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Andrew Paciorek and Todd Sinai†
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Abstract

We show that the hedging benefit of owning a home reduces the
variability of housing consumption after a move. When a current home
owner’s house price covaries positively with housing costs in a future
city, changes in the future cost of housing are offset by commensurate
changes in wealth before the move. Using Census micro-data, we find
that the cross-sectional variation in house values subsequent to a move
is lower for home owners who moved between more highly covarying
cities. Our preferred estimates imply that an increase in covariance
of one standard deviation reduces the variance of subsequent housing
consumption by about 11 percent. Households at the top end of the
covariance distribution who are likely to have owned large homes be-
fore moving get the largest reductions, of up to 40 percent relative to
households at the median.

1 Introduction

With the median U.S. family devoting about one-third of its annual in-
come and 45 percent or more of its net worth to housing, fluctuations in
house prices and annual housing costs have the potential to generate sig-
nificant consumption volatility. Most analysts have focused on the effects
on households of the sizable year-to-year fluctuations in house prices within

∗We thank Fernando Ferreira, Joe Gyourko, Chris Paciorek, David Rothschild, Albert
Saiz, Stephen Shore, Nicholas Souleles, Joel Waldfogel, Justin Wolfers, Maisy Wong and
seminar participants at Wharton and the Duke ERID housing dynamics conference for
helpful comments and suggestions. We are grateful to the Research Sponsors Program of
the Zell-Lurie Real Estate Center at Wharton for funding. All errors are our own.
†Real Estate Department, Wharton School, University of Pennsylvania.
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a housing market. However, the effects of housing cost volatility may be
mitigated merely by owning one’s house (Sinai and Souleles 2005). Instead,
a potentially significant source of housing cost uncertainty is faced by house-
holds who anticipate moving to different housing markets. While the average
standard deviation in real annual house price growth within a housing mar-
ket is 5.6 percent, the differential growth in housing costs across markets
has a standard deviation of 7.4 percent.1 Thus a chance of moving to a
new housing market creates uncertainty about the future price of housing,
and the act of relocating could induce volatility in housing and non-housing
consumption due to unanticipated differences in housing costs.

In this paper, we show that simply owning a house in the present can
partially insure a household against uncertain housing costs due to potential
moves in the future. The reason is that households tend to move between
housing markets with correlated house prices, so their current houses often
are worth more precisely when their next house is more expensive. This
positive correlation between wealth and house prices mitigates the decline
in housing consumption due to higher prices alone, or dampens the increase
in housing consumption due to lower prices.

We illustrate this idea in a simple two-period representative agent model
with two locations and stochastic house prices. The model predicts a nega-
tive relationship between the variance of housing consumption for households
who recently moved and the covariance in the house prices of the origin and
destination cities. It also predicts that the hedging benefit of high covariance
would be strongest for households who own more housing.

Using household-level microdata from the U.S. Census, we find that
home owners who recently moved between highly covarying cities have less
conditional variance in their house values than do home owners who moved
between low-covariance cities. This result remains even after controlling for
origin and destination Metropolitan Statistical Area (MSA) fixed effects, so
that our estimate of the hedging effect of covariance is identified solely from
the pairing of MSAs. We also control for household-level determinants of
housing demand.

Overall, we find that a one standard deviation increase in covariance
reduces the variance of subsequent housing consumption for the average
household by about 10 percent in our preferred specification. The reduction
in variance is especially pronounced — as much as 18 percent — for home

1The figure of 7.4 percent is the standard deviation in the difference between the annual
house price growth in one’s own housing market versus other markets. Calculated using
the Federal Housing Finance Agency’s conventional mortgage repeat sales index, deflated
by the CPI, for 168 metropolitan areas over the 1982-2007 time period.
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owners who we predict were likely to own larger houses before moving. The
total effect of covariance can be sizable for those households who move be-
tween highly covarying cities. An average household experiences nearly a
30 percent reduction in its variance of housing spending if it moves between
the 95th percentile covarying city pair relative to a move at the median. For
a high-income family, the same comparison yields a reduction in variance of
40 percent.

This paper makes contributions in several areas. First, previous research
has estimated how the hedging potential of home ownership affects house-
holds’ ex ante choices of tenure mode or the quantity of housing to consume
(Sinai and Souleles 2005, Han 2008b, Sinai and Souleles 2009), or has con-
sidered the hedging properties of homeownership in theory (Ortalo-Magne
and Rady 2002). Other researchers have noted that, due to its nature as a
consumption commitment, owning a home also affects the volatility of con-
sumption by changing how consumption responds to income shocks (Chetty
and Szeidl 2007). In contrast, this paper shows that owning a home does
reduce the ex post variance of housing consumption, so that households are
correct in believing that owning a house can hedge future housing costs.

Second, this paper contributes to the consumption smoothing litera-
ture by providing an important example of what Cochrane (1991) calls an
“informal institution” that provides consumption insurance. Consumption
smoothing has been examined in a number of contexts, such as unemploy-
ment insurance (Gruber 1997, Browning and Crossley 2001, Chetty and
Szeidl 2007) and welfare (Gruber 2000), typically in the sense that there
are institutions that facilitate a consistent level of consumption when there
are unexpected changes in income. In our context, owning a home enables
a household to better maintain a level of housing consumption in the face
of unexpected changes in prices. Hurst and Stafford (2004) and Hryshko,
Luengo-Prado and Sorensen (2010) consider the effect of the liquidity pro-
vided by housing equity on the smoothing of non-housing consumption.
While we do not provide direct empirical evidence on non-housing consump-
tion, if owning a home hedges future housing consumption it should also re-
duce the variance of non-housing consumption, since the entire consumption
bundle is affected by changes in house prices.

Our empirical approach is in the spirit of Cochrane (1991), who regresses
a household’s change in consumption on a proxy for an idiosyncratic shock to
income, such as illness, and Gruber (1997), who compares how consumption
responds to unemployment when unemployment insurance is more or less
generous. There are two important distinctions between our context and
these papers: First, our shocks are to relative prices (of housing) rather
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than income. Second, we implement a more complex empirical strategy
that infers the consumption response to a shock from the cross-sectional
conditional variance in housing consumption subsequent to a move. We
take this approach not only because we do not observe in our data housing
consumption prior to moving, but even if we did, the durable nature of
housing implies that the amount of housing consumption prior to moving
would be a poor proxy for the the latent desired housing consumption after
moving.

Our empirical strategy relies on the notion that housing consumption
for households who move between housing markets with a higher covariance
should more closely match their latent housing demand since unexpected
price shocks in the destination market are matched by price changes in the
origin. In brief, we estimate the latent demand for housing and test whether
the variance of the deviation of realized housing spending from predicted
spending varies with the covariance of house prices between the origin and
destination markets. The two-stage conditional variance procedure includes
controls at both stages of the estimation for household demographics, the ex-
pected hedging benefit of home ownership, and origin and destination MSA
fixed effects.2 The demographic controls account for predictable differences
in the level of housing demand, variation in the demographic composition
of movers across MSA pairs, and any heteroskedasticity related to observ-
able household characteristics. The MSA fixed effects account for differences
among MSAs that could affect the level of housing wealth or spending, such
as the level of house prices, or the variance, such as households departing
an origin MSA having systemically higher variance in wealth. Because of
the origin and destination MSA fixed effects, our estimates of the covariance
effect are identified from the pairing of MSAs.

The theoretical prediction that the housing hedge should have the largest
effect for households who owned more housing before moving enables us to
use household-level variation to relax the identifying assumption of the same
(conditional) distribution of housing demand for all movers from an origin
city or to a destination city, and instead allow that distribution to vary by
MSA pairs. We show that, among households who move between a origin-
destination city pair, the effect of covariance on the conditional variance in
subsequent housing spending is largest for households who had relatively
high incomes relative to prices in the origin or had high predicted housing

2Our two-stage estimation process is similar to that proposed by Engle (1982) to test
for Autoregressive Conditional Heteroskedasticity (ARCH) disturbances in time series
applications. It is also similar to Breusch and Pagan’s (1978) test for heteroskedasticity.
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consumption in the origin MSAs.
We find two other pieces of evidence consistent with the hedging interpre-

tation of the relationship between covariance and the subsequent variance in
housing spending. Since origin and destination house prices enter the hous-
ing demand function nonlinearly, the theory predicts that higher covariance
should reduce mean housing spending after a move. We find this pattern in
our data, with the strongest effect once again for households who appear to
have owned larger houses prior to the move. In addition, households with
higher covariances are more likely to own a house in their destination MSAs,
consistent with the hedge ensuring that they have enough wealth to buy a
home.

