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ABSTRACT

Dating business cycles entails ascertaining economy-wide turning points.  Broadly speaking, there
are two approaches in the literature.  The first approach, which dates to Burns and Mitchell (1946),
is to identify turning points individually in a large number of series, then to look for a common date
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This paper examines these two approaches to the identification of turning points.  We provide a nonparametric
definition of a turning point (an estimand) based on a population of time series.  This leads to estimators
of turning points, sampling distributions, and standard errors for turning points based on a sample
of series.  We consider both simple random sampling and stratified sampling.  The empirical part of
the analysis is based on a data set of 270 disaggregated monthly real economic time series for the U.S.,
1959-2010.
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1. Introduction 

The determination of business cycle turning points is a classic problem in 

economic statistics.  Many of our basic notions of the lead-lag relations among 

macroeconomic time series are informed by traditional methods of dating turning points 

for individual series and comparing them to turning points of the overall economy.  

Chronologies of business cycle turning points (in the jargon, reference cycle 

chronologies) are currently maintained in the United States by the NBER Business Cycle 

Dating Committee, in Europe by the CEPR, and by similar organizations in other 

countries. 

This paper compares two approaches to dating business cycles.  The dominant 

current approach, both in the academic literature and in the real-time practice of dating 

committees, is to date reference cycles by focusing on one, or a few, highly aggregated 

time series.  Hamilton (2010) surveys the academic literature on identifying peaks (dating 

and predicting recessions). All the methods he discusses define recessions or turning 

points in terms of single highly aggregated series such as GDP or a monthly index of 

coincident indicators.  Press releases of the NBER Business Cycle Dating Committee 

indicate that its current practice is to focus on a few highly aggregated series; for 

example, the press release announcing the 2007:12 peak (NBER (2008)) gives greatest 

weight to three aggregates (establishment employment, GDP, and GDI), gives secondary 

weight to five more aggregates (industrial production, household employment, real 

manufacturing and trade sales, real personal income less transfers, and monthly 

consumption), and mentions no other series.  We will use the term “average then date” to 
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describe the dating of reference cycles using a single highly aggregated series, such as 

GDP. 

As Harding and Pagan (2006) point out, this average-then-date approach contrasts 

with the approach of the pioneers of business cycle dating, who considered a large 

number of disparate disaggregated series, identified turning points in those disaggregated 

series, then determined reference cycle turning points based on the distribution of the 

turning points of the disaggregated series; see Burns and Mitchell (1946, p. 13 and pp. 

77-80).  We refer to this latter approach as “date then average.”   

  This paper makes five contributions to the literature on dating reference cycles.  

The first is to specify a nonparametric estimand which constitutes a population definition 

of a turning point.  The estimand we focus on is the local mode of the population 

distribution of turning points of disaggregated coincident economic indicators, although 

we consider other local measures of central tendency as well.1  This nonparametric 

population definition of an estimand contrasts with methods in which turning points are 

                                                 
1An alternative would be to consider the mode if a clear mode exists or, if not, the end of 

a plateau in the population distribution of turning points.  This alternative is consistent 

with Burns and Mitchell (1946, pp. 77-80): “In many cases the turning points of different 

series were bunched so closely that we could not go far astray.  But there were cases in 

which the turning points were widely scattered, and others in which they were 

concentrated around two separate dates.  If there was little else to guide us, we placed the 

reference turn toward the close of the transition period.”  It is not clear how to formulate 

this “close of transition period” scheme mathematically so we restrict attention to local 

measures of central tendency, with primary focus on the mode.  See Harding and Pagan 

(2006, Section 4) for additional discussion of the role of clusters in Burns and Mitchell 

(1946). 
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defined within a parametric model (e.g. Hamilton (1989)), are defined by an algorithm 

applied to a realization of series (e.g. Harding and Pagan (2006), in which a turning point 

is a sample, not population, concept), or are based on expert judgment.  Second, with an 

estimand in hand we undertake statistical inference for date-then-average business cycle 

turning points.  For example, we use asymptotic theory for the kernel estimator of the 

mode to compute confidence intervals for reference cycle dates estimated from turning 

points of a random sample of disaggregated series.  Third, in the data set we use, some 

series are available for only a subset of the period and the series are sampled such that 

different high-level aggregates are not equally represented, and the possibility arises that 

these departures from simple random sampling could introduce bias by overweighting 

certain leading or lagging series.  We therefore provide and implement methods for 

adjusting for these sampling irregularities using a stratified sampling framework.  Fourth, 

the empirical work uses a large number of disaggregated series; specifically, the data set 

consists of 270 monthly real economic activity indicators for the United States, 1959:1 – 

2010:9, where the series are components of four categories of indicators: employment, 

industrial production, personal income, or sales.  Fifth, this paper also makes a 

contribution to the average-then-date literature by considering chronologies based on 

three new monthly measures of GDP developed in Stock and Watson (2010a): an 

expenditure-based monthly GDP (MGDP-E), an income-based monthly GDP (MGDP-I), 

and their geometric average (MGDP). 

There is a fairly large literature on business cycle dating using modern time series 

methods, recently surveyed by Hamilton (2010).  The papers most closely related to this 

one are Harding and Pagan (2006), Chauvet and Piger (2008), and Stock and Watson 
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(2010b).  Harding and Pagan (2006) is the first modern paper we are aware of to attempt 

to formulate the Burns and Mitchell (1946) approach of establishing reference cycle 

turning points from turning points of multiple individual series.  Chauvet and Piger 

(2008) implement the Harding-Pagan (2006) approach in real time and compare it with 

an average-then-date chronology based on a Hamilton (1989) Markov switching filter.  

Both Harding and Pagan (2006) and Chauvet and Piger (2008) consider a small number 

of series (four), and neither provide a statement of the estimand or standard errors.  Stock 

and Watson (2010b) present preliminary results on reference cycle turning points 

estimated using the 270-series data set. Their turning points are computed as unadjusted 

means of individual-series turning points; the results provided here improve upon Stock 

and Watson (2010b) by estimating in addition the mode and the median and by adjusting 

for data irregularities. 

The date-then-average methods are described in Section 2 and the average-the-

date methods are described in Section 3.  The data set and the empirical results are 

presented in Section 4, and Section 5 concludes. 

 

2.  Date-then-Average Methods for Reference Cycle Dating 

We consider the problem of dating a reference cycle turning point (peak or 

trough), conditional on the event that a single turning point occurred in a given episode 

covering a known time span.  This corresponds to a situation in which it is known that a 

recession occurred during a particular time interval and all that remains is to date the 

peak within this interval.  Conditioning on an episode known to contain a peak or trough 

is done as an analytical simplification.  An extension of the methods here would be to 
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examine estimators that determine simultaneously whether there is a recession and the 

date of the recession (as in the Harding-Pagan (2006) algorithm). 

This section first describes date-then-average reference cycle dating with a simple 

random sample of series.  In our data set, sampling is better thought of as stratified 

sampling with unequal weights and long periods of missing data, and we propose two 

modifications of the methods for simple random sampling to handle these data 

irregularities.  Throughout this paper, turning points for individual series are calculated 

using the Bry-Boschan (1971) algorithm.2 

2.1 Dating Using a Simple Random Sample of Disaggregated Series  

We imagine a population of economic time series, each of which measures a 

different aspect of economic activity; we approximate this population as being infinitely 

large.  In general, a member of this population has turning points.  Thus in a given 

episode s, which covers a known time interval, there exists a population distribution of 

dates of turning point of specific series in the population.  Letting  denote the turning 

point of an individual series, we denote this population distribution of turning points as 

gs().  The estimand, that is, the reference cycle turning point, is defined as a functional 

of this distribution.  For reasons discussed in the introduction, we focus on the mode, 

which we denote mode
sD , however we also consider the median ( med

sD ) and the mean 

( mean
sD ). 

