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1 Introduction

The correlated random coefficient model is the new centerpiece of a large literature in mi-

croeconometrics. It extends the classical uncorrelated random coefficient model of Swamy

(1971, 1974). For person i, outcome Yi in terms of choice indicator Di is written as

Yi = αi + βiDi (1)

where Di = 1 if a choice is made; Di = 0 if not and both the intercept, αi, and the slope,

βi, vary among persons. In this expression both the αi and βi may depend on regressors Xi

which we keep implicit.

βi is the causal effect of Di on Yi holding αi fixed. If agents make their choices to take

treatment based on components of βi that depend on variables not available to the observing

economist, Di is correlated with βi even after conditioning on Xi. Most recent studies focus

on estimating means or quantiles of the distribution of βi.
1

The model that motivated the research of a previous generation (see, e.g., Griliches,

1977) assumes no response heterogeneity (βi = β) or else an uncorrelated random coefficient

model as in Swamy (1971, 1974) or Mincer (1974), so βi is independent of Di. The correlated

random coefficient model assumes that βi varies in the population and in addition that

Cov (Di, βi) 6= 0. (C-1)

The model also accounts for selection on intercepts, i.e. selection on pretreatment unobserv-

ables:

Cov (Di, αi) 6= 0. (C-2)

When (C-1) holds, marginal returns to an activity in general differ from average returns.

When assumption (C-2) holds but Di is independent of βi, standard IV identifies the mean

1Abbring and Heckman (2007) discuss methods for estimating the distribution of βi.
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of βi, which we denote by β̄. This configuration of assumptions includes the case when βi is

random but independent of Di and the case when βi is the same for everyone.2,3

As first noted by Heckman and Robb (1985, reprinted in 2008), instrumental variables

(IV) applied to (1) when (C-1) holds produces an instrument-dependent parameter that, in

general, is not β̄.4 In general, different instruments identify different parameters. Under

conditions specified in Yitzhaki (1989),5 Imbens and Angrist (1994), Heckman and Vyt-

lacil (1999), and Heckman, Urzua, and Vytlacil (2006), IV estimates weighted averages of

marginal effects. Heckman and Vytlacil (1999, 2001, 2005, 2007a) generalize the marginal

treatment effect (MTE) introduced by Björklund and Moffitt (1987) and show that the MTE

plays the role of a functional that is invariant to the choice of instrument. The MTE can be

used to unify the literature on treatment effects.6

Heckman and Vytlacil (2001, 2005, 2007b) derive testable implications of the hypothesis

that βi is statistically independent of Di given Xi:

H0 : βi ⊥⊥ Di | Xi,

where A ⊥⊥ B | C means A is independent of B given C. In this paper, we examine tests

of this hypothesis, drawing heavily on our previous work (Heckman, Schmierer, and Urzua,

2010). We also consider tests of the hypothesis that E(βi) = β̄ = 0 and that the IV estimand

of (1) is zero.

The paper proceeds as follows. Section 2 establishes the equivalence of the correlated

random coefficient model with the Generalized Roy model. We examine two testable im-

plications of it. One test exploits the insight that, in general, in the case when H0 is false,

2See Heckman and Vytlacil (1998), Heckman and Vytlacil (2007a,b). The standard “ability bias” problem
(Griliches, 1977) assumes that βi = β, a constant for all i, and that Cov(Di, αi) 6= 0.

3Evidence from parametric models on the empirical relevance of (C-1) in a variety of areas of economics
is presented in Heckman (2001, Table 3).

4See the discussion of the ensuing literature in Heckman, Urzua, and Vytlacil (2006) or Heckman and
Vytlacil (2007a,b).

5Posted at website for Heckman, Urzua, and Vytlacil (2006), see http://jenni.uchicago.edu/

underiv/.
6See Heckman and Vytlacil (2005, 2007a,b).
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different instruments identify different parameters. Section 3 presents some new results on

the sampling distribution of the instrumental variable estimator and develops tests for β̄ = 0

and for the IV estimand to be zero. Section 4 develops tests of the correlated random co-

efficient model. Section 5 develops other tests of H0 and places all tests in the conditional

moment testing framework (Ai and Chen, 2003). Section 6 concludes.

2 Equivalence with the Generalized Roy Model and

Two Testable Implications of H0

An alternative way to represent equation (1) makes the link to economic choice theory

more explicit. Individual i experiences outcome Y1,i if Di = 1 and outcome Y0,i if Di = 0,

i = 1, . . . , I. The observed outcome is Yi = DiY1,i + (1−Di)Y0,i.
7 Let µj(Xi) = E(Yj,i | Xi),

j ∈ {0, 1}. One can write the model for potential outcomes conditional on Xi as Y1,i =

µ1(Xi) + U1,i and Y0,i = µ0(Xi) + U0,i where E(Uj,i | Xi) = 0, j ∈ {0, 1}. In this notation,

the observed outcome is

Yi = µ0(Xi) + [µ1(Xi)− µ0(Xi) + U1,i − U0,i]Di + U0,i.

This is the correlated random coefficient model of equation (1) where the baseline outcome

is αi = µ0(Xi) +U0,i and the gain is βi = µ1(Xi)− µ0(Xi) +U1,i−U0,i where, for notational

simplicity, we suppress the dependence of αi and βi on Xi. To simplify the expressions, we

drop the i subscripts throughout the rest of the paper unless their use clarifies the discussion.

We define α = α + Uα and β = β̄ + Uβ where E(Uα | X) = 0 and E(Uβ | X) = 0. Table 1

shows the equivalent parameters for the two models.

Whether the null hypothesis H0 is true or not depends on the underlying choice model.

We postulate a threshold crossing model which assumes separability between observables

7This is the Quandt (1958) switching regression model.
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Table 1: Equivalence of Notation Between the Correlated Random Coefficient Model and the
Generalized Roy Model. All parameters are defined conditional on Xi which is left implicit.

Baseline outcome

Outcome in treated state

Gain to treatment

(Individual causal effect)

Outcome

 =μ 0,i +  (μ 1,i  - μ 0,i + U 1,i  - U 0,i ) D i + U 0,i

Y i =  Y 0,i + D i (Y 1,i  - Y 0,i ) Y i  = αi  + β i D i

Y 1,i  - Y 0,i  = μ 1 - μ 0 + U 1,i  - U 0,i
β i

αi

Generalized Roy Correlated random
model coefficient model

Y 0,i  =μ 0 + U 0,i

Y 1,i =μ 1 + U 1,i
β i  + αi

Z that affect choice and an unobservable V : D = 1(µD(Z) − V > 0), where 1(·) is an

indicator function that takes the value 1 if its argument is true and is 0 otherwise, and

µD is a deterministic function of Z.8 Z can include components of X. Letting FV be the

distribution of V conditional on X, and assuming that Z ⊥⊥ V | X, the choice probability

or “propensity score” is

P (z) = Pr(D = 1|Z = z) = FV (µD(z)),

where to simplify the notation, we keep the conditioning on X implicit. The choice equation

can be written in several alternative and equivalent ways:

D = 1(µD(Z)− V > 0) = 1(FV (µD(Z)) > FV (V )) = 1(P (Z) > UD)

where UD = FV (V ) so UD ∼ Uniform[0, 1].