Finally, we use a generalized additive model (GAM) to allow for a non-
linear effect of covariance in house prices on the variance (and mean) of
housing consumption after a move. The GAM also allows us to nonlinearly
control for covariates such as household income and age. The estimated
relationship between variance and covariance is noticeably nonlinear, with a
larger effect on the margin for households with high covariance. For exam-
ple, the relationship for households below the mean of covariance is about
one third as large as for those above. This indicates that high-covariance
households have a better hedge on the margin, as well as on average.

Our discussion proceeds as follows: In the next section, we outline a
simple two-period model of housing consumption and moving. We use this
model to derive the direct effect of the covariance of house price changes on
the variance and mean of subsequent housing expenditures, and discuss how
the response of the initial housing choice to that covariance can induce a
second-order indirect effect. In Section 3, we discuss our data and detail our
use of cross-sectional and time-series variation to proxy for variance across
states of the world. Then, in Section 4, we describe our conditional variance
empirical strategy. We present our results in Section 5 and interpret the
magnitudes in Section 6. Section 7 concludes.

2 A Simple Model of Housing Consumption with
Migration

2.1 Intuition and setup

In this section, we focus on what happens when, because it previously owned
a home, a household’s wealth is not independent of the house prices it faces
after a move. Since a large fraction of household wealth is allocated to
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housing, if house prices in the market a home-owning household is moving
from covary positively with house prices in the market the household is
moving to, the household will be wealthier (due to selling its prior house)
precisely when the next house is more expensive and poorer when the next
house is relatively cheap. Standard housing demand models recognize that
households with more wealth should buy more housing, all else equal, and
those that face higher prices should buy less. These wealth and price effects
on housing demand will offset each other for those households for whom
house prices in the former and next housing markets covary more strongly,
and especially for those who have allocated more of their wealth to housing,
thus providing a natural hedge against house price volatility.

This hedging intuition suggests that the potential variance in housing
consumption in the destination market should be lower for households who
moved between more highly covarying housing markets than for those who
moved between more independent housing markets. For high covariance
households, the effect on housing demand of the varying housing prices they
face — due to moving between different markets or from moving at different
points in time — would be undone more by the effect on housing demand
of their housing wealth.

An example of this intuition is demonstrated in Table 1, where we con-
sider the effect on housing demand of the polar cases of perfectly positive
(negative) covariance in house price growth between the origin city, A, and
destination city, B. For the sake of the example, we assume that a house-
hold’s wealth is entirely made up of their house in city A, and we use as
parameters two sets of estimates of the elasticity of housing demand with
respect to wealth (εw) and house prices (εp).

In the first row of Table 1, the household faces 20 percent growth in house
prices in city B, which would reduce its demand for housing there. However,
in the case of perfect covariance, house prices also grow commensurately in
city A, making the household 20 percent wealthier and raising its demand
for housing in city B. Under Cobb-Douglas preferences with wealth and own-
price demand elasticities of 1 and -1 respectively, the price effect and wealth
effect exactly net out and there is no change in housing consumption after
the move (in the second-to-last column).3 Under other plausible estimates
of the elasticities, such as from Rosen (1979) (in the last column), the wealth
and price elasticities are not equal and so housing consumption in city B
responds to the price change even in the perfect covariance case. In this

3Glaeser and Gyourko (2007) survey estimates of price elasticities of housing demand
and find -1.0 to be in the middle of the distribution.
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particular example, the price elasticity dominates the wealth elasticity and
housing demand falls by 5 percent. Conversely, in the second row, a 20
percent decline in house prices in city B also implies a 20 percent decline
in wealth in the perfect covariance case. This yields either no net effect
on housing demand in city B, or a 5 percent increase, depending on the
elasticities used.

By contrast, the bottom two rows of Table 1 assume house price growth
is perfectly negatively covarying in cities A and B. Thus, a 20 percent rise in
house prices in city B is accompanied by a 20 percent decline in house prices
in city A, and vice versa. In this case, the price effect and wealth effect work
in the same direction. Under Cobb-Douglas parameters, housing demand in
city B falls by 40 percent when prices rise in B or grows by 40 percent when
prices fall in B. Under the parameters estimated in Rosen (1979), the effect
on housing demand is −35 percent or +35 percent, respectively.

The intuition of the paper can be seen by comparing the positive co-
variance and negative covariance cases. The potential variation in housing
demand in city B is much greater for the negative covariance households re-
gardless of which elasticities we use. This result follows from the wealth and
price elasticities having opposite signs, so when the covariance is positive,
the household’s exposure to volatility in prices in city B is hedged by wealth
changes due to co-movements in price in city A. When the covariance is
negative, the household suffers from a negative hedge, so that their wealth
is lowest precisely when prices in B are highest.

To generalize this intuition and provide guidance for the econometric
specification, we outline a simple representative agent precautionary saving
framework. Since our focus is on the relationship between house prices in
current and future housing markets, our model encompasses two locations
with stochastic house prices but abstracts away from other complications.4

We consider the decisions of an agent who lives for two periods. At the start
of period 1, he lives in city A. In period 2 he moves to city B. There are no
transactions costs from moving and we assume that both the timing of the
move and the destination B are exogenously given.

In period 1, the agent receives labor income w1, which he must divide

4For example, Davidoff (2006) allows for the covariance of labor income and housing
costs; Shore and Sinai (2010) consider the effect of the fixed cost of moving; Sinai and
Souleles (2005) endogenize house prices in the origin city; Piazzesi, Schneider and Tuzel
(2007) allow for correlations between the returns of housing and other assets; Ortalo-
Magne and Prat (2009) endogenize house prices and portfolio returns in a multi-city
model; and Davidoff (2010) allows for changes in the marginal utility of housing to be
correlated with the marginal utility of long-term care.
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between non-housing consumption (c1), housing investment (h1), and invest-
ment in financial assets (s1). There is no rental sector in the model, so the
agent must purchase a home in the starting location with price h1 = pA1 q1 for
a house of size q1. For simplicity, we let one unit of housing produce one unit
of housing services and define the utility function accordingly. We denote
first-period preferences over numeraire consumption and housing services by
u(c1,

h1
pA1

).

The agent receives a stochastic return of 1 + r per dollar invested in
financial assets in the first period.5 Investment in housing in location A
yields a return of 1 + πA. The dividend portion of the housing return,
the rental value, is consumed in-kind by living in the house. House price
growth may be correlated — positively or negatively — across markets, but
we assume that house price growth in both markets are uncorrelated with
financial returns.6 We also assume that it is not possible to go long or short
either housing market except through the purchase of a home, so investment
in housing cannot be divorced from the consumption of housing services.

In the second period, the agent must allocate his wealth between con-

sumption and housing. Second-period preferences are given by v
(
c2,

h2
pB2

)
,

which the agent maximizes subject to the budget constraint c2 + h2 =
s1(1 + r) + h1(1 + πA). House prices in location B grow by 1 + πB, so
that the second-period price per unit of housing is pB2 = pB1 (1 + πB). The
agent’s indirect utility function in the second period is thus

V
(
w2, p

B
2

)
= max

h2
v

(
w2 − h2,

h2

pB2

)
where second-period wealth is equal to the sum of the financial and housing
wealth, or w2 = s1(1 + r) + h1(1 + πA).

Since second-period house prices and financial returns are stochastic, the
agent must form (rational) expectations about the future and maximize over

5We do not restrict s1 to be positive, which allows the agent to borrow to finance
housing consumption. For example, if s1 is negative and r is known with certainty, the
“financial asset” like a fixed-rate mortgage. Since households must borrow or lend at the
same rate of return and taxes are ignored in the model, there is no reason to borrow
to finance the purchase of housing while simultaneously investing in a financial asset.
Extending the model to allow for this common behavior does not materially affect the
analysis.

6Flavin and Yamashita (2002) show that house price growth in the Panel Study of
Income Dynamics (PSID) had a correlation with the S&P 500 of nearly zero over the
period 1968-1992. We calculate that house price growth rates in more than 90 percent of
metropolitan statistical areas had correlations with stock returns of between -0.2 and 0.2.
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consumption, housing, and financial investment accordingly. He discounts
second-period utility by a factor of β. Hence his problem in the first period
is

max
c1,h1,s1

u

(
c1,

h1

pA1

)
+ βE

[
V
(
s1(1 + r) + h1(1 + πA), pB2

)]
(1)

subject to
w1 = c1 + h1 + s1

We make a set of standard assumptions about preferences in order to
analyze the model. First, we assume that the first- and second-period utility
functions u(·) and v(·) are twice continuously differentiable, strictly increas-
ing and strictly concave in both consumption and housing. Consequently,
second-period indirect utility is twice continuously differentiable, strictly in-
creasing and strictly concave, so that the agent is risk-averse with respect to
second-period wealth. Second, we assume that Vw(·), the derivative of the
value function with respect to wealth, is twice differentiable and sufficiently
convex. This implies that the agent is a precautionary saver, meaning that
he saves more for second-period consumption in response to an increase in
the variance of second-period wealth.7

Under these assumptions, the first-order conditions are necessary and
sufficient for utility maximization. They are

−uc(·) +
uh(·)
pA1

+ βE
[
Vw(·)(1 + πA)

]
= 0 (2)

−uc(·) + βE [Vw(·)(1 + r)] = 0 (3)

where a numeric subscript denotes a time period and a letter subscript the
derivative of the function with respect to that argument. As usual, these
conditions reflect the trade-offs between a dollar of housing consumption
today and a dollar of housing wealth tomorrow, and a dollar of non-housing
consumption today and a dollar of financial wealth tomorrow.