                                                 
2 The first step of the Bry-Boschan algorithm entails a nearly-centered 15-month moving 

average.  We found that this occasionally produced some anomalous results, specifically 

peaks lower than their counterpart troughs, and that these anomalies were eliminated by 

using a centered 3-month moving average.  The results reported in this paper therefore all 

use the three-month moving average in the first Bry-Boschan setp. 
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The mean, median, and mode of the distribution gs can be estimated from a 

sample of turning points, {is}, i = 1, … , ns where is is the turning point date of series i 

in episode s and ns is the number of turning points observed in episode s.  Let meanˆ
sD , 

medˆ
sD , and modeˆ

sD  respectively denote the sample mean, median, and mode computed 

using the sample {is}.  We compute the mode as the mode of a kernel density estimator 

ˆ sg  of gs, with kernel K and bandwidth h. 

If the sample of series is obtained by simple random sampling from the 

population of series then the turning points are i.i.d. and the asymptotic distributions of 

the three estimators are,  

 

sn ( meanˆ
sD  – mean

sD ) d  N(0, 2
,s ),     (1) 

sn  ( medˆ
sD  – med

sD ) d  
med 2

1
0,

4 ( )s s

N
g D

 
 
 

, and    (2) 

3
sn h ( modeˆ

sD  – mode
sD ) d  

 2mode

2mode

( ) '( )
0,

''( )

s s

s s

g D K z dz
N

g D

 
 
    

 ,  (3) 

 

where 2
,s  = var(is) in episode s. Result (3) for the estimator of the mode dates to Parzen 

(1962), also see Romano (1988) and Ziegler (2003); for this result the bandwidth 

sequence hn satisfies hn → 0, 3
nnh  → ∞.   The variances in (1) – (3) are consistently 

estimable using kernel estimators of gs and its second derivative, gs. 

2.2  Adjusting for Weighted Random Sampling: Lag Adjustment  
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As is discussed in Section 4, in our data set components of industrial production 

are more heavily represented than components of personal income, and the relative 

number of components varies over time.  If turning points in industrial production 

systematically lead turning points in personal income then treating our sample of turning 

points as a simple random sample will bias the estimator towards an estimated reference 

cycle turning point that leads the population reference cycle turning point. 

We model this problem of unequal representation of classes of series as one of 

stratified sampling, in which the initial stratum is the class of series (such as industrial 

production).  The subaggregate (such as industrial production of primary metals) is then 

randomly sampled within the class.  The number of observations (series) differs from one 

class to the next.  This results in some classes of series receiving larger weight in the 

sample than in the population.  Bias arises if turning points in a class of series lead or lag 

the population reference cycle turning point and if the sample and population weights 

differ by series class.   

We use two different procedures for adjusting for discrepancies between sample 

and population weights by series class: lag adjustment and weighted estimation.  Both 

procedures involve weighting by the ratio of population to sample probabilities.  Let m 

index classes of series, let M be the number of classes (which we take to be finite), let mi 

be the class containing series i, let m be the population probability assigned to class m, 

and let pms be the fraction of series of class m in the sample of turning points for episode 

s.  Then the ratio wis of population weights to sample weights for series i in episode s is, 

 

wis = i

i

m

m sp


.       (4) 
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Lag adjustment by class.  The first procedure exploits the panel nature of the data 

set by estimating a mean lag for each series.  Let series in class m have a population mean 

lag km, relative to the reference cycle date  Then we can write the turning point of the ith 

series in episode s as the sum of the population mean reference cycle turning point mean
sD , 

the mean lag for its class, and a discrepancy is: 

 

is = mean
sD  + 

imk + is.       (5) 

 

The reference cycle turning point is identified as the mean by assuming that Eis = 0 and 

that km are normalized so that the mean lag in population is zero.  This latter condition 

corresponds to 
1

M

m mm
k

  = 0. 

The lag adjustment procedure has two steps.  First, {km} in (5) are estimated by 

restricted least squares, subject to the restriction that 
1

M

m mm
k

  = 0; this yields the 

estimators { ˆ
mk }.  Second, the sample of adjusted turning points is constructed as is  = is 

– ˆ
imk .  The mean, median, and mode estimators are then computed episode-by-episode 

using the lag-adjusted data, { is }. 

2.3  Adjusting for Weighted Random Sampling: Weighted Estimation 

The second procedure for adjusting for weighted random sampling involves 

weighting the sample so that the sample weights on individual observations (that is, 

series-specific turning points) match the population weights. 
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Let gms denote the distribution of turning points among series of class m in 

episode s.  The population distribution of turning points in episode s is then gs = 

m msm
g , where the sum is over the finitely many classes of series.  Because the Bry-

Boschan algorithm produces integer-valued turning points, the raw data consist of 

histograms of turning point dates for each class of series, by episode.  The weighted 

estimation schemes are all based on weighting these histograms of turning points by class 

to yield a weighted histogram, where the weights are the ratio of the population to sample 

weights.  Specifically, the weighted histogram for episode s is ˆ ( )hist wtd
sg t  = 

1 1
1( )s sn n

is is isi i
w t w

 
  .  The weighted mean and median are computed directly from 

the weighted histogram.  The weighted mode is computed as the mode of the kernel 

density estimator computed by smoothing ˆ hist wtd
sg  . 

Variances for the weighted mean and median estimators are, 

 

var( mean,wtdˆ
sD )  = 

2
2m
ms

m msn

 
 
 
 

        (6) 

var( med,wtdˆ
sD )  = 

2

2

( ) 1 ( )

( )

med med
ms s ms sm

med
m ms s s

G D G D

n g D

     
 
 

   
2

2

1 1

4 ( )
m

med
ms s s mn g D p

 
 
 

 , (7) 

 

where Gms is the cdf corresponding to gms. 

Because the terms in the first summation in (7) are poorly estimated, standard 

errors for the weighted median in the empirical work are computed using the bound in the 

final expression in (7). 
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The variance of the weighted mode is that given in (3) for the mode under simple 

random sampling, with the modification that gs is reinterpreted as the weighed density.  

Standard errors for the mode of the weighted distribution are computed using the kernel 

smoother of the weighted histogram to estimate gs.
3 

 

3.  Average-then-Date Methods 

Dating using aggregates entails identifying turning points (here, using the Bry-

Boschan algorithm) in an aggregate measure of economic activity.  We consider six such 

measures.  Three of these are indexes of coincident economic indicators, constructed as 

weighted average of four monthly aggregates: industrial production (IP), nonfarm 

employment (EMP), real manufacturing and wholesale-retail trade sales (MT), and real 

personal income less transfers (PIX).  The remaining three measures of aggregate activity 

are monthly estimates of quarterly GDP.  We use data on the aggregates series from 

1959:1 – 2010:6. 

3.1  Indexes of coincident economic indicators. 

Let Xit denote one of the four series (IP, EMP, MT, and PIX) in native units in 

period t, so i = 1,…, 4, and let yit = ln(Xit).  We consider three indexes Ct constructed 

from these series. 

                                                 
3 The idea of stratified sampling could be carried further than we do here by including 

additional substrata.  For example, below manufacturing and trade sales there exists an 

industry stratum, e.g. durables manufacturing, nondurables manufacturing, etc.  We have 

assumed independence across turning points within our single-stratum sampling unit (e.g. 

among components of manufacturing and trade sales).  One could relax this by allowing 

for clustering at a lower stratum.  This extension to clustered standard errors is left to 

future work. 
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1. The index published monthly by The Conference Board (TCB), which is 

normalized to equal 100 in 2004:7. 

2. An index constructed by inverse standard deviation weighting (ISD): ISD
itC  = 

4

1
exp ln( )i iti

X


 
  , where i = 

41 1

1i jj
s s 

  and si is the (full-sample) 

standard deviation of yit.  The index is normalized to equal 100 in 2004:7. 