8See, e.g., Thurstone (1927) and McFadden (1974, 1981). We do not strictly require separability, but we
do require that the choice equation has one representation in separable form. See Heckman and Vytlacil
(2007b).
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We invoke the assumptions of Heckman and Vytlacil (2005, 2007b).9 A fundamental

treatment parameter introduced by Björklund and Moffitt (1987) is the marginal treatment

effect (MTE). The MTE for a given value of X = x is

MTE(x, uD) = E(Y1 − Y0 | X = x, UD = uD) = E(β | X = x, UD = uD).

It is the mean effect of treatment when the observables X are fixed at a value x and the

unobservable in the choice equation UD is fixed at a value uD. Heckman and Vytlacil (1999,

2001, 2005, 2007b) use the MTE to develop implications of the model to test H0.

In the general case, the conditional expectation of Y given X and Z is

E(Y |X = x, Z = z) = E(Y |X = x, P (Z) = p)

= E(α|X = x) + E(βD|X = x, P (Z) = p)

= E(α|X = x) + E(β|X = x,D = 1)p

= E(α|X = x) +

∫ p

0

E(β|X = x, UD = uD)duD, (2)

where the integrand in the final expression is the MTE(x, uD).10 Under H0,

E(β | X = x, UD = uD) = E(β | X = x),

9Their conditions are:

(A-1) (U0, U1, V ) ⊥⊥ Z | X. Alternatively, (α, β, V ) ⊥⊥ Z | X.

(A-2) The distribution of µD (Z) conditional on X is nondegenerate. Thus the distribution of P (Z) is
nondegenerate conditional on X.

(A-3) The distribution of V is continuous (i.e., absolutely continuous with respect to Lebesgue measure).
Thus UD = FV (V ) is uniform.

(A-4) E |Y1| <∞ and E |Y0| <∞, so defining E(β) = β̄, |β̄| <∞.

(A-5) 1 > Pr (D = 1 | X) > 0.

Vytlacil (2002) shows that under mild regularity conditions, assumptions (A-1)-(A-5) are equivalent to the
IV conditions of Imbens and Angrist (1994) used to define the local average treatment effect (LATE).

10The first line follows from (A-1). The rest of the derivation comes from (1) and the law of iterated
expectations.
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so

E(Y | X = x, P (Z) = p) = E(α | X = x) + E(β | X = x)p.11 (3)

Thus the function E(Y |X = x, P (Z) = p) is linear in p, conditional on X = x, which is a

testable hypothesis.

A second implication of H0 is that any standard instrument identifies β = E(β).12 Thus

under H0 all valid instruments have the same estimand. Under conditions presented in this

paper, comparing the estimates produced by different instruments tests the weaker hypoth-

esis H ′0 : Cov(β,D | X) = 0, which is an implication of the stronger hypothesis H0. The

analysis in this paper thus provides an alternative interpretation of standard tests of overi-

dentification. A rejection of the null hypothesis that two instrumental variable estimands

are different is not necessarily a rejection of the validity of one instrument. It could be

interpreted as evidence in support of a correlated random coefficient model.

3 General Properties of the IV Estimator for the Cor-

related Random Coefficient Model and Tests of the

Hypotheses β̄ = 0 and that the IV Estimand Is Zero

We present a new representation of the sampling distribution of the IV estimator. We

consider the problem of constructing the power of tests of several hypotheses using the

sampling distribution of the IV estimator for the correlated random coefficient model.

11To see this, notice that β ⊥⊥ D | X ⇐⇒ β ⊥⊥ 1(P (Z) > UD) | X ⇐⇒ β ⊥⊥ UD | X given (A-1).
12In the notation of equation (1), but dropping subscripts i, a standard instrument J has the two properties:

(i) Cov(J,D | X) 6= 0 and (ii) Cov((α, β), J | X) = 0. Note that J is shorthand for J(Z). Note further that
the condition Cov(β, J | X) = 0 only emerges as an interesting condition in a random coefficient model.
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3.1 IV in the Correlated Random Coefficient Model

Consider an instrument J(Z). Denote J(Z) by J and define J̃ = J− J̄ where J̄ is the sample

mean of J(Z). E(J) is assumed to be finite. The IV estimator is

β̂IV,J =

∑
YiJ̃i∑
DiJ̃i

.

Define Cov(J,D) = ωJ and let I denote the sample size. Under a weak law of large numbers,

1
I

∑
DiJ̃i

p→ ωJ and J̄
p→ E(J). As shown in Heckman and Vytlacil (2005, 2007b), under

the conditions (A-1)–(A-5) stated in Section 2,

β̂IV,J
p→ βIV,J =

∫ 1

0

E(β|UD = uD)hJ(uD)duD (4)

where

hJ(uD) =
E[(J − E(J)) | P (Z) > uD] Pr(P (Z) > uD)

ωJ
, (5)

and we keep the conditioning on X implicit. Heckman and Vytlacil (2005) show that∫ 1

0
hJ(t)dt = 1. Thus we can write

βIV,J = β +

∫ 1

0

E(Uβ | UD = uD)hJ(uD)duD. (6)

For later use we break out the component of βIV,J that depends on the instrument J :

∫ 1

0

E(Uβ | UD = uD)hJ(uD)duD = ΥJ ,

so βIV,J = β̄ + ΥJ . By definition, conditional on X, β̄ does not depend on J .

Under independent sampling,

√
I
(
β̂IV,J − βIV,J

)
d→ N(0, ΩJ)
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where

ΩJ = E
[
α2
] Var(J)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)]
hΩJ (uD)duD (7)

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

and

hΩJ (uD) =
1

ω2
J

∞∫
−∞

(j − E(J))2

1∫
uD

fP,J(P (z), j)dP (z)dj (8)

=
E[(J − E(J))2 | P (Z) > uD] Pr(P (Z) > uD)

ω2
J

.13

The weight hΩJ (uD) does not necessarily integrate to 1:

∫ 1

0

hΩJ (t)dt =
Cov(J̃2, D)

[Cov(J̃ , D)]2
.

Appendix A presents the full derivation. The weight hΩj(uD) plays a role in determining

the variance of the IV estimator that is analogous to the role of hJ(uD) in generating the

probability limit of the IV estimator. 2E[αβ | UD = uD] + E[β2 | UD = uD] plays a role in

generating the variance of the IV estimator analogous to the role of the MTE in generating

the probability limit of the IV estimator. We use this representation to facilitate comparison

of the power of the tests under alternative data generating processes and to consider the

problem of the optimal choice of instruments.

