
NBER WORKING PAPER SERIES

MULTIVARIATE FRACTIONAL REGRESSION ESTIMATION OF ECONOMETRIC
SHARE MODELS

John Mullahy

Working Paper 16354
http://www.nber.org/papers/w16354

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2010

I am indebted to participants at presentations of various aspects of this work at Catholic University
of Rome, Michigan State University, the University of Arizona, the University of Coimbra, University
College Dublin, and UW-Madison, as well as to Marguerite Burns, Ben Craig, Alberto Holly, Steve
Koch, José Murteira, Stephanie Robert, Nilay Shah, João Santos Silva, and Dave Vanness for their
thoughtful comments, suggestions, and discussions.  In addition, Badi Baltagi and Jeff Wooldridge
provided some helpful guidance with the literature.  All these colleagues, of course, are absolved from
any blame for the paper's shortcomings.  Partial financial support from the Robert Wood Johnson Foundation
Health & Society Scholars Program is acknowledged.  Some of this work was completed as a visiting
scholar at the UCD Geary Institute, which provided brilliant hospitality. The views expressed herein
are those of the author and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by John Mullahy. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Multivariate Fractional Regression Estimation of Econometric Share Models
John Mullahy
NBER Working Paper No. 16354
September 2010
JEL No. C3,D12

ABSTRACT

This paper describes and applies econometric strategies for estimating regression models of economic
share data outcomes where the shares may take boundary values (zero and one) with nontrivial probability.
 The main focus of the paper is on the conditional mean structures of such data.  The paper proposes
an extension of the fractional regression methodology proposed by Papke and Wooldridge, 1996, 2008,
 in univariate cross-sectional and panel contexts.  The paper discusses the stochastic aspects of share
definition and measurement, and summarizes important features of the existing literature on econometric
strategies for share model estimation.  The paper then goes on to discuss the univariate fractional regression
estimation strategies proposed by Papke and Wooldridge and to extend the fractional regression approach
to estimation of and inference about regression models describing the multivariate share data.  Some
issues involving outcome aggregation/ disaggregation are considered, as is a full likelihood estimation
approach based on Dirichlet-multinomial models.  The paper demonstrates the workings of these various
empirical strategies by estimating models of financial asset portfolio shares using data from the 2001,
2004, and 2007 U.S. Surveys of Consumer Finances.

John Mullahy
University of Wisconsin-Madison
Dept. of Population Health Sciences
787 WARF, 610 N. Walnut Street
Madison, WI 53726
and NBER
jmullahy@facstaff.wisc.edu



 1 

Prologue 
 
 Displayed in table 1a is an extract of nine observations on nine mutually 
exclusive and exhaustive categories of healthcare expenditures from a multiyear 
sample of the U.S. Medical Expenditure Panel Survey (MEPS); the specific quantities 
reported are the shares of total healthcare expenditures contributed by each of the 
nine expenditure categories.  Table 1b exhibits an extract of nine observations on 
seventeen mutually exclusive and exhaustive two-digit categories of time use from 
a multiyear sample of the American Time Use Survey (ATUS); the detailed figures 
are the number of minutes reported being spent in each category of time use 
during the one-day, or 1,440-minute, time diary recall period.  Finally, table 1c 
displays an extract of nine observations on ten mutually exclusive and exhaustive 
categories of financial assets from a multiyear sample of the Survey of Consumer 
Finances (SCF); the detailed data presented in this table are the shares of total 
financial assets accounted for by each of the ten financial asset categories. 
 
 The samples from which these observations are extracted have structures 
that share two analytically important features.  First, the multivariate outcomes are 
mutually exclusive and exhaustive shares of some total.  Second, there is a 
nontrivial empirical frequency of shares that are realized at upper and lower 
boundary values. 
 
 
1.  Introduction 
 
 Multivariate outcomes measured as shares of some overall total arise in 
numerous contexts in applied microeconometrics.  Whether the particular analysis 
focuses on time use (Mullahy and Robert, 2010), portfolio shares (e.g. Poterba and 
Samwick, 2001, 2002), consumer budgeting (see the references in section 3), 
market share analysis (Berry et al., 1995; Dubin, 2007), or some other topic, there 
will often arise -- as demonstrated by the above examples -- commonalities of the 
data structures under investigation with those exhibited in tables 1a-1c. 
 
 Letting yik represent the k-th outcome for the i-th individual, M denote the 
number of outcomes, and xi, i=1,...,N, be a p-vector of exogenous covariates, such 
data are characterized formally by the following: 
 
 ik iy 0,B∈ ⎡ ⎤⎣ ⎦ ,          (1) 

 ( )ik iPr y 0 0= >x  and ( )ik i iPr y B 0= >x ,     (2) 

and 

 
M

im im 1
y B

=
=∑  for all i,        (3) 

or in vector notation 
M

i i0,B∈ ⎡ ⎤⎣ ⎦y  and '
i iB=1 y .  Here Bi represents some finite total 

or upper bound: Bi=total annual healthcare spending in table 1a; Bi=B=1,440 
minutes per day in the time use data in table 1b; and Bi=total financial assets in 
the data underlying the financial asset share data in table 1c.  The Bi may or may 



 2 

not vary across i and may or may not be exogenous (more on this below).1  
Considerations (1) and (3) are standard in the econometric share equation 
literature.  Econometric strategies to handle of (2) in light of (1) and (3) are less 
studied and are the main focus of this paper. 
 
 This paper describes and applies econometric strategies for estimating 
regression models of various features of outcome data like those described above, 
with a main focus on conditional means.  Specifically, for the analysis of the 
conditional mean structures of such data, this paper proposes an extension of the 
fractional regression methodology proposed by Papke and Wooldridge in univariate 
cross-sectional (Papke and Wooldridge, 1996) and panel (Papke and Wooldridge, 
2008) contexts.2 
 
 The emphasis on conditional first-moment structures is central.  The working 
premise is that the parameters of concern to the analyst are the set of conditional 
means kE y⎡ ⎤⎣ ⎦x , k=1,...,M, which are specified to satisfy 

 
 ( )kE y 0,B⎡ ⎤ ∈⎣ ⎦x  ,   k=1,...,M       (4) 

and 

 
M

mm 1
E y B

=
⎡ ⎤ =⎣ ⎦∑ x .         (5) 

 
Note that in (4) the conditional means are assumed to span the open interval (0,B) 
rather than the closed interval [0,B] which the yk can occupy.  While probably a 
reasonable assumption in general, this could be restrictive in some instances where 
for some values of x ( )kPr y 0 1= =x  or ( )kPr y B 1= =x  might be possible.3  The 

subsequent analysis accommodates either of these boundary probabilities being 
arbitrarily close to, but not identically, zero or one. 
 
 Henceforth the paper will work with the normalized outcomes or shares 
sk=yk/B instead of the yk themselves, with the vector of shares s satisfying 

M
0,1∈ ⎡ ⎤⎣ ⎦s  and ' 1=1 s .  Moreover, the analysis will proceed under the assumption 

that the kE s⎡ ⎤⎣ ⎦x  have a parametric structure, i.e. ( )k kE s ;⎡ ⎤ = ξ⎣ ⎦x x α , where the 

generic common parameter vector 1 M,...,⎡ ⎤= ⎣ ⎦α α α  will generally be shared across 

                         
1 The "i" subscript indexing observations will be suppressed henceforth unless 
useful for clarity. 
2 Some applications may involve multivariate bounded outcome data that are not 
subject to adding-up restrictions like (5).  The analysis of such "seemingly 
unrelated" outcomes might proceed generally by considering modifications of the 
framework proposed by Papke and Wooldridge, 2008, for panel data structures. 
3 If ( )kPr y 0 1= =x  or ( )kPr y B 1= =x  for all x values subsequent analysis would 

likely be uninteresting and/or trivial. 
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the M conditional mean parameters ( )k ;ξ x α  to enforce condition (5). 

