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Either as a fundamental or as a channel that amplifies other fundamentals (e.g., in-

stitutions), technology is surely important to understanding why there are rich and poor

countries. However, several factors have limited economists’ ability to assess its importance

quantitatively. Broadly speaking, the goal of this paper is to overcome some of these diffi-

culties.

One significant limitation in efforts to assess the role of technology has been the lack

of direct measures of technology. Traditionally, technology diffusion has been measured as

the share of producers who adopt a given technology (Griliches, 1957, Mansfield, 1961 and

Gort and Klepper, 1982). Computing this measure requires firm-level data which are hard

to collect for a large number of years, countries, and technologies. Consequently, economists

have been unable to measure technology diffusion comprehensively.

Comin and Hobijn (2004) and Comin, Hobijn and Rovito (2006) present a new approach

to measuring technology. They measure either the number of units of capital in a country

that embody the new technology (e.g., the number of telephones) or the amount of output

produced with the new technology (e.g., the tons of steel produced in blast oxygen furnaces).

These measures have two advantages over traditional measures of technology diffusion. First,

they just require data at the country level. Thus, it is easier to collect them for a large

number of countries, technologies and years.1 Second, they capture the number of units of

the technology adopted by each adopter.2

As with any new data set, these new technology measures introduce the challenge of

finding ways to extract information relevant to modeling the technology diffusion process.

That is, they present the challenge of mapping the data into dimensions that we can interpret

through the lens of our models.

Consider Figure 1 for an example of one technology in Comin, Hobijn and Rovito (2006).

Figure 1 reports the number of land line phone calls normalized by total output for the

United States, Australia, Japan, Malawi, Pakistan and Burkina Faso. These curves roughly

appear to be the graphic result of plotting a single curve and then shifting it both horizontally

1The CHAT data set described in Comin and Hobijn (2009) contains information about the diffusion of
104 technologies in 166 countries over the last 200 years.

2As shown by Comin, Hobijn and Rovito (2008), technology measures that include this dimension do not
diffuse following a logistic curve which is characteristic of traditional measures (Griliches, 1957).
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and vertically. The hypothesis that this apparent graphic result reflects the actual process

of technology adoption across countries was broadly confirmed in formal tests conducted in

Comin and Hobijn (2010). Assuming this characterization of technology adoption, we can

fully describe cross-country differences in technology dynamics if we know what drives the

horizontal and vertical shifts in the diffusion curves. Section 1 develops a model based on

Comin and Hobijn (2010) that provides a micro-foundation for these shifts.

A technology, in our model, is a group of production methods used to make an interme-

diate good or provide a service. We consider two aspects of technology adoption, which we

call the “extensive” and “intensive” margins. The extensive margin of technology adoption

gauges how long it takes a country to adopt a technology. Adopting a production method

requires incurring in a fixed investment. The timing of this investment determines the lag

with which production methods arrive in a country. In section 2, we show that the horizon-

tal shifts seen in Figure 1 measure adoption lags. We call this lag the extensive margin of

adoption.

Once a technology has been introduced, the intensive margin of adoption captures how

many units of the good embodying it are demanded relative to aggregate demand. The

intensive margin is determined by the productivity and price of goods that embody the

technology and the cost that individual producers face in learning how to use it. Other

things equal, these variables produce vertical shifts in the evolution of observable measures

of technology adoption such as displayed in Figure 1. We call the vertical shift the intensive

margin.

In this paper we pay particular attention to the intensive margin. To be clear, our

goal is not to assess how important a particular factor may be in affecting the intensive

margin of technology adoption. Instead, we just intend to understand how important cross-

country differences in this margin are in explaining cross-country differences in productivity.

Answering this question does not require taking a strong stand on the nature of the drivers

of technology adoption.

Little has been known about how significant a role the intensive margin of technology

adoption plays in determining overall productivity performance. Clark’ s (1988) classic

study on spinning-machine spindles documents large cross-country differences in the number
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of spindles that each worker operated circa 1900 and argues that this factor was a major

contributor to differences in productivity. However, observing more units of a new technology

in rich countries is not sufficient to establish the importance of the intensive margin for

aggregate productivity, since it could just reflect reverse causation. In other words, higher

aggregate demand could lead to the adoption of more units of technology per worker.

Filtering out the effect of aggregate demand on observable measures of technology is a

key challenge that any attempt to assess the importance of the intensive margin needs to

confront. We follow two different approaches to deal with this issue. First, we use our model

predictions to pin down the income elasticity of our technology measures. On a balanced

growth path, the income elasticity of demand for the goods embodying technology must equal

one. Using this restriction we can filter out the effect of aggregate demand on technology

adoption and then use the model to formalize the intuitions described above and identify

the intensive and extensive margins of adoption.

Our second approach relaxes the restrictions of a balanced growth path (despite its

appeal over long periods we study) to check the robustness of our findings. Here we use

the time series dimension of our panel to estimate the income elasticity of demand for goods

embodying a technology. Because of the need for long time series to carry out this exercise

and because we want to reduce possible biases in the estimates of the intensive margin,3 we

proceed in two steps. First, we estimate the income elasticity of demand for goods embodying

a technology using only U.S. data, and then we impose this estimate on the other countries

to estimate the intensive adoption margin and the adoption lags for each technology-country

pair.

We use data for 15 technologies and 166 countries, as in Comin, Hobijn, and Rovito

(2006). Our data cover major technologies related to transportation, telecommunication,

information technology, health care, steel production, and electricity. We obtain precise and

plausible estimates of the adoption lags for two thirds of the 1294 technology-country pairs

for which we have sufficient data.

Our exploration of the intensive margin of adoption, complementing Comin and Hobijn’s

(2010) analysis of the extensive margin, delivers four main findings. First, the magnitude

3See section 2.3 for more details.
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of cross-country differences in the intensive margin of adoption and adoption lags are large.

On average, they are 20% larger than the cross-country dispersion in per capita income.

Second, there are significant differences across technologies in the cross-country dispersion in

the intensive margin. For example, the dispersion in electricity and passenger rail represents

40% of the dispersion in per capita income, while in blast oxygen steel represents 170% of the

dispersion in income. Third, a variance decomposition reveals that 33% of the variation in

the intensive margin can be attributed to cross-technology variation, 43% can be attributed

to cross-country variation, and the remaining 23% is not explained by these two factors.

Fourth, the cross-country dispersion in adoption lags has declined monotonically over time.

Specifically, for every decade later that a technology has been invented, the dispersion has

been two years smaller. In contrast, we do not observe any cross country convergence in the

intensive margin of adoption.

Our model is similar at the aggregate level to the neoclassical growth model, except that

in our model the level of total factor productivity (TFP) is endogenous. In particular, TFP

depends on both the intensive and extensive margins of technology adoption. We use this

result to assess the magnitude of the cross-country differences in labor productivity that

our estimated differences in the intensive margin generate. We find that differences in the

intensive margin of adoption account for 44% of cross-country differences in income per

capita. As our model makes clear, these effects could be fundamentally driven by differences

in the costs individual producers face in adopting the new technologies or by differences in

the overall efficiency of the economy that affect the intensity of adoption.

Finally, we show that the empirical results obtained in the baseline model hold when we

allow for non-homothetic production functions that do not pin down the income elasticity

of demand for goods embodying a new technology. For instance, the intensive margin still

accounts for 52% of the cross-country variation in income per capita.

This paper is related to three strands of the literature. First, macroeconomic models of

technology adoption (e.g., Parente and Prescott, 1994, and Basu and Weil, 1998) have tried

to understand the role of technology in determining TFP. However, these studies have used

an abstract concept of technology that is hard to match with data. Second, the applied mi-

croeconomic technology diffusion literature (Griliches, 1957, Mansfield, 1961, and Gort and
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Klepper, 1982, among others) has focused on estimating diffusion curves for technologies in

different countries. However, these studies have only been able to investigate a relatively

small number of technologies and countries. Moreover, the diffusion curves are purely sta-

tistical descriptions, not embedded in an aggregate model. Hence, it is difficult to use them

to explore the aggregate implications of the findings.

Finally, the closest reference to this paper is Comin and Hobijn (2010). This paper differs

from it in at least three important ways. First, our model provides a micro-foundation for

the intensive margin of adoption as well as for the extensive margin. Second, in our empirical

analysis we estimate and analyze the intensive margin of adoption. Third, we explore the

robustness of our findings about the two margins of adoption by relaxing the balanced

growth restriction and allowing the income elasticity of the demand for the technology to be

endogenous.