3. An index constructed as the estimated common factor from a dynamic factor 

model of the four variables, with a single factor (DFM).  The model is similar 

to that in Stock and Watson (1989), with different lag specification.  The 

model used here is, 

 

yit = i + ift + uit 

ft = f + ift−1 + 2ft−2 + t 

uit = i1uit−1 + i2uit−2 + eit 

1

2

3

4

t

t

t

t

t

e

e

e

e

 
 
 
 
 
 
  

 ~ i.i.d. 
1

2

3

4

0 0 0 00

0 0 0 00

N , 0 0 0 00

0 0 0 00

0 0 0 00









   
   
   
   
   
   
       

 

 

The parameters are estimated by Gaussian maximum likelihood, using data 

that have been adjusted for outliers.  Let the steady-state Kalman smoother 

estimator of f be ft/T = 0 + 
4

1
ij it k

i k

y



 
  ; the model parameters are 
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normalized so that 0 = 0 and 
4

1
ij

i k




 
  = 1.  Let /

ˆ
t Tf denote smoothed values 

computed using the estimated parameters, applied to yit computed using the 

original data (not outlier-adjusted).  The DFM coincident index is DFM
tC  = 

/
ˆexp( )t Tf , which is then scaled to equal 100 in 2004:7. 

Table 1 gives the weights for the three indexes.  These indexes have quite 

different implied weights.  The ISD index puts nearly half the weight on employment and 

very little on IP and MT.  In contrast, the DFM index places over half the weight on IP 

and very little on EMP.  The weights for the TCB index are quite close to the inverse 

standard deviation weights.  It is important to note that one reason the chronologies based 

on these different indexes differ is that by weighting the different series differently, the 

indexes have different average growth rates and different standard deviations, which 

leads to different periods of negative growth. 

3.2 Monthly GDP 

We also consider dates based on three monthly measures of real GDP.  

Construction of these measures is described in Stock and Watson (2010a).  Briefly, there 

are two separate measures, an expenditure-based monthly GDP which, following 

Nalewaik (2011) we refer to as GDP(E), and an income-based monthly GDP, which we 

refer to as GDP(I).  Nominal monthly GDP(E) is estimated as the sum of eight 

components (consumption, investment - nonresidential structures, investment – 

residential structures, investment – equipment and software, change in inventories, 

exports, imports, and government purchases).  Some of these are observed on a monthly 

basis.  For components that are only reported quarterly, the quarterly values are 



 14

distributed using a state space model in which the monthly concept is modeled as a latent 

series that is correlated with observable monthly series chosen to be conceptually close to 

the specific component.  Real monthly GDP(E) is computed from the nominal series 

using a monthly interpolation of the PCE price deflator.  Nominal and real monthly 

GDP(I) are computed analogously, using six components (employee compensation, 

proprietors’ income, rental income, net interest, corporate profits, and other). 

We also use an estimate of monthly GDP that combines the expenditure- and 

income-based estimates.  This combined series, GDP(Avg), is computed as the geometric 

average of GDP(E) and GDP(I). 

 

4. Empirical Results 

4.1  The Disaggregated Data Set 

The disaggregated data set consists of 270 components of industrial production 

(69 distinct component series), nonfarm employment (95 series), real manufacturing and 

wholesale-retail trade sales (92 series), and real personal income less transfers (14 series).  

All data are monthly for the United States, with a maximum span of 1959:1 – 2010:9 

(621 months).  The series and the spans for which they are available are listed in 

Appendix A. 

The monthly growth rates of the 270 series, divided by their standard deviation, is 

displayed as a heat chart in Figure 1. (Figures 1-3 are presented in gray scales as 

supplemental Figures S-1, S-2, and S-3.)  The vertical axis is series number as given in 

Appendix A, the horizontal axis is time in months.  Blue denotes periods of positive 

growth, yellow denotes moderately negative growth, and red denotes strongly negative 
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growth.  The rectangular gray swaths in Figure 1 represent missing data. The most 

relevant features of Figure 1 for the current purpose are the vertical yellow-red bands.  

Because the horizontal axis is calendar time, the vertical yellow-red bands show periods 

in which many of the component series were experiencing negative growth. 

The periods of negative growth are more apparent in Figure 2, which is an 

enhanced version of Figure 1.  Specifically, Figure 2 plots [–zit], where zit growth rate 

of series i, divided by its standard deviation,  is the cumulative normal distribution 

function., and    is a scale factor  chosen to sharpen the image.  The NBER-dated 

postwar recessions clearly stand out as dark red vertical bands.  From the perspective of 

dating turning points, the beginning of each red band suggests a reference cycle peak and 

the end of the band suggests a trough. 

Figure 3 plots series-specific recession episodes, where a series-specific recession 

is defined to be the period from a Bry-Boschan peak to a Bry-Boschan trough.  The 

NBER recessions remain clearly visible in Figure 3.  It is evident that there is 

considerable dispersion of specific-series turning points around the beginning and end of 

the recessions.  In addition, there are evidently many more or less random specific-series 

recessions that do not align with recessions in other series. 

As discussed above, our analysis focuses on dating turning points, conditional on 

a turning point having occurred.  Figures 1-3 suggest that the disaggregated series would 

also be useful for ascertaining whether a turning point has occurred – that is, determining 

the presence of a vertical band – but we do not pursue that.  Henceforth, we focus on data 

by episode, where an episode is defined to be the NBER turning point date  12 months. 

4.2  Results:  Reference Cycle Chronologies 
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We begin with reference cycle chronologies computed using the aggregate 

monthly series, then turn to chronologies based on the distribution of turning points in the 

disaggregated series. 

Average-then-date chronologies.  Figure 4 plots two of the monthly aggregate 

series, the inverse standard deviation-weighted coincident index (CI-ISD) and the 

combined monthly GDP series GDP(Avg).  The vertical lines in Figure 4 represent the 

reference cycle chronologies based on the plotted series and the NBER chronology.  The 

coincident index is more cyclically volatile than the monthly GDP series.  One notable 

difference between the two series is that monthly GDP plateaus during 2001 but the Bry-

Boschan algorithm does not indicate a recession;  this is not surprising because quarterly 

(expenditure-based) GDP declines for only one quarter, and grows over every two-

quarter period, during this episode.  In most episodes, however, turning points based on 

the two series coincide and also coincide with the NBER chronology. 

The chronologies based on all six monthly aggregates (the three coincident 

indexes and the three monthly GDP series) are summarized in Table 2, as leads or lags 

relative to the NBER date.  The coincident indexes produce the same turning points in 9 

of the 16 cases, and are within a month of each other in all but 4 cases.  Notably, the 

DFM index, which puts considerable weight on industrial production, dates the 1969:12 

and 1980:1 peaks earlier than the other coincident indexes, and the TCB index dates the 

2001:11 trough four months later.  Of these three indexes, the CI-ISD comes the closest 

to matching the NBER chronology, with a mean absolute difference between its 

chronology and the NBER chronology of 0.7 months; the only discrepancy between the 

CI-ISD and NBER chronologies exceeding two months is the 2001:3 peak. 
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The monthly GDP(E) chronology differs substantially from the NBER 

chronology and the coincident index chronologies:  it dates 5 turning points earlier than 

the corresponding NBER date, by as much as 10 months, and does not identify a 

recession in 1980 or 20014.  The GDP(I) chronology does not identify a recession in 1970 

and dates the 2007:12 peak 12 months earlier, but otherwise is close to the NBER 

chronology.  The final column of the table displays the chronology for the 

Macroeconomic Advisors monthly GDP series, which is available only since 1992:4.  

Like GDP(E), this series does not detect a recession in 2001 and dates the 2007:12 peak 1 

months later than the NBER. 

Date-then-average chronologies.  Table 3 reports three sets of date-then-average 

chronologies based on the 270-series disaggregated data set, along with their standard 

errors.5  The first set of chronologies, reported in the first three columns of results, are 

unadjusted turning point estimates, for which the series are treated as if they resulted 

from simple random sampling (Section 2.1).  The next block of three columns reports 

chronologies based on the weighted lag adjustment procedure described in Section 2.2, 

with class-specific fixed effects as in (5).6  The final block of columns reports the results 

of weighted estimation, computed following Section 2.3.  The lag-adjusted and weighted 

estimation methods require population weights 1,…, 4 for the four classes of series.  

                                                 
4 GDP(E) declined sharply in 1980, however the decline only lasted 5 months so it is not 

identified as a recession by the Bry-Boschan algorithm. 