 
 The plan for the remainder of the paper is as follows.  Section 2 discusses 
the stochastic aspects of share definition and measurement.  Section 3 summarizes 
salient features of the existing literature on econometric strategies for share model 
estimation.  Section 4 highlights various features of the fractional regression 
estimation strategies proposed by Papke and Wooldridge (1996, 2008).  Sections 5-
8 are the methological core of the paper: section 5 extends the fractional 
regression approach to the multivariate share model context; section 6 considers 
several issues involving inference and specification testing; section 7 offers some 
ideas on testing aggregation or disaggregation of outcome categories; and section 
8 presents a Dirichlet-multinomial likelihood-based approach to estimating 
multivariate share models that accommodates important features of the observed 
outcomes.  Section 9 presents an empirical example of the proposed methodologies 
using data on financial asset portfolio shares from the 2001, 2004, and 2007 U.S. 
Surveys of Consumer Finances.  Section 10 concludes. 
 
 
2. Share Definition and Stochastic Characteristics 
 
 The foundation of the empirical analysis is the joint distribution ( ),φ y x  of an 

M-vector of outcomes ≥y 0  and covariates x.  From this, share measures may 
arise naturally in at least two ways that may imply different stochastic structures 
for the resulting econometric share models. 
 
 Suppose there are M quantities ( )k k k ky g , u= +x α , k=1,...,M, that arise 

from some constrained optimization problem (utility maximization; cost 
minimization; portfolio composition optimization; etc.), where kE u 0⎡ ⎤ =⎣ ⎦x , 

k=1,...,M, so that the gk(.) are conditional means.  The corresponding shares are 
given by 
 

 
( )

( )
( )k k k kk

k M M
m m mm 1 m 1

g , u g , uy
s

Yy g , u
= =

+ +
= = =

+∑ ∑
x x

x

α α
α

.   (6) 

 
In some cases (e.g. time use) there is a nonstochastic exogenous constraint B (e.g. 

1,440 minutes per day) such that 
M

mm 1
y Y B

=
= =∑ .  If the nonstochastic adding up 

restriction ( )M
mm 1

g , B
=

=∑ x α  is required or enforced, then 
M

mm 1
u 0

=
=∑  and  

 

 
( )

( )
( )

( )
( )k k k

k k k kM M
m mm 1 m 1

g , u g ,
s v , v

g , g ,
= =

+
= = + = ξ +
∑ ∑

x x
x

x x

α α α
α α

,   (7) 

 
where the vk are conditionally mean-zero heteroskedastic errors so that 

( )k kE s ,⎡ ⎤ = ξ⎣ ⎦x x α . 
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 Alternatively, the total Y may simply be defined as the sum of the M 
stochastic quantities yk whose measurements share a common metric (e.g. 
currency units) without being subject to any analytically relevant exogenous 
constraint,4 in which case the share equations have the more general form 

( ) ( )k k ks h , ,u H , ,= x x uα α .  In this instance, stochastic elements appear in both 

numerator and denominator of the share functions.  As such, the derivation of 

kE s⎡ ⎤⎣ ⎦x  is no longer straightforward, requiring integration over the joint distribution 

of the entire vector of residuals u. 
 
 By making primitive first-moment assumptions along the lines of 

( )k kE s ,⎡ ⎤ = ξ⎣ ⎦x x α , this paper proceeds for the most part under the assumption 

that the simpler structure (7) holds, although conceiving of ( )k kE s ,⎡ ⎤ = ξ⎣ ⎦x x α  as a 

first-order approximation via an expansion of ( ) ( )k kh , ,u H , ,x x uα α  around u=0 

may also be reasonable. 
 
 
3. Approaches to Econometric Share Model Estimation 
 
 This section provides a brief survey of approaches to econometric share 
model estimation that have been prominent in the literature. 
 
Econometric Share Model Estimation 
 
 Much but not all of the econometric share equation literature focuses on the 
relationship between empirical share models and underlying constrained 
optimization behaviors yielding outcomes (e.g. commodity category expenditures or 
patterns of time use) that are shares of some particular total (e.g. money or time 
budgets).  Early contributions to this literature include Christensen et al., 1975, and 
Wales and Woodland, 1977, who examine consumer demands and corresponding 
expenditure shares in utility maximization contexts.  Subsequent studies have 
approached share equation estimation from theoretically motivated optimization 
models in which stochastic components are embedded to play particular roles 
(preference heterogeneity; technical or allocative inefficiency; etc.) in the 
optimization framework rather than being appended additively to nonstochastic 
share functions in what might be an ad hoc manner; such examples include Brown 
and Walker, 1989, Chavas and Segerson, 1987, Kooreman and Kapteyn, 1987, and 
McElroy, 1987.  Considine and Mount, 1984, derive a specification in which the set 
of share equations has a multinomial logit functional form; this is noteworthy 
because a multinomial logit form is at the core of the specifications proposed below.  
                         
4 This may be a reasonable characterization of the shares that are analyzed in the 
empirical analysis reported in section 9.  Here the shares are the fractions of overall 
financial assets in each of ten financial asset categories.  Even were the overall 
level of assets to be characterized as nonstochastic, the split between financial and 
nonfinancial assets and, therefore, total financial assets, would presumably be 
stochastic. 



 5 

Dubin, 2007, uses nested multinomial logit market share models to estimate 
valuations of intangible assets.  Fry et al., 1996, based in part on ideas developed 
in Aitchison, 1982, apply to the estimation of share models methods from 
compositional data analysis (CODA), which involve essentially modeling logs of 
ratios of shares.5  
 
Estimation of Share Models with Boundary or Corner Solutions 
 
 Fewer studies have tackled the thorny empirical problems that arise when 
observed shares take on corner or boundary solutions with nontrivial probabilities.6  
Appealing to Kuhn-Tucker conditions and corresponding virtual or support prices, 
Lee and Pitt, 1986, propose a general empirical structure for multivariate share 
systems when corner solutions at zero are prominent in the data.  Morey et al., 
1995, explore a variety of statistical models to accommodate boundary outcomes, 
among these multinomial models for discretely measured (count) outcomes that 
share some features with the multivariate fractional regression models that are 
proposed below. 
 
 Since boundary solutions are a prominent feature of the share data of 
concern here, providing a general strategy for analyzing such outcomes is of some 
interest.  Ad hoc fixes are not an appealing approach to the boundary solution 
phenomenon, particularly when the probability of such boundary outcomes is 
nontriviall. 
 
Dirichlet Share Models 
 
 Woodland, 1979, proposed the Dirichlet distribution as a direct statistical 
model for shares without particular consideration of any underlying economic 
optimization framework.  The Dirichlet density conditional on x is given by7 
 

 ( )
( )( )
( )( )

( )( )
M

mm 1 M z , 1m
mM m 1

mm 1

z ,
D ; s

z ,

= −

=

=

⎛ ⎞Γ⎜ ⎟
= ⎜ ⎟

Γ⎜ ⎟
⎝ ⎠

∑
∏

∏
x ψ

x ψ
s x ψ

x ψ
.    (8) 

                         
5 See also Billheimer et al., 2001. 
6 For instance, Kooreman and Kapteyn's elegant analysis of time use demands 
notes the potential for boundary solutions but then goes on to comment: "We will 
ignore the [boundary condition constraint equations in the theoretical model], 
which are binding for only a limited number of observations."   
7 Woodland specifies a general functional form for the Dirichlet regression 
parameters but then uses a linear (not exponential) specification in his empirical 
analysis.  Nonetheless, since the Dirichlet parameters must be positive, an 
exponential specification is appealing.  (José Murteira, in a private communication, 
pointed out that the expression for the Dirichlet density in Woodland's equation (4) 
contains a typographical error: The product in the denominator of the correct 
expression is displayed as a summation in Woodland's paper.) 
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Note that if any sk=0 then the density D(.)=0 and if any sk=1 then necessarily all 
the other sk=0.  As such, the density is undefined in either event, thus precluding 
direct application of the Dirichlet model to the kinds of share data examined here 
where boundary values are prominent. 
 