The paper is divided into four sections. Section 1 sets out a one-sector neoclassical

growth model featuring intensive and extensive margins of adoption. Section 2 describes

the diffusion patterns of technology under the balanced growth path assumption, derives

structural equations that can be estimated from the data, and explains how the margins

of adoption are identified. Section 3 presents the results of the estimation, and Section 4

concludes.

1 A one-sector growth model with extensive and

intensive technology adoption

We next present a one-sector growth model with endogenous technology adoption at the

extensive and intensive margins. The model maps the adoption margins into the time-path

of observable measures of technology diffusion and illustrates how each adoption margin

affects endogenous TFP differentials. In what follows, we omit the time subscript, t, where

obvious.
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1.1 Preferences

A measure one of households populates the economy. They inelastically supply one unit

of labor every instant, at the real wage rate W , and derive the following utility from their

consumption flow

U =

∫ ∞
0

e−ρt ln(Ct)dt. (1)

Here Ct denotes per capita consumption and ρ is the discount rate. We further assume that

capital markets are perfectly competitive and that consumers can borrow and lend at the

real rate r̃.

1.2 Production

Technology :

Each instant, a new production method appears exogenously. We call these production

methods, technology vintages or simply vintages. Production methods are capital embodied.

The set of vintages available at time t is given by V = (−∞, t]. The productivity embodied

in new vintages grows at a rate γ across vintages, such that

Zv = Z0e
γv. (2)

Note that Zv is constant over time. This characterizes the evolution of the world tech-

nology frontier. We shall choose the normalization parameter Z0 such that vintage v has

productivity Zv.
4

A country does not necessarily use all the capital vintages that are available in the world

because, as we discuss below, making them available for production is costly. The set of

vintages actually used is given by V = (−∞, t−D]. Here D ≥ 0 denotes the adoption lag.

That is, the amount of time between when the best technology in use in the country became

available and when it was introduced in the country.

In order to map the model into the data, we introduce the concept of technology. A

technology is a set of production methods used to produce closely related intermediates. To

4This implies that Z0 = Zve
−γv.
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simplify the exposition, we consider only two technologies: an old one, denoted by o, and a

new one, denoted by n. The old technology consists of the production methods introduced

up till a fixed time v, such that the set of vintages associated with the old technology is

Vo = (−∞, v]. The new technology consists of the newest production methods, invented

after v, such that it covers Vn = (v, t−D].

Output :

The output associated to a technology τ , Yτ , is given by:

Yτ =

∫
Vτ

Y
1
µ
v dv

µ

, τ ∈ {o, n}, (3)

where Yv denotes the intermediate output produced using technology vintage v. Final output

Y, is produced competitively with the following production function:

Y =

(∫ t−D

−∞
Y

1
µ
v dv

)µ
=

 ∑
τ∈{o,n}

Y
1
µ
τ

µ

.

Once a technology vintage v is brought to the country, producers can find distinct ways

to use it. Because each application developed solves a new problem, the larger the number of

applications developed, Nv, the more efficient the production of intermediate service v is. In

other words, there are efficiency gains from developing more applications.Each application

yields a differentiated output, Yvi. Differentiated outputs are produced monopolistically. A

competitive producer then aggregates these outputs in the form of intermediate v, Yv, as

follows:5

Yv = N−(µ−µ′)
v

(∫ Nv

0

Y
1
µ

vi di

)µ
, with µ > µ′ > 1. (4)

Output Yvi is produced by combining labor and capital, Kvi, that embodies production

method, v, as follows:

Yvi = ZvL
1−α
vi Kα

vi, (5)

Capital goods production and taxes :

5This specification is similar to Benassy (1996). The assumption that µ > µ′ ensures that the profits of
a individual producer decline with Nv.
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Capital goods are produced by monopolistic competitors. Each of them holds the patent of

the capital good used for a particular production method v. It takes one unit of final output

to produce one unit of capital of any vintage. This production process is assumed to be fully

reversible. For simplicity, we assume that there is no physical depreciation of capital. The

capital goods suppliers rent out their capital goods at the rental rate φRRv. Rv is the price

received by the capital goods producer, while the wedge φR captures a tax on the price of

capital that the government rebates back to the consumers with a lump sum transfer. φR is

constant across vintages and over time. Below we show that φR can capture a wide range of

institutional distortions that affect the efficiency of the economy.

Technology adoption costs :

There are two types of adoption costs. The cost of bringing to the country the production

method associated with a capital vintage, Γevt, and the cost incurred by each individual

producer to find a distinct application of a production method that is already available, Γivt.

We define the former as the extensive and the latter as the intensive adoption costs. Both

of these are sunk costs. The extensive cost of adopting vintage v at time t is given by (6)

while the intensive cost of adoption is given by (7).

Γevt =
α

ε
Ψ (1 + be)

(
Zv
Zt

) 1+ϑ
µ−1
(
Zt
At

) 1
µ−1

Yt, where ϑ > 0 (6)

Γivt =
µ− 1

µ
Ψ (1 + bi)

(
Zv
Zt

) 1
µ−1
(
Zt
At

) 1
µ−1

Yt. (7)

In these expressions, At is the aggregate level of TFP to be defined below, be, bi, and Ψ are

constants. The parameters be and bi reflect barriers to adoption for the agent that adapts

the technology to the idiosyncrasies of the country or for individual producers that find

a profitable use for the technology. Ψ is the steady state stock market capitalization to

GDP ratio and is included for normalization purposes. The term (Zv/Zt) captures the idea

that it is more costly to adopt technologies the higher is their productivity relative to the

productivity of the frontier technology. The last two terms capture that the cost of adoption

is increasing in the market size. We choose these formulations because, just like the adoption
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cost function in Parente and Prescott (1994), they yield an aggregate balanced growth path.6

1.3 Factor demands, output, and optimal adoption

The demand for the output produced with vintage v is:

Yv = Y (Pv)
− µ
µ−1 , where P =

(∫
v∈V

P
− 1
µ−1

v dv

)−(µ−1)

. (8)

We use the final good as the numeraire good throughout our analysis and normalize its

price to P = 1. The demand faced by the ith producer of differentiated output associated to

vintage v is:

Yvi = Yv

(
Pvi
Pv

)− µ
µ−1

N
−µ−µ

′
µ−1

v , where Pv = N
µ−µ′
µ−1
v

(∫ Nv

0

P
− 1
µ−1

vi di

)−(µ−1)

. (9)

Note that all producers of differentiated outputs associated to a given vintage face the

same demand and have access to the same technology. As a result, they will charge the same

price which is given by a constant markup, µ, times the marginal cost of production:

Pvi = µ

[
1

Zv

(
φRRv

α

)α(
W

1− α

)1−α
]
, for i ∈ [0, Nv]

where Rv is the rental price of a unit of capital that embodies vintage v, φR is a tax on

capital, and W is the wage rate. From (9), this implies that

Pv = N−(µ′−1)
v Pvi.

The revenue share of capital is α and labor exhaust the remaining revenue. This implies

6It could of course be the case that the linearity in the adoption cost function is violated for some
particular technology for some particular country, without necessarily violating balanced growth, but to the
extent that we are documenting adoption lags across many technologies this is perhaps not so critical.
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that the total demand faced by the producer of the capital good that embodies vintage v is:

Kv =

∫ Nv

0

Kvidi =
αPvYv
φRRv

= Y

(
Zv
µ

) 1
µ−1

N
µ′−1
µ−1
v

(
(1− α)

W

) 1−α
µ−1
(

α

φRRv

)ε
, where ε ≡ 1 +

α

µ− 1
.

The supplier of each capital good takes as given the number of differentiated output

producers but recognizes that the rental price he charges for the capital good, Rv, affects

the price of the output associated with the capital good and, therefore, its demand, Yv. The

price elasticity of demand she faces, ε, is constant. As a result, the profit maximizing rental

price equals a constant markup times the marginal production cost of a unit of capital, which

we assume is equal to a unit of final output.

Because of the durability of capital and the reversibility of its production process, the

per-period marginal production cost of capital is the user-cost of capital. Thus, the rental

price that maximizes the profits accrued by the capital good producer is

Rv = R =
ε

ε− 1
r̃, (10)

where ε
ε−1

is the constant gross markup factor.