5The kernel density estimator ŝf  was computed using the biweight kernel, K(z) = 

(15/16)(1 – z2)2, for which  2'( )K z dz  = 2.1429, with bandwidth h = 4 months.  

6 The class-specific estimated lags (km in the notation of (5)) are -0.82 for IP, 2.65 for 

EMP, -1.12 for MT, and -2.01 for PIX. 
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The results in Table 3 use population weights of 0.3 for IP, EMP, and MT, and 0.1 for 

PIX.  This choice of unequal weights was made for the practical reason that in some 

episodes there are very few (as few as 2) PIX subaggregate turning points so the 

weighting scheme of Section 2.3 results in those series getting very large weights and 

produces some outliers.  The large weights and outliers call into question the validity of 

the asymptotic standard errors.  Results based on equal population weights for the four 

classes are discussed below as a sensitivity check. 

The date-then-average chronologies in Table 3 have three noteworthy features.   

First, the standard errors of the estimated turning points are fairly small, in most cases in 

the range 0.5 to 0.8, so that a typical confidence interval for a turning point is 1 to 1.6 

months.  The standard errors tend to be larger for earlier episodes, which is consistent 

with the number of series increasing over the course of the sample.   

Second, even though the sample does not have equal representation of the classes 

of series, using the adjusted methods (lag adjustment and weighted estimation) makes 

surprisingly little difference to the estimated chronology.  For example, the greatest 

difference between the mode chronology using no adjustments, compared with the 

weighted mode, is 0.5 months. 

Third, the mean, median, and mode estimates typically agree rather closely when 

computed using the same adjustment procedure (unadjusted, lag-adjusted, or weighted), 

although there are several episodes in which the three estimators differ by up to two 

months.  In this sense, choice of estimand matters for the resulting chronology, at least in 

some episodes. 
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Fourth, in most episodes the date-then-average chronologies are very close to the 

NBER chronology, but there are a few episodes with notable differences.  For example, 

the weighted mode chronology differs from the NBER chronology by less than one 

month in 12 of the 16 episodes.  However, all the date-then-average chronologies date the 

1969:12 and 2001:3 peaks earlier than the NBER., and for these peaks the difference 

between the date-then-average turning point and the NBER turning point is statistically 

significant at the 5% level for nearly all estimators in the table. 

Sensitivity analysis.  We briefly discuss two other sets of results as sensitivity 

checks.  First, Table 2 was also computed using equal population weights, that is, 1 = … 

= 4 = 0.25.  This affects only the second two blocks of results (lag-adjusted and 

weighted estimation).  Using equal population weights produced changes for the class-lag 

adjusted estimates of typically 0.1 months or less.  The weighted mean and median 

chronologies changed somewhat more, but still by less than 0.5 months.  The only 

substantial change was two dates for the weighted mode, for which the equal weighting 

scheme produced highly influential outliers. 

Second, we also computed lag-adjusted chronologies using series-specific lags 

instead of class lags, so that (5) has series-specific lags instead of class-specific lags.  For 

most episodes the results using series-specific lags are similar to the results in Table 2, 

but for some episodes they differ from the Table 2 results and the series-specific lag 

adjusted mean, median, and mode also differ from each other.  Overall, the resulting 

chronologies are outliers, relative to those in Table 2 (including the NBER chronology).  

We view this as a result of limitations of the data.  In our unbalanced panel there are 

many series that appear in only a few episodes, so series-specific lags are in many cases 
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poorly estimated.  Some results based on the counterpart of (5) using series-specific lags, 

but without weighting (and thus not addressing the bias problem) are presented in Stock 

and Watson (2010b). 

Third, we recomputed the estimates in Table 3 using a wider episode band of 15 

months on each side of the NBER date instead of 12 months.  (At the time of writing, 

fewer than 15 months of data are available since the 2009:6 trough so we excluded that 

trough from this sensitivity check.)  The sensitivity of the results to the width of the 

episode depends on the estimator:  the mean is the most sensitive, followed by the 

median, and the mode is the least sensitive.  For example, the weighted mean estimate of 

the 2001:11 trough, relative to the NBER date, changes from +0.6 months using a 12-

month episode band to +2.0 months using a 15-month episode band, whereas the 

weighted mode only changed from +0.6 months to +0.7 months.  This robustness of the 

mode, and lack of robustness of the mean, to the episode width is not surprising, and this 

robustness is another virtue of the mode as a turning point estimator. 

4.3  Four Episodes: 1969:12, 1991:3, 2001:3, and 2007:12 

We now take a closer look at four episodes in which there is disagreement among 

the methods examined in Tables 2 and 3. 

The 1969:12 peak.  The date-then-average methods in Table 3 all date the 

1969:12 NBER peak as having occurred between 1.3 and 2.4 months earlier, so that (after 

rounding) the peak would be 1969:10.  Of the average-then-date methods in Table 2, the 

TCB and ISD chronologies also date 1969:10, whereas the DFM, GDP(E), and 

GDP(Avg) chronologies place the peak in 1969:8.  The GDP(I) series does not detect a 

Bry-Boschan recession in 1969-70. 
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Figure 5a plots the weighted histogram and kernel density estimate of peak 

turning point dates in the 1969:12 episode, and Figure 5b plots two monthly aggregates 

over this episode, monthly GDP(Avg) and the inverse standard deviation-weighted 

coincident index.  The weighted mode of 1969:10 is clearly visible in the kernel density 

plot and in the weighted histogram.  The 1969:8 turning point in GDP(Avg) is due to a 

local peak that is slightly higher than the 1969:10 local peak.  August 1969 is not a local 

mode in Figure 5a in either the histogram or the kernel density estimate, nor does it 

constitute an end-of-transition-period date (rather it is near the beginning of the cluster of 

turning points from 1969:7 to 1969:12.  The date-then-average evidence is consistent 

with the average-then-date evidence that the peak occurred earlier than 1969:12.  Of the 

two dates suggested by the average-then-date chronologies, the date-then-average 

evidence points to the later one, October 1969. 

The 1991:3 trough.  This episode is interesting because the date-then-average 

trough estimates based on the means in Table 3 are approximately 2 months later than the 

median and mode estimates.  Moreover, the median and mode estimates are close to the 

average-then-date troughs, which in all cases except GDP(I) and GDP(Avg) coincide 

with the NBER trough.  The reason for the divergent mean estimate is evident in Figure 

6a.  That figure shows two clusters of turning points, the main cluster from 1990:12 to 

1991:7, and a smaller cluster in early 1992.  The mode and median are in the first cluster 

which aligns with the average-then-date and NBER chronologies.  The mean averages in 

observations in the second, later cluster and thus produces an estimate that lags the 

others.  The discussion in Burns and Mitchell (1946) cited above is consistent with 

selecting a turning point in the first cluster, which has a distinct mode.  The 95% 
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confidence interval for the trough based on the unweighted mode is (1991:2.8, 1991:4.6), 

which contains 1991:3.  In this instance, then, the date-then-average analysis confirms the 

average-then-date and NBER trough date of 1991:3.  This discussion underscores that the 

mode is preferable to the mean because of the sensitivity of the mean to outliers (distant 

local turning points for a relatively small number of series). 

The 2001:3 peak.  The 2001:3 peak shows considerable date disagreements.  The 

average-then-date estimates based on coincident indexes all estimate 2000:9, the GDP(I) 

estimate is 2001:3, and the GDP(E) and GDP(Avg) methods do not detect a recession.  

The date-then average estimates range from 2000:10.2  1.2 to 2000:12.8  0.6.  The 

weighted mode estimate is 2000:12.7 with a very wide standard error. 

