-

tions our model places on standard stochastic choice data. A theoretically-inspired experiment for

understanding the sources and nature of imperfect perception is presented in section 7. Concluding

remarks are in section 8.

2 Decision Making and Perceptions

We study decisions in which the DM may not fully understand all objects of choice. This may be

because there are many available options, because these items are complex, or because the DM is

2 In this sense, our results relate to the question posed more than �fty years ago by Block and Marschak [1960] con-

cerning how to distinguish stochastic choices with decision making errors from stochastic choices based on stochastic

utility.
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not able or willing to expend the e¤ort to become thoroughly familiar with the available options.

This is the world envisaged in models of bounded rationality at least since the pioneering work of

Simon [1955].

2.1 Prizes, Actions, and Layouts

We assume that there is an �ideal observer� (IO) who understands fully the choice environment

and who is distinct from the DM whose choice behavior is being modeled. The IO knows not only

the key ingredients of the decision making environment that the DM is facing, but also the choices

that are made and the prizes received.

A crucial feature of the model is that we distinguish the act of choice from the receipt of a prize.

It is through separate observation of actions and of their consequences that the IO in our model is

able to interpret some of the DM�s choices as based on misperception.

In formal terms, there is a �nite prize set X with generic element xn, for n 2 f1; : : : ; Ng: this

�xes the physical presentation of each option once and for all, including its packaging, etc. There

is a separate set Y of action choices that is also �nite and has at least the same cardinality as the

prize set,

jY j =M � jXj = N � 2:

Each y 2 Y is to be physically interpreted (e.g. a location on a screen or a line in a list). A layout

is an onto function f : Y ! X, with F the set of all such layouts,

F = ff : Y ! Xjf is ontog:

It is the layout that connects actions with consequences. The assumption that layouts are onto

ensures that all prizes in X are in fact available to the DM. In certain cases we restrict the function

to be one-to-one (see section 6). However, allowing for the more general case enables the model to

cover such phenomena as �needle in a haystack�choice sets, in which one good prize is obscured

by the availability of several equivalent bad prizes. It is just such choice sets that underlie the

experiment of section 7.

Our model draws strongly from the psychological tradition. In particular, our formulation of

the act of choice as separate from reception of a prize was inspired by simple choice experiments
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of the drift-di¤usion form (see Ratcli¤ [1978], Ratcli¤ and McKoon [2008], Shadlen and Newsome

[2001]).

2.2 Choice Environment

If a given action choice y 2 Y always produced the same prize, one would expect the DM to

learn this, making the question of misperception moot. However, when there is doubt about

how actions get translated into prizes, there is room for misperception. We study a DM making

many independent choices in a stable environment identi�ed with a speci�c layout-generating

mechanism (a probability measure over layouts) � 2 �(F). We de�ne F(�) � F as the support

of �. We refer to the triple (X;Y; �) as the choice environment.

In principle, the measure � provides the subject a statistical sense of what tends to happen

when a given action is selected. A DM�s choices may be in�uenced both by this information and

by information derived from attending to the action-prize association in a given layout.

2.3 Ideal Data

Given � 2 �(F), an ideal data set (IDS) P identi�es the probability distribution over action

choices as it depends on the layout,

P : F �! �(Y ):

This entire function is assumed to be known to the IO and provides the data that a theory of

choice must explain.3 It is the quadruple (X;Y; �; P ) that fully identi�es the objects upon which

our theory of perception is built. We call such a quadruple an ideal choice environment (ICE).

Our model allows the structure of observed choices to be dependent on the layout. For example,

we allow for situations in which the �rst item in a list is most likely to be the best, which may

induce default behavior of selecting this option. In such cases, the stochastic structure of choice

may be impacted by which object is put �rst in the list. For that reason, a direct test of our theory

requires that the set of action choices Y is identi�able to the IO, and that the choice environment

� is also understood. Such knowledge is most naturally derived in an experiment, and plays a key

3The domain of this data does not allow the order of the experimental runs to be recorded, hence we will not

consider explanatory hypotheses that involve learning about the structure of the experiment.
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role in the experimental design of section 7. In section 6 we consider cases in which the layout is

unobservable, and the only available data relates to stochastic demand for prizes.

2.4 Subjective States and the Perception Function

The IO takes as given an ICE (X;Y; �; P ) and looks to structure perceptual theories of choice based

on three elements: a subjective state space S, a perception function � that maps possible

layouts into simple lotteries over the subjective state space, and a choice function C that maps

possible subjective states into action choices.

The set S speci�es in the IO�s model all permissible subjective mental states of the DM. In

general, S captures all decision relevant information the IO hypothesizes DMs to extract from

the choice environment and the speci�c layout in front of them. More speci�cally, S may encode

characteristics or facets of the available goods, the state of a �nite automaton, etc. Note that this

set need not be an accurate representation of the DM�s state of mind, rather it is the manner in

which the state is modeled by the IO in seeking to understand observed behavioral patterns.

In the current context, the IO is presumed to set S = �(X)M , the space of ordered lists of M

subjective prize lotteries. Let smn be the probability that action choice ym results in prize xn, so

that,

S = fs 2 RMN
+ j

NX
n=1

smn = 1 for all m 2 f1; : : : ;Mgg:

The reason the IO so limits the subjective state space is that the desired characterization of behavior

is based on expected utility theory, for which lotteries over prizes are the appropriate objects of

choice.

The perception function maps possible layouts f 2 F(�) into�(S), the probability distributions

over S with �nite support,

� : F(�)!�(S):

Given �nite support, the set of lottery states that are perceived as possible in the given experiment,

S(�) = [f2F(�)fs 2 Sj�f (s) > 0g;

is �nite. It is this set that serves as the domain of the choice function,

C : S(�) �! Y:

6



2.5 RE-PREPs

Since the space S is �xed from this point forward, one can specify a perceptual model by the two

elements � and C. For these to provide a possible explanation (perception-based representation or

PREP) of the observed data requires that their composition generates the IDS. We are interested

only in PREPs in which the DM can be modeled as an expected utility maximizer with rational

expectations. We require strictness in the utility comparison of some pair of acts in some state

of mind to prevent the conditions from being trivially satis�ed by a utility function in which all

utilities are identical.