Aggregate representation:

Our model has the following aggregate representation of production:

Y = AKαL1−α, where K ≡
∫ t

−∞
Kvdv, L ≡

∫ t

−∞
Lvdv (11)

Aggregate TFP, A, can be expressed as

A =

[∫ t−D

−∞

(
Nµ′−1
v Zv

) 1
µ−1

dv

]µ−1

(12)

Optimal adoption:

The flow profits accrued by producers of differentiated outputs associated with vintage v are
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equal to

πvi =
µ− 1

µ
PviYvi =

µ− 1

µ
Y

(
Zv
A

) 1
µ−1

N
−µ−µ

′
µ−1

v

The market value of each differentiated output producer equals the present discounted value

of the flow profits. That is,

Mvi,t =

∫ ∞
t

e−
∫ s
t r̃s′ds

′
πvisds =

µ− 1

µ

(
Zv
Zt

) 1
µ−1
(
Zt
At

) 1
µ−1

N
−µ−µ

′
µ−1

v ΨtYt, (13)

where

Ψt =

(
µ− 1

µ
+
α

ε

)∫ ∞
t

e−
∫ s
t r̃s′ds

′
(
At
As

) 1
µ−1
(
Ys
Yt

)(
Nv(s)

Nv(t)

)−µ−µ′
µ−1

ds (14)

is the stock market capitalization to GDP ratio.

Optimal adoption implies that, every instant, the value of becoming a user of a technology

vintage v does not exceed the intensive cost of adoption. That is, for all vintages, v, that

are adopted at time t

Γiv ≥Mvi. (15)

Thus, in equilibrium

Nv =

(
Ψt

Ψt(1 + bi)

) µ−1
µ−µ′

. (16)

Given Nv, the flow profits that the capital goods producer of vintage v earns are equal

to

πv =
α

εφR
PvYv =

α

ε
N

µ′−1
µ−1
v

(
Zv
A

) 1
µ−1

Y (17)

The market value of each capital goods supplier equals the present discounted value of the

flow profits. That is,

Mv,t =

∫ ∞
t

e−
∫ s
t r̃s′ds

′
πvsds =

α

εφR
N

µ′−1
µ−1
v

(
Zv
Zt

) 1
µ−1
(
Zt
At

) 1
µ−1

ΨtYt. (18)

Optimal adoption implies that, every instant, all the vintages for which the value of the firm

that produces the capital good is at least as large as the adoption cost will be adopted. That
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is, for all vintages, v, that are adopted at time t

Γev ≥Mv (19)

This holds with equality for the best vintage adopted if there is a positive adoption lag.

The adoption lag that results from this condition equals

Dv = max

{
µ− 1

γϑ

[
ln (1 + be) + lnφR −

µ′ − 1

µ− 1
lnNv +

(
ln Ψ− ln Ψ

)]
, 0

}
≡ D

and is constant across vintages, v.7 The lag with which new vintages are adopted is increasing

in the adoption costs, be, and the tax wedge, φR, is decreasing in Nv and in the deviation of

the stock market to output ratio from its steady state level. As shown in equation (16), the

number of producers that develop distinct uses for technology vintage v, Nv, declines with

the intensive cost of adoption, bi, and increases with the deviation of the stock market to

output ratio from the balance growth level.8

Conversely, there are several significant factors that do not influence the adoption decisions.

First, given the specifications of the production function and the costs of adoption, the mar-

ket size symmetrically affect the benefits and costs of adoption at both the intensive and

extensive margins. Hence, variation in market size does not affect the timing of adoption, D,

and the number of producers that use a new vintage, Nv. By the same token, the adoption

margins are not affected by the productivity of technology at time zero, Z0. Second, since on

the balanced growth path Ψ = Ψ, the steady-state adoption lags and number of producers

do not depend on the stock market to output ratio.

These observations together with equation (12) help us understand what drives aggregate

TFP in this model. Three factors can drive cross-country differences in TFP: The adoption

lag, the number of producers that adopt each technology vintage, and the normalized pro-

7In what follows we focus on the interior case where Γtτ ≤Mtτ .
8Note that φR does not affect the intensity of adoption as measured by the number of producers that adopt

a new vintage. That is the case because, from the perspective of the potential producers of differentiated
outputs, φR only affects aggregate demand. Aggregate demand, in turn, has a symmetric effect on the costs
and benefits of adopting the vintage for the differentiated output producers. Instead, corporate income taxes
(or expropriation risk) also affect the profit margin net of taxes. This asymmetric effect would affect the
number of producers that adopt the new vintage.
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ductivity level of the initial vintage. Note that, Z0 affects directly aggregate TFP but, as

mentioned above, has no effect through D or Nv. The costs of adopting new technologies

affect TFP because they influence the range of technologies available for production and

how many different applications are developed. Finally, the tax wedge (and other related

frictions) only affect aggregate TFP through their effect on the adoption decisions.

2 Diffusion of the new technology

We define the equilibrium of this economy in Appendix B. In what follows, we focus on the

balanced growth path of the economy.9 Along the balanced growth path, adoption lags,

D, are constant, the number of adopters that adopt each vintage once it is available in the

country is constant and equal to N, and the economy grows at a constant rate equal to

γ/ (1− α).10

So far, we have derived expressions for output and capital at the vintage level. However,

because of the nature of available data, we are interested in the total demand for capital goods

and the output produced with the production methods that make up the new technology

τ = n. We can express output produced with technology τ in the following Cobb-Douglas

form

Yτ = AτK
α
τ L

1−α
τ , (20)

where

Kτ ≡
∫
v∈Vτ

Kvdv, Lτ ≡
∫
v∈Vτ

Lvdv, (21)

and Aτ =

∫
Vτ

(
Nµ′−1
v Zv

) 1
µ−1

dv

µ−1

. (22)

Substituting in for Zv, and recognizing that, along the balanced growth path, the adop-

tion lag and the number of differentiated producers are constant and equal to D and Nn,

9The transitional dynamics of the model are similar to the one described in the working paper version of
Comin and Hobjin (2009).

10Of course, D and N could differ across countries.
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respectively, we can express the endogenous level of TFP for technology τ = n at time t as

An =

(
µ− 1

γ

)µ−1

Nµ′−1
n︸ ︷︷ ︸

intensity of adoption

Zv eγ(t−D−v)︸ ︷︷ ︸
embodiment effect

[
1− e−

γτ
µ−1

(t−D−v)
]µ−1

︸ ︷︷ ︸ .
variety effect

(23)

The path of the new technology TFP is driven by the adoption margins. First, there are

efficiency gains from the number of producers that adopt a given vintage. This affects the

level of technology through the ‘intensity of adoption’ term in (23). The trend in TFP is

driven by the economy-wide adoption of new, more productive, vintages. The adoption lag

determines the best vintage adopted and affects the level of TFP through the ‘embodiment

effect’ term in (23). Finally, adoption lags also drive the curvature of An at a given moment in

time. The marginal productivity gain from adopting new vintages decreases as more vintages

are adopted. Because the adoption lag determines how far in the adoption process a country

is at time t, they affect the evolution of the slope through the ‘variety effect’. Graphically,

this effect is captured by horizontal shifts in the path of An as adoption lags vary. We shall

use this result to identify the adoption lags in the data.

These properties of the path for the level of TFP for technology τ affects the output and

capital associated with the technology through its effect on the marginal cost of production

of the technology-specific output measured by the price Pτ .

Pτ =
µ

Aτ

(
W

1− α

)1−α(
φRR

α

)α
. (24)

2.1 Empirical application

Our goal is to estimate the intensity of adoption and adoption lags for the different technology-

country pairs in our data set. We extend the results above by allowing multiple sectors, each

adopting a new technology.11 We do that with a nested CES aggregator, where θ
θ−1

reflects

the between sectors elasticity of demand and µ
µ−1

is, just as in the one-sector model, the

within sector elasticity of demand. We allow θ
θ−1

to vary across sectors. Further, we allow

the growth rate of embodied technological change, γτ , and the invention date, vτ , to vary

11Comin and Hobijn (2008) derive the multi-sector version of a similar model in detail.
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across technologies. We denote the technology measures for which we derive reduced form

equations by mτ ∈ {yτ , kτ}. Small letters denote logarithms.

