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1 Introduction

This paper considers the problem of making inferences about the effects of a program on mul-

tiple outcomes when assignment of treatment status is imperfectly randomized. By imperfect

randomization we mean that treatment status is reassigned after an initial randomization on

the basis of characteristics that may be observed or unobserved by the analyst. As noted by

Heckman et al. (2010b), such post-randomization reassignment of treatment status often occurs

in real-world field experiments. Since these characteristics may affect outcomes, differences in

outcomes between the treated and untreated groups may be due to the imperfectness of the

randomization instead of the treatment itself.

We develop a partial identification approach to this problem that makes use of information

limiting the extent to which randomization is imperfect to show that it is still possible to make

nontrivial inferences about the effects of the program in such settings. We consider a family of

null hypotheses in which each null hypothesis specifies that the program has no effect on one

of several outcomes of interest. Under weak assumptions, we construct a procedure for testing

this family of null hypotheses in a way that controls the familywise error rate – the probability

of even one false rejection – in finite samples.

Our methodology depends on a detailed understanding of the way in which treatment status

was assigned. For this reason, we develop it in the context of a specific application – a reanalysis

of the HighScope Perry Preschool program – and our assumptions are tightly connected to the

specific way in which treatment status was assigned in this program. We emphasize, however,

that the underlying approach applies not only to this program, but more generally to the analysis

of other experiments with imperfect randomization.

The HighScope Perry Preschool program is an influential preschool intervention that targeted

disadvantaged African-American youth in Ypsilanti, Michigan in the early 1960s. The reported

beneficial long-term effects of the program are a cornerstone in the argument for early childhood

intervention in the United States. Most analyses of the HighScope Perry Preschool program have

failed to account for the limited sample size of the study, the multiplicity of null hypotheses being

tested, as well as the way in which treatment status in the program was imperfectly randomized.

For an exposition of some of these criticisms, see, for example, Herrnstein and Murray (1994)

and Hanushek and Lindseth (2009). An exception is Heckman et al. (2010b), who acknowledge

these concerns and, using a different approach that allows for a more limited form of imperfect

randomization, still find statistically significant effects of the program on a wide variety of

outcomes. We contrast our approach with theirs in detail in Remark 4.5 below. Even with

our more general approach, we find statistically significant effects of the program on a number

of different outcomes of interest, including outcomes related to criminal activity for males and
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females.

The remainder of the paper is organized in the following way. Section 2 describes the High-

Scope Perry Preschool program, focusing on the way in which treatment status was reassigned

after the initial randomization on the basis of characteristics both observed and unobserved by

the analyst. Section 3 formally describes our setup and assumptions, which are motivated by

the description in the preceding section of the way in which treatment status was assigned in

the program. We present our testing procedures in Section 4. We first discuss the problem of

testing a single (joint) null hypothesis, before considering the problem of testing multiple null

hypotheses. Section 5 presents the results of applying our methodology to the data from the

HighScope Perry Preschool program. Section 6 concludes.

2 Empirical Setting

2.1 HighScope Perry Preschool Program

The HighScope Perry Preschool program was a prominent early childhood intervention con-

ducted at the Perry elementary school in Ypsilanti, Michigan during the early 1960s. Beginning

at age three and lasting for two years, treatment consisted of a 2.5-hour preschool program

on weekdays during the school year supplemented by weekly home visits from teachers. The

preschool curriculum was organized around the principle of active learning, guiding students

through key learning experiences with open-ended questions. Social and emotional skills were

also fostered. See Heckman et al. (2010a). The purpose of the weekly home visits was to in-

volve the parents in the learning process. Further details about the program are described in

Schweinhart et al. (1993).

Program eligibility was determined by the child’s Stanford-Binet IQ score and a measure of

the family’s socio-economic status. The measure of socio-economic status used was constructed

as a weighted linear combination of father’s skill level and educational attainment and the

number of rooms per person in the family’s home. With a few exceptions, those with Stanford-

Binet IQ scores less than 70 or greater than 85 were excluded from the program. Likewise, with

a few exceptions, those with a sufficiently high socio-economic status were excluded from the

program.

The study enrolled a total of five cohorts over the years 1962-1965; two cohorts were admitted

in the first year and one in each subsequent year. The first cohort is exceptional in that treated

children only received one year of treatment beginning at age four. Altogether 123 children from

104 families were admitted to the program. Siblings are distributed among families as follows:
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82 singletons, 17 pairs, 1 triple and 1 quadruple.

Follow-up interviews were conducted yearly from 3 to 15 years old. Additional interviews

were conducted in three waves that cover persons in age intervals centered at ages 19, 27, and

40 years. Program attrition remained low through age 40. Indeed, over 91% of the participants

were accounted for in the final survey. Moreover, two-thirds of those who did not were dead.

Interviews covered a variety of outcomes. See Schweinhart et al. (1993) and Heckman et al.

(2010b) for further discussion. For the purposes of our analysis, we focus on outcomes that have

attracted considerable attention in the literature on the HighScope Perry Preschool program:

IQ, achievement test scores, educational attainment, criminal behavior, and employment at three

different stages of the life cycle.

2.2 Randomization Procedure

Our methodology relies on a detailed understanding of the randomization procedure. According

to Schweinhart et al. (1993), treatment status was assigned for each cohort of children in the

following way:

Step 1: Younger siblings of earlier program participants were assigned the same treatment

status as their elder siblings.