These formulae hold for general functions J(·) of instruments Z that satisfy assumptions

(A-1)–(A-5) given in Section 2. For example, suppose that J(Z) has discrete support on

points j1, . . . , jK with corresponding values of the propensity score p1, . . . , pL with L possibly

not equal to K. Let p0 = 0. In this case, for uD ∈ (pl, pl+1) both hJ and hΩJ are constant

13fP,J(P (z), j) is the density of P (Z) and J(Z) evaluated at P (Z) = P (z) and J(Z) = j.
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so we can write

ΩJ = E
[
α2
] Var(J)

ω2
J

+
L−1∑
l=0

λΩl

∫ pl+1

pl

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)] 1

pl+1 − pl
duD

−

(
L−1∑
l=1

λl

∫ pl+1

pl

E(β | UD = uD)
1

pl+1 − pl
duD

)2

.

The weights λΩl and λl are defined in the following way. Let ji be the ith smallest value in

the support of J(Z), then

λΩl =

∑K
i=1[ji − E(J)]2

∑L
t>l fP,J(pt, ji)

Cov(J̃(Z), D)2
(pl+1 − pl)

λl =

∑K
i=1[ji − E(J)]

∑L
t>l fP,J(pt, ji)

Cov(J̃(Z), D)
(pl+1 − pl).

For the special case of a binary instrument J(Z) has two points of support, j1 and j2,

corresponding to the points p1 and p2 in the propensity score distribution. Let Pr(J(Z) =

j1) = Pr(P (Z) = p1) = q and Pr(J(Z) = j2) = Pr(P (Z) = p2) = 1 − q. The λl are λ1 = 1

and λl = 0, l > 1.14 The weights for the variance simplify to

λΩ0 =
[j1 − E(J)]2q + [j2 − E(J)]2(1− q)

Cov(J̃(Z), D)2
(p1) and λΩ1 =

[j2 − E(J)]2(1− q)
Cov(J̃(Z), D)2

(p2 − p1),

and

λΩ0 + λΩ1 =
(j1 − E(J))2qp1 + (j2 − E(J))2(1− q)p2

Cov(J̃ , D)2
=

Cov(J̃2, D)

Cov(J̃ , D)2
.

Formula (4) extends the representation of IV as weighted averages of slopes of the un-

derlying function, due to Yitzhaki (1989). It allows the instrument J(Z) be different from

14

λ1 =
[j2 − E(J)](1− q)

Cov(J̃(Z), D)
(p2 − p1) =

(j2 − j1)(p2 − p1)q(1− q)
Cov(J̃(Z), D)

=
Cov(J̃(Z), P (Z))

Cov(J̃(Z), D)
= 1.
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the propensity score P (Z) or a monotonic function of it. It reveals that, in general, different

instruments identify different parameters. Thus, in general, βIV,J 6= βIV,J ′ if J and J ′ apply

different weights (5) to a common MTE.

As noted by Heckman and Vytlacil (2005, 2007b), while the weight in (5) integrates to

1, it is not necessarily non-negative for all values of uD so the interpretation of the weighted

average produced by IV is obscure. Even though the MTE is positive everywhere, the IV

estimate may be negative.15

Some applied economists report tests based on IV sampling distributions as if they are

testing the null hypothesis that β̄ = 0. Under H0, i.e., the absence of a correlated random

coefficient model, the sampling distribution of the standard IV estimator, β̂IV,J , can be used

to consistently test the null hypothesis that β̄ = 0. However, when H0 is false, a test of

β̄ = 0 based on the sampling distribution of the IV estimator is, in general, inconsistent and

biased because by (6), IV does not, in general, converge to β̄.

Consider the following example based on the normal generalized Roy Model,


U1

U0

V

 ∼ N




0

0

0

 ,


σ2

1 σ10 σ1V

σ10 σ2
0 σ0V

σ1V σ0V σ2
V


 , (9)

and assume X = 1. Recalling that uD = FV (v), when V is a normal random variable, the

marginal treatment effect is

MTE(UD = uD) = β̄ +

(
σ1V − σ0V

σV

)
Φ−1(uD) (10)

where Φ−1(·) is the inverse of a standard normal CDF (hence Φ−1(uD) = v). Alternatively,

in terms of v,

MTE(V = v) = β̄ +
σ1V − σ0V

σV
v.

15See the examples in Heckman, Urzua, and Vytlacil (2006).
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Let τ = σ1V −σ0V

σV
. A value of τ 6= 0 produces a correlated random coefficient model. For such

values plim β̂IV,J 6= β̄. The choice equation is assumed to be D = 1(Z > V ) where both

Z (a single instrument) and V are normally distributed and Z ⊥⊥ V . Additionally, assume

that σ2
1 = σ2

0 = σ2
U , σ10 = 0.5× σ1 × σ0 and σ2

V = 1.

Figure 1 plots the power of a Wald test of the hypothesis that β̄ = 0 based on β̂IV,J .

We compute the power function for different values of β̄. Recall from (6) that this is the

component of βIV,J that does not depend on J . In Panel A, β̂IV,J is a consistent estimator

for β̄. In the other two panels it is not. Thus in the top panel of the figures, when τ = 0,

and hence H0 is true, the test of the hypothesis β = 0 is unbiased and consistent and the

size of the test is controlled.16 As expected, smaller values of σ2
U produce higher power,

and larger values of σ2
Z produce higher power. The bottom two panels plot the power of

the test that β = 0 when τ = −1 and τ = 0.6, respectively. In these two latter cases,

plim β̂IV,J = βIV,J 6= β̄. Hence the tests are biased and inconsistent. The power and size of

the test for the existence of an “effect” (i.e., whether β = 0) can be badly distorted. Thus

even if β = 0, an “effect” can be detected, and if β 6= 0, no “effect” can be detected.

3.2 Testing Hypotheses About Instrument-Dependent Parame-

ters

More recently, many applied economists, following Imbens and Angrist (1994), interpret IV

as a weighted average of “LATEs,” or in our framework, a weighted average of MTEs, as in

equation (3). It is understood that β̂IV,J is not, in general, consistent for the true β̄. Within

this framework, economists often report tests of the hypothesis that βIV,J = 0.