2.2 Variance in the Marshallian Demand for Housing

In this subsection we derive theoretical predictions for the relationship be-
tween the covariance of pre- and post-move house prices and the variance
in post-move housing consumption, holding first-period housing investment,

7See Kimball (1990) and citations therein for a full discussion of the mathematics of
the precautionary saving motive.

9



q1, fixed. We consider the implications of allowing q1 to vary in response to
changes in variance or covariance in Section 2.4.

The first way that covariance affects the variance of housing demand
follows immediately from the variance of the Marshallian demand for housing
quantity in the second period:

V ar
[
q2
(
w2, p

B
2

)]
≈V ar

[
q2
(
w̄2, p̄

B
2

)
+ q2w

(
w̄2, p̄

B
2

)
(w2 − w̄2) + q2p

(
w̄2, p̄

B
2

) (
pB2 − p̄B2

)]
=
(
q2w

(
w̄2, p̄

B
2

))2
V ar [w2] +

(
q2p
(
w̄2, p̄

B
2

))2
V ar

[
pB2
]

+ 2
(
q2w

(
w̄2, p̄

B
2

)) (
q2p
(
w̄2, p̄

B
2

))
q1Cov

[
pA2 , p

B
2

]
(4)

The first (approximate) equality follows from taking a first-order Taylor
approximation to q2 (·) at any point

(
w̄2, p̄

B
2

)
. The second equality simply

applies the definition of w2 and our assumption that financial returns are
uncorrelated with housing returns.

The last two lines of equation 4 shows that second-period housing de-
mand has higher variance when variance in wealth is greater (the first term)
or when the variance in destination house prices is greater (the second term).
Since wealth comprises investments in financial assets and the origin house,
greater variance in returns for either asset yields higher variance in the des-
tination housing demand. This occurs because housing is a normal good —
demand increases in wealth and decreases in price — so volatility in either
wealth or purchase price carries over into variance in housing demand.

Importantly, a higher cross-market price covariance reduces the variance
in housing demand, all else equal. Any decrease in housing demand due
to higher house prices at the destination are at least partially offset by the
greater wealth from the higher sale price on the origin house, and vice versa.
Equation 4 has immediate empirical implications. Conditional on origin
and destination variance in house prices, higher covariance should yield a
lower variance of housing demand. In addition, the q1 term multiplying
the covariance term shows that the reduction in variance should be more
pronounced for households who owned more housing in the first period.

It is worth noting that greater covariance should also reduce the variance
of non-housing consumption, thanks to the income effect: Households will
have less wealth to spend on non-housing consumption as house prices rise,
and vice versa. By the same intuition as that underlying Equation 4, this
income effect is offset when covariance is higher because origin house prices
rise in tandem with destination house prices. This implication contrasts
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with Chetty and Szeidl (2007), who find that home ownership increases
the sensitivity of consumption to income shocks. Our results apply to the
variance in consumption around a move; Chetty and Szeidl’s (2007) result
holds when the commitment nature of home ownership precludes moving.
While the smoothing of non-housing consumption is an another important
channel by which the covariance hedge can improve welfare, our data do not
include information on non-housing consumption, so we will not be able to
test it empirically.

2.3 Mean Demand for Housing

In addition to the effect on the variance of housing consumption, the covari-
ance hedge should also have an effect on the mean, even holding first-period
decisions constant, as above. To see this, we can apply a second-order Taylor
approximation around the point

(
w̄2, p̄

B
2

)
. After some simplifying, we have

E
[
q2
(
w2, p

B
2

)]
≈q2

(
w̄2, p̄

B
2

)
+

1

2
q2ww

(
w̄2, p̄

B
2

)
V ar [w2]

+
1

2
q2pp

(
w̄2, p̄

B
2

)
V ar

[
pB2
]

+ q2wp
(
w̄2, p̄

B
2

)
q1Cov

[
pA2 , p

B
2

] (5)

The cross-partial of housing consumption with respect to wealth and price,
q2wp (·), is negative for common utility functions such as the CES.8 Conse-
quently, covariance has a negative effect on mean housing spending. This
result follows from the convexity of price and wealth in the demand for
second period housing. Because of the convexity, the average demand for
households with high variance of second period housing demand (due to low
covariance) is greater than the average demand for households whose second
period housing demand is more tightly distributed.

Equation 5 indicates that, after controlling for origin and destination
characteristics such as expected house prices or variance in house prices as
well as household characteristics, we should find empirically that a higher
covariance is correlated with lower second period housing consumption. As
with variance, the effect on the mean is amplified when the household owns
a bigger house in the origin, all else equal.

8And in the case of Cobb-Douglas utility, housing spending is a constant fraction of
wealth, so housing consumption is just a constant times the ratio of wealth to price.
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2.4 Endogenizing Initial Housing Consumption

The analytical results above hold when average wealth entering the second
period does not change in response to covariance. However, first-period
housing consumption might respond to the benefit of home owning as a
hedge. Supporting evidence has been found in prior research: Sinai and
Souleles (2005) and Sinai and Souleles (2009) find that households are more
likely to purchase a house if it is expected to provide a larger hedge, while
Han (2008b) and Han (2008a) find theoretical and suggestive empirical evi-
dence that households purchase more housing in that circumstance.

Our theoretical framework also generates this same marginal effect of co-
variance on the intensive margin of first-period housing consumption. One
possible mechanism is that first-period housing is more valuable when the
expected hedge is stronger because it is better at reducing second-period
consumption volatility. It is straightforward to show the basis for this intu-
ition using our model of housing investment.

Suppose the second-period value function V (·) from Equation 1 can be
written

V
(
w2, p

B
2

)
= f

(
ν
(
w2, p

B
2

))
where ν(·) is a per-period utility function and f(·), an increasing and concave
function with a positive third derivative, reflects the household’s willingness
to trade wealth between periods.9 Applying a first-order Taylor approxima-
tion to ν(·), we have

V ar
[
ν
(
w2, p

B
2

)]
≈
(
νw(w̄2, p̄

B
2 )
)2
V ar [w2] +

(
νp(w̄2, p̄

B
2 )
)2
V ar

[
pB2
]

+
(
νw(w̄2, p̄

B
2 )
) (
νp(w̄2, p̄

B
2 )
)
q1Cov

[
pA2 , p

B
2

] (6)

Notice that only the last term contains covariance, and that it multiplies
q1. Because housing is a normal good, νp(·) is negative and νw(·) is positive.
Consequently, the variance of ν(·) is decreasing in the product of q1 and
the covariance of house prices. Higher covariance amplifies the marginal
decrease in V ar

[
ν
(
w2, p

B
2

)]
that results from increasing q1, and a decrease

in V ar
[
ν
(
w2, p

B
2

)]
increases expected utility because of the concavity of

f (·). This implies that, on the margin, higher covariance makes first-period

9Example functional forms that meet these criteria are Cobb-Douglas for ν(·), the
indirect utility function, and constant relative risk aversion (CRRA) for f(·).
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housing q1 more valuable.10 Putting these steps together, we have

sign

(
∂q1

∂Cov
[
pA2 , p

B
2

]) = sign

(
∂EV

(
s1(1 + r) + h1(1 + πA), pB2

)
∂Cov

[
pA2 , p

B
2

] )

= −sign

(
∂V ar

[
ν
(
w2, p

B
2

)]
∂Cov

[
pA2 , p

B
2

] )
> 0

Another possible mechanism for an endogenous response of first-period
housing choices to covariance is due to the precautionary saving motive
(Kimball 1990). Households whose houses provide a better hedge and thus
are insured against future house price risk may choose to save less, spending
more on both housing and non-housing consumption in the the first period.
As noted above, the variance of ν(·) in Equation 6 is decreasing in the
product of q1 and the covariance of house prices. Since the first derivative
of f(·) is convex, the agent is a precautionary saver. He will thus prefer to
consume more resources in the first period, and fewer in the second period,
when faced with a higher covariance. This suggests that the household will
decrease financial saving s1 in favor of first-period consumption and possibly
the first-period housing purchase.11

Regardless of the mechanism, when first-period housing consumption
and saving respond to the hedging benefit of homeownership, there is a
second channel — other than the direct hedging effect in Equation 4 — by
which house price covariance can affect the variance of housing consumption
in the second period. Namely, households who enter the second period with
more wealth will experience more variance in consumption, all else equal,
since they have more dollars in risky investments. Although this mechanism
is not the focus of this paper, we will need to account for it in our empirical
analysis. Consequently, we explicitly control for the effect of the expected
covariance on second period wealth. We further explain this approach in
Section 5.