 Yet it is useful for purposes of this paper to note that for the Dirichlet model, 
the conditional first moments are  
 

 
( )

( )
k

k M
mm 1

z ,
E s

z ,
=

⎡ ⎤ =⎣ ⎦
∑

x ψ
x

x ψ
,   k=1,...,M      (9) 

or 

 
( )

( )
( )( )

( )( )
k Mk

k M M 1
m m Mm 1 m 1

expexp
E s

exp 1 exp
−

= =

−
⎡ ⎤ = =⎣ ⎦

+ −∑ ∑
x ψ ψxψ

x
xψ x ψ ψ

,   k=1,...,M, (10) 

 
using a natural exponential-with-linear-index parameterization for the z(.).  Note 
that this corresponds to the standard functional form for multinomial logit 
probabilities even though for the Dirichlet model all M of the mψ  are identified.  

Noteworthy for present purposes is that this conditional first-moment structure 
coincides with that of the multivariate fractional share model whose specification 
and estimation is discussed below. 
 
 
4. Fractional Regression Estimation 
 
 Before exploring the multivariate estimation strategies that are the main 
focus of this paper, a brief overview of fractional regression (FREG) methods is 
worthwhile.8  The FREG model was proposed initially by Papke and Wooldridge 
(PW), 1996, in their study of voluntary individual contributions to retirement 
accounts in which the univariate dependent variable of interest is the fraction 
s 0,1∈ ⎡ ⎤⎣ ⎦  of allowable contributions made by individuals in their sample.  The key 

result in the Papke-Wooldridge paper is that even when the outcomes take on 
values at the extremes of the bounded range they occupy -- i.e. s=0 or s=1 -- with 
nonzero probability, the FREG method provides consistent estimates of the 
parameters of a univariate conditional mean function so long as it is specified with 
the correct functional form and embedded in a suitable quasi-ML estimator or M-
estimator.  Specifically, PW, 1996, consider the case of univariate fractional 
outcome data (s) and conditional means E s |⎡ ⎤⎣ ⎦x  with M=1, while PW, 2008, 

consider the panel data context with the added j-dimension, j=1,...,J, giving 
outcomes for the i-th individual at the j-th time period sijm=sij that are multivariate 
(J>1) in the j-dimension but univariate (M=1) in the m-dimension.  In particular, in 
this case there are no implied adding-up restrictions of the form (5) to 
accommodate. 

                         
8 See Ramalho et al., 2010, for an excellent survey of fractional regression model 
estimation. 
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 The basic idea underlying FREG estimation in the cross-sectional univariate 
outcome context is that if focus is exclusively on conditional first moments, then 
quasi-ML estimation when a correct parametric specification of the conditional first-
moment structure is embedded in an exponential-family quasi-likelihood will yield 
consistent estimates of the first-moment parameters regardless of whether the 
nominal quasi-likelihood is true or not (Gourieroux et al., 1984a,b).  In light of 
these arguments, PW suggest that the key property of a conditional first-moment 
model for a fractional outcome is that it obeys the boundary restrictions, i.e. 

( ) ( )E s 0,1⎡ ⎤ = ξ ∈⎣ ⎦x x .  PW then suggest that a general class of parametric functional 

forms that satisfy this restriction are distribution functions ( )G .  of continuous 

random variables, i.e. ( ) ( ) ( )E s ; G ; 0,1⎡ ⎤ = ξ = ∈⎣ ⎦x x ω x ω . 

 
 Thus direct specification of such a conditional mean structure embedded in 
an exponential-family quasi-likelihood whose maximization estimates such a 
distribution function should provide consistent estimates of ω  so long as ( )G ;x ω  is 

a correct specification of the conditional first moment.  Bernoulli quasi-likelihoods 

( ) ( )( )1 ss
G ; 1 G ;

−
× −x ω x ω  for the fractional (not binary) outcome measures 

s 0,1∈ ⎡ ⎤⎣ ⎦  are the obvious choice, with the particular functional form for ( )G ;x ω  

specified as a logit, probit, or other cumulative distribution function, typically with a 
linear index argument xω .  Consistent inferences are straightforward, but will 
generally involve using robust sandwich or bootstrap covariance estimators since 
the share data will be underdispersed relative to the nominal Bernoulli model (see 
section 6). 
 
 The fractional logit ("FLOGIT") version of the FREG model with 
 

 ( ) ( )
( )( )

exp
E s | G ;

1 exp
= =⎡ ⎤⎣ ⎦ +

xω
x x ω

xω
       (11) 

 
is the univariate foundation for the multivariate FREG estimator discussed now. 
 
 
5. Multivariate Fractional Logit: Estimation 
 
 The central goal of this paper is to provide consistent estimation strategies to 
estimate properties of the conditional distribution of share data that enforce (12) 
and (13) and accommodate (14) and (15): 
 
 ( ) ( )k kE s ; 0,1⎡ ⎤ = ξ ∈⎣ ⎦x x β ,   k=1,...,M,      (12) 

 
M

mm 1
E s 1

=
⎡ ⎤ =⎣ ⎦∑ x ,         (13) 

 ( )kPr s 0 0= ≥x ,   k=1,...,M,       (14) 

 ( )kPr s 1 0= ≥x ,   k=1,...,M,       (15) 
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where 1 2 M, ,...,= ⎡ ⎤⎣ ⎦β β β β .  The main concern in this section and the next is with 

estimation of the conditional first-moment structure of such data, i.e. ( );ξ x β .  

Section 8 extends this inquiry to other features of the joint conditional probability 
models ( )φ s x . 

 
 The extension of the PW approach to a multivariate fractional logit 
("MFLOGIT") setting is straightforward.9  This and the following three sections offer 
detailed exposition of the estimator and its properties.  PW and Gourieroux et al., 
1984a,b provide the fundamental arguments to establish consistency for the 
multivariate/multinomial version of the univariate PW quasi-ML approach.  Assume 
that the sample are independent draws from the (M+C)-variate distribution ( ),φ s x .  

Based on (10), specify the M conditional means to have a multinomial logit 
functional form in linear indexes as 
 

 kE s⎡ ⎤⎣ ⎦x  ( ) ( )
( )
k

k M
mm 1

exp
;

exp
=

= ξ =
∑

xβ
x β

xβ
,   k=1,...,M.    (16) 

 
Note that this specification enforces both (12) and (13).  Alternative specifications, 

e.g. ( ) M
k k mm 1

;
=

ξ = ∑x φ xφ xφ , are estimable -- indeed, this is the conditional 

first-moment functional form implied in the Dirichlet simulations conducted by 
Woodland, 1979 -- but they admit the possibility of predicted shares falling outside 
the 0,1⎡ ⎤⎣ ⎦  interval at some values of x.  This paper thus focuses on the specification 

(16) although the merits of competing first-moment specifications could be 
adjudicated empirically by conditional-moment or related tests. 
 
 As with the familiar multinomial logit estimator, some normalization is 
required since all M of the kβ  will not be separately identified in the multinomial 

quasi-likelihood; M =β 0  is used henceforth, giving 

 

  ( ) ( )
( )

k
k M 1

mm 1

exp
;

1 exp
−

=

ξ =
+ ∑

xβ
x β

xβ
 , k=1,...,M-1     (17) 

and 

  ( )
( )

M M 1
i mm 1

1
;

1 exp
−

=

ξ =
+ ∑

x β
xβ

.       (18) 

 
Owing in part to the normalization, interpretation of the signs and magnitudes of 
the kβ  is generally not straightforward.10  Typically much more interesting and 
                         
9 This estimation strategy has been applied in Mullahy, 2004, Mullahy and Robert, 
2010,  Koch, 2010, as well as in the transportation research literature (Sivakumar 
and Bhat, 2002; Ye and Pendyala, 2005). 
10 See Crawford et al., 1998. 
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useful in applications are the corresponding average partial effects (APEs) that are 
invariant with respect to the particular normalization selected.  These are described 
in detail in Appendix 1. 
 