Inspection of Figure 7a shows two clusters of turning points, one in the summer 

through early fall of 2000 and the second in 2000:12 – 2001:3, and the kernel density 

estimate is bimodal.  The ISD index is essentially flat from 2000:9-2001:3, with a slight 

local peak in 2000:9, and monthly GDP(Avg) is increasing with only minor fluctuations 

over this period and into the summer of 2001.  Two interpretations of the Burns-Mitchell 

method seem possible in this circumstance.  The first would be to select the end of this 

long flat episode, which would accord with the NBER date of 2001:3.  This estimate is 

later than any of those in Table 3 because Table 3 does not consider end-of-episode 

dating.  However, an end-of-episode dating rule would lag the NBER dates: the end-of-

episode dates in the three cases considered here postdate the weighted mode, which on 

average lags the NBER chronology by only 0.13 months.  The second interpretation, 

which is the approach we have adopted in this paper, would choose the mode of the 

second cluster, which (with a large spike in the histogram) is 2000:12. 
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The 2007:12 peak.  Aside from monthly GDI, the average-then-date chronologies 

all estimate the 2007:12 peak to be within a month of the NBER date.  In contrast, the 

weighted mode estimator places the 2007:12 peak six months earlier than the NBER date, 

with a tight standard error (1.1).  Inspection of the histogram and weighted kernel density 

estimate for this episode, shown in Figure 8, reveals however that this episode has an 

interesting pattern of turning points of the disaggregated series.  The episode has a long 

period (approximately 12 months) over which many series turn, and the kernel density 

estimator has two modes, the higher one being 6 months before the NBER date and a 

slightly lower one two months after.  Thus inspection of the histogram and weighted 

density estimate suggests that in this episode Burns and Mitchell’s (1946) “close of 

transition period” rule might apply, which would place the turning point a month or two 

after the NBER peak.  We do not have a mathematical implementation for the close-of-

transition-period concept so we cannot provide a more precise estimate for the 2007:12 

peak, or a standard error, based on that approach, however that concept does suggest 

placing substantially less weight on the weighted mode estimator at this turning points 

than at the other turning points. 

 

5. Discussion 

The empirical results in Section 4 suggest that the date-then-average procedures, 

including the new confidence intervals for reference cycle turning points, have the 

potential to provide useful information to supplement the process of determining 

reference cycle chronologies.  The modal turning point is closely related to the approach 

used by Burns and Mitchell (1946) and the early NBER researchers.  In addition to this 
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historical link, the use of the mode seems to be preferable empirically to the mean 

because the mean is sensitive to outliers as was noted in the discussion of the 1991:3 

trough. 

The exercise here focuses on subaggregates within only four classes of series.  

Arguably more classes should be considered, indeed the early NBER researchers 

considered a much broader set of series than these four.  For example, the importance of 

GDP as a measure of output suggests extending this analysis to include monthly 

subaggregates of GDP when available.   

While we have been able to produce standard errors for the date-then-average 

chronologies, no such standard errors exist for the average-then-date chronologies.  

Developing a frequentist distribution theory for Bry-Boschan turning points of a single 

aggregate time series remains an intriguing research problem. 
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Appendix A 
The Disaggregated Data Set  

 
No.  Series Class Start End 
 Industrial Production by Industry 
 Mfg: Durables    
1  IP:Wood product  NAICS=321, SA 1972:1  2010:8 
2  IP:Nonmetallic mineral product  NAICS=327, SA 1972:1  2010:8 
3  IP:Primary metal  NAICS=331, SA 1972:1  2010:8 
4  IP:Fabricated metal product  NAICS=332, SA 1972:1  2010:8 
5  IP:Machinery  NAICS=333, SA 1972:1  2010:8 
6  IP:Computer and electronic product  NAICS=334, SA 1972:1  2010:8 
7  IP:Electrical equipment, appliance, and component  

NAICS=335, SA 
1972:1  2010:8 

8  IP:Transportation equipment  NAICS=336, SA 1972:1  2010:8 
9  IP:Furniture and related product  NAICS=337, SA 1972:1  2010:8 
10  IP:Miscellaneous  NAICS=339, SA 1972:1  2010:8 
 Mfg: NonDurables    
11  IP:Food  NAICS=311, SA 1972:1  2010:8 
12  IP:Beverage  NAICS=3121, SA 1972:1  2010:8 
13  IP:Tobacco  NAICS=3122, SA 1972:1  2010:8 
14  IP:Textile mills  NAICS=313, SA 1972:1  2010:8 
15  IP:Textile product mills  NAICS=314, SA 1972:1  2010:8 
16  IP:Apparel  NAICS=315, SA 1972:1  2010:8 
17  IP:Leather and allied product  NAICS=316, SA 1972:1  2010:8 
18  IP:Paper  NAICS=322, SA 1972:1  2010:8 
19  IP:Printing and related support activities  NAICS=323, SA 1972:1  2010:8 
20  IP:Petroleum and coal products  NAICS=324, SA 1972:1  2010:8 
21  IP:Chemical  NAICS=325, SA 1972:1  2010:8 
22  IP:Plastics and rubber products  NAICS=326, SA 1972:1  2010:8 
 Mining    
23  IP:Oil and gas extraction  NAICS=211, SA 1972:1  2010:8 
24  IP:Mining (except oil and gas)  NAICS=212, SA 1972:1  2010:8 
25  IP:Support activities for mining  NAICS=213, SA 1972:1  2010:8 
 Utilities    
26  IP:Electric power generation, transmission and distribution  

NAICS=2211, SA 
1972:1  2010:8 

27  IP:Natural gas distribution  NAICS=2212, SA 1972:1  2010:8 
 Industrial Production by Market 

 Cons  Gds: Durables    
28  IP:Automotive products, SA 1959:1  2010:8 
29  IP:Autos and trucks, consumer, SA 1967:1  2010:8 
30  IP:Auto parts and allied goods, SA 1959:1  2010:8 
31  IP:Other durable goods, SA 1959:1  2010:8 
32  IP:Computers, video and audio equipment, SA 1967:1  2010:8 
33  IP:Appliances, furniture, and carpeting, SA 1967:1  2010:8 
34  IP:Miscellaneous durable goods, SA 1959:1  2010:8 
 Cons  Gds: Nonurables    
35  IP:Foods and tobacco, SA 1959:1  2010:8 
36  IP:Clothing, SA 1959:1  2010:8 
37  IP:Chemical products, SA 1959:1  2010:8 
38  IP:Paper products, SA 1959:1  2010:8 
39  IP:Miscellaneous nondurable goods, SA 1972:1  2010:8 
40  IP:Consumer energy products, SA 1959:1  2010:8 
41  IP:Fuels, SA 1959:1  2010:8 
42  IP:Residential utilities, SA 1959:1  2010:8 
 Equipment    
43  IP:Transit equipment, SA 1959:1  2010:8 
44  IP:Information processing and related equipment, SA 1967:1  2010:8 
45  IP:Industrial and other equipment, SA 1967:1  2010:8 
46  IP:Industrial equipment, SA 1967:1  2010:8 
47  IP:Other equipment, SA 1967:1  2010:8 
48  IP:Oil and gas well drilling and manufactured homes, SA 1959:1  2010:8 
49  IP:Defense and space equipment, SA 1959:1  2010:8 
 Materials: Durables    
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50  IP:Consumer parts, SA 1959:1  2010:8 
51  IP:Equipment parts, SA 1959:1  2010:8 
52  IP:Computer and other board assemblies and parts, SA 1972:1  2010:8 
53  IP:Semiconductors, printed circuit boards, and other, SA 1959:1  2010:8 
54  IP:Other equipment parts, SA 1967:1  2010:8 
55  IP:Other durable materials, SA 1959:1  2010:8 
56  IP:Basic metals, SA 1959:1  2010:8 
57  IP:Miscellaneous durable materials, SA 1959:1  2010:8 
 Materials: Nondurables    
58  IP:Textile materials, SA 1967:1  2010:8 
59  IP:Paper materials, SA 1967:1  2010:8 
60  IP:Chemical materials, SA 1967:1  2010:8 
61  IP:Other nondurable materials, SA 1959:1  2010:8 
62  IP:Containers, SA 1959:1  2010:8 
63  IP:Miscellaneous nondurable materials, SA 1967:1  2010:8 
 Materials: Energy    
64  IP:Primary energy, SA 1967:1  2010:8 
65  IP:Converted fuel, SA 1967:1  2010:8 
 NonIndustrial Supplies    
66  IP:Construction supplies, SA 1959:1  2010:8 
67  IP:Business supplies, SA 1959:1  2010:8 
68  IP:General business supplies, SA 1959:1  2010:8 
69  IP:Commercial energy products, SA 1967:1  2010:8 