In addition, the reaction of first period housing consumption to covari-
ance provides another mechanism, besides Equation 5, for higher covari-
ance to affect the mean of second-period housing consumption. For exam-
ple, households who reduce their precautionary saving due to more effective

10This heuristic argument can be made more formally through tedious but straightfor-
ward math involving a determinant and derivatives of the two first-order conditions.

11Although we can derive exact conditions for the net effects of covariance on first-period
choices, they depend on a large number of factors that are difficult to conceptualize.
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hedges spend less on housing in the second period. Regardless of the theo-
retical mechanism, any empirical relationship between covariance and sub-
sequent mean housing spending would reject the null of no hedge. We will
also try to distinguish the first-period housing consumption channel from
the nonlinearity described in Section 2.3 by controlling for ex ante expected
covariance.

3 Data

For our empirical work, we use the 5 percent sample from the 2000 Census
Individual Public-Use Microsample (IPUMS) that contains household-level
responses to the 2000 U.S. Census long-form questionnaire.12 We chose
this data source because it reports a household’s MSA of residence in 2000
and in 1995, as well as household characteristics and housing spending in
2000.13 From the two observations on the MSA of residence, we can infer
moving between MSAs and subsequently match those moves to covariance
in house prices across MSA pairs. Another benefit of the IPUMS data is
that it contains enough observations that we can control nonparametrically
for unobservable differences among origin or destination MSAs.

For house price data, we take the Federal Housing Finance Agency
(FHFA) MSA-level house price indices, deflate by the Consumer Price In-
dex, and peg them to the average house prices reported for each MSA in
the 2000 Census. We use this real dollar-valued house price measure to
calculate a cross-MSA covariance matrix.14 These indices use repeat sales
of houses with conventional mortgages to estimate constant-quality house
price indexes for nearly 400 MSAs. Although the FHFA indices begin as
early as the mid-1970s for some MSAs, we use the period starting in 1982
since more MSAs are available in the data starting at that time. We end
the series in 1999 in order to use data prior to the observations in the 2000
IPUMS.15

In the IPUMS, we use all single-family, one- or zero-couple households
that own a home, of which there are approximately 3.3 million in the sam-

12Ruggles, Sobek, Alexander, Fitch, Goeken, Hall, King and Ronnander (2004)
13An MSA is designed to correspond to a labor market area, and typically contains one

or more focal cities and their surrounding suburbs.
14The results are similar, if less well grounded in our theoretical results, if we use

covariances of real house price growth.
15The results are robust to changes in the horizon of the covariance calculation, such as

using the whole period of data availability, from 1982 to 2007.
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ple.16 Of this group, we keep those who have moved domestically in the last
five years and have both their current and previous metropolitan statistical
areas of residence identified.17 This leaves a sample of about 150,000 house-
holds, across 284 origin MSAs, 297 destination MSAs, and about 26,000
origin-destination pairs. Since the 17 years of FHFA data are not available
for all MSAs identified in the IPUMS, this further limits our sample to about
100,000 households, 156 origin MSAs and 167 destination MSAs. Finally,
to mitigate the effects of data reporting errors for house values or transito-
rily low incomes, we drop the top and bottom 1 percent of the observations
based on their self-reported house price to income ratios and exclude any
household with a MSA median house price-income ratio of above 10.

The summary statistics provided in Table 2 show how the observable
characteristics change as the sample size diminishes. Average house value,
household income, fraction married, and share college-educated rise, and av-
erage age declines. Most of the changes come from restricting the sample to
movers and residents of MSAs, who tend to be better-educated and higher-
income than rural residents. In the final sample, average house value is
about $230,000, household income is nearly $100,000, and more than three-
quarters of household heads are married. Figure 1 shows the distribution
of covariances, standardized to have mean zero and standard deviation one,
imputed to our IPUMS households. Most covariances are quite low, reflect-
ing households who move to or from MSAs with low house price variances.
However, there is a significant tail of higher covariances, due to households
moving between highly correlated high-variance MSAs.18

16This group excludes the few home-owning households with a household head — the
first person listed on the Census form — under the age of 25.

17Since migration is reported for individuals and we do not want to explicitly ac-
count for household formation, we assume that the origin MSA of the household
head is the origin MSA of the household. Unfortunately, the IPUMS does not iden-
tify all residents of many metropolitan areas. The IPUMS places the highest prior-
ity on identifying Public Use Microdata Areas (PUMAs). When PUMAs cross MSA
boundaries, the MSA identifier may be suppressed to maintain maximum confiden-
tiality. Still, most residents of most metropolitan areas are identified as such. See
http://usa.ipums.org/usa/volii/incompmetareas.shtml for complete details.

18The highest covariances in our data are among cities in the Northeast and among
cities in California. Our results are robust to excluding regional groups of households,
such as all those who moved from or to an MSA in California.
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4 Estimation Strategy

Equation 4 reflects the notion that when a household faces particular real-
izations of house price growth in their origin and destination housing mar-
kets, the effect on housing consumption in the destination is dampened
when house prices in the two markets move together. The hedging effect
implies that if households were to draw repeatedly from the distributions
of house prices in their origin and destination markets, higher covariance
(more hedged) households would experience lower variance of subsequent
housing consumption. It is this relationship between covariance of house
prices and the variance of subsequent housing spending, conditional on the
distributions of house prices, that we seek to estimate.

One empirical approach would be simply to test whether the the change
in housing consumption between the purchase of one house in an origin city
and another in the destination differs depending on whether the house price
growth over that same time period was similar in the origin and destination
housing markets or not. That approach would parallel Gruber’s (1997) study
of the consumption-smoothing effects of unemployment insurance, which es-
timated whether the change in consumption around an unemployment shock
varied with the generosity of unemployment insurance. However, unlike in
other consumption-smoothing research, we do not directly observe the shock
— a household’s realization of house price growth. Using the variance in
housing consumption will enable us to estimate the difference in response
for high- and low-covariance households while controlling nonparametrically
for the unobserved distribution of house price shocks.

Our approach is to estimate the conditional variance across households
in housing spending in a destination city subsequent to a move and relate
that to the covariance in house prices between the origin and destination.19

The key identifying assumption is that all households departing the same
origin city draw from the same distribution of initial house price shocks.
Equation 4 refers to a variance in housing consumption taken over a set of
possible realizations of house prices for one representative household. Since
we observe only one housing choice per household, we estimate the variance
of housing consumption across a number of households, each having drawn
one realization from a common distribution. We take several steps to make
this identifying assumption palatable.

19Although common in time-series and financial econometrics, conditional variance es-
timation for its own sake is fairly rare in cross-sectional applications. See Shore (2010) for
one example. Carroll and Ruppert (1988) provides a useful summary of the literature on
estimating conditional variance functions to that date.

16



First, we calculate the mean of house values conditional on demographic
characteristics, in essence estimating the deviation of realized housing spend-
ing from predicted spending. We also condition on fixed effects for the origin
and destination MSAs, accounting for differences among them that could af-
fect housing wealth or spending, such as the level of house prices. Second,
when we relate the variance of house values to the covariance in house prices,
we again condition on household characteristics and origin and destination
MSA fixed effects. This controls for the possibility that the demographic
composition of movers across MSA pairs could vary in a way that is sys-
tematically related to the covariance. It also controls for all households
departing an origin MSA having systemically higher variance in wealth, or
a destination MSA imposing more variance in housing values on movers,
independent of the MSA of origin.

Finally, we can use variation at the household level to relax the as-
sumption of the same (conditional) wealth distribution for all movers from
an origin city and instead allow that distribution to vary by MSA pairs.
Equation 4 predicts that, among households who move between a origin-
destination city pair, the effect of covariance on the conditional variance in
subsequent housing spending should be largest for households who owned
a large quantity of housing before moving. We proxy for the quantity of
housing owned with whether a household has a low income relative to house
prices in the origin MSA. We also estimate a regression model to fit the
quantity of housing owned conditional on a large set of covariates and fixed
effects. To test this prediction, we interact these two measures with covari-
ance and estimate the conditional variance with origin and destination fixed
effects, as well as origin x destination fixed effects, at the cost of losing our
estimate of the main effect of covariance.