 Appealing to the quasi-ML estimation methods described by PW for the 
univariate case, one can define a multinomial logit quasi-likelihood function Q(.) 
that embeds the functional form (16) and that uses the observed shares iks 0,1∈ ⎡ ⎤⎣ ⎦  

in place of the binary indicators that would typically populate a multinomial logit 
likelihood function, i.e. 
 

( ) ( )N M sim
m ii 1 m 1

Q  = ;
= =

ξ∏ ∏β x β .       (19) 

 
The log quasi-likelihood is 

 

( ) ( )( ) ( )( )N M
im m ii=1 m=1

J  = log Q  = s log ;× ξ∑ ∑β β x β ,    (20) 

 
with the corresponding ( )p M 1× − estimating or score equations 

 

( )
k

J∂

∂

β

β
 = 

( )
( )

TN i k
i ik M 1i 1

i mm 1

exp
s

1 exp
−=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

xβ
x

xβ
,   k=1,...,M-1,  (21) 

 
which are the same score equations as those corresponding to a standard 
multinomial logit estimator except that the sik are, in general, nonbinary.11  
Consistency of the resulting β  follows from the arguments in PW and Gourieroux et 

al., 1984a, in particular that ( ) ( )k kE J E E J⎡ ⎤⎡ ⎤∂ ∂ = ∂ ∂ =⎣ ⎦ ⎣ ⎦xβ β β β x 0 , k=1,...,M-1, 

given standard full-rank assumptions that ensure a unique maximizer.12 
 
 

                         
11 Some canned multinomial logit estimation packages, e.g. Stata's mlogit, do not 
accommodate nonbinary sm.  The estimates presented here are obtained using a 
procedure written in Stata's Mata language, which is available on request. 
12 In closing this section it might be noted that it would be feasible and 
straightforward to ignore the share system nature of the outcome data and 
estimate a first-moment structure with M independent binary FLOGIT models (11) 
yielding M corresponding kω  estimates and APEs.  While straightforward, such an 
approach ultimately implies an unrealistic form of aggregation across the M 
categories (see section 7 for related discussion).  Yet whether such an approach 
would have substantive implications for the estimates of parameters of interest like 
APEs is an open question; preliminary results using the SCF data (not reported 
here) show considerable similarity of the APE estimates from the MFLOGIT and the 
independent binary FLOGIT estimators. 
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6. Multivariate Fractional Logit: Underdispersion, Inference, and 
Specification Testing 
 
Underdispersion 
 
 Overdispersion (resp. underdispersion) is typically characterized in a 
univariate outcome context as a situation where the empirical variance of the 
distribution of some outcome y is greater than (resp. less than) the variance that 
would obtain if y followed a reference or nominal distribution nomφ , possibly 

conditioned on covariates, i.e. ( )empVar y x > ( )nomVar y x  (resp. 

( )empVar y x < ( )nomVar y x ), possibly enforcing the restriction 

emp nomE y E y⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦x x .  In the multivariate outcome context with outcome y an 

M 1×  vector, a natural extension is to define overdispersion (resp. strict 
overdispersion) as the situation where the matrix difference ( )empCov y x -

( )nomCov y x  is positive semidefinite (resp. positive definite), and underdispersion 

(resp. strict underdispersion) as the situation where the ( )nomCov y x - ( )empCov y x  

is positive semidefinite (resp. positive definite).  
 
 The nature of the multivariate share data analyzed here is such that the data 
necessarily manifest (conditional) underdispersion relative to their nominal 
multinomial counterparts in this matrix-definiteness sense.  This can be seen as 
follows.  Given the quasi-ML first-moment assumptions and multinomial nominal 
likelihood, it follows that ( )nom k nom kPr s 1 E s⎡ ⎤= = =⎣ ⎦x x  

( )emp k kE s⎡ ⎤ = ξ⎣ ⎦x x .  Thus for the share vector s, ( )nomCov s x  is given by the 

multinomial covariance matrix 
 

 ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 1 1 2 1 M

1 2 2 2

1 M M M

nom

1

1

1

Cov

ξ − ξ −ξ ξ −ξ ξ

−ξ ξ ξ − ξ

−ξ ξ ξ − ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x

x x x x

x x x x

s x

…

…

, (22) 

 
while ( )empCov s x  is given by 

 
  

( )

( )( ) ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]

( )( ) ( )( )[ ] ( )( )

( )( ) ( )( )[ ] ( )( )

2

1 1 1 1 2 2 1 1 M M

2

1 1 2 2 2 2

2

1 1 M M M M

E s E s s E s s

E s s E s

E s s E s

empCov

− ξ − ξ − ξ − ξ − ξ

− ξ − ξ − ξ

− ξ − ξ − ξ

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦

x x x x x x x x

x x x x x

x x x x x

s x

…

…

.(23) 

 
Thus  
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( ) ( ) ( )

( ) [ ] [ ]

[ ] ( )

[ ] ( )

2
1 1 1 2 1 M

2
1 2 2 2

2
1 M M M

nom emp

E s E s s E s s

E s s E s

E s s E s

Cov Cov

ξ − − −

− ξ −

− ξ −

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥Δ = − =
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

x x x x

x x x

x x x

x s x s x

…

…

.(24) 

 
 
If ( )( )kPr s 0,1 0∈ >x  for all k then each of the diagonal elements of ( )Δ x  is 

positive (since 2z z>  for any ( )z 0,1∈ ).  Note too that 

( )M M
m 1 m 1k m k m k k
m k m k

E s s E s s E s 1 s= =
≠ ≠

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎡ ⎤= = −⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑x x x , so that the absolute value of 

the row sum of the off-diagonal elements of any row in ( )Δ x  equals the diagonal 

element in that row.   
 

Definition 
A symmetric M M×  matrix D is weakly diagonally dominant if 

M
m 1kk km
m k

D D=
≠

≥ ∑  for all k=1,...,M, and is diagonally dominant if the 

inequality holds strictly. 
 
 

It follows that the matrix ( )Δ x  is weakly diagonally dominant.  Furthermore, a 

diagonally dominant (resp. weakly diagonally dominant) matrix is positive definite 
(resp. positive semidefinite).13  As such, the empirical distribution of the share 
vector s conditional on x manifests underdispersion relative to the nominal 
multinomial quasi-likelihood.  The implications of this for inference are considered 
below. 
 
Inference 
 
 The asymptotic distribution of β  follows from the arguments in PW and in 
Gourieroux et al., 1984a,b.  Specifically, given correct specification of the 

conditional first moments ( ) E ⎡ ⎤= ⎣ ⎦ξ x s x , ( )N −β β  is asymptotically ( )MFLOGITN ,0 V  

where 
 
 1 1

MFLOGIT
− −= P Q PV A A A         (25) 

with 

 ( ) ( ) ( )'
M 1 M 1E − −

⎡ ⎤= ⊗ ⊗⎢ ⎥⎣ ⎦P xA I x P x I x ,      (26) 

 

                         
13  See Graybill, 1983, Theorem 12.2.16, and Intriligator, 1971, equation B.7.10. 
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 ( ) ( ) ( )'
M 1 M 1E − −

⎡ ⎤= ⊗ ⊗⎢ ⎥⎣ ⎦Q xA I x Q x I x ,      (27) 

 

 ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1 2 1 M 1

1 2 2 2

1 M 1 M 1 M 1

1

1

1

−

− − −

ξ − ξ −ξ ξ −ξ ξ

−ξ ξ ξ − ξ

−ξ ξ ξ − ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x

x x x x

x x x x

P x ,  (28) 

and 
 

 ( )

( ) ( ) ( )( )
( ) ( )

( )( ) ( )( )

1 1 2 1 M 1

1 2 2

1 M 1 M 1

Var s Cov s , s Cov s , s

Cov s , s Var s

Cov s , s Var s

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

x x x

x x

x x

Q x .   (29) 

 
 
 Although estimating the model using quasi-ML methods will provide 
consistent estimates of the kβ  parameters, the corresponding inverse Hessian MNL 

covariance matrix will not be a consistent estimator of the true covariance matrix 
so long as ( )( )kPr s 0,1 | 0∈ >x .  Note that if the data were truly conditionally 

multinomially distributed, then ( )N −β β  would have asymptotic covariance matrix 

1 1 1
MNL

− − −= =P P P PV A A A A .  The difference between VMNL and VMFLOGIT is 

 
 ( )1 1

MNL MFLOGIT
− −− = −P P Q PV V A A A A .      (30) 

 
In turn, the matrix difference −P QA A  can be written as 

 

 ( ) ( ) ( )( ) ( )'
M 1 M 1E − −

⎡ ⎤− = ⊗ − ⊗⎢ ⎥⎣ ⎦P Q xA A I x P x Q x I x .    (31) 

 
Note that the matrix difference ( ) ( )−P x Q x  equals the matrix ( )Δ x  defined in eq. 