Step 2: Remaining participants were ranked according to their Stanford-Binet IQ scores

at study entry. Those with the same Stanford-Binet IQ scores were ordered at random with

all orderings equally likely. Two groups were defined by the odd-ranked and even-ranked

participants.

Step 3: Some participants were exchanged between the two groups in order to “balance”

gender and the socio-economic status scores while keeping Stanford-Binet IQ scores roughly

constant.

Step 4: The two groups defined in this way were labeled treatment and control with equal

probability.

Step 5: Some participants with single mothers who were working and unavailable for the

weekly home visits were moved from the treatment group to the control group.

This procedure is depicted graphically in Figure 1. The rationale for assigning younger

siblings of earlier program participants to the same treatment status as their elder siblings was

to avoid “spillovers” within a family, that might weaken the estimated treatment effect. For our

purposes, it is most important to note that Step 5 depends on a characteristic we do not observe
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Figure 1: Graphical Description of the Randomization Procedure
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Step 5:  Post-Assignment Swaps
Remove some participants with 
working mothers from treatment.
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Step 4:  Assign Treatment
Randomly assign treatment 
status to the unlabeled sets
(with equal probability).
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Step 3:  Balance Unlabeled Sets
Some swaps between unlabeled sets 
to balance gender and SES.

evenodd

Step 2:  Form Unlabeled Sets
Participants ranked by IQ, with 
ties broken randomly; even- 
and odd-ranked form two sets.

evenodd

IQ
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Step 1:  Set Aside Younger Siblings
Participants with elder siblings are assigned the 
same treatment status as those elder siblings.

Unrandomized
Entry Cohort

CTCT
Previous Waves

Notes: T and C refer to treatment and control groups respectively. Blue circles represent males. Pink circles

represent females.
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– whether the family has a single mother who is working and unavailable for the weekly home

visits – but was observed and used by those determining treatment status (at least for families

who were offered treatment). To the extent that the availability of the mother is related to the

outcomes of interest, it is important to account for this feature of the randomization procedure

when analyzing data from the program.

Note that by symmetry we may without loss of generality interchange Steps 3 and 4 of

the randomization procedure without affecting the distribution of treatment status. Thus, the

randomization procedure may be described equivalently as follows:

Step 1′: Younger siblings of earlier program participants were assigned the same treatment

status as their elder siblings.

Step 2′: Remaining participants were ranked according to their Stanford-Binet IQ scores

at study entry. Those with the same Stanford-Binet IQ score were ordered at random with

all orderings equally likely. Two groups were defined by the odd-ranked and even-ranked

participants.

Step 3′: The two groups defined in this way were labeled treatment and control with

equal probability.

Step 4′: Some participants were exchanged between the treatment and control groups in

order to “balance” gender and socio-economic status score while keeping Stanford-Binet

IQ score roughly constant.

Step 5′: Some participants with single mothers who were working and unavailable for the

weekly home visits were moved from the treatment group to the control group.

This observation will be useful below when modeling the distribution of treatment status.

3 Setup and Assumptions

3.1 Setup

We index outcomes of interest by k ∈ K, families by j ∈ J and siblings in the jth family by

i ∈ Ij . Denote by Yi,j,k(0) the kth (potential) outcome of the ith sibling in the jth family if

the jth family were not treated and by Yi,j,k(1) the kth (potential) outcome of the ith sibling in

the jth family if the jth family were treated. Let Dj be the treatment status of the jth family.

Denote by Zi,j the vector of observed characteristics of the ith sibling in the jth family used
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in determining treatment status and by Ui,j the vector of unobserved characteristics of the ith

sibling in the jth family used in determining treatment status. In our empirical analysis,

Zi,j = (Gi,j , SESj , IQi,j ,Wi,j) ,

where Gi,j is the gender of the ith sibling in the jth family, SESi,j is the measure of socio-

economic status of the jth family, IQi,j is the Stanford-Binet IQ score at study entry of the ith

sibling in the jth family, and Wi,j is the cohort or wave of the ith sibling in the jth family. In

this notation, the kth observed outcome of the ith sibling in the jth family is

Yi,j,k = DjYi,j,k(1) + (1−Dj)Yi,j,k(0) .

Recall that only the characteristics of the eldest sibling in each family matter for determining

treatment status. We will therefore drop the dependence on i and henceforth simply write Zj

in place of Zi∗,j where

i∗ = arg min
i∈Ij

Wi,j .

In light of the description of the randomization procedure in Section 2.2, we interpret Ui,j as

an indicator of whether the ith sibling in the jth family has a single mother who (at the date

of enrollment of the eldest sibling) was working and unavailable for weekly home visits. Since

this variable does not depend on i, we will henceforth drop the dependence on i and simply

write Uj . Further define MWj to be an indicator for whether the jth family has a single mother

who (at the date of enrollment of the eldest sibling) was working. Although this variable is not

used directly in the assignment of treatment status, we must, of course, have Uj = 0 whenever

MWj = 0.

It is useful to introduce the following shorthand notation. Define

D = (Dj : j ∈ J)

Z = (Zj : j ∈ J)

U = (Uj : j ∈ J)

MW = (MWj : j ∈ J) .

For d ∈ supp(D) and k ∈ K, further define

Yk = (Yi,j,k : i ∈ Ij , j ∈ J)

Yk(d) = (Yi,j,k(dj) : i ∈ Ij , j ∈ J) .
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Denote by P the distribution of

((Yk(d) : d ∈ supp(D), k ∈ K), D, Z, U,MW ) ,

which is assumed to lie in a class of distributions Ω, i.e.,

((Yk(d) : d ∈ supp(D), k ∈ K), D, Z, U,MW ) ∼ P ∈ Ω .