Our estimation strategy also addresses another empirical challenge that
follows from the fact that households infrequently adjust their housing con-
sumption. Prior consumption-smoothing research has used households’ pre-
shock consumption as a measure of their desired consumption. Since house-
holds rarely adjust their housing consumption, we cannot easily compute the
change in housing consumption by taking the difference across two years.
For most households that difference is zero and, even for households who
move, both their prior housing consumption and their new consumption can
be quite different from the latent desired amount of housing consumption
assumed in the theory (Edin and Englund 1991). In any case, in our data
we also do not observe housing consumption prior to moving.20 Instead, our

20Housing tenure choice in the origin also is not available in the IPUMS. Among home-
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estimation procedure embeds a prediction of a household’s latent demand
for housing.

We assume that our data are generated by the following heteroskedastic
model, where yh is the value of the house owned by household h and Xh is
a vector of covariates:

yh = Xhβ + ηh
√
eXhγ (7)

E [ηh |Xh ] = 0

V ar [ηh |Xh ] = 1

The specified functional form for the variance is convenient because it both
guarantees positive predicted variances and allows us to interpret changes
in variance in (approximate) percentage terms.21

We estimate the conditional variance of house values in two stages. In the
first stage, we regress house values (yh) on origin-destination covariance (cij),
full sets of origin and destination dummy variables, and a vector of household
characteristics x̃h, which together comprise the full vector of covariates Xh

from equation 7.

yh = β0 + β1cij + δi + λj + x̃′hβ2 + εh (8)

Here h indexes households, while i and j denote the origin and destination
of that household, so that i = i(h) and j = j(h).

This regression yields an estimate of the conditional mean of house val-
ues, Ê [yh|cij , δi, λj , x̃h], as well as conditionally mean-zero residuals (ε̂h).
We then run the second-stage regression

log
(
ε̂h

2
)

= γ0 + γ1cij + δi + λj + x̃′hγ2 + νh (9)

where νh is an error term defined by E [νh |Xh ] = 0. This equation follows
from the facts that (1) we can always write a variable as the sum of its
conditional expectation plus a conditionally mean-zero error term and (2) we
can “plug in” consistent estimate of the first-stage errors (i.e., the residuals)

owners in the Panel Study of Income Dynamics (PSID) who moved across state lines in
the prior year, about 60 percent were previously homeowners. Since households who were
renters in the origin would not benefit from a hedge, this data omission should make it
more difficult for us to find an effect of covariance on the mean and variance of housing
consumption.

21We examine the functional form further and estimate a nonlinear model using splines
below.
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on the left side and still get consistent estimates of γ from equation 7.22 We
report bootstrapped standard errors for the conditional variance (second
stage) estimates.

It is important to recognize that self-reported house values, which are
what is reported in the Census data, are a measure of the current price per
unit quantity of housing multiplied by the quantity owned, whereas the the-
oretical results in Section 2 relate only to the quantity of housing consumed.
However, since all households in the Census report their house values at ap-
proximately the same time, we can assume that the price per unit quantity
is the same for all agents in a given destination MSA. Then, when we take
the log of the squared residuals in the second stage, the fixed effects for the
destination MSA absorb the MSA-level price component. The remaining
differences in the log variance of house values must reflect differences in the
variance of the quantity owned.

We are also interested in estimating the effect of covariance on the con-
ditional mean of housing consumption. Although the first stage of the con-
ditional variance estimation routine is a model of the conditional mean of
housing spending, we can only separate quantity from price if we use log
spending instead of the spending level. Therefore, when discussing the con-
ditional mean estimates, we run separate regressions of log house values on
the relevant covariates. For these regressions we report standard errors cor-
rected for heteroskedasticity and clustering at the origin-destination level.

4.1 Selection Bias

A potential critique of our empirical approach is that households might
change where they choose to move, or whether they buy or rent, based on
how well the price of the houses they sold tracked prices in the MSA they
moved to. However, it turns out that any potential bias, if anything, will
make it harder for us to discern an effect.

We can reasonably reject any concern about differential migration —
choosing a destination because of covariance — because it requires that a
substantial fraction of households change their migration decisions in re-
sponse to price swings in the destination or origin. In practice, migration
flows are nearly constant from year to year. Using U.S. Internal Revenue
Service data on migration from the 1980s to the present, we regressed the

22Note that using squared residuals biases the estimate of the conditional variance func-
tion, although it remains consistent. This can be corrected by studentization of the resid-
uals (Carroll and Ruppert 1988, p. 78). The correction has virtually no effect on our
estimates, so we leave it out to maintain simplicity.
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logarithm of the number of households moving across an MSA pair in a given
year on year and MSA-pair dummies. The R2 from this regression is about
0.95, leaving only a small set of households that could be affected by annual
swings in house prices. If we add to the regression the percentage by which
the destination house price is above or below the origin house price, we get
an elasticity of about 0.1, which is extremely precisely estimated thanks to
the large sample size. Even if we multiply this elasticity by 0.2, which is
about the 99th percentile of absolute annual swings in the house price gap,
we still get a change in the number of migrants across a given city pair of
only 2 percent. An average house price swing would shift migration by less
than 0.5 percent.

A second potential issue could arise if households who experienced low
covariances are less likely to buy a house after moving and thus do not show
up in our sample of home owners.23 Indeed, our results in section 5.4 will
show that households who move across highly covarying cities are more likely
to be homeowners. Any selection bias from the endogeneity of the tenure
decision most likely leads us to underestimate the effect of covariance on
the variance in housing spending. For simplicity, consider a version of the
empirical model in Equation 7 that relates house value (yh) with a single
covariate, cross-market house price covariance, which is denoted as above
by cij . Hh is an indicator variable for whether household h owns its home.

yh = β0 + β1cij + ηh

Hh = 1 [γ0 + γ1cij + φh > 0]

corr (ηh, φh) > 0

This is a standard selection model, where the conditional probability of
owning and conditional housing consumption can be modeled as correlated
random variables.24

Assuming that the correlation is positive — so households who have an
unobservable taste for home owning also desire relatively more expensive
houses — the conditional distribution of house prices is probabilistically
truncated from the left. That is, households from the low end of the house
price distribution are more likely to opt in and become homeowners when

23This would require the price to deviate from the present value of renting. One possi-
bility is that the user cost relationship is not constant. Alternatively, the household may
have a short horizon, as in Sinai and Souleles (2005) or Campbell and Cocco (2007).

24To actually estimate a selection-corrected version of the model that is not identified
solely from functional form assumptions would require an instrument that affects the
probability of owning but not the demand for housing.
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the covariance rises. This biases estimates of both the conditional mean and
conditional variance.

If yh is conditionally normally distributed, then the lesser probabilistic
truncation as covariance rises leads to an increase in the conditional variance
of house values. This result is straightforward to show for the case in which
yh and φh are conditionally bivariate normal, although it does not hold for
all distributions in general. The distribution of home values in our sample,
conditional on covariates, is approximately normal. Consequently, under a
conditional normality assumption on εh, any selection biases our estimates
toward zero.

5 Results

5.1 Conditional Variance Estimates

We present our results in three parts. The first section relates the conditional
variance of house values to the covariance between origin and destination
MSA pairs. The second section looks at the effect of covariance on condi-
tional mean housing demand, while the third examines the possibility that
the covariance hedge might also make it easier for households to buy a house,
rather than rent, in the destination.

In Table 3, we report our main result: The conditional variance of house
values among households who move between more highly covarying MSAs
is lower, even controlling for a wide set of covariates in both the housing
demand stage and the variance stage. The estimates reported in this table
are from the second stage of the conditional variance estimation laid out
in Section 4, which relates the conditional variance in house values across
households who move between an MSA pair to the covariance in house prices
of the two MSAs.

In the first column of Table 3, we estimate the log variance of house
prices conditional on origin-destination covariance and full sets of origin
and destination dummy variables, but no household-level covariates. We
standardize the covariates so the estimated coefficients can be interpreted
as the marginal effects of a one-standard deviation change in the covariate.
Our estimate in column (1) is that a one standard-deviation increase in
cross-market covariance reduces the variance of destination house values by
about 17 percent, with a standard error of 2.4 percent.

By including origin and destination dummies, we control for any origin-
or destination-specific differences in the variance of house values that might
be correlated with covariance. In essence, we are comparing households who
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move to MSA B from an MSA that does not covary with it to those who
move to MSA B from an MSA that does covary with it. Any factors that
are specific to B are absorbed by the destination fixed effects. Likewise, we
simultaneously compare households who move from MSA A to either high
or low covariance destinations. Factors specific to A are absorbed by the
origin fixed effects.

For example, if people who move from San Francisco have more variable
(unobserved) wealth, it will be picked up by the San Francisco dummy
and will not contaminate our estimates. Similarly, if the New York MSA
happens to have a wider variety of house values than other MSAs, the New
York fixed effect will absorb that. Instead, we rely on households who move
from San Francisco to more highly covarying MSAs having lower variance
of house values at their destinations than other households who moved out
of San Francisco, and households who move to New York from more highly
covarying markets having a lower variance of house values in New York than
other households who moved to New York.