De�nition 1 (�;C; U) form a rational expectations perception-based representation (RE-

PREP) of (X;Y; �; P ) if they satisfy:

1. Data Matching: P f (y) = �f (C�1(y)) for all f 2 F and y 2 Y .

2. Rational Expectations: For all m 2 f1; : : : ;Mg, n 2 f1; : : : ; Ng, and s 2 S(�),

smn =

P
ff2F(�)jf(ym)=xng �(f)�

f (s)P
ff2F(�)g �(f)�

f (s)
:

3. Optimality: If C(s) = ym, then,

NX
n=1

smnU(xn) �
NX
n=1

sknU(xn) all k 2 f1; : : : ;Mg ;

with the inequality being strict for some pair k;m with k;m 2 f1; : : : ;Mg.

Note that if there is only one action ever taken, so that there exists y 2 Y with C(s) = y for all

s 2 S, then it is trivial to �nd a RE-PREP by setting y as the unique utility maximizer. Hence we

will consider only cases in which there are at least two distinct actions taken with strictly positive

probability.

2.6 Rational Expectations and Experimentation

The most distinctive aspect of the RE-PREP is Rational Expectations, which when combined with

Data Matching, implies that the DM is aware of the consequences of all choices in each state
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of mind. What this means is that in a RE-PREP, the statistical association between subjective

perceptions, choices, and prizes has been internalized by the DM. Implicitly, this is based on the

idea that this is a familiar environment and that DMs have learned through a process of trial and

error what the results are when any given choices are made in any particular state of mind. Having

thus experimented, each selects an optimal such action, and the consequences are then at least

acceptable, in the sense that they do not perceive there to be any action choice that is superior.

The full statement of this intuitive description of the axioms is formalized in our representation

theorem.

As is often the case, the assumption of rational expectations is easiest to justify as the end result

of an unmodeled and unobserved process of experimentation. However, in the actual de�nition,

a speci�c deterministic action is taken in each state of mind, and there is no experimentation

whatsoever. The exact process of experimentation or decision making tremble that would produce

rational expectations and thereby rationalize the strong informational assumption that the RE-

PREP imbeds is not modeled.

3 Restrictions on Ideal Data: the 2� 2� 2 Case

Our goal is to identify conditions on the IDS equivalent to existence of a RE-PREP. Before in-

troducing the general characterization theorem in the next section, we provide in this section a

thorough analysis of the 2 � 2 � 2 case, with two prizes X = fx1; x2g; two actions Y = fy1; y2g;

and two possible layouts F = fg; hg, in which actions yield di¤erent prizes,

g(y1) = h(y2) = x1;

g(y2) = h(y1) = x2:

In this setting, one parameter (the probability of layout g) identi�es the layout-generating mecha-

nism,

�g 2 [0; 1];

while two parameters pg1, p
h
1 2 [0; 1] identify the IDS,

(P g(y1); P
g(y2)) = (pg1; 1� p

g
1);

(P h(y1); P
h(y2)) = (ph1 ; 1� ph1):
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To avoid triviality, we assume that both choices are made with strictly positive probability.

Throughout this section, we will look for RE-PREPs using two perceptual states,

S = fs1; s2g:

By de�nition,

si11; s
i
21 2 [0; 1] ; i = 1; 2;

denote the probability in subjective lottery state si that actions y1; y2 respectively will yield prize

x1, with,

si12 = 1� si11, si22 = 1� si21;

representing the corresponding probabilities for prize x2. Given the assumption that both choices

are observed, it must be that C(s1) 6= C(s2). Hence there is no loss of generality in setting

C(si) = yi for i = 1; 2. We show in the next section that allowance for more than two subjective

states is unnecessary, so that the analysis of this section is more general than it appears.

3.1 Decision Tree Representation

Figures 1 and 2 illustrate the structure of this RE-PREP. Figure 1 is a representation of all states

of the world as directly seen by the IO, with the top branch recording the stochastic structure of

the layout, the second branch the stochastic choice of action that is observed with each layout, and

the �nal vertical line representing the deterministic association of the prize with the action as it

depends on the layout.

Figure 2 presents the elements of the theory of DM behavior that the IO hypothesizes to be

responsible for DM choices. The main change from �gure 1 is the addition of nodes corresponding to

the two subjective states, s1 and s2. These nodes are placed after the layout and prior to the action

stage. The subjective states are connected with dashed lines, which represent the information sets

of the DM. Each node has a black edge that goes to the action that is adopted in the RE-PREP,

action yi in state si, and also a grey edge corresponding to the untaken alternative action. Note

that the branches of the tree that lead to the mental states retain the same probability labels as

in �gure 1, �g;h(s1) = pg;h1 and �g;h(s2) = pg;h2 , on the relevant branches of the tree. This re�ects

9



Figure 1: Decision tree as seen by �ideal observer�(IO)

Figure 2: Decision tree for DM as hypothesized by IO
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application of the �rst property of a RE-PREP, Data Matching, which requires that,

�gfC�1(y1)g = �g(s1) = pg1;

�hfC�1(y1)g = �h(s1) = ph1 :

The question of whether or not a RE-PREP exists hinges on whether or not the Rational

Expectations condition and the Optimality condition can simultaneously be met.

3.2 Existence: An Example

Our �rst example involves �g = 0:5, pg1 = 0:8, and p
h
1 = 0:2. In this case, substitution for � based

on Data Matching reveals the Rational Expectations conditions to be:

s111 =
�gpg1

�gpg1 + (1� �g)ph1
= 0:8 =

(1� �g)(1� ph1)
�g(1� pg1) + (1� �g)(1� ph1)

= s221;

s121 =
(1� �g)ph1

�gpg1 + (1� �g)ph1
= 0:2 =

�g(1� pg1)
�g(1� pg1) + (1� �g)(1� ph1)

= s211:

The remaining lottery probabilities s112 = s
2
22 = 0:2 and s

1
22 = s

2
12 = 0:8 are implied. With this, the

conditions for Optimality of the chosen action are the same for each action:

0:8U(x1) + 0:2U(x2) � 0:2U(x1) + 0:8U(x2):

To ensure (as required for a RE-PREP) that this inequality is strict, we set,

U(x1) > U(x2);

completing the speci�cation of the RE-PREP representation.