The assumptions we impose on Ω are presented in Section 3.2 below. For k ∈ K, let

ωk = {P ∈ Ω : Yk(d) does not depend on d} .

In this notation, our goal is to test the family of null hypotheses

Hk : P ∈ ωk for k ∈ K (1)

in a way that controls in finite samples the familywise error rate – the probability of even one

false rejection. More formally, let K0(P ) denote the set of true null hypotheses, i.e.,

K0(P ) = {k ∈ K : P ∈ ωk} ,

and define

FWERP = P{reject ≥ 1 hypothesis Hk with k ∈ K0(P )} .

In this notation, our goal is to test the family of null hypotheses (1) in a way that satisfies

FWERP ≤ α for all P ∈ Ω (2)

for some pre-specified value of α ∈ (0, 1).

Before proceeding to a formal description of our testing procedure, it is useful to model the

distribution of D. Let D̃ be a vector of treatment assignments produced from Steps 1′-3′ above,

i.e., according to the initial randomization before any reassignment of treatment status. Let

δ : {0, 1}|J | × supp(Z,U)→ {0, 1}|J |

be the rule used to exchange participants from the treatment group to the control group in Steps

4′ and 5′. It is helpful to decompose δ into two functions in the following way. Let

δ1 : {0, 1}|J | × supp(Z)→ {0, 1}|J |
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be the rule used to exchange participants from the treatment group to the control group in Step

4′. In an analogous fashion, let

δ2 : {0, 1}|J | × supp(U)→ {0, 1}|J |

be the rule used to move participants with single mothers who were working and unavailable

for the weekly home visits from the treatment group to the control group in Step 5′. In this

notation, D can be written as the composition of two functions:

D = δ2(δ1(D̃, Z), U) = δ(D̃, Z, U) .

Remark 3.1 By requiring that our testing procedure satisfy criterion (2), all of the null hy-

potheses rejected by our procedure are false with probability at least 1−α. The recent literature

on multiple testing has considered error rates less stringent than the familywise error rate (see,

e.g., Romano, Shaikh and Wolf, 2010). One example is the m-familywise error rate – the prob-

ability of m or more false rejections for some m ≥ 1. Another example is the false discovery

proportion —the ratio of false rejections to total rejections (defined to be zero when there are no

rejections at all)—where P{FDP > γ} for some γ ∈ [0, 1), and here FDP is the false discovery

proportion. With such error rates, one is only guaranteed that, with probability at least 1− α,

“most” of the null hypotheses rejected by the procedure are false. However, such procedures

may have much greater ability to detect false null hypotheses. This feature may be especially

valuable when the number of null hypotheses under consideration is very large. See Romano

et al. (2008) for a discussion of some procedures for control of such error rates. We do not

pursue such error rates here because in our application the number of null hypotheses under

consideration is relatively small.

3.2 Assumptions

In this section, we describe the assumptions we impose on Ω. These assumptions are connected

tightly to our description of the randomization procedure in Section 2.2. We first state our as-

sumptions formally and then relate them briefly to our description of the way in which treatment

status was assigned.

Some of our assumptions are most succinctly stated in terms of groups of transformations.

Here, we use the term group as it is used in mathematics. See, for example, Dummit and Foote

(1999) or any other standard reference. To this end, let G be the set of permutations of |J |
elements. This set forms a group under the usual composition of functions. Define the action
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of g ∈ G on |J |-dimensional vectors v by

gv = (vg(1), . . . , vg(|J |)) .

Let H = {−1, 1}|J |. This set forms a group under component-wise multiplication. Define the

action of h ∈ H on |J |-dimensional vectors v by the rule that the jth element of hv equals vj if

hj = 1 and 1− vj if hj = −1. For z ∈ supp(Z), let

Hz = {h ∈ H : hj = hj′ whenever wj = wj′} .

Here, wj is the component of z corresponding to the wave in which the eldest sibling in the jth

family was enrolled in the program. In other words, Hz is the subgroup of H that is constant

across families whose treatment status was determined in the same wave. Using this notation,

we may now state the assumptions that will underlie our analysis.

Assumption 3.1 For any P ∈ Ω, (Yk(d) : d ∈ supp(D), k ∈ K) ⊥⊥ D|Z,U under P .

Assumption 3.2 For any g ∈ G, δ1(gd, gz) = gδ1(d, z).

Assumption 3.3 For any h ∈ Hz, hδ1(d, z) = δ1(hd, z).

Assumption 3.4 The jth component of δ2(d, u) equals zero if dj = 1 and uj = 1; otherwise,

jth component of δ2(d, u) equals dj.

Assumption 3.5 For any P ∈ Ω, Uj = 0 if MWj = 0 w.p.1. under P .

Our first assumption simply states that our description of the way in which treatment status

was assigned in Section 2.2 is accurate in the sense that the only variables used to determine

treatment status that affect potential outcomes are Z and U . Hence, potential outcomes are

independent of treatment status conditional on Z and U . Assumption 3.2 is a mild equivariance

restriction that will be satisfied provided that the way in which treatment status is reassigned

in Step 4′ does not depend on the order of the participants themselves. Informally, it says that

“ordering of participants doesn’t matter.” Assumption 3.3 further imposes a mild symmetry

requirement on the way in which treatment status is reassigned in Step 4′. Informally, it says

that “the ‘odd’ and ‘even’ labels don’t matter.” Assumption 3.4 simply defines the function δ2

so that it agrees with Step 5′ in the description of the randomization procedure in Section 2.2,

i.e., participants in the treatment group with single mothers who were working and unavailable

for the weekly home visits are moved to the control group. Finally, Assumption 3.5 imposes the
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logical restriction that Uj and MWj described in Section 3.1, i.e., Uj = 0 whenever MWj = 0.