To calculate the power of such tests, consider alternative values of βIV,J(= β̄ + ΥJ from

equation (6)) obtained by varying β̄ holding ΥJ fixed. Notice that unlike the analysis in

the preceding section, in this section we are not testing the hypothesis that β̄ = 0. Instead

16Although Figure 1 shows the power function only for one sample size, the consistency of the test is
readily verified.
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Figure 1: Power function for a Wald test of β̄ = 0 based on the sampling distribution of
β̂IV,J .
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Note: Each plot shows the power with a hypothetical sample size of 500. The size of the test is 0.05. The model is the normal generalized Roy
model with the unobservables jointly normal with variance σ2

U and correlation 0.5. The choice equation is D = 1(Z > V ) where V ∼ N(0, 1) and

Z ∼ N(1, σ2
Z). The power functions plot the power of the Wald test of βIV,J = 0 for alternative values of β̄. The vertical dashed lines denote the

null hypothesis β̄ = 0. Each panel fixes τ = Cov(β, V )/Var(V ) at a different level. When τ = 0, plim β̂IV = β̄0, which in these figures is zero,
and hence the test is consistent. For all nonzero values of τ , the test is inconsistent.
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we are testing the hypothesis that βIV,J = 0 (or some other specified value). We vary β̄

to calculate the power of the test for alternative values of βIV,J . This is a sensible way to

proceed because β̄ is instrument invariant. Investigating the power of the test in this fashion

allows us to construct power functions for instrument-invariant alternatives.

Figure 2 plots the power function for the Wald test of the hypothesis βIV,J = 0 as a

function of βIV,J holding ΥJ fixed at -0.5. Consequently, the β̄ compatible with the null

hypothesis, β̄0, is 0.5. For the model of unobservables used in the previous subsection,

keeping ΥJ fixed entails, among other things, holding τ = σ1V −σ0V

σV
fixed along with the

weighting function hJ(uD). For a given τ and a fixed IV weighting function hJ(uD), we vary

the parameters of covariance matrix (9). These parameters affect the sampling distribution

of β̂IV,J and hence the power of the test.

Neither the IV estimand nor the variance of the IV estimator depends on σ10. Therefore,

the power of the test of the null hypothesis βIV,J = 0 does not depend on σ10. The only

remaining parameters that can be changed without changing ΥJ are σ2
0, σ

2
1, σ1V and σ0V .

To keep τ fixed, we can only vary σ1V and σ0V subject to a constraint that σ1V − σ0V is

constant.17 For σV = 1, the four A panels of Figure 2 show the power of the test for different

values of β̄ when we vary σ1V and σ0V such that σ1V − σ0V = −1. The power of the test is

highest when σ1V and σ0V are both close to 0 (ie. straddling 0), and lowest when both are

far from zero (either positive or negative). The panels in B vary βIV,J by varying β̄ holding

ΥJ fixed and hold fixed all of the parameters of (9) except for σ2
1, while the panels in C vary

β̄ hold fixed all of the parameters of (9) except σ2
0. As expected, power decreases as both

variances increase, in general at different rates.

There are other ways to calculate the power of the test that βIV,J = 0 for alternative

values that are obtained by varying β̄ keeping ΥJ fixed. If the choice equation is

D = 1(Zγ > V )

17Variations in σ2
V affect the denominator of the weights.
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Figure 2: Power function for the test of the hypothesis that plim β̂IV,J = 0 when β̄0 = 0.5.
Alternatives are different values of βIV,J obtained by fixing ΥJ and varying β̄.
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Note: Each plot shows the power with a hypothetical sample size of 500. The size of the test is 0.05. The instrument is normally distributed,
Z ∼ N(1, 1); D = 1(Z > V ). In panel A, the unobservables are generated with covariances given in the figure and σ2

V = 1, σ10 = 0, σ2
1 = 1, σ2

0 = 1.

In panels B and C the unobservables are generated with variances given in the figure and σ2
V = 1, σ10 = 0, σ1V = −0.5, σ0V = 0.5. In all panels,

under the null hypothesis β̄0 = 0.5, and alternative hypotheses are generated by changing β̄. The vertical dashed line shows the value of
plim β̂IV,J = 0 under the null hypothesis and the vertical dotted line shows the value of β̄ under the null hypothesis.
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and Z ∼ N(Z,ΣZ) and V ∼ N(0, σ2
V ), all instruments constructed from linear or affine

transformations of Z have the same weight function (5) and hence have the same instrument-

dependent value, βIV,J . For proof of this claim, see Appendix B.18

This result implies that one can construct power functions for the hypothesis βIV,J = 0

for different values of βIV,J = β̄ + ΥJ for alternative choices of ΣZ , holding γ′ΣZγ, the

variance of the choice index, constant. The derivation in Appendix B shows that the IV

estimand depends only on the distribution of the index Zγ − V . From assumption (A-1),

Zγ and V are statistically independent. σ2
V has to be held constant to keep ΥJ fixed. We

keep this term fixed by varying components of Z while keeping γ′Zγ fixed. An instrument

with greater variance that obeys this constraint will produce greater power. Figure 3 plots

power functions of the test of the hypothesis that βIV,J = 0 using each component of a

two-dimensional instrument Z = (Z1, Z2). These plots show that for a given IV estimand

βIV,J , the power of the test is higher when using the instrument that accounts for more of

the variance of the index Zγ. Going from top to bottom, the variance of Z1 is increasing

while the variance of Z2 is decreasing. Accordingly, from top to bottom the power of the

test βIV,J = 0 using Z1 as an instrument is increasing while the power of the test using Z2

as an instrument is decreasing. Each panel shows the fraction of γ′Zγ accounted for by the

variance of the instrument used to construct the power function (either Z1 or Z2).19 We now

use the tools developed for IV in a correlated random coefficient model to test H0.

4 Testing H0 Using Instrumental Variables

Armed with the results of Section 3, we study how to use different IVs to test H0. Under

H0, the probability limits of any two IV estimators are identical, because for any choice of

18This result is special to the case of J(Z) linear or affine in Z with Z normally distributed, so J(Z) is
normally distributed and the further assumption (A-1) that Z ⊥⊥ V , where V is normally distributed. We
have not analyzed more general conditions on Z and V under which the invariance holds.

19Note that in a given row, the fractions do not sum to 1 because there is a covariance (of 0.1) between
Z1 and Z2.
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Figure 3: Power functions for the test of the hypothesis that βIV,J = plim β̂IV,J = 0 for
β̄0 = 0.5. Alternatives are different values of βIV,J obtained by fixing ΥJ and varying β̄.
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Note: Each plot shows the power with a hypothetical sample size of 500 varying β̄ keeping ΥJ fixed. The size of the test is 0.05 The instruments

are distributed normally, Z1 ∼ N(1, σ2
Z1

), Z2 ∼ N(1, σ2
Z2

) and Cov(Z1, Z2) = σZ1,Z2
, Z2 = 0.1;D = 1(Z1 + Z2 > V ) so γ = (1, 1). The

distribution of the index is held fixed and is distributed N(2, 3). The unobservables are jointly normally distributed with zero means and σ2
V = 1,

σ10 = 0.5, σ2
1 = 1, σ2

0 = 1, σ1V = −0.3, σ0V = 0.3. In all panels, under the null hypothesis β̄0 = 0.5, and alternative hypotheses are generated by

changing β̄. The vertical dashed line shows the value of βIV,J under the null hypothesis and the vertical dotted line shows the value of β̄ = β̄0
under the null hypothesis being considered, i.e. that βIV,J = β̄ + ΥJ .
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J ,

plim β̂IV,J = βIV,J =

∫ 1

0

E(β|UD = uD)hJ(uD)duD = β̄

∫ 1

0

hJ(uD)duD = β̄.