These modifications yield the following demand for technology τ output

yτ = y − θ

θ − 1
pτ . (25)

Combining that with the intermediate goods price (24)

pτ = −α lnα− aτ + (1− α) (y − l) + αr + α lnφR, (26)

we obtain the reduced form equation (27) for yτ .

yτ = y +
θ

θ − 1
[aτ − (1− α) (y − l)− αr + α lnα− α lnφR] (27)

Similarly, we obtain the reduced form equation for kτ by combining the log-linear capital

demand equationwith (25) and (26),

kτ = y +
1

θ − 1
[aτ − (1− α) (y − l)− αr + α lnα− α lnφR] + lnα− r − lnφR. (28)

These expressions depend on the intensive margin and adoption lag Dτ through their ef-

fect on the productivity term, aτ . Comin and Hobijn (2010) show that, to a first order

approximation,

aτ ≈ (µ′ − 1)nτ + zvτ + (µ− 1) ln (t− Tτ ) +
γτ
2

(t− Tτ ) , (29)

where Tτ = vτ + Dτ is the time when the technology is adopted. In this approximation,

the growth rate of embodied technological change, γτ , only affects the linear trend in aτ .
12

12Intuitively, when there are very few vintages in Vτ the growth rate of the number of vintages, i.e. the
growth rate of t − Tτ , is very large and it is this growth rate that drives growth in aτ through the variety
effect. Only in the long-run, when the growth rate of the number of varieties tapers off, the growth rate of
embodied productivity, γτ , becomes the predominant driving force over the variety effect.
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Substituting this into (25) and (28) yields the following reduced form equation

mτ = β1 + y + β2t+ β3 ((µ− 1) ln (t− Tτ )− (1− α) (y − l)) + ετ , (30)

where ετ is the error term. The reduced form parameters are given by the β’s. Note that,

the homothetic nature of the production function implies that the coefficient of aggregate

demand, y, is equal to one.

According to our theoretical model, the intercept β1 is given by the following expression

which depends on both the intensive and extensive margins of adoption,

βy1 =
θ

θ − 1

[
((µ′ − 1)nτ + zvτ )−

γ

2
T − α(r + lnφR − ln (α))

]
, (31)

βk1 =
1

θ − 1

[
((µ′ − 1)nτ + zvτ )−

γ

2
T − α(r + lnφR − ln (α))

]
− r − lnφR. (32)

We define the intensive margin of adoption of technology τ in country j as

Mjτ= ((µ′ − 1)nτ + zvτ )− α(r + lnφR − ln (α)). (33)

Three different factors affect the intensive margin of adoption: the number of adopters

of the technology, nτ , the normalized productivity level of the technology, zvτ , and the

distortions in the price of capital, r + lnφR.

2.2 Identification and estimation procedure

We use the reduced form equation in (30) to identify the adoption lags and the intensity of

adoption. To this end, we assume that preference parameters (ρ) and technology parame-

ters other than adoption costs (i.e., θ, µ, µ′, γ α, and zvτ ) are the same across countries.

This implies that the equilibrium interest rate (r) is also the same across countries.13 The

distortions that affect the efficiency of the economy (φR) and the adoption cost parameters

(be and bi) can vary across countries. As a result, the adoption lags (Dτ ) and the number of

producers that adopt a technology (n) can also differ across countries.

13Our identification strategy is unaffected if interest rates, r, and the normalized productivity level for the
new technologies,zvτ , varied across countries.
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These assumptions impose some cross-country parameter restrictions. Since the intercept

term, β1, depends on n, Dτ and φR, it can vary across countries. The trend-parameter, β2,

just depends on α and γτ , so it is assumed to be constant across countries.14 β3 only depends

on the technology parameter, θ, and is therefore assumed to be constant across countries.

We do not estimate µ and α. Instead, we calibrate µ = 1.3, based on the estimates of the

markup in manufacturing from Basu and Fernald (1997), and α = 0.3 consistent with the

post-war U.S. labor share.15

The parameter β1 is a technology-country specific constant. Therefore, it can be identified

by a technology-country fixed effect. Once we have an estimate of β1, we still need an

estimate of the adoption lags to obtain an estimate of the intensive margin of adoption. We

follow Comin and Hobijn (2010) and identify the adoption lags through the non-linear trend

component in equation (30), which reflects the variety effect. Intuitively, after controlling

for the observables such as GDP or labor productivity, only the adoption lag affects the

curvature of mτ . That implies that, ceteris paribus, if we see two countries one with a

steeper diffusion curve than the other at a given point in time, this means that the former

started adopting the technology later.

For each technology, we report the intensive margin measures relative to the U.S. Note

that our estimates of β1 in (31) and (32) are not directly comparable for technologies mea-

sured with capital and output variables. To construct comparable measures of intensive

margin of adoption, we need to eliminate the differential effect of φR that appears on the

technologies measured using capital. To this end, we regress, for each country, the intercepts

in (31) and (32) on a dummy variable that takes value of 1 if the technology is measured in

capital units. The coefficient on the dummy captures the differential effect of φR. We then

subtract the dummy coefficient from βk1, and correct for the factors θ/(θ − 1) and 1/(θ − 1)

to obtain the measure of the intensive margin in (33).16,17

14The output elasticity of capital is one minus the labor share in our model. Gollin (2002) provides
evidence that the labor share is approximately constant across countries.

15As argued by Comin and Hobijn (2008), the estimates of the adoption parameters are very robust to
alternative calibrations of these parameters.

16The parameter θ is computed as the average (across technologies) implied estimate from the estimates
of β3 and it is equal to 1.31 for the homothetic case and 1.14 for the non-homothetic case.

17An alternative approach could be to take advantage of the fact that we have two measures of railways
that are measured as output (passengers and freight) and one that is measured as capital (rail lines). Under
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This identification strategy assumes that the underlying curvature of the diffusion curves

is the same across countries. This assumption would be violated, for example, if the efficiency

of an economy increased over time non-linearly inducing a similar pattern in the technology

measure. Of course, a priori, there is no reason why the distortions in the economy evolve

to induce such a specific pattern of adoption rather than affecting the trend or adding noise

to the evolution of technology. Nevertheless, Comin and Hobijn (2010) take seriously this

hypothesis and test formally the identification assumption by allowing β3 to vary across

countries. Then, they see how often they can reject the null that the unrestricted and the

restricted estimates are the same (i.e. β̂
u

3 = β̂3). They find that they cannot reject the null

in two thirds of the technology-country pairs considered. Further, the estimated adoption

lags in the restricted and unrestricted specifications are very highly correlated suggesting

that, effectively, the deviations from a constant curvature pattern are not quantitatively

important.

Because the adoption lag is a parameter that enters non-linearly in (30) for each coun-

try, estimating the system of equations for all countries together is practically not feasible.

Instead, we take a two-step approach. We first estimate equation (30) using only data for

the U.S. This provides us with estimates of the values of β1 and Dτ for the U.S. as well as

estimates of β2 and β3 that should hold for all countries. In the second step, we separately

estimate β1 and Dτ , using (30) conditional on the estimates of β2 and β3 based on the U.S.

data, for all the countries in the sample besides the U.S.

Besides practicalities, this two-step estimation method is preferable to a system estima-

tion method for two other reasons. First, in a system estimation method, data problems for

one country affect the estimates for all countries. Since we judge the U.S. data to be most

reliable, we use them for the inference on the parameters that are constant across countries.

Second, our model is based on a set of stark neoclassical assumptions. These assumptions

are more applicable to the low frictional U.S. economic environment than to that of countries

in which capital and product markets are substantially distorted. Thus, if we think that our

the plausible assumption that the average intercept of the output measures (passenger and freight measures)
corresponds to the rail line measure used in the country, we can back out the additional effect of φR on the
capital measures of technology. Then, we can subtract this additional effect from the other capital measures
and can construct comparable measures of the intensive margin. The results we obtain using this procedure
are similar to the ones reported in the main text.



20 COMIN AND MESTIERI

reduced form equation is more likely to be mis-specified for some countries other than the

U.S., including them in the estimation of the joint parameters would affect the results for

all countries.

We estimate all the equations using non-linear least squares. Since we estimate β3 for

the U.S., this means that the identifying assumption that we make is that the logarithm of

per capita GDP in the U.S. is uncorrelated with the technology-specific error, ετ . However,

because of the cross-country restrictions we impose on β3, the risk of simultaneity bias is

not a concern for all the other countries in our sample.

2.3 Non-homotheticities

One general concern in structural estimation exercises is model mis-specification. In the

context of our model, the place where this concern probably is more relevant is in the

elasticity of technology with respect to income. For our model to have a balanced growth

path, the production functions need to be homothetic. This implies that the income elasticity

of technology measures is equal to one. In this subsection, we explore the implications for

the estimated equations (30) if we replace the original production function (3) for a more

general specification that allows for non-homotheticities.