(24) with the M-th row and M-th column deleted.  As such ( ) ( )−P x Q x  will in 

general be strictly diagonally dominant and, therefore, positive definite.  Being 
quadratics in positive definite matrixes, it thus follows that −P QA A  and, therefore, 

( )1 1− −−P P Q PA A A A , will themselves be positive definite.  As such, MNL MFLOGIT−V V  

will in general be positive definite.  As will be seen below in section 9, inverse 

Hessian estimates of ( )Cov β  based on the standard multinomial logit quasi-

likelihood yield estimated parameter t-statistics for the individual mkβ  that range in 

this application from about 1.1 to 2.4 times smaller than those obtained using a 
robust sandwich estimator. 
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Specification Testing 
 
 To assess the quality of the MFLOGIT first-moment specification fit, 
conditional moment tests can be conducted that are based on cross-products of a 

vector of functions of x and the estimated MFLOGIT residuals, ( ) ( )E ⎡ ⎤× − ⎣ ⎦Λ x s s x . 

 The power of such tests to detect poorness of fit depends on the specification 
of ( )Λ x .  The particular form of ( )Λ x  used here is suggested by the Hosmer-

Lemeshow test strategy used commonly in the evaluation of binary logit models, 
i.e. ( )Λ x  is specified as a vector of indicator functions based on L sample quantiles 

of the im i
E s⎡ ⎤⎣ ⎦x , i.e. 

 

 ( )( ) ( )( )N1
mq m i mq im m ii 1

N 1 ; J s ;−
=

λ = ξ ∈ × − ξ∑ x β x β ,   q=1,...,L  (32) 

 
where the mqJ  denote intervals on the real line defined by the sample quantiles of 

the im i
E s⎡ ⎤
⎣ ⎦x . 

 
 
7. Multivariate Fractional Logit: Aggregation and Disaggregation of 

Outcome Categories 
 
 In empirical contexts where MFLOGIT-type estimation strategies might be 
applied it may sometimes be of interest to determine whether subsets of the 
outcome measures sk might sensibly be aggregated or pooled (to reduce 
dimensionality) or, if such data are available, disaggregated to (to refine detail).  
Depending on the purpose of the analysis, aggregability of outcome categories 
could be characterized in a variety of ways that include: similarity of corresponding 
category-parameter vectors; similarity of corresponding category-partial effects; 
and others.  This discussion will focus on aggregation characterized by similarity of 
parameter vectors; as such, given the MFLOGIT's first-moment structure, 
aggregation and disaggregation of outcome measures are tantamount to 
summation and proper subsetting, respectively. 
 
 Likelihood-based strategies for testing for aggregation or disaggregation of 
categories in multinomial or nested logit models with discrete outcomes (e.g. 
likelihood-ratio tests) are well established in the multinomial logit literature 
(Cramer and Ridder, 1991; Hill, 1983).  These approaches are not directly 
applicable in the MFLOGIT's first-moment/quasi-likelihood context, however.  
Instead this discussion will consider straightforward approaches based on robust 
Wald tests (a "bottom up" approach based on estimation of models for 
disaggregated outcomes) as opposed to Lagrange multiplier tests (a "top down" 
approach that would be more challenging to implement in the quasi-likelihood 
context) or tests based on criteria like mean squared error reduction.  The merits of 
the approaches suggested here relative to such alternatives is for future research to 
assess. 
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 There are at least two fundamentally distinct circumstances in which 
aggregation considerations may arise in the analysis of share data.  The first 
("structured aggregation") occurs when the outcome data follow some natural 
and/or predefined tree structure.  At each level of such a tree the share outcome 
categories at that level -- which are outcome subcategories by reference to the 
next-higher level -- are mutually exclusive and exhaustive and sum to one.14  The 
considerations raised above notwithstanding, testing for aggregation with such tree 
structures can more or less proceed using classical testing approaches.  The second 
circumstance ("unstructured aggregation") arises when there are again mutually 
exclusive and exhaustive subcategory share outcomes that sum to one but in which 
there is either no natural and/or predefined tree structure or in which the analyst 
for some reason elects to ignore a given tree structure (e.g. to consider whether 
subcategories in different branches can be pooled with each other).  In these 
circumstances, alternative testing strategies will generally be required.  Prototypical 
examples of each type of aggregation are displayed in figure 1.15 
 
 Only structured aggregation will be considered here.  Moreover, while the 
basic ideas generalize to multiple levels, this section considers only a simple two-
level aggregation context in which there are M outcome categories or aggregates 
(e.g. the m=1,...,M sm measures) and R>M outcome subcategories or 

disaggregates (denoted vr, r=1,...,R) with 
M R

m rm 1 r 1
s v 1

= =
= =∑ ∑ .  Define implicitly 

M index sets Cm via r mr Cm
v s

∈
=∑ , m=1,...,M, with { }M

mm 1
C 1,...,R

=
=∪  and 

M
mm 1

C
=

= ∅∩ .  Thus, in the example depicted in the top panel of figure 1, 

{ }1C 1,2,3= , { }2C 4= , ... , and { }MC R 2,R 1,R= − − . 

 
 As such, and ignoring for now a necessary identifying parameter 
normalization,  
 

   
( )

( )
n

m n n Rn C n C n Cm m m
rr 1

exp
E s E v E v

exp
∈ ∈ ∈

=

⎛ ⎞
⎡ ⎤ ⎜ ⎟⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
∑ ∑ ∑

∑
xθ

x x x
xθ

  (33) 

               
( )

( )
( )

( )
n0 1 n1 n0 1 n1

R Mn C n Cm m
r0 1 r1 r0 1 r1r 1 m 1 r Cm

exp exp

exp exp
∈ ∈

= = ∈

⎛ ⎞⎛ ⎞θ + θ +⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟θ + θ +⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑
∑ ∑ ∑

x θ x θ

x θ x θ
, 

 
for m=1,...,M.  Suppose for some k it holds that all elements of the set of slope 

                         
14 Well-known examples are two-to-six-digit NAICS/SIC industry definition codes, 
one-to-three-level expenditure hierarchies used in the Consumer Expenditure 
Survey, and the American Time Use Survey's two-, four-, and six-digit time-use 
categories. 
15 While their purpose was different that this paper's, Cotterman and Peracchi, 1992 
offer a useful conceptual discussion of structured vs. unstructured aggregation. 
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parameter vectors { }n1 kn C∈θ  are identical and equal to (say) kΘ .  Then  

       
( )( )

( )( ) ( )

q0 1 kq Ck
k M

m 1q0 1 k r0 1 r1q C r Ck mm k

exp ln exp
E s

exp ln exp exp

∈

=∈ ∈≠

⎛ ⎞θ +⎜ ⎟
⎝ ⎠⎡ ⎤ =⎣ ⎦ ⎛ ⎞θ + + θ +⎜ ⎟

⎝ ⎠

∑

∑ ∑ ∑

x Θ
x

x Θ x θ
    (34) 

  
( )

( ) ( )

k
0 1 k

Mk
m 10 1 k r0 1 r1r Cmm k

exp

exp exp= ∈≠

θ +
=

θ + + θ +∑ ∑
x Θ

x Θ x θ
, 

 

where ( )( )k
0 q0q Ck

ln exp
∈

θ = θ∑ .  That is, the subcategory outcomes vn, kn C∈ , 

aggregate in the sense that they share common slope coefficient vectors.  While 
this is perhaps an obvious characterization of aggregation in the fractional share 
outcome setting, its deeper implications are less obvious.  For instance, aggregation 
in this sense would imply that the aggregated subcategories all have the same 
conditional x1-elasticities but not the same conditional x1-partial effects. 
 