The same covariates in the second stage are also included in the first
stage regression. The origin and destination fixed effects pick up differences
in the mean house value across MSAs as well as average differences in housing
demand among movers to and from each MSA. Meanwhile, the covariance
term in the first stage picks up differences in the conditional mean that are
correlated with covariance.

Column (2) repeats the conditional variance estimation, this time adding
controls for household characteristics such as family size and the age, sex,
citizenship status, race, education, and marital status of the household head.
These covariates serve two purposes. In the first stage, the estimation of the
conditional mean, the covariates control for differences in latent housing
demand that are functions of observable household characteristics, the char-
acteristics of the origin and destination cities, and the effect of covariance.
In the second stage, the covariates control for differences in the composition
of movers that might be correlated with the variance of housing demand.
For example, if highly-educated households had more or less variability in
housing demand and were more or less likely to move between covarying
MSAs, our estimate would be biased in the absence of the controls. With
the addition of the household controls, the estimated covariance coefficient
shrinks to -0.127, with a standard error of 0.019.

In column (3) we add current household income and its square to the
set of covariates, as proxies for lifetime income. While current income is
probably endogenously determined by households, we include it to make
sure that our estimated relationship between covariance and variance of
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house values does not simply reflect sorting of households of different incomes
into different locations. The coefficient of interest shrinks in magnitude, to
about 10 percent, but remains quite precisely estimated. We also find that
the volatility of housing demand increases with current income for most
households, although the quadratic term captures the fact that it eventually
declines at very high levels of income.

In column (4), we attempt to isolate the direct hedging effect of covari-
ance. As discussed in Section 2.4, one potential confounding factor is that
households may alter their initial consumption and investment choices in
response to their anticipated covariances. That can induce an independent,
second-order effect on the amount or volatility of wealth a household faces
when purchasing a home after a move. It is worth emphasizing that this
is not a statistical bias per se: Our approach does estimate the effect of
covariance on the variance of housing demand. Rather, in column (4) we
are interested in seeing how much of the effect is due directly to the hedg-
ing property of home owning versus the other channels by which covariance
might operate.

To decompose these mechanisms, we make use of the notion that first
period housing demand and savings decisions are based on an ex ante ex-
pected covariance of house prices between the origin city and all MSAs the
household might move to. But ex post housing demand, after the move,
depends only on the covariance of house prices between the origin MSA
and the MSA the household ended up moving to. By including the ex ante
expected covariance as a covariate, we can control for the effect of the non-
hedge channels on housing demand and the volatility of wealth, while still
identifying the hedging mechanism through our usual covariance variable.

Following Sinai and Souleles (2009), we compute the expected covari-
ance for each household as the weighted average covariance from the origin
MSA to all other MSAs, where the weights are the imputed probability that
household moves between each MSA pair. Using their city of origin and the
industry of employment of the household head, we calculate the household’s
probability of moving to each possible destination city as the rate of mov-
ing in each MSA pair x industry cell in the IPUMS. We then construct a
weighted covariance using these probabilities as weights, under the assump-
tion that households expectation of the probability of moving to a given city
is the same as the actual probability for their origin-industry cell.25 In col-

25Separating the expected covariance from the realized covariance relies on the assump-
tion that households’ true expected covariances are better proxied by our weighted average
measure than the covariance they realize across their actual origin and destination.
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umn (4), we see that controlling for the indirect mechanisms barely changes
our estimated effect of covariance (to -0.110) and that the estimated coeffi-
cient on expected covariance is not statistically distinguishable from zero at
any conventional level of significance.

Estimating a linear model of the effect of covariance in house prices on
the variance of housing spending masks the fact that there is a larger effect
at high covariances than at low covariances. We estimate the nonlinear
relationship using a generalized additive model (GAM) that specifies that
the conditional mean of the dependent variable comprises the sum of a set of
nonlinear functions, one for each covariate. The procedure estimates splines
that “penalize” likelihood function for additional degrees of freedom; this
helps to avoid over-fitting (Hastie and Tibshirani 1990, Wood 2006). Wood’s
(2006) recent technical innovation allows for the estimation of a GAM using
automated cross validation methods to choose the penalty parameters for
the spline.

We estimate a model that includes age and income as continuous covari-
ates, using splines, as well as the usual fixed effects from the models above.26

As in our more parametric versions, we estimate the model in two steps, first
fitting the mean as a function of these covariates and then running another
GAM with the log squared residuals on the left side and the same covariates
on the right. The curve relating covariance and the variance of second-period
housing spending, along with a 95 percent confidence interval, is shown in
Figure 2. For covariances below the mean, which is standardized to zero, the
curve is less steeply sloped than for those above the mean. On average, the
slope above the mean is about -0.14, while the slope below it is just -0.06.
Because of the long right tail of the distribution, about two-thirds of the
sample have covariances below the mean. Households with a covariance in
the 99th percentile of our sample have 40 percent less variance in destination
housing spending than comparable households with little or no covariance
between origin and destination. This nonlinearity is not surprising since our
theoretical results, equations 4 and 5, prescribe a linear effect only through
the use of a Taylor approximation.

5.2 Within City Pair Identification

The identification in Table 3 requires that there are no unobservable differ-
ences in the variance of housing demand among movers between MSA pairs

26To focus the plots on the dense part of the covariance distribution, we drop the top
and bottom 1 percent of our sample by covariance. This has little effect on the estimated
curves, precisely because they are estimated flexibly.
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that happen to be correlated with differences in the covariance in house
prices between the MSAs in the pair, conditional on origin and destination
MSA fixed effects. We can relax that requirement by making use of equa-
tion 4, which predicts that covariance should decrease volatility by the most
when the household owned more housing in the origin.

Empirically, we can compare the variance among movers who were likely
to own large houses to the variance among those who were likely to own
smaller houses to see if covariance has a larger dampening effect for the for-
mer group. A simple way to test for this effect is to follow Equation 4 liter-
ally and interact covariance with factors that shift q1. We try two strategies:
First, we interact covariance with the (standardized) ratio of household in-
come to origin median house price, since higher-income households or those
in lower-priced areas should own more housing, all else equal.27 Second, we
run a regression of log house values on a set of household covariates and
location fixed effects and predict the quantity of housing a household was
expected to own in the origin given its particular covariate values and fixed
effect.28 We likewise interact this predicted housing consumption variable
with covariance and include it in the conditional variance estimates.

One caveat to this approach is that households with different income
or wealth should also have different marginal elasticities of demand (q2p (·)
and q2w (·)) in Equation 4. For example, richer households should be less
impacted by a one-dollar increase in house prices. Differences in these elas-
ticities would also lead to different effects of covariance, since they multiply
the covariance term. That said, we expect any changes in marginal demand
elasticities to be second-order relative to changes in actual demand.

In columns (1) and (2) of Table 4, we find that higher covariance in house
prices between an MSA pair reduces the variance in house values more for
households who have high incomes relative to origin house prices or high pre-
dicted q1. In column (1), we see that a one standard deviation increase in
income increases the effect of covariance by about half relative to the mean,
with a coefficient of -0.076 on the interaction term. The controls include the
full set of household demographics, origin and destination MSA fixed effects,

27In principle we would like to use pre-move incomes or wealth, but these are not
reported in our data. Consequently, we use post-move income as a proxy for pre-move
income.

28This regression is very similar to the conditional mean regressions discussed below,
although we exclude covariance from the set of covariates. Since we include destination
fixed effects, using log house value rather than house value itself guarantees that pre-
dicted differences are differences in quantity rather than just price, under the maintained
assumption that house prices per unit quantity are constant within an MSA in a given
year.
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and our proxy for the ex ante expected covariance, paralleling column (4)
of Table 3. The interaction is highly statistically significant, since the stan-
dard error is just 0.012. Similarly, in column (2) a one standard deviation
increase in predicted house size (q1) substantially and statistically signifi-
cantly amplifies the effect of covariance, by 4.1 percentage points. These
results match our predictions based on Equation 4.

Since both income and predicted q1 vary at the household level, we can
also include MSA-pair fixed effects to control for unobservable differences
across MSA pairs and test whether covariance has a larger dampening ef-
fect for high q1 movers within a given MSA pair. This comes at the cost
of not being able to estimate the main effect of covariance, since it varies
only by MSA pair. The estimated effects in columns (3) and (4) are smaller
than in (1) and (2), respectively. The coefficient on the interaction with
income declines by about half (-0.029) but remains statistically significant
at the 5 percent level. In column (4), we find only a very small negative
effect of predicted house size on the effect of covariance on housing consump-
tion variance; this coefficient is appreciably smaller than its standard error.
Nonetheless, taken as a whole the evidence supports the idea that house-
holds who we expect had larger houses before moving have bigger reductions
in variance in the destination.