In other words, for a family to have a single mother who is working and unavailable for the

weekly home visits, it must obviously be the case that the family has a single mother who is

working.

4 Testing Procedures

In Section 4.2 below, we develop methods for testing a single (joint) null hypothesis of the form

HL : P ∈ ωL , (3)

where

ωL =
⋂
k∈L

ωk

for L ⊆ K, in a way that controls the usual probability of a Type I error at level α. In Section 4.3,

we extend these methods to test the family of null hypotheses (1) so that it satisfies (2).

Our methods for testing (3) in a way that controls the usual probability of a Type I error will

be based on the general principle behind randomization tests of exploiting certain symmetries in

the distribution of the observed data. Here, by a symmetry in the distribution of the observed

data we mean that there is a group of transformations of the observed data that leave its

distribution unchanged whenever the null hypothesis is true. When this is the case, it is possible

to construct a test of the null hypothesis that controls the usual probability of a Type I error

in finite samples. Perhaps the most familiar example of a randomization test is a permutation

test, which may be used to test the null hypothesis that two i.i.d. samples from possibly distinct

distributions are in fact from the same underlying distribution, but, as explained in Section

15.2 of Lehmann and Romano (2005), the principle applies more generally. In our case, we will

exploit symmetries in the distribution of treatment status that follow from the way in which

treatment status was assigned in the HighScope Perry Preschool program. These symmetries

are formalized in Lemma 4.1 in Section 4.1 below.

4.1 A Useful Lemma

In order to describe the symmetries in the distribution of the observed data that we will exploit

formally, we require some further notation. For (z, u) ∈ supp(Z,U), let Gz,u be the subgroup of

G that only contains g ∈ G such that

g(j) = j′ =⇒ (zj , uj) = (zj′ , uj′) .
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In particular, g ∈ GZ,U will therefore act on a |J |-dimensional binary vector of treatment statuses

by permuting treatment status among those families with the same observed and unobserved

characteristics (defined by the characteristics of the eldest child in the case of families with

multiple children). For (z, u) ∈ supp(Z,U), let

Hz,u = {uh : h ∈ Hz} ,

where the jth element of uh equals hj if uj = 0 and 1 if uj = 1. The action of h ∈ Hz,u on |J |-
dimensional vectors v is defined as it was for H and Hz. In particular, h ∈ HZ,U will therefore

act on a |J |-dimensional binary vector of treatment statuses by possibly “flipping” treatment

status for all families whose treatment status was determined in the same wave except for those

with single mothers who were working and unavailable for the weekly home visits (at the date

of enrollment of the eldest sibling). Using this notation, we may now state the lemma.

Lemma 4.1 Let g ∈ GZ,U and h ∈ HZ,U . Suppose D̃ is distributed as described in Section 3.

Then, the following statements hold:

(i) If Assumptions 3.2 and 3.4 hold, then

gδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (4)

(ii) If Assumptions 3.3 and 3.4 hold, then

hδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (5)

(iii) If Assumptions 3.2-3.4 hold, then

hgδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U . (6)

Proof: In order to establish (i), first note that by definition of D̃ and GZ,U , we have that

gD̃|Z,U d
= D̃|Z,U . (7)

Next, note for any g′ ∈ G, we have that

δ(g′d, g′z, g′u) = δ2(δ1(g′d, g′z), g′u)

= δ2(g′δ1(d, z), g′u)

= g′δ2(δ1(d, z), u)

= g′δ(d, z, u) , (8)
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where the first and fourth equalities follow from the definition of δ, the second equality follows

from Assumption 3.2, and the third equality follows from Assumption 3.4. Finally, for any

A ⊆ {0, 1}|J |, note that

P{gδ(D̃, Z, U) ∈ A|Z,U} = P{δ(gD̃, gZ, gU) ∈ A|Z,U}

= P{δ(gD̃, Z, U) ∈ A|Z,U}

= P{δ(D̃, Z, U) ∈ A|Z,U} ,

where the first equality follows from (8), the second follows from the definition of GZ,U , and the

third from (7).

In order to establish (ii), first choose h∗(h′) ∈ Hz for each h′ ∈ Hz,u such that uh∗(h′) = h′.

Next, note that by the definition of D̃ and HZ , we have that

h∗(h)D̃|Z,U d
= D̃|Z,U . (9)

Further observe that Assumption 3.4 implies for any h′ ∈ Hz,u that

h′δ2(d, u) = δ2(h∗(h′)d, u) . (10)

Hence, for any h′ ∈ Hz,u,

h′δ(d, z, u) = h′δ2(δ1(d, z), u)

= δ2(h∗(h′)δ1(d, z), u)

= δ2(δ1(h∗(h′)d, z), u)

= δ(h∗(h′)d, z, u) , (11)

where the first and fourth equalities follow from the definition of δ, the second equality follows

from (10), and the third equality follows from Assumption 3.3. Finally, for any A ⊆ {0, 1}|J |,
note that

P{hδ(D̃, Z, U) ∈ A|Z,U} = P{δ(h∗(h)D̃, Z, U) ∈ A|Z,U}

= P{δ(D̃, Z, U) ∈ A|Z,U} ,

where the first equality follows from (11) and the second follows from (9).