3.3 Non-Existence: An Example

An example that has no RE-PREP involves �g = 0:8 and pg1 = p
h
1 = 0:5. In this case, substitution

for � based on Data Matching reveals the Rational Expectations conditions to be:

s111 =
�gpg1

�gpg1 + (1� �g)ph1
= 0:8 =

�g(1� pg1)
�g(1� pg1) + (1� �g)(1� ph1)

= s211;

s121 =
(1� �g)ph1

�gpg1 + (1� �g)ph1
= 0:2 =

(1� �g)(1� ph1)
�g(1� pg1) + (1� �g)(1� ph1)

= s221;
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with remaining lottery probabilities s112 = s212 = 0:2 and s122 = s222 = 0:8 implied. With this, the

conditions for Optimality depend on the state and are inverses of one another:

0:8U(x1) + 0:2U(x2) � 0:2U(x1) + 0:8U(x2);

0:2U(x1) + 0:8U(x2) � 0:8U(x1) + 0:2U(x2):

The only utility functions that solve this involve U(x1) = U(x2), but in this case neither inequality

holds strictly, contrary to the de�nition of a RE-PREP.

3.4 Restrictions on the IDS

We now identify necessary and su¢ cient conditions on the IDS for existence of a RE-PREP for

general pg1; p
h
1 ; �

g 2 (0; 1) in the two state world of �gure 2 with C(si) = yi; i = 1; 2. The Data

Matching condition is as implied in the �gure with �g(si) = pgi and �
h(si) = phi for i = 1; 2.

Substitution for � then reveals the Rational Expectations conditions to be:

s111 =
�gpg1

�gpg1 + (1� �g)ph1
= s122;

s211 =
�g(1� pg1)

�g(1� pg1) + (1� �g)(1� ph1):
= s222:

The precise nature of the Optimality conditions depends on the utility function. If U(x1) >

U(x2), the condition is,

s111 �
1

2
and s222 �

1

2
,

with at least one strict. Substitution for s111 yields,

pg1 �
(1� �g)ph1

�g
=
ph1
R
;

where,

R � �g

1� �g :

Substitution for s222 yields,

1� pg1 �
(1� �g)(1� ph1)

�g
=
1� ph1
R

;

or,

pg1 �
R� 1
R

+
ph1
R
:
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Looking at these necessary conditions one can identify three cases depending on the value of

R: if R = 1 (�g = 1
2), then in order for both inequalities to hold, one strictly, it is necessary and

su¢ cient that pg1 > p
h
1 ; if R > 1 (�

g > 1
2), then the only constraint is p

g
1 � R�1

R +
ph1
R ; and �nally, if

R < 1 (�g < 1
2), the only constraint is p

g
1 �

ph1
R . The conditions in the case in which U(x2) > U(x1)

are precisely the converse. Hence combining the two permissible utility functions, we arrive at the

following necessary and su¢ cient conditions:

� If R = 1 (�g = 1
2), then,

pg1 6= ph1 :

� If R > 1 (�g > 1
2), then the constraints are,

pg1 �
R� 1
R

+
ph1
R
or pg1 �

ph1
R
:

� If R < 1 (�g < 1
2), then the constraints are,

pg1 �
ph1
R
or pg1 �

R� 1
R

+
ph1
R
:

3.5 Two Examples

Example 1 Consider the case with �g = 0:8 so that R = 4. If U(x1) > U(x2), the condition is,

pg1 � 0:75 + 0:25ph1 :

Conversely, if U(x2) > U(x1), the condition is,

pg1 � 0:25ph1 :

We draw these constraint sets in �gure 3.

Example 2 The model can characterize an apparent reversal of preference, as when �g = 0:5 and

stochastic action choice is,

pg1 = 0:9; p
h
1 = 0:7;

so that x1 is chosen with probability 0.9 with layout g, yet only with probability 0.3 with layout h.

To construct a RE-PREP in this case, set U(x1) > U(x2) and allow as usual for one mental state

s1 in which y1 is taken and another mental state s2 in which y2 is taken so that, by Data Matching,

�g(s1) = 0:9 and �h(s1) = 0:7:

13



Figure 3: Constraints implied by R=4 (interior region is infeasible)
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This implies that the lottery associated with choice of y1 in s1 is yields prize x1 with probability,

0:9

0:9 + 0:7
> 0:5;

Similarly, the prize lottery associated with action y2 in s2 yields x1 with probability,

0:3

0:1 + 0:3
> 0:5:

We complete the speci�cation of a RE-PREP by applying the Rational Expectations condition to set

the probabilities for the lotteries associated with the untaken actions in line with what they would

actually be,

s121 =
0:5�h(s1)

0:5�g(s1) + 0:5�h(s1)
=

0:7

0:9 + 0:7
< 0:5;

s211 =
0:5
�
1� �g(s1)

�
0:5 (1� �g(s1)) + 0:5 (1� �h(s1)) =

0:1

0:1 + 0:3
< 0:5:

Hence it is strictly optimal to pick y1 in s1 and y2 in s2, completing the con�rmation that this is a

RE-PREP.

4 No Improving Action Switches

4.1 Blind Switches and Action Switches

A simple idea organizes the conditions identi�ed in the 2 � 2 � 2 case and applies to the general

case. First, one must look through the actions that are chosen to the stochastic demand for prizes

that results. Consider example 1 above in this light, with �g = 0:8 so that R = 4, and suppose

that pg1 = 0:75 and p
h
1 = 0 so that 1� p

g
1 = 0:25 and 1� ph1 = 1. In this case, whenever y1 is taken,

the layout is g, so that it yields prize x1 for sure. On the other hand, act y2 is taken both when

it yields prize x1 (layout h) and when it yields prize x2 (layout g). To understand the stochastic

demand for prizes resulting from action y2, note that, conditional on this action being taken, the

layout is equally likely to be g or h,

�g (1� pg1)
�g (1� pg1) + (1� �g)(1� ph1)

=
1� �g)(1� ph1)
(1� �g)(1� ph1)

= 0:5;

resulting in an overall even chance of winning prize x1 or prize x2.

One general point to note about this example is that if U(x1) > U(x2), the overall probability

of getting the good prize is 1 in the 60% of cases in which action y1 is taken, and 0.5 in the 40% of
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cases in which action y2 is taken, for a net probability of 0.8. It is intuitive that there cannot be

a RE-PREP with a lower probability of getting the best prize, since the simple strategy of always

picking y1 yields the same outcome. This illustrates the �No Improving Blind Switches� (NIBS)

condition that we show in the section 5 to be necessary for a RE-PREP.

There is a second observation that explains the constraints with more precision. Note that the

chance of getting the better prize from action y2 cannot be strictly less than 50%. Intuitively, if it

were to be thus, then it would be strictly superior to switch action y2 to y1 in state s1, so as to

always take the action y1. This is the No Improving Action Switches (NIAS) condition that we

show in the next section to fully characterize a RE-PREP.