 Employment by Industry 
 Mining and Logging    
70  Logging 1959:1  2010:9 
71  Oil and gas extraction 1972:1  2010:9 
72  Mining except oil and gas 1990:1  2010:9 
73  Support activities for mining 1990:1  2010:9 
 Construction    
74  Construction of Buildings 1990:1  2010:9 
75  Heavy and civil engineering construction 1990:1  2010:9 
76  Specialty trade contractors 1976:1  2010:9 
 Mfg: Durables    
77  Wood Products 1990:1  2010:9 
78  Nonmetallic mineral products 1959:1  2010:9 
79  Primary Metals 1990:1  2010:9 
80  Fabricated metal products 1990:1  2010:9 
81  Machinery 1990:1  2010:9 
82  Computer and electronic products 1990:1  2010:9 
83  Electrical equipment and appliances 1990:1  2010:9 
84  Transportation equipment 1990:1  2010:9 
85  Furniture and related products 1990:1  2010:9 
86  Miscellaneous manufacturing 1990:1  2010:9 
 Mfg: Nonurables    
87  Food Manufacturing 1990:1  2010:9 
88  Beverages and tobacco products 1990:1  2010:9 
89  Textile Mills 1990:1  2010:9 
90  Textile Product Mills 1990:1  2010:9 
91  Apparel 1990:1  2010:9 
92  Leather and allied products 1990:1  2010:9 
93  Paper and paper products 1990:1  2010:9 
94  Printing and related support activities 1990:1  2010:9 
95  Petroleum and coal products 1990:1  2010:9 
96  Chemicals 1990:1  2010:9 
97  Plastics and Rubber Products 1990:1  2010:9 
 Wholesale Trade    
98  Durable Goods 1990:1  2010:9 
99  NonDurable Goods 1990:1  2010:9 
100  Electronic markets and agents and brokers 1990:1  2010:9 
 Retail Trade    
101  Motor vehicle and parts dealers 1990:1  2010:9 
102  Furniture and home furnishings stores 1990:1  2010:9 
103  Electronics and appliance stores 1990:1  2010:9 
104  Building material and garden supply stores 1990:1  2010:9 
105  Food and beverage stores 1990:1  2010:9 
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106  Health and personal care stores 1990:1  2010:9 
107  Gasoline stations 1990:1  2010:9 
108  Clothing and clothing accessories stores 1990:1  2010:9 
109  Sporting goods, hobby, boo, and music stores 1990:1  2010:9 
110  General merchandise stores 1990:1  2010:9 
111  Miscellaneous store retailers 1990:1  2010:9 
112  Nonstore retailers 1990:1  2010:9 
 Transportation and 

warehousing 
   

113  Air transportation 1990:1  2010:9 
114  Rail transportation 1959:1  2010:9 
115  Water transportation 1990:1  2010:9 
116  Truck transportation 1990:1  2010:9 
117  Transit and ground passenger transportation 1990:1  2010:9 
118  Pipeline transportation 1990:1  2010:9 
119  Scenic and sightseeing transportation 1990:1  2010:9 
120  Support activities for transportation 1990:1  2010:9 
121  Couriers and messengers 1990:1  2010:9 
122  Warehousing and storage 1990:1  2010:9 
 Utilities    
123  Utilities 1964:1  2010:9 
 Information    
124  Publishing industries 1990:1  2010:9 
125  Motion picture and sound recording industries 1990:1  2010:9 
126  Broadcasting except internet 1990:1  2010:9 
127  Telecommuincations 1990:1  2010:9 
128  Data Processing, hosting and related activities 1990:1  2010:9 
129  Other Information Services 1990:1  2010:9 
 Financial Activities    
130  Monetary authorities - central bank 1990:1  2010:9 
131  Credit intermediation and related activities 1990:1  2010:9 
132  Securities, Commidities, Investments 1990:1  2010:9 
133  Insurance carriers and related activities 1990:1  2010:9 
134  Funds, Trusts, and other Financial Vehicles 1990:1  2010:9 
135  Real Estate 1990:1  2010:9 
136  Rental and Leasing Services 1990:1  2010:9 
137  Lessors of nonfinancial intangible assets 1990:1  2010:9 
 Professional and Business 

Services 
   

138  Professional and technical services 1990:1  2010:9 
139  Management of companies and enterprises 1990:1  2010:9 
140  Administrative and waste services 1990:1  2010:9 
 Educationand Health 

Services 
   

141  Education Services 1990:1  2010:9 
142  Health Care 1990:1  2010:9 
143  Social Assistance 1990:1  2010:9 
 Leisure and Hospitality    
144  Arts/Entertaiment/Recreation 1990:1  2010:9 
145  Accomodation 1972:1  2010:9 
146  Food services and drinking places 1990:1  2010:9 
147  Other services 1959:1  2010:9 
 Government    
148  Federal 1959:1  2010:9 
149  State 1959:1  2010:9 
150  Local 1959:1  2010:9 

 Employment at higher level of aggregation 
 Manufacturing    
151  Durables 1959:1  2010:9 
152  NonDurables 1959:1  2010:9 
153  Construction 1959:1  2010:9 
 Services    
154  Education and Health 1959:1  2010:9 
155  Financial Activities 1959:1  2010:9 
156  Government 1959:1  2010:9 
 Services    
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157  Information 1959:1  2010:9 
158  Leisure and Hospitality 1959:1  2010:9 
159  Professional and Bus Services 1959:1  2010:9 
160  Other Services 1959:1  2010:9 
 Nat. Resources and Mining    
161  Nat. Resources and Mining 1959:1  2010:9 
 Trade    
162  Retail 1959:1  2010:9 
163  Wholesale 1959:1  2010:9 
164  Trans/Utilities (USTPU-USTRADE-USWTRADE) 1959:1  2010:9 

 Manufacturing and Trade Sales (SIC Classification) 
 Mfg: Durables    
165  Lumber and wood products 1967:1  1996:12  
166  Furniture and fixtures 1967:1  1996:12  
167  Stone, clay, and glass products 1967:1  1996:12  
168  Primary metals 1967:1  1996:12  
169  Fabricated metals 1967:1  1996:12  
170  Industrial machinery 1967:1  1996:12  
171  Electronic machinery 1967:1  1996:12  
172  Transportation equipment 1967:1  1996:12  
173  Instruments 1967:1  1996:12  
174  Other manufacturing 1967:1  1996:12  
 Mfg: Nondurables    
175  Food and kindred products 1967:1  1996:12  
176  Tobacco products 1967:1  1996:12  
177  Textile mill products 1967:1  1996:12  
178  Apparel products 1967:1  1996:12  
179  Paper and allied products 1967:1  1996:12  
180  Printing and publishing 1967:1  1996:12  
181  Chemical and allied products 1967:1  1996:12  
182  Petroleum products 1967:1  1996:12  
183  Rubber and plastic products 1967:1  1996:12  
184  Leather and leather products 1967:1  1996:12  
 Merchant  wholesale: 

Durable Goods 
   

185  Motor vehicles 1967:1  1996:12  
186  Furniture and furnishings 1967:1  1996:12  
187  Lumber and construction 1967:1  1996:12  
188  Professional and commercial 1967:1  1996:12  
189  Metals and minerals 1967:1  1996:12  
190  Electrical goods 1967:1  1996:12  
191  Hardware and plumbing 1967:1  1996:12  
192  Machinery, equipment, and supplies 1967:1  1996:12  
193  Other durable goods 1967:1  1996:12  
 Merchant  wholesale: 

Nondurable Goods 
   

194  Paper products 1967:1  1996:12  
195  Drugs and sundries 1967:1  1996:12  
196  Apparel and piece goods 1967:1  1996:12  
197  Groceries 1967:1  1996:12  
198  Farm products 1967:1  1996:12  
199  Chemical and allied products 1967:1  1996:12  
200  Petroleum products 1967:1  1996:12  
201  Alcoholic beverages 1967:1  1996:12  
202  Other nondurable goods 1967:1  1996:12  
 Retail trade: 