Consider the following non-homothetic version of (3)

Y =
1

θ̄

(∑
τ

θτY
1
θτ
τ

)θ̄

,

where θ̄ is the long-run average of θτ over τ so that constant returns to scale are guaranteed

(in the long-run),

Yτ = Y
(θ̄−1)θτ
θ̄(θτ−1)P

−θτ
θτ−1
τ .

This yields the following reduced form equation

mτ = β1 + βyy + β2t+ β3 ((µ− 1) ln (t− Tτ )− (1− α) (y − l)) + ετ , (34)

which differs from (30) in that βy is not restricted to be equal to 1. It will be greater than



THE INTENSIVE MARGIN OF TECHNOLOGY ADOPTION 21

one if θ̄ > θτ and smaller otherwise.

As in the homothetic reduced form equation (30), we estimate the coefficients in (34)

that depend on technological parameters (β2, β3 and βy) for the U.S. and then impose these

estimates in the other countries. The only difference is that now we estimate an additional

parameter, βy.

Using the U.S. estimate of βy has several advantages. First, reliable data on U.S. real

GDP is available since 1820. This long time-span facilitates the identification. It also

ensures that the estimate is based on the various stages of development that the U.S. has

gone through over the last two centuries. As a result, it should capture reasonably well

the effect of aggregate demand on technology diffusion for countries at different stages of

development. Most importantly, since for each technology-country pair, the intensive margin

in our model is constant, by exploiting the time series dimension to identify βy we avoid the

bias due to the potential cross-country correlation between the intensive margin of adoption

and income.

Identifying βy using only the time series dimension is not trivial for two reasons. First,

since γτ may differ across technologies, when estimating β2 we must include a time trend for

each technology. Since in the long run log GDP is approximately linear, GDP and time are

co-linear over very low frequencies. Second, most technologies in our sample are embodied in

capital goods. The high cyclicality and volatility of investment shall induce a high estimate

of βy. This estimate however, would capture the cyclical properties of capital rather than

the effect of aggregate demand on our technology measures at lower frequencies.

To overcome these two difficulties, we use a Hodrick-Prescott (HP) filter to decompose

log of real GDP into a high frequency component and a ‘trend’. As is well known,18 trends

that result from HP filters have significant fluctuations at medium term frequencies.19 By

exploiting this variation, we could in principle identify βy. Thus, we introduce separately the

high frequency component and the ‘trend’ in log real GDP and estimate a different elasticity

for each.20,21 To identify βy in our data, we estimate simultaneously the system of equations

18E.g. Comin and Gertler (2006).
19In the context of this exercise, medium term frequencies means cycles with periods between 8 years and

infinity.
20We have obtained very similar results when including only the ‘trend’ component of GDP.
21As conjectured, the short-run elasticity is significantly higher, capturing adjustment over the business
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(34) for all the U.S. technologies.

Though in our model the parameters that determine the intensive margin are fixed, it is

instructive to consider how will our estimate of βy be affected if they vary in the data. The

first thing to realize is that institutions, human capital and other factors that may affect the

costs of adoption at the intensive margin in the U.S. have changed very slowly. As a result,

this may have effects on our technology measures and on GDP only at very low frequencies.22

These frequencies are so low that most of these effects will be captured by the time trends

and will have little effect on the estimate of βy.

Note further that, since naturally changes in institutions or variables that affect adoption

costs would induce a positive co-movement between GDP and technology, the small bias

induced on βy would be upwards. As a result, when identifying the intensive margin we

would filter too much aggregate demand inducing a lower cross-country dispersion in the

intensive margin. That is, the bias in βy would bias downwards the importance of the

intensive margin for development.

3 Results

We consider data for 166 countries and 15 major technologies, that span the period from

1820 through 2003. The technologies can be classified into 6 categories; (i) transporta-

tion technologies, consisting of steam and motor-ships, passenger and freight railways, cars,

trucks, and passenger and freight aircraft; (ii) telecommunication, consisting of telegraphs,

telephones, and cellphones; (iii) information technology, consisting of PCs and Internet

users; (iv) medical technology, namely MRI scanners; (v) steel produced using blast oxygen

furnaces; (vi) electricity.

The technology measures are taken from the CHAT data set.23 Real GDP and popu-

lation data are from Maddison (2007). Appendix A contains a brief description of each of

the 15 technology variables used. For our estimation, we only consider country-technology

combinations for which we have more than 10 annual observations. There are 1298 such

cycle.
22One example would be expansion of high school enrollment in the U.S. between 1910 and 1940.
23See Comin, Hobijn and Rovito (2009).
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pairs in our data. The third column of Table 1 lists, for each technology, the number of

countries for which we have enough data.

We follow Comin and Hobijn (2010) and analyze only the technology-country pairs for

which we have plausible and precise estimates of the adoption lags. These are estimates with

an adoption date later than the invention year plus 10, and with small standard errors.24

We have plausible and precise estimates for 837 technology-country pairs, which represent

approximately two thirds of the total.

3.1 Estimated Intensive Margin

Dispersion

Table 1 presents the descriptive statistics of our estimates of the intensive margin of adoption

relative to the United States. The fifth column reports the cross-country average. This

statistic is negative for all the technologies but ships and freight railways. This means that

for all the technologies but these two, the U.S. intensive margin is higher than the average

in our sample.

Column 6 reports the cross-country standard deviation of the intensive margin of adoption

by technology while column 10 reports the inter-quartile range.25 The conclusions are robust

to using any of these two measures of dispersion so, for brevity, we base our discussion on

the cross-country standard deviation. The dispersion in the intensive adoption margin varies

significantly by technology ranging from 0.33 (rail passenger) to 0.89 (blast oxygen steel).

To have a benchmark, we report, in column 12, (1 − α) times the cross-country standard

deviation in log per capita income in 2000 for the same sample of countries for which we have

plausible and precise estimates of the adoption margins for each technology.26 The ratio of

the standard deviation in the intensive margin to the standard deviation of per capita income

24Comin and Hobjin (2010) discuss several reasons for obtaining implausible estimates. The 10 year cut
off point for plausible estimates is to allow for inference error. The cutoff we use in the standard error of
the estimate of Tτ for it to be precise is

√
2003− vτ . This allows for longer confidence intervals for older

technologies with potentially more imprecise data. Including imprecise estimates in our analysis does not
affect the conclusions.

25The inter-quartile range is defined as the difference between the adoption intensities in countries in the
75 and 25 percentiles.

26We scale down log income by the factor (1 − α) because, in addition to the effect through TFP, the
extensive margin also induces a higher capital-labor ratio which also affects the level of per capita output.
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is on average 1.2, but it ranges significantly across technologies: from 0.4 (for railways and

electricity)27 to 1.72 for (blast oxygen steel). This suggests that technology-specific factors

are important drivers of the cross-country variation in the intensive margin.

Evolution

The evolution of the intensive margin may be help us understand the dynamics of growth

over the last two centuries. At first sight, the cross-country dispersion of the intensive margin

seems to be uncorrelated with the invention date. We test this observation in the first column

of Table 2, which reports the estimates from a regression of the average intensive margin,

the cross-country dispersion and inter-quartile range on the year of invention. The regres-

sions confirm an insignificant relationship between the dispersion of the intensive margin of

adoption and the invention date of the technology.

One possible reason for the stationary nature of the dispersion of the intensive margin

could be that our estimates of this dispersion for early adopters of early technologies are

smaller than they should be because of the effect of the replacement of dominated technolo-

gies. The argument would be as follows. Some of the early technologies were dominated by

superior technologies a long time ago. For early adopters such as the United States, the level

of our measures for their intensive margin has been declining. As a result, the estimated

intercept is lower than in late adopters, where these technologies have been dominated more

recently. Under this hypothesis, cross-country dispersion in the intensive margin with which

early technologies were adopted might have been larger than it now appears in the statistics.

The alternative, of course, is that the stationarity of the cross-country dispersion in the

intensive margin of adoption correctly represents the empirical facts.

To disentangle these two hypothesis, we re-estimate our baseline regression for the old

technologies using only data up to 1939, when presumably none of the early technologies

was yet obsolete. Table 3 compares the estimates of the average, standard deviation and

inter-quartile range of the intensive margin of adoption for the countries for which we can

precisely estimate the diffusion equation using data up to 1939.28 The results vary a little by

27In particular, the ratio is 0.4 for passenger-Km moved by railways.
28For obvious reasons, we only report the estimates for technologies invented before 1900.
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technology but, overall, there are no significant increases in the dispersion of the intensive

margin of adoption when we restrict the sample to the pre-1939 period. This implies that

the dispersion in the intensive margin of adoption for early technologies is not driven by

the fact that early technologies have been dominated sooner in countries that adopted them

first.