To apply the NIAS condition to the current case, note that the probability of receiving the good

prize when action y1 is taken is the conditional probability that the layout is g when y1 is taken,

�gpg1
�gpg1 + (1� �g)ph1

:

The probability of receiving the good prize if action y2 had been taken every time that action y1

was taken would be the converse,
(1� �g)ph1

�gpg1 + (1� �g)ph1
:

Hence the condition that this not yield an improvement is,

�gpg1 � (1� �g)ph1 ;

or,

pg1 �
ph1
R
:

Similarly, the condition under which action y2 should not be globally replaced by action y1 is,

(1� �g)(1� ph1) � �g(1� p
g
1);

or,

pg1 �
R� 1
R

+
ph1
R
:

In the current case with �g = 0:8 and R = 4, the only binding inequality is,

pg1 � 0:75 + 0:25ph1 :

The fact that this is identical to the constraint identi�ed in example 1 for the case U(x1) > U(x2)

(the upper left shaded region in �gure 3) is not coincidental.
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4.2 The NIAS Inequalities

The above example pinpoints the central concept in our representation theorem, which involves

ruling out the existence of improving action switches.

De�nition 2 Utility function U : X ! R satis�es theNIAS inequalities with respect to (X;Y; �; P )

if for all k;m 2 f1; ::;Mg, X
f2F

�(f)P f (ym)[U(f(ym))� U(f(yk)] � 0;

with at least one inequality strict.

Note that the NIAS inequalities can be expressed in an alternative form that is more readily

compatible with the RE condition. In particular, given (X;Y; �; P ) and ym 2 Y such that P f (ym) >

0 for some f 2 F(�), the stochastic demand for prizes associated with choosing yk in place of ym,

�mk 2 �(X) can be de�ned as,

�mk(xn) =

P
ff2Fjf(yk)=xng �(f)P

f (ym)P
f2F �(f)P

f (ym)
:

It is direct that the utility function U : X ! R satis�es the NIAS inequalities with respect to

(X;Y; �; P ) if, for all ym 2 Y such that P f (ym) > 0 for some f 2 F(�), and for all k 2 f1; : : : ;Mg,
NX
n=1

[�mm(xn)� �mk(xn)]U(xn) � 0;

with at least one inequality strict.

The key observation is that a necessary and su¢ cient condition for a RE-PREP is that there

exists a utility function such that the NIAS inequalities hold, so that for every taken action, it

is better not to switch to taking some �xed alternative action in all situations in which the given

action was taken. Note that �mm 2 �(X) is the stochastic demand associated with choice of ym in

the IDS. Note also that the NIAS inequalities correspond to non-emptiness of the intersection of

(M � 1)2 linear inequalities, which can be identi�ed using standard linear programming methods.

4.3 Characterization

Theorem 1 (X;Y; �; P ) have a RE-PREP representation if and only if there exists U : X ! R

satisfying the NIAS inequalities.
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Proof. Su¢ ciency: We identify a RE-PREP with exactly one state of mind sj for each action yj

that is taken with strictly positive probability, so that,

C(sj) = yj :

We set �f (sj) = P f (yj) for all f 2 F(�) and j 2 f1; : : : ;Mg, and pick U : X ! R satisfying the

NIAS inequalities. We note that, by construction, (�; C) satisfy Data Matching. Moreover, given

yj 2 Y with P f (yj) > 0, we use the Rational Expectations condition to solve for all s
j
mn: for all

m 2 f1; : : : ;Mg, n 2 f1; : : : ; Ng,

sjmn =

P
ff2Fjf(ym)=xng �(f)P

f (yj)P
f2F �(f)P

f (yj)
:

Finally, note that, upon substitution for smmn and s
m
kn as above, we derive the conditions for Opti-

mality as, for all k 2 f1; : : : ;Mg,
NX
n=1

"P
ff2Fjf(ym)=xng �(f)P

f (ym)P
f2F �(f)P

f (ym)

#
U(xn) �

NX
n=1

"P
ff2Fjf(yk)=xng �(f)P

f (ym)P
f2F �(f)P

f (ym)

#
U(xn);

with at least one strict. This reduces precisely to the NIAS inequalities that U satis�es by con-

struction.

Necessity: A direct review of the above logic shows that identifying a utility function that sat-

is�es the NIAS inequalities is not only su¢ cient for a RE-PREP, but also necessary for a RE-PREP

in which there is only one state of mind per action. The full result follows from the observation

that if we identify a RE-PREP with more than one mental state for one or more action choices,

then there must exist a RE-PREP with only one mental state for each action choice: allowing for

multiple states does not expand the set of IDS for which a RE-PREP exists.

Suppose that we have identi�ed a RE-PREP (�;C; U) of (X;Y; �; P ) such that, for all actions

yj taken with strictly positive probability, there exists states sj;p 2 S(�) for p 2 f1; : : : ; P (j)g with,

C(sj;p) = yj for all p;

and with P (j) > 1 for some j.

De�ne a new triple (~�; ~C;U) that is identical to (�;C; U) except in the two respects. First, for

all j 2 f1; : : : ;Mg such that action yj is taken with strictly positive probability, set ~C(yj) = ~sj ,

where the prize lottery corresponding to state ~sj is de�ned as,

~sjmn =

PP (j)
p=1

P
ff2Fjf(ym)=xng �(f)�

f (sj;p)PP (j)
p=1

P
ff2Fg �(f)�

f (sj;p)
:

18



Second, de�ne ~� so that ~sj is perceived in place of all sj;p,

~�f
�
~sj
�
=

P (j)X
p=1

�f (sj;p):

By construction, note that ~C�1(yj) is a singleton with a single state ~sj replacing all sj;p 2 S(�),

~C�1(yj) = ~s
j .