Durable Goods 
   

203  Automotives 1967:1  1996:12  
204  Lumber and building stores 1967:1  1996:12  
205  Furniture and furnishings 1967:1  1996:12  
206  Other durable goods 1967:1  1996:12  
 Retail trade: 

Nondurable Goods 
   

207  Food stores 1967:1  1996:12  
208  Apparel stores 1967:1  1996:12  
209  Department stores 1967:1  1996:12  
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210  Other general merchandise stores 1967:1  1996:12  
     

 Manufacturing and Trade Sales (NAICS Classification) 
 Mfg: Durables    
211  Wood product manufacturing 1997:1  2010:7 
212  Nonmetallic mineral product manufacturing 1997:1  2010:7 
213  Primary metal manufacturing 1997:1  2010:7 
214  Fabricated metal product manufacturing 1997:1  2010:7 
215  Machinery manufacturing 1997:1  2010:7 
216  Computer and electronic product manufacturing 1997:1  2010:7 
217  Electrical equipment, appliance, and component 

manufacturing 
1997:1  2010:7 

218  Transportation equipment manufacturing 1997:1  2010:7 
210  Furniture and related product manufacturing 1997:1  2010:7 
220  Miscellaneous durable goods manufacturing 1997:1  2010:7 
 Mfg: Nonurables    
221  Food manufacturing 1997:1  2010:7 
222  Beverage and tobacco product manufacturing 1997:1  2010:7 
223  Textile mills 1997:1  2010:7 
224  Textile product mills 1997:1  2010:7 
225  Apparel manufacturing 1997:1  2010:7 
226  Leather and allied product manufacturing 1997:1  2010:7 
227  Paper manufacturing 1997:1  2010:7 
228  Printing and related support activities 1997:1  2010:7 
229  Petroleum and coal product manufacturing 1997:1  2010:7 
230  Chemical manufacturing 1997:1  2010:7 
231  Plastics and rubber product manufacturing 1997:1  2010:7 
 Merchant wholesale 

industries: 
Durable Goods 

   

232  Motor vehicles, parts, and supplies wholesalers 1997:1  2010:7 
233  Furniture and home furnishings wholesalers 1997:1  2010:7 
234  Lumber and other construction materials wholesalers 1997:1  2010:7 
235  Professional and commercial equipment wholesalers 1997:1  2010:7 
236  Metal and mineral (except petroleum) wholesalers 1997:1  2010:7 
237  Electrical goods wholesalers 1997:1  2010:7 
238  Hardware and plumbing and heating equipment 

wholesalers 
1997:1  2010:7 

239  Machinery, equipment, and supplies wholesalers 1997:1  2010:7 
240  Miscellaneous durable goods wholesalers 1997:1  2010:7 
 Merchant wholesale 

industries: 
Nondurable Goods 

   

241  Paper and paper products wholesalers 1997:1  2010:7 
242  Drugs and druggists' sundries wholesalers 1997:1  2010:7 
243  Apparel, piece goods, and notions wholesalers 1997:1  2010:7 
244  Grocery and related products wholesalers 1997:1  2010:7 
245  Farm product raw material wholesalers 1997:1  2010:7 
246  Chemical and allied products wholesalers 1997:1  2010:7 
247  Petroleum and petroleum products wholesalers 1997:1  2010:7 
248  Beer, wine, and distilled alcoholic beverages wholesalers 1997:1  2010:7 
249  Miscellaneous nondurable goods wholesalers 1997:1  2010:7 
 Retail trade industries    
250  Motor vehicle and parts dealers 1997:1  2010:7 
251  Furniture, furnishings, electronics, and appliance stores 1997:1  2010:7 
252  Building material and garden equipment and supplies 

dealers 
1997:1  2010:7 

253  Food and beverage stores 1997:1  2010:7 
254  Clothing and clothing accessories stores 1997:1  2010:7 
255  General merchandise stores 1997:1  2010:7 
256  Other retail stores 1997:1  2010:7 

 Personal Income 
(all series are deflated by the PCE deflator) 

 Wages and Salaries    
257  Manufacturing(SIC) 1959:1  2000:12  
258  Distributive industries (SIC) 1959:1  2000:12  
259  Service Industries (SIC) 1959:1  2000:12  
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260  Manufacturing (NAICS) 2001:1  2010:8 
261  Trade, transportation, and utilities (NAICS) 2001:1  2010:8 
262  Other services-producing industries (NAICS) 2001:1  2010:8 
263  Government 1959:1  2010:8 
264  Supplements to wages and salaries 1959:1  2010:8 
 Prop. Income    
265  Farm 1959:1  2010:8 
266  NonFarm 1959:1  2010:8 
 Rental Income    
267  Rental Income 1959:1  2010:8 
 Personal income receipts 

on assets 
   

268  Interest 1959:1  2010:8 
269  Dividend 1959:1  2010:8 
270  Personal current taxes 1959:1  2010:8 
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Table 1.  Series weights for the coincident indexes 

 
 Coincident Index 
Series CI-TCB CI-ISD CI-DFM 
IP 0.13 0.14 0.58 
EMP 0.50 0.49 0.07 
MT 0.11 0.11 0.23 
PIX 0.26 0.26 0.12 

 
Notes:  Weights for the TCB index were estimated by a regression of the change in the 
index on the change in the four components (R2 = 0.97).  Weights for the dynamic factor 
model (DFM) coincident index are the sum of the steady-state Kalman smoother weights 
on current, lead, and lagged values of the row series. 
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Table 2.  Average-then-date chronologies computed using three monthly 
coincident indexes and four measures of monthly GDP, as a lead (positive value) or lag 
(negative value) of the NBER turning point. 
 

  Coincident indexes  Monthly GDP 
NBER  CI-TCB CI-ISD CI-DFM GDP(E) GDP(I) GDP(Avg) GDP-MA

1960: 4  P -2 0 – -1 -2 -1 
1961: 2  T 0 0 0 -2 -2 -2 
1969:12  P -2 -2 -4 -4 – -4 
1970:11  T 0 0 0 -10 – 0 
1973:11  P 0 0 0 1 0 1 
1975: 3  T 1 1 1 0 -1 0 
1980: 1  P 0 0 -10 − 0 - 
1980: 7  T 0 0 0 − -1 - 
1981: 7  P 0 1 0 2 1 2 
1982:11  T 0 0 0 -6 0 -3 
1990: 7  P -1 -1 0 0 0 0 
1991: 3  T 0 0 0 0 -2 -2 
2001: 3  P -6 -6 -6 – 0 – –
2001:11  T 4 0 0 – -1 – –
2007:12  P -1 0 0 1 -12 0 1
2009: 6 T 0 0 0 0 1 0 0

Mean -0.44 -0.44 -1.27 -1.58 -1.36 -0.75 0.50
MAE 1.06 0.69 1.40 2.25 1.64 1.25 0.50

 
Notes:   Entries are the NBER turning point minus the series-specific Bry-Boschan 
turning point, in months.  Episodes for which the series is available but does not have a 
Bry-Boschan turning point are denoted by “–”.  The GDP(E), GDP(I), and GDP(Avg) 
monthly GDP series are from Stock and Watson (2010a).  The GDP-MA series is the 
Macroeconomic Advisors Monthly GDP series, which starts in 1992:4.  The mean and 
mean absolute error (MAE) in the final two rows summarize the discrepancies of the 
chronology for the column series, relative to the NBER chronology; episodes in which a 
series does not have a Bry-Boschan recession are excluded from the summary statistics. 
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Table 3.   Date-then-average chronologies and standard errors computed using turning 
points of 270 disaggregated series, as a lead (positive value) or lag (negative value) of the 

NBER turning point. 
 