Part (iii) follows immediately from parts (i) and (ii), which completes the proof.
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4.2 Testing a Single (Joint) Null Hypothesis

In order to describe our test of the single (joint) null hypothesis (3) for L ⊆ K, we first require

a test statistic. To this end, define

XL = ((Yk : k ∈ L), D, Z)

and let

TL = TL(XL)

be a test statistic for testing (3). Note that we impose the mild requirement that TL only

depends on XL. In particular, we assume that it does not depend on Yk with k 6∈ L. We assume

further that large values of TL provide evidence against the null hypothesis.

We now describe the construction of a critical value for our test. For this purpose, the

following lemma is useful:

Lemma 4.2 If P ∈ ωL and Assumption 3.1 holds, then

(Yk : k ∈ L) ⊥⊥ D|Z,U

under P .

Proof: Consider P ∈ ωL. Assumption 3.1 implies that

(Yk(d) : d ∈ supp(D), k ∈ L) ⊥⊥ D|Z,U

under P . Since P ∈ ωL, we have further that Yk(d) = Yk for all k ∈ L. The desired result thus

follows.

In order to describe an important implication of Lemma 4.2, it is useful to define

hgXL = ((Yk : k ∈ L), hgD,Z)

for g ∈ GZ,u and h ∈ HZ,u. If Assumptions 3.1 - 3.4 hold, then Lemmas 4.1- 4.2 together imply

that

(XL, U)|Z,U d
= (hgXL, U)|Z,U (12)

whenever P ∈ ωL, g ∈ GZ,U and h ∈ HZ,U . This symmetry suggests that we can construct

a critical value with which to compare our test statistic by re-evaluating it at hgXL for each

g ∈ GZ,U and h ∈ HZ,U . Since U is unknown, we carry this out for each possible value of U and
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take the largest such critical value. The possible values for U can be limited by Assumptions

3.4 - 3.5 to the set U(D,MW ), where

U(d,mw) = {u ∈ {0, 1}|J | : uj = 0 whenever dj = 1 or mwj = 0} .

In other words, we may use as our critical value

c̄L(XL, 1− α) = max
u∈U(D,MW )

cL(XL, u, 1− α) , (13)

where

cL(XL, u, 1− α) = inf

t ∈ R :
1

|GZ,u||HZ,u|
∑

g∈GZ,u,h∈HZ,u

I{TL(hgXL) ≤ t} ≥ 1− α

 ,

where I{·} is the indicator function. It is worth noting that in our setting |U(D,MW )| = 218.

This idea is formalized in the following theorem:

Theorem 4.1 Under Assumptions 3.1 - 3.5, the test that rejects HL whenever

TL(XL) > c̄L(XL, 1− α) ,

where c̄L(XL, 1−α) is defined by (13) controls the usual probability of a Type I error at level α,

i.e.,

P{TL(XL) > c̄L(XL, 1− α)} ≤ α

for all P ∈ ωL.

Proof: Consider P ∈ ωL. Define

φ(XL, u) = I{TL(XL) > cL(XL, u, 1− α)} .

From Assumptions 3.4 and 3.5, we have that U ∈ U(D,MW ). Hence,

c̄L(XL, 1− α) ≥ cL(XL, U, 1− α) . (14)

It therefore suffices to show that

EP [φ(XL, U)] ≤ α . (15)

To this end, first note under Assumptions 3.1 - 3.4 that it follows from Lemmas 4.1- 4.2 for any
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g ∈ GZ,U and h ∈ HZ,U that (12) holds under any such P . Next, note that

EP

 ∑
g∈GZ,U ,h∈HZ,U

φ(hgXL, U)|Z,U

 =
∑

g∈GZ,U ,h∈HZ,U

EP [φ(hgXL, U)|Z,U ]

=
∑

g∈GZ,U ,h∈HZ,U

EP [φ(XL, U)|Z,U ]

= |GZ,U ||HZ,U |EP [φ(XL, U)|Z,U ] , (16)

On the other hand, since

cL(hgXL, U, 1− α) = cL(XL, U, 1− α)

for any g ∈ GZ,U and h ∈ HZ,U , we also have that

EP

 ∑
g∈GZ,U ,h∈HZ,U

φ(hgXL, U)|Z,U

 ≤ |GZ,U ||HZ,U |α . (17)

It follows from (16) and (17) that

EP [φ(XL, U)|Z,U ] ≤ α ,

from which the desired conclusion (15) follows immediately.

Remark 4.1 Once (12) is established, the proof of Theorem 4.1 follows the usual arguments

that underlie the validity of randomization tests. See, for example, Chapter 15 of Lehmann and

Romano (2005) for a textbook discussion of such methods. Nevertheless, we include the details

of the argument for completeness.

Remark 4.2 Note that cL(XL, u, 1−α) defined in (4.2) requires computing TL(hgXL) for every

g ∈ GZ,u and h ∈ HZ,u. In our setting, the sets GZ,u and HZ,u are sufficiently small that the

construction of the critical value is computationally feasible. In other settings, this may not be

the case and one may need to resort to a stochastic approximation to the critical value. This

can be done without affecting the finite-sample validity of the resulting test. See Section 15.2

of Lehmann and Romano (2005) for details.