To show that (~�; ~C;U) form a RE-PREP of (X;Y; �; P ), note �rst that (~�; ~C;U) satis�es Data

Matching and Rational Expectations by construction. Optimality is established by noting that it

survives under convex combinations. What must be shown is that,

NX
n=1

~smmnU(xn) �
NX
n=1

~skmnU(xn) for all m; k 2 f1; : : : ;Mg :

Upon substitution for ~smmn and ~s
m
kn and after removing the common denominator, the Optimality

conditions become, for all m; k 2 f1; : : : ;Mg,

NX
n=1

24P (m)X
p=1

X
ff2Fjf(ym)=xng

�(f)�f (sm;p)

35U(xn) � NX
n=1

24P (m)X
p=1

X
ff2Fjf(yk)=xng

�(f)�f (sm;p)

35U(xn);
or,

P (m)X
p=1

NX
n=1

X
ff2Fjf(ym)=xng

�(f)�f (sm;p)U(xn) �
P (m)X
p=1

NX
n=1

X
ff2Fjf(yk)=xng

�(f)�f (sm;p)U(xn):

Validity of these conditions follows immediately from the fact that (�;C; U) form a RE-PREP of

(X;Y; �; P ), so that the Optimality condition implies that ym is a utility maximizer for each state

sm;p 2 S(�),

NX
n=1

X
ff2Fjf(ym)=xng

�(f)�f (sm;p)U(xn) �
NX
n=1

X
ff2Fjf(yk)=xng

�(f)�f (sm;p)U(xn):

Note from the above proof that a necessary condition for (�;C; U) to comprise a RE-PREP of

(X;Y; �; P ) is that U satisfy the NIAS conditions.
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5 Two Framing E¤ects

5.1 Layout E¤ects

The characterization theorem allows for cases in which the layout has signi�cant impact on sto-

chastic demand �all that is necessary is that the NIAS conditions are satis�ed. Hence there may

be two frames f; g 2 F and x 2 X such that,

P f (fy 2 Y jf(y) = xg) 6= P g(fy 2 Y jg(y) = xg):

Consider for example top-down search in a list (see Rubinstein and Salant [2006]). In terms of

perception, this may plausibly result in greater clarity about objects high in the list than those

further down the list, which may in turn make them more likely to be chosen (as in Geng [2011]),

and also more likely to be of high utility when so chosen. The following stark example illustrates

these e¤ects at work.

Example 3 Suppose that there are 4 prizes, one of each value $1 through $4, and that each of the

four choices is ex ante equally likely to yield each prize:

X = f$1; $2; $3; $4g;

Y = fymj1 � m � 4g;

�(f) =
1

4!
all f 2 F :

Now suppose that the process of perception is such that the prize corresponding to action 1 (the top

line of four) is always seen with perfect clarity, while the other actions are not understood beyond

the prior and the identify of the prize corresponding to y1. In this case, there are 4 subjective states,

S(�) = f(x;��x) 2 X ��(X)3g;

where ��x assigns to each ym with m > 1 the lottery that o¤ers all prizes in X=x with probability

1
3 . If the DM is risk neutral, action y1 will be chosen whenever it is seen to contain a prize of $3

or $4, which is a 50% chance, with the other options dividing up the remaining probability. In this

case, note that selection of y1 can give rise only to prizes $3 and $4, with equal probability, while

for yn with n > 1, each action can give rise to any prize, with a one-third chance of either the $3

or the $4 prize, and a one-sixth chance of either the $1 or the $2 prize.
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5.2 Informational E¤ects

When the impact of imperfect perception on stochastic choice is considered by economists, it is

typically treated as resulting from similarities between product characteristics (e.g. Debreu [1960]

and Natenzon [2011]). In such cases the precise layout has no impact on stochastic choice of prizes,

so standard framing e¤ects are not present. Yet even in such cases, the NIAS inequalities imply that

the layout-generating mechanism � may impact prize choice, since any RE-PREP of (X;Y; �; P )

must respect the information that the � provides on prize location.

The No Improving Blind Switches (NIBS) inequalities mentioned in section 3 provide insight

into how the layout-generating mechanism impacts choice of prize. These inequalities summarize

the utility available to an agent who always makes the same choice of action. We show in theorem

2 that these simple inequalities on U : X ! R are necessary for (�;C; U) to provide a RE-PREP

representation of (X;Y; �; P ).

De�nition 3 Utility function U : X ! R satis�es theNIBS inequalities with respect to (X;Y; �; P )

if the chosen actions yield at least as high utility as would always choosing any �xed action yk 2 Y ,X
f2F

X
ym2Y

�(f)P f (ym)U(f(ym)) � max
yk2Y

X
f2F

�(f)U(f(yk));

with strict inequality for some yk 2 Y .

Theorem 2 If (�;C; U) provide a RE-PREP representation of (X;Y; �; P ), then U : X ! R

satis�es the NIBS inequalities.

Proof. As noted directly after the proof of theorem 1, if (�;C; U) provide a RE-PREP representa-

tion of (X;Y; �; P ), then U : X ! R must satisfy the NIAS inequalities. We show now that NIAS

implies NIBS. There are two cases:

1. Suppose �rst that U : X ! R satis�es the NIAS inequalities, yet that there exists yk 2 Y

such that, X
f2F

�(f)U(f(yk)) >
X
f2F

X
ym2Y

�(f)P f (ym)U(f(ym)):

Substitute
P
ym2Y P

f (ym) = 1 on the LHS and rearrange to conclude that,X
ym2Y

X
f2F

�(f)P f (ym)U(f(yk)) >
X
ym2Y

X
f2F

�(f)P f (ym)U(f(ym));
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which in turn implies the existence of at least one possible action ym 6= yk 2 Y such that

replacing ym by yk strictly increases utility,X
f2F

�(f)P f (ym)U(f(yk)) >
X
f2F

�(f)P f (ym)U(f(ym));

directly in contradiction to the NIAS inequalities.

2. Now suppose that U : X ! R satis�es the NIAS inequalities, yet for all yk 2 Y ,X
f2F

�(f)U(f(yk)) =
X
f2F

X
ym2Y

�(f)P f (ym)U(f(ym)):

Substitute
P
ym2Y P

f (ym) = 1 on the LHS and rearrange to conclude that,X
ym2Y

X
f2F

�(f)P f (ym)U(f(yk)) =
X
ym2Y

X
f2F

�(f)P f (ym)U(f(ym)):

Noting that the above holds for all yk 2 Y , we conclude that either there exists yk; ym 2 Y

such that, X
f2F

�(f)P f (ym)U(f(yk)) >
X
f2F

�(f)P f (ym)U(f(ym));

or for all yk; ym 2 Y ,X
f2F

�(f)P f (ym)U(f(yk)) =
X
f2F

�(f)P f (ym)U(f(ym)):

The former contradicts the weak inequality in NIAS, while the latter contradicts the need for

strict inequality in at least one case.