 Given considerations of structured aggregation in this slope-coefficient sense, 
at least two testing strategies are suggested.16  The first entails testing jointly the 
entirety of the equality restrictions implied if the subcategories under all categories 
having at least two subcategories simultaneously aggregate thusly.  Note that if all 
outcome subcategories branching from the aggregated outcome categories 
aggregated in the slope-coefficient sense, it would follow that 
 

 
( )

( )
k
0 1 k

n k Mn C mk
0 1 mm 1

exp
E v E s

exp
∈

=

θ +⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎢ ⎥⎣ ⎦ θ +
∑

∑
x Θ

x x
x Θ

,   k=1,...,M.  (35) 

 
Given estimates of the subcategory model, this test could be conducted as a 
straightforward Wald test of the implied parameter restrictions on the (p-1)-vectors 

r1θ .  Under a null hypothesis of slope-coefficient aggregation, such a test statistic 

would follow a large-sample ( )( )
2
p 1 N M− −χ  distribution.17 

 
 A second and likely more useful approach involves testing separately each 
candidate subcategory aggregation.  For each k this entails testing jointly the 
equality of the elements in  { }n1 kn C∈θ  via Wald tests.  In isolation, such test 

statistics would follow null 2
(#C 1) (p 1)k − × −χ  distributions.  However, simultaneous 

                         
16 These testing strategies follow the basic approach of Cramer and Ridder, 1991, 
except that Cramer and Ridder: are concerned with discrete outcomes; rely on 
likelihood-ratio tests; and do not address issues of multiple testing that are raised 
below. 
17 Computational details for these Wald tests are provided in Appendix 2. 
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testing of such restrictions across as many as M aggregate categories presents a 
multiple comparisons problem.  Using the Benjamini-Yekutieli, 2001, conservative 
false discovery rate control approach (or related methods) to modify the set of 
reference rejection p-values may provide some protection against false positives.18 
 
 
8. Dirichlet-Multinomial Estimation 
 
 Given the discrepancy between the empirical and QMLE pseudo-multinomial 
second moment structures, it should in principle be possible to improve estimator 
efficiency if reasonable conditional second-moment assumptions can be made 
(Gourieroux et al., 1984a).  While the share structure of the data provides some 
guidance on such specifications (e.g. that, like the first moments, the second 
moments must themselves be bounded) there appears to be little additional general 
guidance about second-moment specification offered by the data themselves. 
 
 A more-structured alternative approach is to postulate a probability model for 
the data that can describe the important features of the data recognizing, of 
course, that there is an inconsistency cost that may be incurred if such a probability 
model is incorrectly specified.  Of course, circumstances may arise when the entire 
conditional probability structure of the multivariate outcomes is of interest, in which 
case the first-moment estimates offered by MFLOGIT will not be adequately 
informative. 
 
 One working probability model that exhibits underdispersion relative to a 
multinomial structure and that also accommodates positive probability mass19 for 
shares sk=0 and sk=1 is based on a Dirichlet mixture of multinomials ("DM") or 
multivariate negative hypergeometric (Johnson et al., 1997, pp. 80ff), which is the 
multivariate version of the beta-binomial distribution (Heckman and Willis, 1977).20  
Imagine that some underlying multivariate T-trial counts kn= ⎡ ⎤⎣ ⎦n , k=1,...,M, follow 

a conditional DM probability model 
 

                         
18 One minor detail to be considered is the normalization used to estimate the R-
category disaggregated-outcome model.  If this normalization is on (say) the R-th 
category vR, i.e. R 0=θ , and if R is an element of a multi-element index set Ck (e.g. 

as depicted in the top panel of figure 1, where { }MC R 2,R 1,R= − − ), then the Wald 

tests for aggregation described above would entail testing the other slope 
parameters in this branch -- e.g. ( )R 2 1−θ  and ( )R 1 1−θ , with { }MC R 2,R 1,R= − −  -- 

against the nonstochastic zero vector ( )p 1−0 . 

19 See Vanness and Hanmer, 2010, for a related discussion in a univariate and 
Bayesian context. 
20 See Guimarães and Lindrooth, 2007, for an interesting econometric application of 
the DM distribution. 
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 ( )
( ) ( )( ) ( )( )

( )( ) ( ) ( )( ){ }

MM
m m mm 1 m 1

MM
m m mm 1 m 1

T 1 a n a
DM ;T

T a n a

= =

= =

Γ + Γ Γ +
=

Γ + Γ Γ

∑ ∏
∑ ∏

x x
n x

x x
,    (36) 

 

with { }M0,1, , T∈n … , ' T=1 n , and ( )ka x = ( )kexp xζ  a natural parameterization.  

Letting ( ) ( )M
mm 1

A a
=

= ∑x x , the conditional marginal mean and marginal variance 

of the nk are given by 
 

    
( )
( )
k

k
Ta

E n ;T
A

⎡ ⎤ =⎣ ⎦
x

x
x

   and   ( ) ( )
( )

( )
( ) ( )

k
k

T A a 1
V ar n ;T T

1 A A A

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x x
x

x x x
, (37) 

 
where the latter expression is seen to be ( )( ) ( )( )T A 1 A+ +x x  times the conditional 

marginal variance of the underlying T-trial multinomial distribution, taking 
( ) ( )ka Ax x  as the multinomial probabilities. 

 
 Given these counts, the shares ks 0,1∈ ⎡ ⎤⎣ ⎦  -- or, more precisely, 

{ }ks 0,1 T ,2 T , ,1∈ …  -- are given by k ks n / T= , so that, in particular, 

 

 
( )
( )

k
k

a
E s

A
⎡ ⎤ =⎣ ⎦

x
x

x
   and   ( ) ( )

( )
( )
( ) ( )

k
k

T A a1 1
Var s ;T

T 1 A A A

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x x
x

x x x
. (38) 

 
Since ( )( ) ( )( )( )T A T 1 A+ +x x  is less than one for T>1, ( )kVar s ;Tx  is smaller 

than the conditional variance of a one-trial multinomial distribution having a 
corresponding conditional first-moment or probability structure, which in turn is the 
quasi-likelihood model for the MFLOGIT.  It is also easily shown that ( )kVar s ;Tx  is 

decreasing in T. 
 
 Since T does not vanish from the probability model for or the conditional 
variance functions of the sj, the application of the DM(.) model in cases where T 
does not have a natural interpretation is clearly as an approximation to the true 
probability model.  In some instances, a particular specification for T might be 
suggested naturally by the nature of the data's measures (e.g. 1,440 integer-
measured minutes in a day or some integer-measured number of currency units in 
a budget).  In other instances, however, specifying a value for T will be ad hoc.  
Moreover, when the measures of the observed share data do not follow a natural 
lattice structure (i.e. { }ks 0,1 r ,2 r ,...,r r∈ ) but instead are "continuously" 

measured, some coarsening of the data that maps sk into c
js will be required for 

c c
k kn Ts=  to satisfy { }c

kn 0,1, , T∈ …  as necessary for the DM distribution. 