Remark 4.3 It is straightforward to include additional “exogenous” variation in the way that

treatment status was reassigned. Here, by “exogenous” variation we mean variation unrelated

to outcomes, but used in determining treatment status. Such variation could be useful, for
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instance, if in Step 3 of the randomization procedure there was more than one way to exchange

participants across the two groups in order to “balance” gender and socio-economic status scores.

For example, we could allow δ to depend on an additional random variable V that enters δ1 if

gV |Z,U d
= V |Z,U

for any g ∈ G, Assumption 3.2 were strengthened so that

δ1(gd, gz, gv) = gδ1(d, z, v)

for any g ∈ G, and Assumption 3.3 were strengthened so that hδ1(d, z, v) = δ1(hd, z, v) for any

h ∈ Hz. Under these conditions, it follows by arguing as in the proof of Lemma 4.1 that (6)

holds, from which the rest of our arguments would follow. In particular, our testing procedures

would remain unchanged even if we were to allow for this type of additional variation.

Remark 4.4 An inspection of the proof of Theorem 4.1 reveals that the validity of our test

hinges crucially on part (iii) of Lemma 4.1. On the other hand, there is no reason to suspect

that

gδ(D̃, Z, U)|Z,U d
= δ(D̃, Z, U)|Z,U

for g ∈ G. For this reason, a test of (3) based simply off of permutations from G does not

necessarily control the usual probability of a Type I error. Nevertheless, because such a test has

been applied in earlier analyses of the HighScope Perry Preschool program, we include it in our

comparisons below.

Remark 4.5 In addition to the “näıve” permutation test described in Remark 4.4, Heckman

et al. (2010b) consider a test of (3) based on permutations from Gz, where, by analogy with the

definition of Gz,u given earlier, Gz is the subgroup of G that contains only g ∈ G such that

g(j) = j′ =⇒ zj = zj′ .

It is possible to justify such an approach using Lemma 4.1 provided that one assumes that

the way in which treatment status was reassigned in Step 5 of the randomization procedure

depended only on whether the participant had a single mother who was working. If one were

willing to make such an assumption, then one could simply expand Z so as to include MW

and ignore the effect of δ2 on treatment status (e.g., by setting all elements of U equal to zero).

Under Assumptions 3.2 and 3.4, it then follows from part (i) of Lemma 4.1 that

gD|Z d
= D|Z
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for g ∈ GZ . On the other hand, because MW was used in an asymmetric fashion to reassign

treatment status, Assumption 3.3 is no longer plausible, so it is not reasonable to expect parts

(ii) and (iii) of Lemma 4.1 to apply. Unfortunately, the number of permutations in GZ alone is

too small to be useful. Heckman et al. (2010b) therefore impose additional assumptions, such as

parametric restrictions about the way in which certain observed characteristics affect outcomes,

to make use of this limited number of permutations. Note further that the resulting approach

does not have the finite-sample validity of the approach developed here.

4.3 Testing Multiple Null Hypotheses

We now return to the problem of testing the family of null hypotheses (1) in a way that satisfies

(2). Under Assumptions 3.2 - 3.5, it is straightforward to calculate a p-value p̂k for each Hk

using Theorem 4.1 by simply applying the theorem with L = {k} and computing the smallest

value of α for which the null hypothesis is rejected. The resulting p-values will satisfy

P{p̂k ≤ u} ≤ u

for all u ∈ (0, 1) and P ∈ ωk. A crude solution to the multiplicity problem would therefore

be to apply a Bonferroni or Holm-type correction. Such an approach would indeed satisfy (2),

as desired, but implicitly relies upon a “least favorable” dependence structure among the p-

values. To the extent that the true dependence structure differs from this “least favorable” one,

improvements may be possible. For that reason, we apply a stepwise multiple testing procedure

developed by Romano and Wolf (2005) for control of the familywise error rate that implicitly

incorporates information about the dependence structure when deciding which null hypotheses

to reject. Our discussion follows that in Romano and Shaikh (2010), wherein the algorithm is

generalized to allow for possibly uncountably many null hypotheses.

In order to describe our testing procedure, we first require a test statistic for each null

hypothesis such that large values of the test statistic provide evidence against the null hypothesis.

As before, we impose the requirement that the test statistic for Hk depends only on X{k}. Denote

such a test statistic by Tk(X{k}). Next, for L ⊆ K, define

TL(XL) = max
k∈L

Tk(X{k}) .

Finally, for L ⊆ K, denote by c̄L(XL, 1−α) the critical value defined in (13) with this choice of

TL(XL).

Our testing procedure is summarized in the following algorithm:
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Algorithm 4.1

Step 1: Set L1 = K. If

max
k∈L1

Tk(X{k}) ≤ c̄L1(1− α) ,

then stop and reject no null hypotheses; otherwise, reject any Hk with

Tk(X{k}) > c̄L1(XL1 , 1− α)

and go to Step 2.

...

Step j: Let Lj denote the indices of remaining null hypotheses. If

max
k∈Lj

Tk(X{k}) ≤ c̄Lj (XLj , 1− α) ,

then stop and reject no further null hypotheses; otherwise, reject any Hk with

Tk(X{k}) > c̄Lj (XLj , 1− α)

and go to Step j + 1.

...

Theorem 4.2 Under Assumptions 3.1 - 3.5, Algorithm 4.1 satisfies (2).