The necessity of the NIBS inequalities is intuitive, given that the Rational Expectations assump-

tion requires the DM to fully understand the statistical association between subjective perceptions,

choices, and prizes in a RE-PREP. These inequalities provide a particularly simple measure of the

information content of �. They directly tie the degree of asymmetry in the layout-generating mech-

anism to the class of utility functions for which a RE-PREP exists. With a completely asymmetric

layout-generating mechanism in which a given action always produces the same prize, the NIBS

inequalities imply that all actions that are ever chosen must yield maximal utility. These inequali-

ties are less exacting when the layout-generating mechanism is completely symmetric, so that blind

choice of any action results in all prizes being equiprobable. In such a case, the NIBS inequalities
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imply only that overall stochastic demand for prizes yields above the simple unweighted average

level of utility.

The NIBS inequalities have important behavioral implications. They point out that the need

for perceptual attention depends on the layout-generating mechanism. In the extreme case, a par-

ticipant in a multiple-choice test could score 100% without the slightest need to read the questions

if the �rst answer was always correct. What this means is that attentional e¤ort is likely to be

a function of the layout-generating mechanism. The experiment in section 7 presents preliminary

evidence that this is indeed so �even in less extreme cases.

6 Imperfect Perception and Stochastic Choice

6.1 Stochastic Choice Data

It is rare in applied settings to have easy access to information on either action choices or the

layout-generating mechanism. For this reason, the standard data set for stochastic choice is the

pattern of observed demand for prizes across all choice problems. In this section, we characterize

restrictions on just such standard stochastic choice data associated with the existence of RE-PREP

representations based on a �xed utility function.

De�nition 4 A stochastic choice system (X;Q) comprises a �nite grand set X of prizes and

a correspondence,

Q : X �! �(X );

with for all A 2 X ,

QA(x) > 0 =) x 2 A;

where X is the set of all non-empty subsets of X.

6.2 RE-PREPs

We look for a representation of the entire choice system that involves a �xed utility function but

a variety of action choice subsets. We begin by specifying some action choice set Y , noting that it

may be conceptual rather than actually observed. For simplicity, we assume that Y has the same
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cardinality as X. We specify also choice sets YA � Y with jYAj = jAj, corresponding to each set

A 2 X , as well as FA, the class of all 1-1 and onto functions from YA to A. The existence of a RE-

PREP then hinges on whether or not one can construct ideal data sets PA : FA (�A) �! �(YA);

measures �A 2 �(FA); perception functions �A : FA �! SA; and choice functions CA : SA �! YA

with SA = �(X)jAj; such that there exist RE-PREPs (A; YA; �A; PA) of the form (�A; CA; U) in

which the stochastic choice system is reproduced. Note that the sets YA and Y are essentially

arbitrary.

De�nition 5 Stochastic choice system (X;Q) has a RE-PREP representation if there exists

Y with jY j = jXj, U : X �! R, and quadruples (A; YA; �A; PA) for all A 2 X ; with YA � Y ;

jYAj = jAj; �A 2 �(FA); and PA : FA �! �(YA); all of which have RE-PREP representations

(�A; CA; U) with,

QA(xn) =
X
f2FA

�A(f)P
f
A(f

�1(xn)) for all xn 2 A;

where the inverse function f�1 : A! YA is de�ned by f(f�1(xn)) = xn.

6.3 The Representation Theorem

The general characterization theorem captures the intuition that a RE-PREP representation exists

provided one can �nd a utility function such that expected utility in any choice problem A 2 X is

strictly higher than that associated with blind choice in A.

Theorem 3 Stochastic choice system (X;Q) has a RE-PREP representation if and only if there

exists U : X ! R such that, for all A 2 X ,

X
xn2A

QA(xn)U(xn) >
X
xn2A

U(xn)

jAj :

Proof. Su¢ ciency: De�ne the IDS so that it always gives rise to the given stochastic demand,

P fA(y) = Q
A(f(y));

for all f 2 FA and y 2 YA, and de�ne �A is a symmetric measure assigning equal probability 1
jAj! to

each f 2 FA. With these two strong symmetry conditions, a direct counting argument shows that
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the stochastic demand for prizes associated with replacing ym with yk 6= ym is independent of ym

and yk. Speci�cally, the probability of getting prize xn 2 A with any such switch is,

�Amk(xn) =
1�QA(xn)
jAj � 1 :

With this strong symmetry among chosen and unchosen acts, there is one and only one inequality

for the NIAS condition to be satis�ed:

X
xn2A

QA(xn)U(xn) >
X
xn2A

�
1�QA(xn)
jAj � 1

�
U(xn);

or, X
xn2A

QA(xn)U(xn) >
X
xn2A

U(xn)

jAj ;

as assumed. Hence for all A 2 X , the NIAS conditions hold for (A; YA; �A; PA), which therefore

possesses a RE-PREP representation with the �xed utility function U : X ! R. Hence (X;Q) has

a symmetric RE-PREP representation.

Necessity: Suppose that the condition is not satis�ed, but that (X;Q) has a RE-PREP repre-

sentation for some �xed utility function U : X ! R. We establish a contradiction by showing that

U does not satisfy the NIBS inequalities. By assumption, there exists A 2 X such that,

X
xn2A

QA(xn)U(xn) �
X
xn2A

U(xn)

jAj :

Substitution for QA(xn) yields,X
xn2A

X
f2FA

�A(f)P
f
A(f

�1(xn))U(xn) �
X
xn2A

U(xn)

jAj : (�)

Note that the LHS of (�) is simply the expected utility of the chosen acts,

X
xn2A

X
f2FA

�A(f)P
f
A(f

�1(xn))U(xn) =
X
f2FA

X
ym2YA

�A(f)P
f
A(ym)U(f(ym)):

We now show the relationship between the RHS of (�) and blind choices. Summation across blind

choices yields,

X
yk2YA

X
f2FA

�A(f)U(f(yk)) =
X
xn2A

X
f2FA

�A(f)U(xn) =
X
xn2A

U(xn): (��)

There are two cases to consider:
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1. If all blind choices yield the same amount, (��) implies that they all yield simple arithmetic

average utility, X
f2FA

�A(f)U(f(yk)) =
X
xn2A

U(xn)

jAj for all yk 2 YA:

Substitution as indicated for LHS and RHS in (�) then yields,X
f2FA

X
ym2YA

�A(f)P
f
A(ym)U(f(ym)) �

X
f2FA

�A(f)U(f(yk));

for all yk 2 Y . This directly contradicts NIBS, which requires strict inequality in the other

direction.