If H0 is false, in general any two IV estimators will differ. Excluding the case of equal IV

weights for the two instruments, our IV test forms two estimators β̂IV,1 and β̂IV,2, based on

J1(Z) and J2(Z) respectively, and tests the null hypothesis

HIV
0 : βIV,1 − βIV,2 = 0

against the alternative hypothesis

HIV
A : βIV,1 − βIV,2 6= 0.

This test is identical to a standard test for overidentification. However, within the context of

a correlated random coefficient model, we do not interpret rejections of the null hypothesis

as evidence of the violation of the assumptions required for the validity of an instrument.

Rather, rejections are interpreted as evidence of selection on heterogeneous gains to treat-

ment.

Under the null hypothesis, the Wald test statistic is asymptotically distributed as a

χ2
1. Under the alternative, in the general case, the Wald statistic converges to a noncen-

tral chi-square distribution. Let h1(·) and h2(·) denote the weights (akin to hJ(·) above)

corresponding to J1(Z) and J2(Z), respectively. To simplify the notation, we suppress

the Z argument. Define J̃1 = J1 − J1 and J̃2 = J2 − J2 as the demeaned values of

the instruments. Let J̃1 = (J̃11, . . . , J̃1I)
′ and J̃2 = (J̃21, . . . , J̃2I)

′ be the matrices of de-

meaned instruments stacked across individuals. Let D = (D1, . . . , DI)
′ be the stacked

values of the choice variable Di. Under random sampling, and the assumptions of Section 2,

J̃′1D

I

p→ ω1 and
J̃′2D

I

p→ ω2 for some finite constants ω1 and ω2. Under HIV
A : βIV,1 − βIV,2 =[∫ 1

0
MTE(uD)(h1(uD)− h2(uD))duD

]
/
√
I, the noncentrality parameter of the chi-square
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distribution of the test statistic is

λIV,1,2 =
1

2

(∫ 1

0

MTE(uD)(h1(uD)− h2(uD))duD

)2

Ψ−1
1,2 (11)

where

Ψ1,2 = E
(
α2
) [Var (J1)

ω2
1

− 2 Cov(J1, J2)

ω1ω2

+
Var (J2)

ω2
2

]
(12)

+

1∫
0

[
2E(αβ | UD = uD) + E(β2 | UD = uD)

]
hΩ,J1,J2(uD)duD

−

 1∫
0

MTE(uD)(h1(uD)− h2(uD))duD

2

.

Defining J∗1 = J1 − E(J1) and J∗2 = J2 − E(J2), the weight hΩ,J1,J2(·) is given by

hΩJ1,J2
(uD) =

1∫
uD

∞∫
−∞

(
J∗1
ω1

− J∗2
ω2

)2

f(J1−J2),P (j1 − j2, P (z)) d(j1 − j2) dP (z)

= E

[(
J∗1
ω1

− J∗2
ω2

)2

| P (Z) > uD

]
Pr(P (Z) > uD).20

The derivation follows a logic similar to that used to derive (7).21 Notice that not only

will the difference in the IV estimands depend on the alternative under consideration, but

the variance of the difference between the IV estimators will also depend on the alternative

under consideration.

We present this characterization of the variance in order to understand the properties of

tests of H0 based on IV estimators. This expression for the variance is not meant as a guide

for how to implement such tests. In practice the analyst would form the test statistic using

20f(J1−J2),P (j1 − j2, P (z)) is the joint density of J1 − J2, and P (Z) evaluated at J1 − J2 = j1 − j2 and
P (Z) = P (z).

21The logic is not, however, identical. Using (J1− J2) as an instrument and testing if βIV,J1−J2
= 0 is not

equivalent to the test presented in the main text of the paper. The denominators of the IVs differ in the two
approaches.
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a standard estimator of the variance of the vector of IV estimates.

In general, the weights presented above do not have simple analytical expressions. They

do in the case of a model with normal error terms with normally distributed instruments

and a linear index structure for the choice equation. However, for this case, the proposed IV

test has no power, because, and as previously discussed and as established in Appendix B,

βIV,J1 ≡ βIV,J2 irrespective of the truth or falsity of H0. For this case, the noncentrality

parameter of the asymptotic chi-square distribution of the test statistic will be zero so the

power of the test equals its size. To have a test with any power, we have to rule out

instruments with equal weights. Since the weights can be constructed from the data on Z,

it is possible to check this condition in any sample.22

We do not formally analyze conditions that guarantee that the two instruments J1 and

J2, constructed from Z, optimize the power function of the test. From the expression for

the noncentrality parameter, one can see the ingredients required to construct an asymp-

totically most powerful test. Let Z ∈ Rk be the vector of available instruments and let

J =
{
J | J : Rk → R

}
be the space of functions which map the vector of instruments to the

real line. Then for a given MTE, the optimal choice of J1 and J2 solves the problem

max
J1∈J ,J2∈J

1

2

(∫ 1

0

MTE(uD)(hJ1(uD)− hJ2(uD))duD

)2

Ψ−1
1,2 .

The optimal choice of instruments will generally depend on the shape of the MTE(uD).23

We present an example with two non-normal instruments in Figure 4. Specifically, let

D = 1(γ1Z1 + γ2Z2 > V ) where the vector Z = (Z1, Z2) is distributed as a multivariate

mixture of normals with the distribution given at the base of the figure. The unobservables

are assumed to be generated by a normal generalized Roy model. The test of equality of the

IV estimators constructed using these two instruments has power to detect deviations from

22It would be desirable to develop a formal test for equality of the two IV weights. The required ingredients
are in the literature. We leave the formal derivation for another occasion.

23More generally, one could use multiple instruments and base a test on multiple contrasts of the set of
instruments. We do not develop this test in this paper.
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H0. Figure 4A plots the weights h1(·) and h2(·) which the IV estimator places on the MTE,

using Z1 or Z2 respectively. The weights must differ for the test based on the difference in

IV estimators to have power to detect deviations from H0. When the mixing proportion in

the mixture of normals is 0.45, the instruments are highly non-normal and the IV weights

differ substantially. However, when the mixing proportion is 0.75, the instruments become

closer to normal, the weights become very similar, and the test of H0 loses power. This case

is discussed further in Heckman, Schmierer, and Urzua (2010).