Proof: The claim follows from Theorem 4.1 and arguments given in Romano and Wolf (2005)

or Romano and Shaikh (2010). Since the argument is brief, we include it here for completeness.

Suppose that a false rejection occurs. Let ĵ be the smallest step at which a false rejection

occurs. By the minimality of ĵ, we must have that

Lĵ ⊇ K0(P ) . (18)

It follows that

c̄Lĵ
(XLĵ

, 1− α) ≥ c̄K0(P )(XK0(P ), 1− α) . (19)

Since a false rejection occurred, we must also have that

max
k∈K0(P )

Tk(X{k}) > c̄Lĵ
(XLĵ

, 1− α) .
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Hence,

max
k∈K0(P )

Tk(X{k}) > c̄K0(P )(XK0(P ), 1− α) ,

and the probability of this event is bounded above by α by Theorem 4.1.

Remark 4.6 It is straightforward to calculate a multiplicity-adjusted p-value p̂adj
k for each Hk

using Theorem 4.2 by simply computing the smallest value of α for which each null hypothesis

is rejected. The resulting p-values have the property that the procedure that rejects any Hk

with p̂adj
k ≤ α satisfies (2).

Remark 4.7 The choice of Tk(X{k}) in Algorithm 4.1 is arbitrary, but we apply it to the

HighScope Perry Preschool data with Tk(X{k}) given by a Studentized difference in means

between the treatment and control groups for all outcomes except cognitive outcomes, in which

case we use a Mann-Whitney U -statistic. Of course, one could just as well use a more omnibus

statistic, such as a Kolmogorov-Smirnov statistic.

5 Results

We now apply the methodology developed in the preceding section to the HighScope Perry

Preschool data. We find that the program has statistically significant effects on a wide range

of outcomes even after controlling for (i) the imperfectness of the randomization and (ii) the

multiplicity of the null hypotheses under consideration. Recall that (i) involves (a) the way

in which treatment status was reassigned to “balance” certain observed characteristics as well

as (b) the way in which some participants were removed from the treatment group and placed

in the control group on the basis of unobserved characteristics. We address (i) by exploiting

symmetries in the distribution of treatment status that remain valid in the presence of both

(a) and (b) together with information limiting the extent of (b). We address (ii) by demanding

control of the familywise error rate, thereby eliminating concerns about selectively reporting

results for only a subset of these null hypotheses.

When applying Theorem 4.1 and Theorem 4.2 in this empirical setting, we discretize SESj

as an indicator denoting whether SESj exceeds the median value among all families in the same

wave. There is no loss of generality with this approach if we assume that the goal of Step 3 of

the randomization procedure was to “balance” the two groups so that their respective median

SESj values were the same. We note, however, that because we exploit HZ,u as well as GZ,u,

our inferences would remain nontrivial even if we were to adopt a much finer discretization of

SESj . Indeed, they would remain valid even if the discretization were so fine that GZ,u became

a singleton consisting of only the identity permutation for all u ∈ U(D,MW ).
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We analyze seven conceptually distinct “blocks” of outcomes, each of which is of independent

interest: one related to IQ measures, a second related to achievement measures, a third related

to educational attainment, a fourth related to criminal activity, and three related to employment

at ages 19, 27 and 40. We divide the data further by gender. We correct for the multiplicity of

outcomes within each of these fourteen blocks of outcomes. See Heckman et al. (2010b) for a

discussion of why it is sensible to “block” outcomes in this way. Because of our limited sample

size, we adopt the convention that null hypotheses with p-values less than or equal to .10 are

statistically significant.

The results of our analysis are presented in Tables 1 and 2 for males and females, respectively.

The first column of each table displays the outcome analyzed. The second column gives the age

at which the outcome is measured. The third and fourth columns contain, respectively, the mean

value of the outcome for the control group and the difference in means between the treatment

group and the control group. The remaining columns present p-values from various testing

procedures:

• The column under the heading “Asymp.” presents (multiplicity) unadjusted p-values from

a one-sided test based on comparing a Studentized difference of means with a critical value

computed from a normal approximation.

• The two columns under the heading “Näıve” display, respectively, the unadjusted and

adjusted p-values based on the näıve application of a permutation test in this setting. In

other words, these p-values are based on the unrestricted set of permutations G rather

than GZ,u and HZ,u.

• The two columns under the heading “U = 0” display, respectively, the unadjusted and

adjusted p-values derived from applying Theorem 4.1 and Theorem 4.2 assuming that

U(D,MW ) = {{0}|J |}, i.e., ignoring the effect of Step 5 of the randomization procedure.

• The two columns under the heading “Max-U” display, respectively, the unadjusted and

adjusted p-values derived from applying Theorems 4.1 and 4.2.

Note that the “Näıve” p-values do not account for the imperfectness in the randomization

stemming from either (a) or (b) above. For that reason, as discussed in Remark 4.4, there is no

reason to suspect that these p-values are valid, but they are included here for comparison. Note

further that by construction the “Max-U” (un)adjusted p-values are smaller than the “U = 0”

(un)adjusted p-values. The “Näıve” (un)adjusted p-values, however, may be either larger or

smaller than the “U = 0” (un)adjusted p-values.