NBER 
Dates 

No adjustments Class lag-adjusted Weighted estimation 
Mean Median Mode Mean Median Mode Mean Median Mode 

1960: 4  P -1.8  
(0.6) 

-2.0  
(0.7) 

-1.4  
(0.5) 

-2.5  
(0.7) 

-2.3  
(0.8) 

-2.5  
(0.3) 

-2.0  
(0.6) 

-2.0  
(0.3) 

-1.4  
(0.4) 

1961: 2  T -0.3  
(0.4) 

0.0  
(0.6) 

-0.5  
(0.7) 

-0.8  
(0.3) 

-1.1  
(0.5) 

-0.5  
(0.2) 

-0.3  
(0.3) 

0.0  
(0.3) 

-0.6  
(0.2) 

1969:12  P -2.2  
(0.7) 

-2.0  
(0.6) 

-2.3  
(0.4) 

-1.7  
(0.6) 

-1.8  
(0.7) 

-1.3  
(0.5) 

-1.7  
(0.8) 

-2.0  
(0.4) 

-2.4  
(5.9) 

1970:11  T 1.2  
(0.6) 

0.0  
(0.7) 

-0.2  
(0.4) 

1.7  
(0.6) 

1.2  
(0.7) 

0.7  
(0.3) 

1.9  
(0.7) 

1.0  
(0.6) 

0.1  
(2.7) 

1973:11  P 1.3  
(0.6) 

2.0  
(0.6) 

1.6  
(0.3) 

1.9  
(0.6) 

3.0  
(0.7) 

2.2  
(0.3) 

2.4  
(0.7) 

3.0  
(0.7) 

1.7  
(1.0) 

1975: 3  T 1.0  
(0.3) 

0.0  
(0.3) 

0.4  
(0.3) 

1.6  
(0.3) 

1.2  
(0.3) 

1.0  
(0.1) 

1.3  
(0.3) 

1.0  
(0.4) 

0.8  
(0.8) 

1980: 1  P -1.8  
(0.7) 

-1.0  
(0.8) 

-0.3  
(0.4) 

-1.3  
(0.7) 

-1.2  
(0.9) 

0.3  
(0.2) 

-1.8  
(0.9) 

-2.0  
(0.8) 

-0.1  
(0.2) 

1980: 7  T -0.9  
(0.5) 

0.0  
(0.4) 

-0.5  
(0.2) 

-0.1  
(0.5) 

0.2  
(0.3) 

0.3  
(0.1) 

-0.5  
(0.7) 

0.0  
(0.4) 

0.0  
(0.2) 

1981: 7  P -0.7  
(0.5) 

0.0  
(0.5) 

-0.1  
(0.3) 

-0.2  
(0.5) 

0.2  
(0.5) 

0.5  
(0.1) 

-0.1  
(0.5) 

0.0  
(0.4) 

0.1  
(4.4) 

1982:11  T -0.6  
(0.6) 

0.0  
(0.6) 

1.1  
(0.4) 

-0.2  
(0.6) 

0.9  
(0.6) 

1.9  
(0.2) 

-0.5  
(0.6) 

0.0  
(0.5) 

0.9  
(0.9) 

1990: 7  P -0.8  
(0.6) 

0.0  
(0.7) 

0.3  
(0.5) 

-0.3  
(0.6) 

-1.2  
(0.8) 

1.8  
(0.4) 

-1.1  
(0.6) 

-1.0  
(0.5) 

-0.3  
(0.2) 

1991: 3  T 2.1  
(0.5) 

1.0  
(0.4) 

0.4  
(0.3) 

2.1  
(0.4) 

1.1  
(0.4) 

0.4  
(0.1) 

2.0  
(0.4) 

1.0  
(0.4) 

0.2  
(2.0) 

2001: 3  P -3.7  
(0.5) 

-3.0  
(0.6) 

-2.2  
(0.3) 

-4.1  
(0.5) 

-4.8  
(0.6) 

-3.2  
(0.2) 

-3.7  
(0.6) 

-3.0  
(0.6) 

-2.3  
(4.4) 

2001:11  T 0.2  
(0.5) 

1.0  
(0.5) 

0.6  
(0.2) 

0.5  
(0.5) 

1.2  
(0.5) 

1.5  
(0.1) 

0.6  
(0.7) 

1.0  
(0.7) 

0.6  
(0.9) 

2007:12  P -1.0  
(0.5) 

-1.0  
(0.9) 

-6.1  
(0.5) 

-1.4  
(0.5) 

-1.8  
(0.7) 

-2.8  
(0.8) 

-1.4  
(0.5) 

-2.0  
(0.9) 

-6.0  
(1.1) 

2009:6 T 1.7  
(0.3) 

1.0  
(0.5) 

-0.1  
(0.2) 

1.5  
(0.3) 

1.7  
(0.4) 

1.4  
(0.2) 

1.6  
(0.3) 

1.0  
(0.5) 

-0.2  
(0.2) 

 Mean -0.39  -0.25  -0.59  -0.20  -0.20  0.10  -0.21  -0.25  -0.56  
 MAE 1.34  0.88  1.12  1.37  1.56  1.38  1.44  1.25  1.11 

 

Notes:   Entries are the NBER turning point minus the date-then-average chronology for 
that column, in months.  Standard errors appear in parentheses.  The mean and mean 
absolute error (MAE) in the final two rows summarize the discrepancies of the 
chronology for the column series, relative to the NBER chronology. 
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Figure 1.  Heat map of monthly growth rates divided by the series standard deviation for 
the 270 series in the monthly data set.  The vertical axis is the series number as given in 
Appendix A; the horizontal axis is the monthly time scale, 1959:1-2010:9.  Negative 
monthly growth appears as red, positive monthly growth rates appear as blue.  The gray 
sections indicate missing data. 
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Figure 2.  Sharpened version of the monthly disaggregated data set heat map.  The heat 
map plots (–zit), where is a scale factor and zit is the monthly growth rate of series i 
divided by its standard deviation. 
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Figure 3.  Bry-Boschan recessions computed using the monthly disaggregated data set.  
Dark red denotes Bry-Boschan recessions (from a peak to a trough) and blue denotes 
Bry-Boschan expansions. 
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(a) Monthly coincident index, inverse standard deviation weighting 
 

 
(b) Monthly GDP(Avg) 

 
Figure 4.  The inverse standard deviation-weighted monthly coincident index (panel a), 
monthly GDP(Avg) (panel b), Bry-Boschan turning points for each series (solid vertical 
lines), and NBER chronologies (dashed vertical lines).  Peaks are green, troughs are red. 
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(a) Weighted histogram and kernel density estimate of turning points of disaggregated 
series 
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(b) Monthly GDP(Avg) (blue solid) and CI-ISD coincident index (red dashed), 
normalized to 1.00 at the NBER turning point. 

 
Figure 5.  The 1969:12 NBER peak: (a) date-then-average and (b) average-then-date 
approaches. 
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1991:3 Trough
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(a) Weighted histogram and kernel density estimate of turning points of disaggregated 
series 
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(b) Monthly GDP(Avg) (blue solid) and CI-ISD coincident index (red dashed), 
normalized to 1.00 at the NBER turning point. 

 
Figure 6.  The 1991:3 NBER trough: (a) date-then-average and (b) average-then-date 
approaches. 
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2001:3 Peak
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(a) Weighted histogram and kernel density estimate of turning points of disaggregated 
series 
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(b) Monthly GDP(Avg) (blue solid) and CI-ISD coincident index (red dashed), 
normalized to 1.00 at the NBER turning point. 

 
Figure 7.  The 2001:3 NBER peak: (a) date-then-average and (b) average-then-date 
approaches. 
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2007:12 Peak
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(a) Weighted histogram and kernel density estimate of turning points of disaggregated 
series 
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(b) Monthly GDP(Avg) (blue solid) and CI-ISD coincident index (red dashed), 
normalized to 1.00 at the NBER turning point. 

 
Figure 8.  The 2007:12 NBER peak: (a) date-then-average and (b) average-then-date 
approaches. 
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Supplemental Figure S-1:  Figure 1 in gray scale. 
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Supplemental Figure S-2:  Figure 2 in gray scale 
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Supplemental Figure S-3:  Figure 3 in gray scale. 
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