 
 Two DM models are estimated here for comparison with the MFLOGIT results 
discussed above.  For present purposes, two coarsenings of the data that imply 
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different values for T are considered.  For T=10 and T=100, these are given by 

( )c
kT jn floor Ts=  (i.e. jTs⎢ ⎥

⎣ ⎦ ) for all shares except the share with the largest 

empirical marginal frequency while the coarsened measure corresponding to that 

share (k) is given by 
Mc c
m 1jT mT
m j

n T n=
≠

= − ∑  to ensure proper adding up.  The resulting 

parameter and APE estimates are then compared with each other and with those 
obtained from the MFLOGIT estimator.  Given the specification 

kE s⎡ ⎤ =⎣ ⎦x ( ) ( )ka / A =x x ( ) ( )M
k mm 1

exp / exp
=∑xζ xζ , and normalizing post-

estimation on Mζ  (since all M Mζ 's are identified, unlike the MFLOGIT QMLE), some 

comparability of the point estimates of Mζ  and kβ  and, in particular, of the 

corresponding APE estimates might be expected if the DM likelihood is a reasonable 
approximation to the true probability model. 
 
 
9. Modeling Financial Asset Portfolio Shares 
 
Data and Estimation Sample 
 
 This section demonstrates some of the properties of the share model 
estimators and tests described above by estimating regression models of financial 
asset portfolio shares.  Estimation of portfolio share models has been considered by 
Heaton and Lucas, 2000, and by Poterba and Samwick, 2001, 2002, among others.  
The data used are from the combined public use 2001, 2004, and 2007 U.S. 
Surveys of Consumer Finances (SCF).  The SCF is a triennial sample whose 
collection is sponsored by the U.S. Federal Reserve to provide information on the 
financial circumstances of U.S. families (for details on the SCF, see Bucks et al, 
2009).  This combined sample comprises 13,379 household-level observations.  
Household-level sampling weights provided in the SCF are used in the computation 
of the APE estimates (note that the SCF weights are designed for within-year but 
not necessarily across-year weighting).  This analysis focuses specifically on 
financial assets and the ten major subcategories of financial assets defined in the 
SCF listed in the top panel of table 2.  Additional details on the data are provided in 
Appendix 3. 
 
 These data are summarized in figure 2 and in the top panel of table 2.  In the 
sample of 12,723 household observations with defined shares, it might be noted 
that only six households (.047%) have strictly positive shares for all ten financial 
asset categories, whereas for 2,348 (18.5%) of the sample's households some 
financial asset category share is 1.0.  Covariates used in the analysis are: age in 
years of household head (Age); a dummy for race of survey respondent (White); a 
dummy for marital status of household head (Married); number of children in the 
household (Number of Kids); dummies for educational attainment (High School 
Graduate, Some College, and College Graduate); and survey year dummies (Year 
2004, Year 2007).21  Descriptive statistics for these covariates are presented in the 
                         
21 These specifications do not include Total Financial Assets as a covariate.  
Whether it is appropriate to do so entails issues akin to those involved in whether 

(cont.) 



 19 

bottom panel of table 2. 
 
MFLOGIT Parameter Estimates and Inference 
 
 The MFLOGIT parameter estimates, normalized on the M-th (Other Financial 
Assets) category, are reported in table 3.  Owing to the normalization, it is not 
straightforward to interpret the signs or magnitudes of these estimates.  For 
purposes of hypothesis testing, however, such relative magnitudes may be 
informative, so asymptotic standard errors based on the robust sandwich estimator 
are presented in the table.  Due to the large number of parameters ( ( )p M 1× − =90) 

estimated, a multiple comparisons situation may arise for hypothesis testing.  As 
such, and to accommodate the mutual dependence parameter estimates, the 
conservative false discovery rate (FDR) rejection criteria suggested by Benjamini 
and Yekutieli, 2001, are computed and point estimates with sufficiently small 
standard errors to meet these criteria are shaded in the table. 
 
 The extent of underdispersion in the data (relative to the nominal 
multinomial quasi-likelihood) can be appreciated in several ways.  As suggested in 
section 6, the difference between the empirical multinomial logit (inverse Hessian) 
and robust sandwich parameter covariance matrixes is positive definite in the 
sample (the smallest eigenvalue of the matrix difference is positive).  The ratios of 
non-robust to robust standard errors range from 1.12 to 2.37 over the 90 
estimated parameters, suggesting a nontrivial degree of underdispersion.22 
 
Average Partial Effects 
 
 Table 4 presents the weighted APE estimates and bootstrap 95% CIs (based 
on 500 bootstrap replications) across the M=10 outcomes.  Recall that by 
construction the row sum of the APEs for each covariate will be zero.  In this 
exercise, the schooling attainment and the year indicator variables are treated as 
groupwise dummies as discussed in Appendix 1. 
 
 Overall the estimated patterns of partial effects appear reasonable.  The Age 
effects are consistent with the bulk of the estimation sample being of pre-
retirement ages (70% are under age 60).  Estimated patterns for Married and 
Number of Kids accord with the kinds of investment behaviors one would anticipate 
                                                                                                                                                     
(cont.) 
to include a measure of total expenditure as a covariate in a consumer expenditure 
share model. 
22 Given the considerable size of the estimated parameter covariance matrix (4,095 
unique elements), a comparison bootstrap covariance matrix was estimated using 
1,000 bootstrap replicates to check the performance of the standard robust 
sandwich parameter covariance estimator.  Across the 90 parameters estimated in 
this specification, the mean and median ratios of robust to bootstrap standard 
errors were .993 and .999, respectively, with a range of 0.86 to 1.06.  To the 
extent that this result generalizes, use of the sandwich estimator in empirical 
applications of the MFLOGIT estimator may be reasonable. 
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for such household structures for many of the shares (e.g. Liquid Assets, Quasi-
Liquid Retirement Accounts, Directly Held Pooled Funds, Cash Value Whole Life).  
For many of the shares (e.g. Liquid Assets, Quasi-Liquid Retirement Accounts, 
Directly Held Pooled Funds, Directly Held Stocks), the estimated schooling 
attainment APEs are particularly large and precisely estimated, likely reflecting the 
schooling variables proxying for the most important human capital and wealth 
effects in these models.  Finally the estimates for the year dummies show some 
interesting time trends for several of the share outcomes (e.g. Quasi-Liquid 
Retirement Accounts, Directly Held Stocks, Cash Value Whole Life, Other Managed 
Assets). 
 
MFLOGIT Estimator Performance 
 
 For the conditional moment tests described in section 6, this application 
specifies the ( )Λ x  based on the vingtiles of each of the ik i

E s⎡ ⎤
⎣ ⎦x  resulting in L=20 

test indicators for each sk outcome.  The sampling variation of these test indicators 
is estimated using 500 bootstrap replications, resulting in 95% CIs for each 
indicator-outcome combination as well as an overall 2

LM 1−χ  goodness-of-fit test 

statistic for the full multivariate model. 
 
 The results are summarized in figure 3, which depicts for each of the M=10 
share outcomes and at each of the L=20 vingtiles the test statistic point estimate 
( mqN × λ ; dark line) and its bootstrap 95% CI (shaded area).  Multiple comparisons 

concerns notwithstanding, the results depicted in figure 3 show only relatively few 
instances where the 95% CIs fail to cover zero, and these are typically in the tails 
with the exception of (Liquid Assets, Directly Held Stocks).  In a few cases (Quasi-
Liquid Retirement Accounts, CDs, Directly Held Stocks, Other Financial Assets) 
there is at least a suggestion of a U- or inverse U-shaped pattern across the 
vingtiles (underprediction in the tails and overprediction in the center, or vice-
versa).  Finally, the overall conditional moment 2

199χ  test statistic is 674.2 (p-value 

effectively zero). 
 
 Several general model performance statistics are summarized in table 5.  For 
this exercise, the MFLOGIT estimator was compared with a set of M=10 univariate 
linear regression (estimated by OLS) and univariate Tobit estimators that include 
the same covariate vector as used in the MFLOGIT models.  The first performance 
criteria were out-of-sample MPE and MSE as assessed by an 80/20 cross-validation 
averaged over 100 replications.  For this exercise, the linear model dominates 
MFLOGIT and Tobit on the MPE criterion while MFLOGIT generally dominates the 
linear model and Tobit on the MSE criterion.  One obvious potential drawback of the 
linear model is that its predictions are not restricted to obey the [0,1] interval 
bounds.  The rightmost columns of table 5 summarize the extent to which this is of 
concern in this empirical context.  The two rightmost columns provide the cross-
validation (averaged over replicates) and the in-sample frequencies with which the 
linear model predictions are less than zero (predictions greater than one were not 
observed).  The cross-validation and in-sample frequencies are quite similar across 
the share categories, and suggest that the out-of-interval prediction problem is 
most severe for share categories with the smallest marginal empirical frequencies 
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(e.g. Directly Held Bonds, Other Managed Assets). 
 