5.3 Conditional Mean Estimates

Our theoretical derivation indicates that the direct effect of covariance on
mean housing spending should be similar to the effect on the variance, which
is precisely what we find. The specifications reported in this section paral-
lel the tables from the conditional variance section and are similar to the
first stage of the conditional variance estimation procedure, with the sole
difference being that we use log housing values as the dependent variable.
As with the conditional variance estimation routine, using logs allows us to
separate quantity from price, since the destination fixed effects will absorb
the effects of differences in prices as long as they are additively separable
from quantity. Table 5 reports the results of the conditional mean regres-
sion with a varying set of controls. Column (1) shows the coefficients from
a regression of house values on covariance and origin and destination fixed
effects, while column (2) includes our standard set of covariates. Column
(3) adds controls for current income and column (4) adds our proxy for ex
ante expected covariance.

In all cases, higher covariance between origin and destination leads to
lower mean housing expenditures in the destination city, even after including
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the full set of covariates and origin and destination MSA fixed effects. A one
standard deviation higher expected covariance yields anywhere from a 2.6
to 0.9 percent reduction in housing spending in the destination, depending
on the specification. All of these coefficients are fairly tightly estimated and
are statistically distinguishable from zero.

According to equation 5, the impact of covariance on mean house spend-
ing should be concentrated amongst households who own more housing be-
fore moving. In Table 6, we interact covariance with income or predicted
house size (q1). With separate origin and destination fixed effects and a full
set of household controls, including expected covariance, we find large and
statistically significant effects of the ratio of income to origin price (1) and
predicted q1 (2) on the impact of covariance on mean housing expenditures.
A one standard deviation increase in the income-price ratio more than dou-
bles the effect of covariance, from -0.011 to -0.024, while a one standard
deviation increase in predicted housing has a similar effect. These interac-
tions are nearly identical when origin x destination fixed effects are included
in columns (3) and (4).

We also allow the effect of covariance on mean destination housing con-
sumption to be nonlinear by estimating a generalized additive model. As
with the regressions, we put log house value on the left hand side, but the
model is otherwise identical to the first-stage GAM used in the conditional
variance estimates. In contrast with Figure 2, Figure 3 shows that the ef-
fects above and below the mean are roughly the same — both around -0.011
— although the negative slope is more precisely estimated above the mean.
Overall, the pattern of results are quite similar for the conditional mean and
conditional variance regressions, as our theory predicts. They are separably
estimable because the variance regressions already control for mean housing
spending, so the conditional variance results are not due to the differences
in conditional mean.

5.4 Ex Post Probability of Owning

Covariance could also affect households’ tenure choice in the destination, as
discussed in Section 4.1. In this subsection, we test the tenure choice/covariance
relationship by estimating a linear probability model, with an indicator for
whether a household owns or rents its house as the dependent variable, and
the same sets of covariates as in the conditional variance estimates.29 The

29We have also estimated probit models; the results are very similar. We prefer the
linear probability model because fixed effect probit estimates are not necessarily consistent
when the number of observations within each group are fixed. This is the “incidental
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estimation sample contains approximately twice as many households as our
sample of homeowners.

The baseline results are reported in Table 7. In column (1) the only
controls are origin and destination fixed effects. We find that households
who faced higher covariances — that is, had a better hedge against destina-
tion house prices — are substantially more likely to own their homes after
moving. A one standard deviation increase in covariance raises the proba-
bility of owning by about 3.0 percentage points (with a standard error of
0.3 percent). In our sample, the average homeownership rate is 50 percent,
so 3 percentage points corresponds to a 6 percent increase.30 Columns (2)
through (4) sequentially add the full vector of household controls that were
used previously in Table 3. The estimated coefficient on covariance is not
affected much, and ranges from 0.030 to 0.025.

Table 8 repeats the strategy from Table 4 of interacting covariance with
factors that shift first-period housing quantity q1. With or without origin x
destination fixed effects, we find small and statistically insignificant effects
of the income-origin price ratio on the covariance hedging effect. Large pre-
dicted house sizes do have an effect, with a one standard deviation increase
in predicted q1 increasing the effect of covariance by about 1 percentage
point, with a standard error of .2 percentage points. All told, the covari-
ance hedge appears to work not only by reducing the variance of subsequent
housing consumption for home owners but also by increasing the probability
that a household will be able to afford a home at the destination.

6 Magnitudes

In this subsection, we demonstrate the scale of the covariance hedge by com-
puting the predicted reduction in variance across several groups and parts
of the covariance distribution. We find that the hedge is strongest for house-
holds who are likely to own larger homes and households who move cities
at the high end of the covariance distribution. The first column of Table 9
uses our estimates to calculate the percentage effect of a one standard de-
viation increase in covariance on post-move housing consumption variance.

parameters” problem. Another alternative candidate model, fixed effects logit, can only
accommodate a single set of fixed effects, where we have several. Including additional sets
of dummy variables reintroduces the issue of incidental parameters (Wooldridge 2002, pp.
491-492).

30The homeownership rate in the selected sample of inter-MSA migrants is substantially
lower than the national homeownership rate because renters are much more likely to move
than homeowners.
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In addition to the average effect across our entire sample, taken from col-
umn (4) of Table 3, we also calculate the effect for households with high
or low incomes relative to prices in the origin, using column (1) of Table
4.31 Households in the high-income group, which we define as having an
income-origin price ratio at the 90th percentile, were more likely to own a
larger home before moving and thus get a larger average benefit from higher
covariance, of about 18 percent for each standard deviation. Conversely, the
low-income group, at the 10th percentile of the income-origin price ratio,
gets just a 7 percent reduction.

Since a standard deviation of covariance is not an especially intuitive
measure, it is perhaps more useful to compare the strength of the hedge
at different points in the covariance distribution. Because the distribution
has a long right tail, as seen in Figure 1, similar percentile increases in
covariance have a larger effect at the top of the distribution than at the
bottom. For example, for the average household, moving between cities at
the 5th percentile of covariance versus a city pair at the median reduces
variance by just 6 percent. Moving between the 95th percentile city pair
versus the median, on the other hand, reduces variance by 24 percent. Much
of this effect is concentrated at the top of the distribution: A household with
a covariance at the 95th percentile gets an 18 percent reduction in variance
relative to a household at the 75th percentile.

The same pattern holds for the high- and low-income groups. The
strongest predicted covariance hedge is for high income households at the
top of the covariance distribution, who have just 40 percent the variance in
post-move consumption relative to high income households at the median
of covariance. Meanwhile, low-income households in the lower half of the
covariance distribution get much less benefit from the hedge. A household
with low income relative to prices in their origin city who moves between
cities at the median of covariance experiences just 4 percent lower variance
than a household who moves between cities at the 5th percentile.

7 Conclusion

In this paper, we examine the empirical link between cross-market house
price covariance and variance in subsequent housing consumption. Theory
suggests that higher covariance should hedge the volatility of housing con-

31For ease of explanation, we do not use the nonlinear estimates from the GAM described
above and shown in Figure 2. The patterns described here would be even more stark if
we did.
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sumption since changes in home owners’ wealth would offset changes in the
costliness of housing. Prior research has demonstrated that households re-
spond prospectively to a potential hedge by being more likely to own their
houses and to spend more on housing when the potential hedge is stronger.
This paper shows that the hedge works.

Empirically identifying whether home ownership successfully reduces the
volatility of housing consumption is challenging because adjusting housing
consumption is a low-frequency event, and in our data we observe neither
the shock to housing costs nor the household’s latent housing demand. We
surmount these difficulties by applying a conditional variance estimation
technique that is novel in the consumption smoothing literature. In essence,
we use the variance of housing spending across a cross-section of households
as an estimate of the variance of housing spending that a single household
would experience across different states of the world.

This strategy works because we can condition on household level observ-
able and MSA-level unobservable characteristics, so each household varies
only by the (unobserved) shock to housing costs. Differences in the variance
of housing spending among movers to a destination can thus be related to
differences faced by those households in the covariance in house prices be-
tween their origins and destinations. We also examine whether the variance
of housing consumption for households who move between a given pair of
MSAs responds more to covariance for those households that theory predicts
would be more sensitive to it, that is, households who were likely to own
larger homes (and thus have a bigger hedge) before they moved.

Our estimates show that home ownership significantly reduces the vari-
ance in housing spending for households that move between covarying MSAs.
A one standard deviation increase in covariance, holding all else constant,
reduces the average variance of housing spending by 10 to 17 percent, de-
pending on the specification. This average estimate masks considerable non-
linearity and heterogeneity across groups. Allowing the estimated coefficient
to vary nonlinearly with the level of covariance by using a generalized ad-
ditive model, we find that for households with covariance above the mean,
a one standard deviation change in covariance would reduce the variance of
housing spending by 14 percent whereas households with below-mean co-
variance enjoy just a 6 percent reduction. The effect is especially sizable for
wealthy households (20 percent) as well as those who are particularly likely
to have owned a large home before moving.