The lack of convergence in the intensive margin contrasts with the evolution of the disper-

sion in adoption lags. Column 11 of Table 1 reports the cross-country standard deviation of

the adoption lags for each technology. It is evident at first sight that dispersion in adoption

lags has decreased monotonically over the last two centuries. That is, the difference in adop-

tion lags across countries has been much smaller for technologies invented in the recent past

than for those invented in the more distant past. Column 3 in Table 2 test this observation

formally. The negative relationship between cross-country dispersion in adoption lags and

invention date is statistically significant. In particular, technologies invented ten years later

have a dispersion that is two years smaller.

Variance decomposition

Understanding the sources of variation in the intensive margin of adoption is beyond the

scope of this paper. However, we can explore whether this variation is mostly driven by

country effects or by technology effects. Specifically, let ∆jτ measure the intensive margin

of country j in technology τ . We can decompose ∆jτ as follows

∆jτ = ∆j + ∆τ + uiτ , (35)

where ∆j is a country fixed effect, ∆τ is a technology fixed effect and uiτ is an error term.

The first line of Table 4 examines the contribution of the country fixed effects alone. That is,

the R2 when estimating (35) with only country fixed effects. Country-specific factors explain

approximately 44% of the variation in the intensive margin of adoption. In the second row,

we calculate the contribution of technology-specific fixed effects in an analogous manner and

find that they explain 34% of the variation. The last row of Table 4 shows that country

and technology specific factors jointly account for approximately 77% of the variation in the
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intensive margin. Of this total variation, 43% can be directly attributed to country effects,

33% can be directly attributed to technology effects, and the remaining 1% is due to the

covariance between these effects which differs from zero because our panel is unbalanced.

The drivers of the variance in the intensive margin differ quite a bit from the drivers of

the variance for the extensive. As shown in Comin and Hobijn (2010), the technology fixed

effects account for 65% of the variance in the adoption lags. In contrast, country fixed effects

are the main factor when accounting for the variance of the intensive margin of adoption.

Non-homotheticities

As discussed in the identification section, we want to explore an alternative approach to

dealing with the endogeneity of income in estimating the intensive margin. So far we have

used restrictions imposed by the assumption of balanced growth on the elasticity of our

technology measures with respect to GDP (equation 30). We would like to explore how

robust the estimates of the intensive margin are to using other identification schemes. In

particular, the alternative scheme consists in identifying the effect of aggregate demand on

technology by using the time series variation in GDP in the United States and then imposing

the estimate of the U.S. income elasticity when estimating the reduced form equation (34)

for the other countries.

As discussed above, when estimating the income elasticity for the United States, we

want to distinguish between the short and long run income elasticities, since the former is

likely to capture cyclical variation in the demand for investment goods. This presumption

is confirmed by our estimates. We find that the long-run income elasticity is 2.2, while the

short-run is 6.6. Both estimates are very precise.

The additional flexibility allowed in the model comes at the cost of a lower precision in the

estimates of the adoption lag for two U.S. technologies: ships and electricity. This creates the

minor problem of having a less precise estimate for the United States in the intensive margin.

Since we do not want to have as baseline intensity for the technology an imprecise estimate,

for these two technologies, we take France as a reference rather than the United States.

Which country is taken as baseline is irrelevant for computing the cross-country dispersion

measures. However, the mean intensive margin of adoption may be affected; therefore, the
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average intensive margin is not directly comparable with the homothetic case.

We obtain plausible and precise estimates for 738 country-technology pairs. This repre-

sents 57% of our sample. The statistics for the estimated adoption lags and the intensive

margin are reported in Table 5. On average, adoption lags are slightly smaller (35 years

versus 45 years) when we allow for non-homotheticities. The cross-country dispersion in

adoption lags is also slightly smaller (33 years versus 39 years) under non-homotheticities.

However, the estimates of the adoption lags under both identification strategies are very

highly correlated (see column 3 in Table 6). The average correlation across technologies is

0.91, and ranges from 0.79 for electricity to 0.98 for cellphones, MRIs and the Internet.

The cross-country dispersion in both measures of the intensive margin quite similar (0.72

versus 0.68). Column 4 in Table 6 shows the correlation between the estimates of the

intensive margin of adoption in the homothetic and non-homothetic cases. On average the

correlations are high, approximately 0.87. By technology, they range from 0.6 for freight

railways to 0.97 for passenger aviation and cellphones.

Correlation with per capita income

Before using our model to conduct a development accounting exercise, it is revealing to

explore the correlation between per capita income and the intensive margin of adoption for

each technology. Table 7 reports these statistics for both the homothetic and non-homothetic

estimates. The correlations are sizable. In the homothetic case the average correlation

across technologies is 67% and in the non-homothetic case it is 64%. We find some variation

across technologies. The correlation of the intensive margin with per capita income seems

to be lower for the earlier technologies, especially for ships and railways. Contrary to the

perception that information technologies may be closing the technological divide between

rich and poor countries, we find that the intensive margin of these technologies (i.e. PCs,

cellphones, Internet) present quite high correlations with per capita income.

Table 7 also reports the correlation between the adoption lags and per capita income.

As shown by Comin and Hobijn (2010) for the homothetic case, the correlation is also fairly

high, approximately -46%. In the last column, we show that the there is also a significant

correlation between the adoption lags in the non-homothetic case and per capita income
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though slightly lower than in the homothetic case (-30%).

3.2 Development accounting

Next, we investigate how the estimated differences in the intensive margin of adoption trans-

late into cross-country differences in per capita income. To answer this question, we have

to (i) aggregate the technology-level estimates of the intensive margin to an economy-wide

measure of the intensive margin, and (ii) compute the effect of the aggregate intensive mar-

gin on per capita income. Both of these computations require the use of a model that maps

individual technologies into aggregate productivity. We naturally draw from the equilibrium

relationships of the model presented above.

Aggregate production, Y , can be expressed as

Y = AKαL1−α, where K ≡
∫ t

−∞
Kvdv, L ≡

∫ t

−∞
Lvdv. (36)

Aggregate TFP, A, is given by

A =

 ∑
τ∈{o,n}

(Aτ )
1

µ−1

µ−1

=

(
µ− 1

γ

)µ−1

Nµ′−1Zve
γ(t−D−v). (37)

Aggregate TFP depends on the adoption lag, D, the number of producers that adopter

each technology vintage, N, and the normalized level of productivity, Zv. The adoption lag

affects aggregate TFP because a higher D reduces the productivity embodied in the best

technology vintage available for production. The number of adopters per vintage, N , affects

TFP because their outputs are imperfect substitutes and there are efficiency gains from a

greater variety of outputs.

Substituting (37) into (36) and noting that φRKR = αY yields the following expression

for labor productivity:

Y

L
= A

1
1−α

(
K

Y

) α
1−α

=

[(
µ− 1

γ

)µ−1

Nµ′−1Zve
γ(t−D−v)

] 1
1−α (

α

φRR

) α
1−α

. (38)



THE INTENSIVE MARGIN OF TECHNOLOGY ADOPTION 29

Taking logs, we obtain:

y − l = c̄+
1

1− α
[(µ′ − 1)n+ zv − α(r + lnφR − ln (α)] +

γ(t−D − v)

1− α

where c̄ is a constant. The term in squared brackets is equal to the economy-wide intensive

margin of adoption. Subtracting the same expression for the U.S. yields

(yj − lj)− (yUS − lUS) =
1

1− α
∆j −

γ ∗ (DUS −Dj)

1− α
(39)

where ̂(yj − lj), D̂j and ∆j denote, respectively, log-labor productivity, the adoption lag and

the intensive margin in country j relative to the U.S.29

Using expression (39), we can decompose the cross-country variance of labor productivity

as

1 =

Intensive Mg. Contribution︷ ︸︸ ︷
1

1− α
cov[∆j, ̂(yj − lj)]
var[ ̂(yj − lj)]

Extensive Mg. Contribution︷ ︸︸ ︷
− γ

1− α
cov[D̂j, ̂(yj − lj)]
var[ ̂(yj − lj)]

(40)

where var[X] denotes the variance of X, and cov[X, Y ] denotes the covariance between X and

Y. The first term is the share of the cross-country variance in per-capita income accounted

for the intensive margin, while the second term is the share of income differences accounted

for the extensive margin.30 Under our model, together these two terms should account for

100% of the cross-country differences in productivity.