Another example of a test that has power to detect deviations from H0, even with normal

instruments, constructs IV estimators using nonlinear functions of Z. We consider a normal

generalized Roy model where there is one Z variable in the choice equation that is normally

distributed, D = 1(Z > V ). We plot the weights of the IV estimators based on Z and Z2.

Figure 4B plots the weights for these two choices of instruments. The weights differ, and in

addition the amount by which they differ generally depends on the distribution of Z. We

plot the weights for two choices of the mean of Z presented in the figure. These choices

clearly affect the weights and hence will generally affect the power of a test of H0 based on

these IV estimators.

Another choice of instruments uses P (Z) on disjoint intervals of the support of P (Z) as

two instruments. Form two disjoint intervals [p
1
, p1] and [p

2
, p2], and construct IV estimators

over these intervals as sample analogs to

βIV,[p
1
,p1] =

Cov
(
Y, P (Z) | P (Z) ∈ [p

1
, p1]

)
Var

(
P (Z) | P (Z) ∈ [p

1
, p1]

)
and

βIV,[p
2
,p2] =

Cov
(
Y, P (Z) | P (Z) ∈ [p

2
, p2]

)
Var

(
P (Z) | P (Z) ∈ [p

2
, p2]

)
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Figure 4: IV weights for alternative choices of the instrument.
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C.  P (Z ) above and below the median
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D.  P (Z ) separated by quartiles
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Note:  Panel A plots the weights of IV estimates constructed using either Z 1 or Z 2 as an instrument where Z 1 (Z 1  Z 2) is distributed as a 
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Note:  Panel A plots the weights of IV estimates constructed using either Z 1 or Z 2 as an instrument where Z 1 (Z 1, Z 2) is distributed as a 
multivariate mixture of normals, with D  = 1(γ 1Z 1 + γ 2Z 2 > V ).  To construct these results, we assume

and the coefficients in the choice equation are γ 1=0.2, γ 2=1.  In the left plot of Panel A we let p mix  = 0.45 and in the right plot p mix  = 0.75.  
Panel B plots the weights of IV estimates constructed using either Z  or Z 2 as an instrument where Z  ~ N(μ Z ,1), μ Z  = 1 or μ Z  = -0.5, and 
D  = 1(Z  ≥ V ).  Panel C plots the weights of IV estimates constructed using either P (Z ) below the median or P (Z ) above the median as 
instruments.  Panel D plots the weights of IV estimates constructed using P (Z ) in different quartiles of its distribution as instruments.  In 
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Note: Panel A plots the weights of IV estimates constructed using either Z1 or Z2 as an instrument where (Z1, Z2) is distributed as a multivariate
mixture of normals, with D = 1(γ1Z1 + γ2Z2 > V ). To construct these results, we assume

(
Z1
Z2

)
∼ pmix ×N

(
−0.8

1
,

(
1.4 0.5
0.5 1.4

) )
+ (1− pmix)×N

(
−0.8

1
,

(
0.6 −0.3
−0.3 0.6

) )

and the coefficients in the choice equation are γ1 = 0.2, γ2 = 1. In the left plot of Panel A we let pmix = 0.45 and in the right plot pmix = 0.75.

Panel B plots the weights of IV estimates constructed using either Z or Z2 as an instrument where Z ∼ N(µZ , 1), µZ = 1 or µZ = −0.5,
and D = 1(Z > V ). Panel C plots the weights of IV estimates constructed using either P (Z) below the median or P (Z) above the median as
instruments. Panel D plots the weights of IV estimates constructed using P (Z) in different quartiles of its distribution as instruments. In Panels

C and D, Z ∼ N(µZ , 1), µZ = 0 or µZ = 1, and D = 1(Z > V ). In all of the plots, we set σ2
V = 1.
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and test

HIV
0 : βIV,[p

1
,p1] = βIV,[p

2
,p2]

HIV
A : βIV,[p

1
,p1] 6= βIV,[p

2
,p2].

There is no a priori guidance on which intervals to use so we consider two ways to construct

intervals over which to form IV estimates: (1) use the intervals [0, pmed) and [pmed,1] where

pmed is the sample median of P (Z), and (2) use the intervals [0, pq1), [pq1, pq2), [pq2, pq3)

and [pq3, 1], where pqj is the jth sample quartile of the distribution of P (Z) and form all

pairwise contrasts between these estimates. Note that even though we split the propensity

score into four intervals, we are still conducting pairwise tests. However, because there is a

multiplicity of pairwise tests, we must control the size of the test. We do this by using the

stepdown procedure of Romano and Wolf (2005). Figures 4C and 4D plot the weights for the

instruments constructed in this manner. These weights are nonoverlapping by construction

and will also depend on the distribution of the instrument Z.

The power of the test of H0 based on IV estimators also depends on the variance (12),

which determines the denominator of the noncentrality parameter. The important terms

which are affected by the choice of instruments are the variance of the difference in the

instruments
[

Var(J1)

ω2
1
− 2 Cov(J1,J2)

ω1ω2
+ Var(J2)

ω2
2

]
and the variance weight hΩ,J1,J2(·). The variance

of the difference in the instruments is identified from the distribution of Z given X. The

weights hΩ,J1,J2(·), can also be estimated from the data but are less transparent. For each of

the examples presented in Figure 4, we plot the variance weights hΩ,J1,J2(·). In the case of

the normal generalized Roy model, the weights are more intuitive and more easily calculated

when conditioning directly on V = v (rather than UD = uD), so we plot them as a function

of v. Figure 5 plots the variance weights. Ceteris paribus, the larger the variance weights,

the larger is the variance of the difference in the IV estimators and hence the lower the

power of a test based on this difference. In Panel A of Figure 5 we see that when the
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mixing proportion is 0.45 the variance of the difference in the estimators is higher than when

the mixing proportion is 0.75 due to the fact that the IV weights covary highly when the

instruments are closer to normal so the variance of their difference is smaller. In Panel B, the

variance weights are roughly similar for E(Z) = 1 and E(Z) = −0.5. Finally, in Panel C the

variance weights are much larger when E(Z) = 1 than when E(Z) = 0. This demonstrates

that even when the IV weights are nonoverlapping, as is the case in both examples in Panel

C, the variance of the difference in the IV estimators will generally depend on the distribution

of Z.

We emphasize that the specific comparisons of IV estimators presented in this section are

illustrative examples. Our formal analysis is completely general and allows for any choice of

valid instruments which satisfy (A-1)–(A-5).