2. If not all blind choices yield the same amount of utility, (��) implies that there exists yk 2 YA
yielding strictly above simple arithmetic average utility from blind choice,X

f2FA

�A(f)U(f(yk)) >
X
xn2A

U(xn)

jAj :

Substitution as indicated for LHS and RHS in (�) then yields,X
f2FA

X
ym2YA

�A(f)P
f
A(ym)U(f(ym)) <

X
f2FA

�A(f)U(f(yk));

which directly contradicts NIBS.

6.4 Imperfect Perception or Stochastic Utility?

For more than �fty years, the dominant theory of stochastic choice has involved placing all ran-

domness in the utility function (see Luce [1959] and Block and Marschak [1960]). The most famous

axiom for such cases is Luce�s axiom, whereby the ratio of the probabilities of choosing any one

item over any other is independent of other �irrelevant�alternatives. While this has been relaxed in

many ways, most stochastic utility models place restrictions on the relative probabilities of choosing

one option over another across distinct choice sets. For example, a weaker form asserts that, if one

good is ever chosen with higher probability than an alternative in a given choice set, then it is

chosen with higher probability than that alternative in all choice sets.

Our results show that there are weaker restrictions on standard stochastic choice data when

imperfect perception is the source of stochasticity. The following example illustrates a complete
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reversal in choice probabilities between a two prize set and a three prize set. An item that is always

chosen in two prize set is never chosen in the three prize set.

Example 4 Consider X = fx1; x2; x3g and assume that in binary choice with a symmetric layout-

generating mechanism, x1 is chosen with probability 1 over both x2 and x3, and x2 is chosen with

probability 1 over x3,

Qfx1;x2g(x1) = Q
fx1;x3g(x1) = Q

fx2;x3g(x2) = 1:

This means that a necessary condition for RE-PREPs to exist for all three sets is that U(x1) >

U(x2) > U(x3).

Qfx1;x2g(x1) = Q
fx1;x3g(x1) = Q

fx2;x3g(x2) = 1:

The theorem implies that

Qfx1;x2;x3g(x3) = 1

is inconsistent with existence of a RE-PREP for the stochastic choice system. However, it is entirely

possible to have x2 chosen for sure,

Qfx1;x2;x3g(x2) = 1:

In this case, one can construct a RE-PREP for the stochastic choice system in which the layout-

generating mechanism is symmetric, the utility function satis�es U(x1) > U(x2) > U(x3), and

prize x2 is preferred to an equal chance of prizes x1 and x3,

U(x2) >
U(x1) + U(x3)

2
:

The corresponding perception function is such that all prizes are perfectly identi�ed in two prize

sets, while there is complete inability to distinguish prizes 1 and 3 in three prize sets: the presence

of prize x2 induces confusion between x1 and x3.

While the above example is extreme, the broad idea is reasonable. Perceptual confusion may

indeed be more signi�cant in large choice sets than in small choice sets. As a result, a moderately

good item that is easy to identify may be particularly attractive in large choice sets because there

is little risk of it being confused with a bad item. Cases of this kind are modeled by Natenzon

[2011], and �t well with the work of Iyengar and Lepper [2000] on di¢ culties associated with choice

from large choice sets.
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7 Experimental Evidence

As indicated, a test of our theory requires rich data on the decision making �frame�. We detail in

this section a simple laboratory experiment in which: (1) the ICE (X;Y; �; P ) is fully observed; and

(2) the layout-generating mechanism � is varied systematically. While subjects make substantial

choice mistakes in all treatments, we �nd that the NIAS inequalities are always satis�ed, so that

subjects behave in accordance with our model.

Both of the framing e¤ects allowed for in our model are present in the experimental data. Not

only does the layout impact choice, but also the layout-generating mechanism. It is the latter e¤ect

that is most de�ning of our model, and the fact that we can control it experimentally is critical to

our ongoing research on imperfect perception.

7.1 Experimental Design

In each round, subjects were presented with three options, each of which is composed of 20 numbers.

Figure 4 shows a screen capture of a typical round. The value of each option is the sum of all 20

numbers, and subjects were incentivized to select the object with the highest value. In the baseline

symmetric treatment (�33%, 33%, 33%�), subjects were informed that all three options were equally

likely to be the highest valued option, but in two other treatments, the �rst option was more likely

to be the highest valued option. In one of the asymmetric treatments (�40%, 30%, 30%�), subject

were informed that the �rst option was approximately 40% likely to be the highest valued option

(the other two were both approximately 30% likely). In the other asymmetric treatment (�46%,

27%, 27%�), subjects were told that the �rst option was approximately 46% likely to be the highest

valued option (the other two were both approximately 27% likely). Subjects completed 12 rounds

of each treatment, which were presented in a random order.4

7.2 Testing for No Improving Action Switches (NIAS)

The experiment was run with 36 subjects in the CESS laboratory. As seen in table 1, subjects chose

the best (highest valued) option in 54% of rounds, which is higher than the expected percentage

4The instructions provided to subjects are available in the appendix.
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Figure 4: A typical round

under random choice but far below that associated with perfect perception.5 The fraction of rounds

in which the highest valued option was chosen was stable over the course of the experiment �the

fraction in the �rst half of rounds was not signi�cantly di¤erent than the fraction in the second

half of rounds (� = 0:01).

Table 1. Percentage of rounds best option was chosen

Treatment n Rounds best option chosen

33%, 33%, 33% 418 54%

40%, 30%, 30% 424 52%

46%, 27%, 27% 422 56%

Overall 1264 54%

For a layout-generating mechanism �, the NIAS inequalities are satis�ed for a utility function

U if,
NX
n=1

[�mm(xn)� �mk(xn)]U(xn) � 0;

for every all k;m 2 f1; : : : ;Mg, with at least one inequality strict. If the utility function is

normalized so that U ($8) = 1 and U ($4) = 0, then the NIAS inequalities reduce to,P
ff2Fjf(ym)=$8g �(f)P

f (ym)P
f2F �(f)P

f (ym)
�
P
ff2Fjf(yk)=$8g �(f)P

f (ym)P
f2F �(f)P

f (ym)
� 0:

These conditions imply that the percentage of rounds in which action ym is chosen and is best

must be no smaller, and sometimes strictly larger, than the percentage of rounds in which action
5More than one option had the highest value in 2.4% of rounds. These rounds were removed to simplify the

analysis, but their exclusion does not qualitatively a¤ect the results.
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ym is chosen, but action yk is best. This determines whether subjects could have done better by

switching from action ym to action yk because the rounds where ym was chosen and was best would

lose utility of 1 with the switch and the rounds where ym was chosen but yk was best would gain

utility of 1 with the switch.