To implement the decomposition, we need to compute the aggregate intensive margin,

∆j. To this end, we assume that the intensive margins we have estimated using our sample

of technologies are representative of the average intensive margin of adoption across all the

technologies used in production. Under this assumption, the aggregate intensive margin in

country j is equal to the average intensive margin in the country across the technologies in

29Formally, ̂(yj − lj) ≡ (yj − lj)− (yUS − lUS) and D̂j ≡ (Dj −DUS).
30This variance decomposition follows the decomposition in Klenow and Rodriguez-Clare (1997) and splits

the co-variance between the intensive and extensive margins evenly between the two terms.
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our sample.31

Figure 2 plots the first term in equation (39) against log per capita income in 2000 from

the Penn World Tables 6.2.32 The thicker dashed line corresponds to the regression line,

while the light grey line is the 45◦-line. The slope of the regression line is equal to the

contribution of the intensive margin in (40). We find that the slope of the regression line is

0.44.33 This implies that the intensive margin of technology adoption accounts for 44% of

the log per capita GDP differentials observed in the data.

Note that there is an heteroskedastic pattern, as poor countries have more variance in

the measure of the intensive margin. This may be explained by the fact that we have fewer

observations for poor countries than rich countries, and as a result, our measure of the

average intensive margin is more noisy in poor countries.

Finally, we perform a development accounting exercise analogous to the one discussed

above for the estimates obtained using a non-homothetic production function. The presence

of non-homotheticities prevents the existence of a simple aggregate production function such

as we have in our baseline model. To conduct this exercise, we assume, as a first pass, that the

aggregate production function does not differ much from the one obtained in the homothetic

case. Since our goal is to evaluate the robustness of our findings to alternative identification

schemes in the estimation of the intensive margin of technology, it is desirable to use the same

production function to draw the aggregate implications of the technology-specific estimates.

It turns out that the development accounting exercise for the non-homothetic estimates of

the intensive margin yields very similar results to the baseline exercise, as it can be seen in

Figure 3 The correlation between the intensive margin and income per capita is 0.67, and

the coefficient on the regression is 0.52.

To sum up, this section suggests that differences in the intensive margin of adoption

account for over 40% of cross-country per capita income differences. The observation that a

31Formally,

∆j '

Sj∑
s=1

∆js

Sj

where Sj is the total number of technologies for which we have precise and plausible estimates in country j.
32Similar results obtain with data from Maddison.
33The correlation between the two sides is 0.51.
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substantial share of income differences are either caused or amplified by the intensive margin

of adoption is robust to the two identification strategies we have followed to deal with the

endogeneity of aggregate demand to technology.

4 Conclusion

In this paper we have built and estimated a model of technology diffusion and growth. Our

model predicts that the diffusion path of individual technologies is determined by the lag

with which their different vintages are introduced in the country, the level of aggregate

demand and the intensive margin of adoption. Using these predictions and exploiting the

panel structure of our data set, we have identified the intensive and extensive margins of

adoption for over 800 technology-country pairs that correspond to the diffusion of up to 15

major technologies in 166 countries. The estimates are robust to different strategies used to

estimate the elasticity of technology with respect to aggregate demand.

An analysis of the estimates yields significant findings. There is a large cross-country

dispersion in the intensive margin, though the dispersion varies significantly across technolo-

gies. The cross-country dispersion in adoption lags has declined very significantly over the

last two centuries, while we find no such convergence pattern in the intensive margin.

In addition to describing accurately the diffusion patterns of individual technologies, our

model yields a representation of aggregate productivity that allows us to relate income levels

to the intensive and extensive margins of technology adoption. We find that approximately

45% of the cross-country variation in per capita income can be attributed to differences in

the intensive margin. Comin and Hobijn (2010) reported that differences in the extensive

margin account for at least 25% percent of the cross country variation in productivity. Taken

together, these results imply that the role of technology is crucial to understanding per capita

income differences. In particular, the empirical estimates suggest that 70% of the differences

in cross-country income per capita can be explained by differences in technology adoption.

We anticipate that the findings of this paper will stimulate three lines of research. First,

we would like to understand better the relative importance of the different drivers of the

intensive margin. In particular, we would like to assess what is the role played by adoption
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costs, institutional constraints that affect the overall efficiency of the economy and distor-

tions that affect the price of capital. Second, we plan to study the underpinnings of the

variation in adoption costs which this paper abstracts from. Specifically, our findings beg

the question of why adoption costs at both the extensive and intensive margin are so large

in developing countries. Finally, the differences we have observed in both the intensive and

extensive margins across technologies suggest that maybe the dynamics of technology adop-

tion are important not only to understanding cross-country differences in productivity but

to explaining the dynamics of growth over the last two centuries. In particular, we intend

to explore whether the dynamics of adoption uncovered in this paper can explain the Great

Divergence and the lack of absolute convergence over the post-war period.
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A Data

The data that we use are taken from two sources. Real GDP and population data are taken

from Maddison (2007). The data on the technology measure are from the Cross-Country

Historical Adoption of Technology (CHAT) data set, first described in Comin, Hobijn, and

Rovito (2006). The fifteen particular technology measures, organized by broad category,

that we consider are:

1. Steam and motor ships: Gross tonnage (above a minimum weight) of steam and

motor ships in use at midyear. Invention year: 1788; the year the first (U.S.) patent

was issued for a steam boat design.

2. Railways - Passengers: Passenger journeys by railway in passenger-KM. Invention

year: 1825; the year of the first regularly schedule railroad service to carry both goods

and passengers.

3. Railways - Freight: Metric tons of freight carried on railways (excluding livestock

and passenger baggage). Invention year: 1825; same as passenger railways.

4. Telegraph: Number of telegrams sent. Invention year: 1835; year of invention of

telegraph by Samuel Morse at New York University.

5. Telephone: Number of mainline telephone lines connecting a customer’s equipment

to the public switched telephone network as of year end. Invention year: 1876; year of

invention of telephone by Alexander Graham Bell.
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6. Electricity: Gross output of electric energy (inclusive of electricity consumed in power

stations) in KwHr. Invention year: 1882; first commercial power-station on Pearl

Street in New York City.

7. Cars: Number of passenger cars (excluding tractors and similar vehicles) in use. In-

vention year: 1885; the year Gottlieb Daimler built the first vehicle powered by an

internal combustion engine.

8. Trucks: Number of commercial vehicles, typically including buses and taxis (excluding

tractors and similar vehicles), in use. Invention year: 1885; same as cars.

9. Aviation - Passengers: Civil aviation passenger-KM traveled on scheduled services

by companies registered in the country concerned. Invention year: 1903; The year the

Wright brothers managed the first successful flight.

10. Aviation - Freight: Civil aviation ton-KM of cargo carried on scheduled services by

companies registered in the country concerned. Invention year: 1903; same as aviation

- passengers.

11. Blast Oxygen Steel: Crude steel production (in metric tons) in blast oxygen furnaces

(a process that replaced Bessemer and OHF processes). Invention year: 1950; invention

of Blast Oxygen Furnace.

12. Cellphones: Number of users of portable cell phones. Invention year: 1973; first call

from a portable cellphone.

13. Personal computers: Number of self-contained computers designed for use by one

person. Invention year: 1973; first computer based on a microprocessor.

14. MRIs: Number of magnetic resonance imaging (MRI) units in place. Invention year:

1977; first MRI-scanner built.

15. Internet users: Number of people with access to the worldwide network. Invention

year: 1983; introduction of TCP/IP protocol.
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B Equilibrium and diffusion of the new technology

Let Γt denote the total adoption costs at instant t. Then

Γt = Ψ (1 + be)

(
γ

µ− 1

)
e−

ϑ
µ−1

γD

(
Z0e

γv

At

) 1
µ−1

Yt

(
1− Ḋ

)
+ Ψ (1 + bi)

(
Z0Ate

γt
)− 1

µ−1 Yt

∫ vt

−∞
Z

1
µ−1
v Ṅv(t)dv. (41)

where Ḋ denotes the time derivative of the adoption lags. Note that along the Balance

Growth Path, the distribution over the vintages for which the measure of varieties adopted

becomes degenerate around vt and the aggregate costs become ΓivtNv.