We find additional evidence consistent with the model. On average,
households who face higher covariances tend to spend less on housing after
a move because of the convexity of the housing demand function. They also
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are more likely to purchase a house in the destination since they are better
protected against unexpected changes in house prices.

Finally, we show that the hedge can be especially valuable for certain
households, particularly those who own large homes and move across cities
whose prices covary strongly. We find that for such households, covariance
can reduce the variance of post-move housing spending by more than 40 per-
cent relative to otherwise identical households who move across cities with
covariance at the median. The variance in housing consumption is reduced
even more because greater covariance raises the odds that a household can
afford to own a home after a move. Conversely, the hedging benefit is weak-
est for low-income households, who do not own much if any housing, and
households who move across city pairs that do not covary much.

This natural hedge provided by home owning can help explain some facts
that the conventional wisdom finds surprising. For example, the measured
marginal propensity to consume out of housing capital gains might be low,
as found by Calomiris, Longhofer and Miles (2009), Attanasio, Blow, Hamil-
ton and Leicester (2009) and Campbell and Cocco (2007), because increases
in housing wealth are spent on commensurately higher housing costs. As an-
other example, while insurance markets have arisen to mitigate most other
major sources of consumption uncertainty — health care, long-term care,
or even college tuition costs — markets to insure against house price un-
certainty have not taken off (Shiller 2008). Our results suggest that simply
owning a house provides valuable insurance against housing costs in future
cities, obviating some of the need for a separate financial product. Finally,
higher covariance in house prices may mitigate not only changes in housing
consumption after a move, but changes in non-housing consumption as well.
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Table 3: Baseline Percentage Effect of Covariance on Housing Expenditure
Variance

Variable (1) (2) (3) (4)

Covariance -0.173 -0.127 -0.103 -0.110
(standardized) (0.024) (0.019) (0.019) (0.020)

Household income 0.011 0.011
($1000’s) (0.000) (0.000)

Household income -0.000009 -0.000009
-squared (0.000001) (0.000001)

Exp. Covariance 0.023
(standardized) (0.021)

Observations 100851 100851 100851 100851

R2 0.099 0.135 0.162 0.162

Origin FE X X X X
Destination FE X X X X

Household controls X X X

Standard errors are bootstrapped by origin x destination cluster
using 500 replications to account for two-step estimation of con-
ditional variance. Covariance and expected covariance are stan-
dardized to have mean zero and standard deviation one. Expected
covariance is imputed based on origin and industry. Household
controls include age and age-squared as well as indicator variables
for sex of household head, family size, marital status, citizenship,
race, English language abilities, and education.
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Table 4: Interacted Percentage Effect of Covariance on Housing Expenditure
Variance

Variable (1) (2) (3) (4)

Covariance -0.125 -0.134
(standardized) (0.020) (0.020)

Covariance x -0.076 -0.029
Income / Origin Price (0.012) (0.014)

Covariance x -0.041 -0.005
Predicted House Size (0.010) (0.011)

Observations 100851 100851 96350 96350

R2 0.161 0.161 0.280 0.284

Origin FE X X
Destination FE X X
Orig.*Dest. FE X X

Household controls X X X X
Exp. Cov. control X X X X

Income controls X X X X

Standard errors are bootstrapped by origin x destination
cluster using 500 replications to account for two-step esti-
mation of conditional variance. Covariance is standardized
to have mean zero and standard deviation one. Predicted
house size is the fitted value from a regression of log house
price on a full set of household covariates. Income-origin
price ratio and predicted house size are standardized to have
mean zero and standard deviation one in the interaction
terms. Expected covariance is imputed based on origin and
industry. Household controls include age and age-squared as
well as indicator variables for sex of household head, family
size, marital status, citizenship, race, English language abil-
ities, and education. Income controls comprise a linear and
a quadratic term.
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Table 5: Baseline Percentage Effect of Covariance on Housing Expenditure
Mean

Variable (1) (2) (3) (4)

Covariance -0.026 -0.017 -0.009 -0.011
(standardized) (0.005) (0.004) (0.003) (0.003)

Household income 0.006 0.006
($1000’s) (0.000) (0.000)

Household income -0.000007 -0.000007
-squared (0.000000) (0.000000)

Exp. Covariance 0.005
(standardized) (0.004)

Observations 100851 100851 100851 100851

R2 0.217 0.398 0.509 0.509

Origin FE X X X X
Destination FE X X X X

Household controls X X X

Standard errors clustered at the origin x destination level. Covari-
ance and expected covariance are standardized to have mean zero
and standard deviation one. Expected covariance is imputed based
on origin and industry. Household controls include age and age-
squared as well as indicator variables for sex of household head,
family size, marital status, citizenship, race, English language abil-
ities, and education.
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Table 6: Interacted Percentage Effect of Covariance on Housing Expenditure
Mean

Variable (1) (2) (3) (4)

Covariance -0.011 -0.011
(standardized) (0.003) (0.003)

Covariance x -0.013 -0.014
Income / Origin Price (0.003) (0.004)

Covariance x -0.018 -0.017
Predicted House Size (0.003) (0.003)

Observations 100851 100851 100851 100851

R2 0.509 0.509 0.577 0.577

Origin FE X X
Destination FE X X
Orig.*Dest. FE X X

Household controls X X X X
Exp. Cov. control X X X X

Income controls X X X X

Standard errors clustered at the origin x destination level.
Covariance is standardized to have mean zero and standard
deviation one. Predicted house size is the fitted value from a
regression of log house price on a full set of household covari-
ates. Income-origin price ratio and predicted house size are
standardized to have mean zero and standard deviation one
in the interaction terms. Expected covariance is imputed
based on origin and industry. Household controls include
age and age-squared as well as indicator variables for sex of
household head, family size, marital status, citizenship, race,
English language abilities, and education. Income controls
comprise a linear and a quadratic term.
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Table 7: Baseline Effect of Covariance on Ex Post Probability of Owning

Variable (1) (2) (3) (4)

Covariance 0.030 0.027 0.026 0.025
(standardized) (0.003) (0.002) (0.002) (0.002)

Household income 0.003 0.003
($1000’s) (0.000) (0.000)

Household income -0.000005 -0.000005
-squared (0.000000) (0.000000)

Exp. Covariance 0.009
(standardized) (0.004)

Observations 207472 207472 207472 199297

R-squared 0.057 0.267 0.298 0.297

Origin FE X X X X
Destination FE X X X X

Household controls X X X

Linear probability model. Standard errors clustered at the origin
x destination level. Covariance and expected covariance are stan-
dardized to have mean zero and standard deviation one. Expected
covariance is imputed based on origin and industry. Household
controls include age and age-squared as well as indicator variables
for sex of household head, family size, marital status, citizenship,
race, English language abilities, and education.
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Table 8: Interacted Effect of Covariance on Ex Post Probability of Owning

Variable (1) (2) (3) (4)

Covariance 0.025 0.025
(standardized) (0.002) (0.002)

Covariance x 0.001 0.001
Income / Origin Price (0.002) (0.002)

Covariance x 0.010 0.011
Predicted House Size (0.002) (0.002)

Observations 199297 199297 199297 199297

R2 0.297 0.297 0.364 0.365

Origin FE X X
Destination FE X X
Orig.*Dest. FE X X

Household controls X X X X
Exp. Cov. control X X X X

Income controls X X X X

Standard errors clustered at the origin x destination level.
Covariance is standardized to have mean zero and standard
deviation one. Predicted house size is the fitted value from a
regression of log house price on a full set of household covari-
ates. Income-origin price ratio and predicted house size are
standardize to have mean zero and standard deviation one
in the interaction terms. Expected covariance is imputed
based on origin and industry. Household controls include
age and age-squared as well as indicator variables for sex of
household head, family size, marital status, citizenship, race,
English language abilities, and education. Income controls
comprise a linear and a quadratic term.
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Figure 1:

Histogram of Standardized Covariance at Household Level

Covariance (Standardized)
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Histogram of covariance at the household level, excluding the top and bot-
tom 1 percent. Covariance is standardized to have mean zero and standard
deviation one.
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Figure 2:
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Solid curve is a penalized regression spline. The regression includes the full
set of discrete household covariates detailed in the text, as well as splines
in income, age and (prior) expected covariance. Dashed curves show the
95% confidence interval. Covariance is standardized to have mean zero and
standard deviation one.
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Figure 3:
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Solid curve is a penalized regression spline. The regression includes the full
set of discrete household covariates detailed in the text, as well as splines
in income, age and (prior) expected covariance. Dashed curves show the
95% confidence interval. Covariance is standardized to have mean zero and
standard deviation one.
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