5 Testing H0 by Testing for Linearity

We next consider tests of H0 based on linearity in p. Keeping the conditioning on X implicit,

we can write (3) as

E(Y | P (Z) = p) = µ+ g(p) (13)

for some general nonlinear function g(·) where µ and g may depend on X. Our test for the

absence of selection on the gain to treatment is a test of whether the function g(·) belongs

to the linear parametric family F = {a + bp, (a, b) ∈ R2}. Let P be the support of P (Z),

with typical element p ∈ P . The null hypothesis of linearity can be written as

HL
0 : There exists some (a, b) ∈ R2 such that g(p) = a+ bp for almost all p ∈ P ,

while the alternative is

HL
A : There exists no (a, b) ∈ R2 such that g(p) = a+ bp for almost all p ∈ P .
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Figure 5: IV variance weights (hΩJ1,J2
(·)) as a function of V = v for alternative choices of

instruments.
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Note: Panel A plots the variance weights of the difference in the IV estimates constructed using either Z1 or Z2 as an instrument where (Z1, Z2)
is distributed as a multivariate mixture of normals, with D = 1(γ1Z1 + γ2Z2 > V ). To construct these results, we assume

(
Z1
Z2

)
∼ pmix ×N

(
−0.8

1
,

(
1.4 0.5
0.5 1.4

) )
+ (1− pmix)×N

(
−0.8

1
,

(
0.6 −0.3
−0.3 0.6

) )

and the coefficients in the choice equation are γ1 = 0.2, γ2 = 1. In the left plot of Panel A we let pmix = 0.45 and in the right plot pmix = 0.75.

Panel B plots the variance weights of the difference in the IV estimates constructed using either Z or Z2 as an instrument where Z ∼ N(µZ , 1),
µZ = 1 or µZ = −0.5, and D = 1(Z > V ). Panel C plots the variance weights of the difference in the IV estimates constructed using either P (Z)
below the median or P (Z) above the median as instruments. In Panel C, Z ∼ N(µZ , 1), µZ = 0 or µZ = 1, and D = 1(Z > V ). In all of the

plots, we set σ2
V = 1.
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There is a large and still unsettled literature in econometrics and statistics dealing with

specification tests of this type.24 These tests proceed in one of two ways: (i) testing or-

thogonality restrictions implied by the parametric model, or (ii) comparing a nonparametric

estimate of g(p) with a parametric estimate, â + b̂p. We discuss both types of tests. Heck-

man, Schmierer, and Urzua (2010) present Monte Carlo analyses of the power of these tests.

We briefly discuss a third test due to Li and Nie (2007).

Linearity Test 1: Wald Test Based on Series

The first test of linearity of E(Y |P (Z) = p) in p determines whether terms in addition to

p are required to fit the data. It is instructive to consider the case of the normal selection

model as a baseline. When the data are generated from the normal generalized Roy model,

we can characterize E(Y |P (Z) = p) by

E(Y |P (Z) = p) = ᾱ + β̄p+ τ

∫ p

0

Φ−1(uD)duD.

Heckman, Schmierer, and Urzua (2010) examine this case in depth.

In the general non-normal case, polynomials can approximate classes of smooth alterna-

tives for the function g(·). One can estimate E(Y |P (Z) = p) using polynomials of degree 2

or higher. Polynomials approximate well a broad class of functions. Exploring power in this

class gives us an indication of the power of our procedures against such alternatives.25 One

specification of a more general, but still parametric, alternative model is

g(P (Z)) =
L∑
l=0

φl(P (Z))l,

24See, e.g., Horowitz and Spokoiny (2001) and the references therein. The properties of particular tests
depend on the specification of alternatives.

25Ichimura and Todd (2007) discuss the properties of series estimators. Newey (1997) establishes conver-
gence rates and proves asymptotic normality of such estimators.

27



where L is assumed to be known.26 The proposed test for linearity is

H0 : φl = 0 for l = 2, . . . , L

HA : φl 6= 0 for some (or all) l = 2, . . . , L.

Heckman, Schmierer, and Urzua (2010) develop properties of this test for linearity.

Linearity Test 2: Bierens Conditional Moment Test

One can also test the validity of representation (3) using orthogonality restrictions implied

by the parametric model. One approach is the conditional moment (CM) test of Bierens

(1990).27 This test uses the fact that under the null hypothesis the following moment con-

dition must be satisfied

E[Y − a0 − b0P (Z) | P (Z)] = 0

for the true parameter vector (a0, b0) ∈ R2. This conditional moment restriction implies the

set of unconditional moment restrictions

E[(Y − a0 − b0P (Z)) exp(t′Λ(P (Z)))] = 0 (14)

for all t ∈ R, for some bounded one-to-one, mapping Λ from R into R. A test can be

constructed using the sample analog of the left-hand side of (14). Bierens (1990) shows how

one can use sample analogs to construct a test statistic which, under the null hypothesis,

converges in distribution to a χ2
1 and under the alternative diverges to infinity. Heckman,

Schmierer, and Urzua (2010) discuss the properties of this test.

26Below, we discuss a procedure when L is unknown.
27See also Bierens (1982) and Bierens and Ploberger (1997) for related tests. Newey (1985) discusses

conditional moment tests more generally.
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The Preceding Tests are Conditional Moment Tests28

All of the tests discussed so far test if

E(Y | P (Z)) = a+ bP (Z)

which is equivalent to

E [h(P (Z)) [Y − a− bP (Z)]] = 0

for any function h. Conditional moment tests would typically use a vector of functions

h(P (z)) to construct tests.

The tests previously discussed use different choices of h(P ). For the Bierens test, one

would use h(P (Z)) = exp(t′Λ(P (Z))). The test of linearity based on polynomials takes

h(P (Z)) =
[
1, P (Z), (P (Z))2, . . . , (P (Z))L

]
. The IV test can also be cast in this framework,

as the following argument shows.

The plim of the IV estimator obtained using Jk(Z), k = 1, . . . , K, as an instrument are

the values of (ak, bk) that solve

E [Jk(Z) [Y − ak − bkD]] = 0

and

E [Y − ak − bkD] = 0, k = 1, . . . , K.

By the law of iterated expectations, this is equivalent to solving

E [Jk(Z) [E(Y | Z)− ak − bkP (Z)]] = 0

E [E(Y | Z)− ak − bkP (Z)] = 0,

28We thank Edward Vytlacil for suggesting this unifying approach.
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which is equivalent to solving

E [Jk(Z) [Y − ak − bkP (Z)]] = 0

E [Y − ak − bkP (Z)] = 0.

For one instrument there is no test, but for two or more (K ≥ 2), one can test if a common

pair of (a, b) satisfies all of the moment conditions produced from using different instrumental

variables. This is the classical test of overidentification. Thus, all of the tests previously

discussed can be viewed as conditional moment tests.

Linearity Test 3: A Semiparametric Test Based on Local Linear Regression29

A potential problem with the test based on series estimators (Linearity Test 1) is that it

assumes that the degree of the highest order polynomial in P (Z) is finite and known. A

semiparametric approach that did not rely on strong functional form assumptions about the

generator model is more desirable.