The equilibrium path of the aggregate resource allocation in this economy can be defined

in terms of the following nine equilibrium variables {C,K, I,Γ, Y, A,N,D, V }. Just like in

the standard neoclassical growth model, the capital stock, K, is the only state variable. The

eight equations that determine the equilibrium dynamics of this economy are given by

(i) The consumption Euler equation.

(ii) The aggregate resource constraint34

Y = C + I + Γ. (42)

(iii) The capital accumulation equation

·
K = −δK + I. (43)

(iv) The production function, (11), taking into account that in equilibrium L = 1.

(v) The adoption cost functions (6) and (7).

(vi) The technology adoption equations, which determine the adoption lag (20) and the

intensive margin of adoption (16).

34We assume that adoption costs are measured as part of final demand, such that Y can be interpreted
as GDP.
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(vi) The stock market to GDP ratio, (14).35

(vii) The aggregate TFP level, 12.

35The dynamics of Ψe
t and Ψi

t are what are considered in the system of equilibrium equations. For example,

the law of motion of for Ψe
t is (omitting superscripts and subscripts) Ψ̇

Ψ =
{
α ε−1

ε
Y
K − δ + 1

µ−1
Ȧ
A −

Ẏ
Y

}
− α

ε
1
Ψ .
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Table 2: Evolution of the Distribution of the Intensive and Extensive Margin

100*Log-Intensive Margin Adoption Lag

Homothetic Non-Homothetic Homothetic Non-Homothetic

Mean -0.50 -0.21 -.50 -.40

(0.19) (0.10) (.06) (.06)

Std.Dev. 0.14 -0.04 -.22 -.23

(0.12) (0.07) (.02) (.04)

IQR 0.32 0.01 -.39 -.40

(0.18) (0.11) (.09) (.09)

Note: Robust standard errors are shown in parenthesis. Mean refers to the average of the intensive
or extensive margin. The Homothetic column refers to the baseline model, while the Non-homothetic
refers to the estimation with a non-homothetic production function. Std. Dev. refers to the Standard
Deviation and IQR, to the Interquartile Range (difference between the 75th and 25th percentiles). All
these technology measures are regressed on the year of invention of the technology.

Table 3: Comparison of Intensive Margin Estimates up to 1939 versus Whole Sample

Adoption Number of Mean Mean Std.Dev. Std.Dev. IQR IQR

Technology Year Countries 1939 1939 1939

Ships 1788 12 0.06 -0.11 0.38 0.63 0.39 0.67

Rail Freight 1825 12 -0.49 -0.57 0.25 0.31 0.32 0.45

Rail Passengers 1825 17 0.14 0.24 0.16 0.19 0.17 0.23

Telegraph 1835 20 -0.13 -0.54 0.29 0.54 0.37 0.62

Telephone 1876 9 -0.38 -0.35 0.28 0.28 0.31 0.35

Electricity 1882 18 -0.24 -0.20 0.23 0.18 0.38 0.26

Cars 1885 11 -0.99 -0.75 0.56 0.48 0.63 0.60

Trucks 1885 10 -0.96 -1.01 0.63 0.73 1.00 1.02

Total -0.31 -0.37 0.51 0.56 0.59 0.69

Note: Number of countries is the number of countries for which we have plausible and precise estimates using
data up to 1939. Mean 1939 refers to the mean intensive margin of a technology obtained using data up to 1939.
Mean refers to the mean intensive margin of a technology obtained using data for the whole sample (up to 2003).
An analogous notation is used for the standard deviation (Std. Dev.) and the interquartile range (IQR).
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Table 4: Analysis of variance

Model Country Technology Residual Total

SS effect effect SS SS

Country effect alone 44% 44% 56% 100%

Technology effect 34% 34% 66% 100%

Joint effect 77% 43% 33% 23% 100%

Note: Decomposition of the intensive margin estimates. The percentages are obtained from the ratio
of the sum of squares of the country or technology dummy over the total.

Table 5: Estimates of Adoption Lags and Intensive Margin allowing for non-homotheticities

Invention Number Plausible Adoption Lags Log-Int. Margin

Technology year of Countries and Precise Mean sd Mean sd

Ships 1788 61 31 101.61 59.72 0.5 0.82

Railways freight 1825 88 58 82.28 26.30 0.38 0.41

Rail passengers 1825 83 40 61.78 31.51 0.09 0.43

Telegraph 1835 69 37 38.39 32.03 0.02 0.59

Telephone 1876 143 64 44.73 31.37 0.15 0.62

Electricity 1882 138 50 34.42 25.60 -0.03 0.63

Trucks 1885 111 53 32.97 19.53 -0.23 0.57

Cars 1885 127 70 36.05 22.05 -0.25 0.7

Aviation freight 1903 96 36 37.58 14.89 -0.03 0.72

Aviation passengers 1903 99 53 27.98 13.95 -0.42 0.76

Blast Oxygen Furnaces 1950 50 41 15.63 6.68 0.03 0.5

PCs 1973 71 62 13.96 2.86 0.17 0.54

Cellphones 1973 87 75 13.44 3.85 -0.44 0.76

MRIs 1977 12 12 3.02 2.38 -0.01 0.34

Internet 1983 59 56 7.39 2.09 -0.06 0.47

Total 1294 738 35.87 33.53 -0.04 0.66

Note: Plausible and Precise estimates are defined as having an adoption year greater than 10 years before our invention date
(this allows for some inference error) and a standard error for the adoption year smaller than

√
2003− vτ . Sd stands for

Standard Deviation. The last line (Total) reports the sum of observations for columns 3 and 4 and the unweighted mean of
technology measures for columns 5 to 8.
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Table 6: Correlation by Technology of Homothetic and Non-Homothetic Margins

Correlation Correlation

Technology Observations Intensive Extensive

Ships 30 0.88 0.96

Rail Passengers 55 0.82 0.93

Rail Freight 38 0.60 0.85

Telegraph 34 0.92 0.91

Telephone 59 0.89 0.96

Electricity 45 0.84 0.79

Trucks 51 0.86 0.88

Cars 63 0.89 0.86

Aviation Freight 29 0.95 0.96

Aviation Passengers 51 0.97 0.90

Blast Oxygen Furnaces 38 0.93 0.96

PCs 60 0.84 0.82

Cellphones 75 0.97 0.98

MRI 12 0.80 0.98

Internet 56 0.90 0.98

Total 696 0.87 0.91

Note: The last line (Total) reports the total sum of observations in the second column and the unweighted average
of technology correlations for columns 3 and 4.

Table 7: Correlation of Intensive and Extensive Margin with log income per capita in 2000

Invention Homothetic Non Homothetic

Technology year Obs. Int. Margin Adoption Lag Obs. Int. Margin Adoption Lag

Ships 1788 50 0.38 -0.48 31 0.52 -0.47

Rail Passengers 1825 62 0.38 -0.62 58 0.33 -0.49

Rail Freight 1825 42 0.16 -0.67 40 0.46 -0.30

Telegraph 1835 46 0.46 -0.49 37 0.49 -0.28

Telephone 1876 66 0.79 -0.49 64 0.53 -0.37

Electricity 1882 97 0.76 -0.57 50 0.68 -0.27

Trucks 1885 57 0.53 -0.35 53 0.49 -0.20

Cars 1885 73 0.51 -0.31 70 0.63 0.01

Aviation Freight 1903 30 0.85 -0.09 36 0.78 0.20

Aviation Passengers 1903 51 0.80 -0.13 53 0.79 0.23

Blast Oxygen Furnaces 1950 39 0.90 -0.33 41 0.80 -0.35

PCs 1973 68 0.69 -0.31 62 0.66 -0.40

Cellphones 1973 85 0.92 -0.57 75 0.88 -0.51

MRI 1977 12 0.79 -0.39 12 0.61 -0.44

Internet 1983 59 0.95 -0.75 56 0.84 -0.82

Total 837 0.67 -0.46 738 0.64 -0.30

Note: The Homothetic columns refer to the baseline model, while the Non-homothetic refer to the estimation using a non-
homothetic production function.The last line (Total) reports the total sum of observations in the third and sixth columns and
the unweighted average of the correlations for columns 4, 5, 7 and 8.
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Figure 1: Differences in telephone adoption subtracting own country income for four different
countries.

Figure 2: Intensive Margin component of TFP and differences in income per capita. The
slope of the dashed line is .44.
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Figure 3: Intensive Margin component of TFP and differences in income per capita with non
homotheticities. The slope of the dashed line is .52.