Table 2. Percentage of rounds chosen option was best by treatment

Best Option

Treatment Chosen Option 1st Option 2nd Option 3rd Option

33%, 33%, 33% 1st Option 48% 25% 27%

2nd Option 27% 51% 23%

3rd Option 19% 24% 56%

40%, 30%, 30% 1st Option 54% 23% 23%

2nd Option 25% 53% 22%

3rd Option 18% 14% 67%

46%, 27%, 27% 1st Option 54% 19% 27%

2nd Option 26% 44% 29%

3rd Option 17% 23% 60%

Table 2 shows, for the rounds in which a given action was taken, the percentage of rounds in

which each option was the best option. This table can be used to directly verify that the NIAS

inequalities hold for all treatments and all possible action switches. For example, in the �40%, 30%,

30%�treatment, the NIAS inequalities were satis�ed when the �rst option was chosen because the

percentage of rounds in which the �rst option was chosen and was best was 54%, while the two

alternative options were each optimal in only 23% of rounds in which the �rst option was chosen.

In fact, the condition holds for all treatments and all possible action switches. The closest the

NIAS condition comes to being violated is in the �46%, 27%, 27%�treatment for switching from

the second option (44%) to the third option (29%).

7.3 Two Framing E¤ects

As discussed previously, our model allows for two distinct forms of framing e¤ects, and we see

evidence of both in subjects�choices. As shown in table 3, we see slight evidence of order e¤ects:

the third option was selected less often than the second option, even though on average, there is
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no informational di¤erence between the second and third option in any treatment. However, these

proportions are only signi�cantly di¤erent for the �rst treatment (� = 0:05).

Table 3. Percent of rounds each option chosen by treatment

Treatment 1st Option 2nd Option 3rd Option

33%, 33%, 33% 32% 38% 30%

40%, 30%, 30% 57% 23% 20%

46%, 27%, 27% 70% 16% 14%

Also present is the second framing e¤ect, in which subjects respond to the information content

of the layout-generating mechanism, in particular the probability with which each available action

yields the best prize. The No Increasing Blind Switches (NIBS) condition requires that subjects

choose the best option more often than they would if they �blindly� selected the �rst option.

Table 1 above shows that this condition holds in every treatment because subjects did better on

average than they would by always selecting the �rst option. In addition, the �rst column of table

3 shows that the percent of rounds in which the �rst option was chosen increases substantially

as the likelihood of the �rst option being the best option increases and is signi�cantly higher in

the asymmetric treatments than the probability of the �rst option actually being the best option.

These results raise intriguing questions concerning the interaction between the layout-generating

mechanism and the quality of �nal choice.

8 Concluding Remarks

We have introduced a model of rational decision making that allows for an essentially unlimited

array of perceptual limitations. We study �rational expectations perception-based representations�

(RE-PREPs) in which DMs fully internalize how their perceptions relate to choices and to their

consequences. We show that the signature of the resulting theory is that stochastic choices are

�unimprovable�, with the precise improvements that can be ruled out depending on the data

available for model testing.

Our �rst characterization result involves a data set that includes the �ne details of the decision

making environment, in particular detailed information about how the decision was presented to

the DM. In this context, we show that existence of a RE-PREP representation is equivalent to a
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No Improving Action Switches (NIAS) condition. We also characterize standard stochastic choice

data consistent with our theory. The resulting restrictions, while intuitive, are weaker than those

imposed by stochastic utility models.

Our model allows for both familiar framing e¤ects that relate to the layout of the prizes and

more novel e¤ects that relate to the information content of the environment. We outline an ex-

perimental design to explore these e¤ects, and �rst results support our model and indicate the

importance of information-based framing e¤ects. In ongoing work, we are further investigating the

interaction between environmental information and imperfect perception, with particular focus on

attention. We are also exploring the applicability of our general approach to questions of informa-

tion processing and Bayesian inference, as well as to strategic settings in which agents may have

di¤erent perceptions.
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Appendix 
 
Instructions 
 
In this experiment, you will take part in 1 practice round and then 36 regular rounds. Any 
choices you make during the practice round will not affect your final payment. 
 
In each round, you will be shown 3 options, each of which contains 20 numbers. The value of 
each option is the sum of all 20 numbers. Your task will be to choose the option that has the 
highest value (or one of the options with the highest value). You cannot use a calculator or 
scratch paper. 
 
At the end of the experiment, we will select 3 of the 36 regular rounds for payment. In each 
round selected for payment, if you chose the option with the highest value, you will get $8, if not, 
you will get $4. Thus, the maximum total payment is $24 and the minimum total payment is $12. 
When a round starts, you will be told which type of round it is. There are three different types of 
rounds: 
 
1. "33%, 33%, 33%" rounds (12 rounds total) 
All options are equally likely (approximately 33% likely) to have the highest value. For all 
options, each of the twenty numbers is a random integer between plus eighteen and minus 
eighteen (all equally likely), and each number is determined independent of the other numbers. 
Thus, the value of each option is independent of the value of the other options, and all options 
are equally likely to have the highest value. 
 
2. "40%, 30%, 30%" rounds (12 rounds total) 
The first option is approximately 40% likely to have the highest value, and each of the others is 
approximately 30% likely to have the highest value. For the first option, each of the twenty 
numbers is a random integer between plus nineteen and minus eighteen (all equally likely). For 
the second and third option, each of the twenty numbers is a random integer between plus 
eighteen and minus eighteen (all equally likely). Once again, the value of each option is 
independent of the value of the other options. 
 
3. "46%, 27%, 27%" rounds (12 rounds total) 
The first option is approximately 46% likely to have the highest value, and each of the others is 
approximately 27% likely to have the highest value. For the first option, each of the twenty 
numbers is a random integer between plus twenty and minus eighteen (all equally likely). For 
the second and third option, each of the twenty numbers is a random integer between plus 
eighteen and minus eighteen (all equally likely). Once again, the value of each option is 
independent of the value of the other options. 
 
When a round starts, no option will be selected. You can change which option is selected by 
clicking on the button to the left of the option you want or by clicking anywhere on the option 
itself. You are free to change which option is selected at any time and as many times as you 
like. 
 
Whenever you click on the 'Finished' button, the round will come to an end, and the selected 
option will be recorded as your choice. After a brief pause, you will be given the opportunity to 
either review the instructions again on the computer screen or proceed to the next round. This 
will continue until you have completed 1 practice rounds and 36 regular rounds, for a total of 37 
rounds. 