Li and Nie (2007) use local linear regression methods to develop a test for linearity of an

unknown parametric function in a semiparametric model. They develop a test of linearity of

the unknown nonparametric component (linearity in P (Z) in our setup) that can be applied

to the problem analyzed in this paper if it is adapted to the case of an estimated P (Z).

If P (Z) is parametric and its coefficients are
√
N estimable, their analysis can be applied

directly. The case where P (Z) is estimated nonparametrically is left for another occasion.

Li and Nie (2007) conduct a Monte Carlo study of their approach. They show good

size and power properties for their test statistic. Their test can be interpreted as a local

conditional moment test.

29We thank Xiaohong Chen for directing us to this paper and clarifying our thinking about semiparametric
approaches to testing for linearity.
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Conditioning on X

Throughout, we have conditioned on X. An important practical problem not addressed in

this paper but common to all empirical models is picking the appropriate conditioning set,

and determining how to explicitly model the dependence of Y on X. Heckman, Schmierer,

and Urzua (2010) discuss the power of these tests and conduct extensive Monte Carlo studies.

6 Summary and Conclusion

P.A.V.B Swamy’s classic work (1971, 1974) developed estimators for the uncorrelated ran-

dom coefficient model. This is the case when H0 is true. In this paper, building on the work

of Heckman and Vytlacil (1999, 2005, 2007a,b) and Heckman, Schmierer, and Urzua (2010),

we develop tests for the presence of a correlated random coefficient model and related tests

on parameters derived from the model. All of the tests we consider can be interpreted as

conditional moment tests. We develop instrumental variable tests for the null hypothesis of

the absence of a correlated random coefficient model. To implement it, we develop the sam-

pling distribution of the IV estimator using the marginal treatment effect and its extensions

to higher moments of the distribution of the heterogeneity on which agents select.

Heckman, Schmierer, and Urzua (2010) conduct a Monte Carlo investigation of the power

of these tests. One disturbing finding from their work is that the power of all of the tests

we consider is low. They show that among all of the tests considered, the test based on

comparing alternative IV estimators above and below the median propensity score has the

highest power.

This paper analyzes the case of a binary treatment. Heckman, Urzua, and Vytlacil (2006)

and Heckman and Vytlacil (2007b) analyze the cases of a multiple treatment model generated

by an ordered choice model with stochastic thresholds and a multiple treatment model

generated by an unordered choice model. In all of these cases, IV produces an instrument-

dependent parameter so the IV test for selection on unobserved gains based on comparing
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the estimands of two different IVs developed in this paper carries over in general to these

settings. A test of linearity of the conditional expectation of Y given P is developed for the

outcome model for multiple treatments generated by the ordered choice model in Heckman,

Urzua, and Vytlacil (2006). It also applies to the unordered multiple choice model that

identifies the treatment effect of a gain compared to the next best option which Heckman,

Urzua and Vytlacil show is a direct extension of the binary model.
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A The Variance of Linear IV in the Correlated Ran-

dom Coefficient Model

The IV estimator, using instrument J(Z), is

β̂IV,J =

∑
YiJ̃i∑
DiJ̃i

and hence
√
Iβ̂IV,J =

1√
I

∑
(Ji − J̄)(αi + βiDi)

1
I

∑
DiJ̃i

.

Invoking standard central limit theorems,

√
I
(
β̂IV,J − βIV,J

)
d→ N(0, ΩJ).

Defining J∗ = J − E(J), where ΩJ is given by

ΩJ = E

{[
Y J∗

ωJ
− E

(
Y J∗

ωJ

)]2
}

= E

[
Y 2(J∗)2

ω2
J

]
−
(
E

[
Y J∗

ωJ

])2

= E

[
Y 2(J∗)2

ω2
J

]
−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

=
1

ω2
J

E
[
(α + βD)2(J∗)2

]
−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

=
1

ω2
J

E
[
α2(J∗)2

]
+

2

ω2
J

E
[
αβD(J∗)2

]
+

1

ω2
J

E
[
β2D(J∗)2

]
−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

.

33



Using the law of iterated expectations as well as the assumption that α is independent of Z,

this expression can be written as

ΩJ = E
[
α2
] Var(J)

ω2
J

+
1

ω2
J

2E
[
αβ(J∗)2 | D = 1

]
Pr(D = 1) +

1

ω2
J

E
[
β2(J∗)2 | D = 1

]
Pr(D = 1)

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

where

hJ(uD) =
E[J∗ | P (Z) > uD] Pr(P (Z) > uD)

ωJ
.

Under the conditions of Fubini’s Theorem, we can exchange the order of integration and

write

ΩJ = E
[
α2
] Var(J∗)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)] E((J∗)2 | P (Z) > uD) Pr(P (Z) > uD)

ω2
J

duD

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

= E
[
α2
] Var(J)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)]
hΩJ (uD)duD

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

where

hΩJ (uD) =
1

ω2
J

∞∫
−∞

(j − E(J))2

1∫
uD

fP,J(P (z), j)dP (z)dj

=
E[(J − E(J))2 | P (Z) > uD)] Pr(P (Z) > uD)

ω2
J
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which is the expression in the text.

B Proof of Invariance of the IV Estimand to the Choice

of a Linear Instrument under Normality with a Lin-

ear Index Choice Equation

Suppose that the choice equation has a linear index structure, so that

D = 1(Zγ > V )

where Z ∼ N(Z̄, ΣZ), an L-dimensional multivariate normal random variable, γ an L × 1

vector and V ∼ N(0, σ2
V ). Consider the instrument J(Z), which is a linear function of Z,

say Z ′η. In this case, the IV estimand (written as a weighted average over the support of

V ) is

βIV,J =

∫ ∞
−∞

MTE(v)hJ(v)φ

(
v

σV

)
dv

where φ(·) is a standard normal pdf and the IV weight is

hJ(v) =
E[J(Z)− E(J(Z))|Zγ > v] Pr(Zγ > v)

Cov(J(Z), D)
.

Under the assumption of multivariate normality for the instruments,

hJ(v) =

Cov(J(Z),Zγ)√
Var(Zγ)

φ

(
v−Z̄γ√
Var(Zγ)

)
Cov(J(Z),Zγ−V )√

Var(Zγ−V )
φ

(
−Z̄γ√

Var(Zγ−V )

) .
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Under assumption (A-1) in Section 2, Cov(J(Z), Zγ) = Cov(J(Z), Zγ − V ), and we obtain

hJ(v) =

1√
Var(Zγ)

φ

(
v−Z̄γ√
Var(Zγ)

)
1√

Var(Zγ−V )
φ

(
−Z̄γ√

Var(Zγ−V )

) .

That is, the IV weights, and hence the IV estimand, are the same for all J(Z) = Z ′η for any

finite η.
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