Our findings are broadly consistent with those in Heckman et al. (2010b). They are summa-

rized as follows:
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Cognition: The top panels of Tables 1 and 2 present our evidence on cognitive abilities as

measured by Stanford-Binet IQ score at different ages and various California Achievement

Test (CAT) scores at age 14. The “Näıve” adjusted p-values suggest a statistically signif-

icant effect on Stanford-Binet IQ scores for both males and females at young ages. These

findings survive the more stringent “Max-U” adjusted p-values for the youngest age. The

“Näıve” adjusted p-values also suggest a significant effect on various CAT scores at age 14

for both males and females. These inferences weaken for females in the “Max-U” adjusted

p-values, but for males are generally stronger using the “Max-U” adjusted p-values than

the “Näıve” adjusted p-values.

Schooling: The third block in Tables 1 and 2 present our findings for four educational

attainment measures. None of the adjusted p-values show any significant effect of the

program on schooling for males. For females, the “Näıve” and “U = 0” adjusted p-values

show significant effects for all schooling outcomes, and two of these null hypotheses are

rejected even in the “Max-U” adjusted p-values. We find that the effects of the program

on High School Graduation and GPA for females remain statistically significant even after

accounting for both the imperfectness of the randomization and the multiplicity of null

hypotheses.

Crime: The fourth block in Tables 1 and 2 present our findings for four outcomes related

to criminal activity. These outcomes are of special importance since reductions in crime

are important contributors to the significant rate of return estimates reported in Heckman

et al. (2010c). “Total crime cost” includes victimization, police/court, and incarceration

costs. See Heckman et al. (2010c) for a more detailed discussion of this variable and its

contribution to the rate of return of the program. “Non-victimless charges” refer to felony

crimes associated with substantial costs to crime victims. Victimless charges, on the other

hand, refer to illegal activities, such as illegal gambling, drug possession, prostitution, and

driving without a license plate, that do not produce victims.

The “Näıve” adjusted p-values suggest a statistically significant effect of the program on all

outcomes for females and for two outcomes for males. Only one of the significant findings

for females survives in the “U = 0” and “Max-U” adjusted p-values – “Total charges.”

On the other hand, we find statistically significant effects on all four outcomes for males

in the “U = 0” adjusted p-values. Only one of these survives in the “Max-U” adjusted

p-values – “Total non-victimless crimes.”

Employment: The final three panels in Tables 1 and 2 present our findings for three

outcomes related to employment measured at different ages. The “Näıve” adjusted p-

values show a statistically significant effect on only one outcome related to employment
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for males – current employment measured at age 40. The “U = 0” adjusted p-values show

a statistically significant effect on the “number of jobless months in the past two years

measured at age 27.” This effect survives even in the “Max-U” adjusted p-values. The

“Näıve” adjusted p-values show a significant effect on almost all outcomes for females.

The number of statistically significant effects decreases substantially using the “U = 0”

adjusted p-values, and disappears entirely for outcomes measured at age 27. Only effects

on outcomes measured at age 19 persist in the “Max-U” adjusted p-values.

6 Conclusion

This paper develops and applies a framework for inference about the effects of a program on

multiple outcomes when the assignment of treatment status is imperfectly randomized. The

key idea that underlies our approach is to make use of information limiting the extent to which

randomization is imperfect. Using this approach, we have constructed under weak assumptions

a procedure for testing the family of null hypotheses in which each null hypothesis specifies that

the program had no effect on one of several outcomes of interest that controls the familywise

error rate in finite samples. We use our methodology to reanalyze data from the HighScope Perry

Preschool program. The reported beneficial long-term effects for the HighScope Perry Preschool

program are a cornerstone in the argument for early childhood intervention in the United States.

We find statistically significant effects of the program for both males and females, thereby

showing that some of the criticisms regarding the reliability of this evidence are not justified.

We believe our framework will be useful in analyzing other studies where randomization is

imperfect, provided that the information limiting the extent to which randomization is imperfect

is available, as it is in the case of the HighScope Perry Preschool program.
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ä
ıv

e
p

e
rm

u
ta

ti
o
n

te
st

.
T

h
e

tw
o

c
o
lu

m
n
s

u
n
d
e
r

th
e

h
e
a
d
in

g
“
U

=
0
”

d
is

p
la

y
,

re
sp

e
c
ti

v
e
ly

,
th

e
u
n
a
d
ju

st
e
d

a
n
d

a
d
ju

st
e
d

p
-v

a
lu

e
s

d
e
ri

v
e
d

fr
o
m

a
p
p
ly

in
g

T
h
e
o
re

m
4
.1

a
n
d

T
h
e
o
re

m
4
.2

ig
n
o
ri

n
g

S
te

p
5

o
f

th
e

ra
n
d
o
m

iz
a
ti

o
n

p
ro

c
e
d
u
re

b
y

se
tt

in
g

U
(D

,
M

W
)

=
{{

0
}|

J
| }

.
T

h
e

tw
o

c
o
lu

m
n
s

u
n
d
e
r

th
e

h
e
a
d
in

g
“
M

a
x
-U

”
d
is

p
la

y
,

re
sp

e
c
ti

v
e
ly

,
th

e
u
n
a
d
ju

st
e
d

a
n
d

a
d
ju

st
e
d

p
-v

a
lu

e
s

d
e
ri

v
e
d

fr
o
m

a
p
p
ly

in
g

T
h
e
o
re

m
4
.1

a
n
d

T
h
e
o
re

m
4
.2

.

26



T
a
b
le

2
:

R
es

u
lt

s
fo

r
F

em
al

es

O
u

tc
o
m

e
A

g
e

C
o
n
tr

o
l

M
e
a
n

D
iff

-i
n

-
M

e
a
n

s

p
-V

a
lu

e
s

A
sy

m
p

.
N

ä
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