Aggregation Testing 
 
 Figure 4 depicts the tree structure of the SCF categories.  R=20 
subcategories are specified for this analysis of structured aggregation as described 
in section 7, with the aggregation tests described in that section applied to the 
three branches with #Ck>1 (Liquid Assets, Quasi-Liquid Retirement Funds, and 
Directly Held Bonds).23  The MFLOGIT point estimates of the nθ  parameters 

corresponding to those branches and the 2χ  aggregation test statistics are 
presented in table 6. 
 
 The overall aggregation test for all three branches strongly rejects slope-
parameter aggregation across all three branches.  The individual category tests for 
aggregation also strongly suggest that aggregation is not reasonable for any of 
these three categories.24  Indeed, casual inspection of the individual slope-
parameter point estimates indicates considerable variability within each main 
category. 
 
Dirichlet-Multinomial Estimates 
 
 Two variants of the DM model were estimated here, these reflecting different 
degrees of data coarsening as discussed in section 8.  Specifically, models for T=10 
and T=100 were estimated.  A useful, direct comparison between the DM and 
MFLOGIT estimators of concern here is in terms of their performance in estimating 
the conditional first-moment structure of the data, with these summarized most 
straightforwardly by comparing the point estimates of the estimated APEs.  This 
comparison is presented in table 7.  In most cases (the exceptions being the 
shaded cells) the MFLOGIT and DM APE estimates have the same signs.  Quite 
broadly, the magnitudes of the point APE estimates roughly comparable, but 
typically larger for MFLOGIT than for either the T=10 or T=100 DM estimators.  One 
consideration beyond the comparison of the APEs is the possible efficiency gain 
from using a full-likelihood estimation approach (DM) over a first-moment 
estimation approach (MFLOGIT).  It turns out in this application that the efficiency 
gains are small at best.  For the ( )p M 1× − =90 normalized parameters, the median 

of the ratio of MFLOGIT to DM robust standard errors is 1.05 for the T=100 model 
and 0.99 for the T=10 specification. 
 
 One test of overall goodness of fit for likelihood-based models like the DM is 
the information matrix (IM) test proposed by White, 1982 (see also Chesher, 1983, 
Lancaster, 1984, and Orme, 1990).  With such a large model as that estimated 
                         
23 The subcategories under the Quasi-Liquid Retirement Accounts and Other 
Managed Assets categories were ignored for computational reasons. 
24 With only three subaggregate branches specified and in light of the large values 
of the realized aggregation test statistics, the multiple comparisons issues 
discussed above in section 7 are effectively irrelevant and are ignored here. 
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here, it is not obvious whether the asymptotic properties of the IM test can be 
invoked given the available sample size, as the full model IM test has 4,095 
degrees of freedom with a sample size of 12,723.25  Such considerations 
notwithstanding, the IM test statistic is computed for the T=10 and T=100 
specifications using the method suggested by Lancaster, 1984.  The DM model's 

2
4095χ  test statistics are 11,261 (T=10) and 10,575 (T=100) which, while 

suggesting a slightly better fit for T=100 than for T=10, still both have effective p-
values of zero.  For comparison, however, the MFLOGIT quasi-likelihood IM test 
statistic based on the coarsened T=10 data is 1.72E+07.  More concretely perhaps, 
for all p M× =100 parameter estimates, the ratio of robust to inverse-Hessian 
standard error estimates ranges from .69 to 1.12 (median 1.02) for the T=10 
specification and from .62 to 1.20 (median 1.03) for the T=100 specification. 
 
 It is also possible (though not undertaken here) to compute an overall 2χ  
goodness-of-fit test statistic (see Andrews, 1988) for the coarsened outcome cells 
or interesting aggregates thereof.  In this spirit, the performance of the DM 
estimator in modeling the overall conditional probability structure of the data is 
summarized in figures 5 and 6 and in table 8.  Figure 5 depicts for three of the 
share outcomes the coarsened marginal empirical frequency distribution juxtaposed 
with the estimated marginal empirical frequencies from the T=10 and T=100 
specifications (the latter computed as the sample averages of the conditional 
frequencies).  Figure 6 shows Lorenz curve summaries in which are plotted the 
T=100 marginal cumulative probability estimates against the corresponding 
cumulative 101 coarsened cell frequencies in the data.  For Liquid Assets, Quasi-
Liquid Retirement Accounts, Directly Held Pooled Funds, and Directly Held Stocks 
there are some noteworthy fit problems.  Finally, table 8 summarizes the quality of 
fit of the DM estimators at the s=0 and s=1 endpoints.  For most of the share 
outcomes, the T=100 estimator provides a much closer fit to the marginal empirical 
frequencies than does the T=10 estimator. 
 
 Overall, then, the merits of estimating and conducting inference using DM 
models in a full likelihood context are mixed.  One presumably trades off some 
robustness relative to approaches like MFLOGIT in estimating first-moment models, 
with the differences in corresponding APE point estimates between the two 
approaches perhaps being nontrivial, at least in this empirical exercise.  However, if 
one is interested in estimating the full conditional probability structure of such 
models (perhaps at the cost of using coarsened data), the DM approach may be a 
useful strategy to consider. 
 
 
10. Summary and Discussion 
 
 With a central focus on estimation of conditional means, this paper has 

                         
25 For comparison with the MFLOGIT quasi-likelihood, the parameter estimates are 
normalized against the Other Financial Assets baseline, thus reducing the 
dimensionality of the test. 
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proposed econometric strategies for estimating regression models of economic 
share data in cases where shares assume values of zero and one with nontrivial 
probability.  The main contribution has been to explore properties of an extension 
to share models of the fractional regression methodologies proposed by Papke and 
Wooldridge. 
 
 Several outstanding issues should be important items on the future research 
agenda.  First involves further considerations of share category aggregation or 
disaggregation beyond those offered in section 7.  A second consideration involves 
"covariate adjustment."  For instance, in applications where understanding the 
determinants of shares net of the influence of some conditioning covariates is a 
prominent issue, the manner in which covariates are netted out is critical.  How to 
effect this in a framework that involves bounded shares that obey adding-up 
restrictions is an open question.   
 
 Third, in some empirical contexts (e.g. like the portfolio share example 
presented here) there is necessarily selection on subsamples for which shares are 
defined (by nonzero denominators).  This raises an important issue regarding for 
which populations inferences drawn from the estimated share models are relevant.  
While in some sense a garden variety selection problem, the issue of how to 
address this in the MFLOGIT or related estimation contexts remains unresolved. 
 
 Finally, a possible extension of this line of work would be to consider analogs 
to conditional logit (Hausman and McFadden, 1984) estimation that would fit into 
the fractional outcome data setting.  While analogies to the discrete outcome 
random utility (RUM) framework are not obvious, the implied moment structures of 
such models might offer statistical tools for analyzing data where outcome-specific 
covariates or attributes are available.  For instance, one might imagine a time use 
study in which time prices or wage rates for each outcome are available.  Briefly, 
consider a situation where a vector of attributes for the k-th outcome is given by 

kw  with the vector k k, −= ⎡ ⎤⎣ ⎦w w w  describing the entirety of such attributes over 

all outcomes.  Then the first-moment share structure corresponding to a standard 
RUM model (with normalization wM=0) would be given by: 
 

 
( )

( )
k

k k k k M 1
mm 1

exp
E s , E s

1 exp
− −

=

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
+ ∑

w δ
w w w

w δ
,   k=1,...,M,  (39) 

 
which could be extended to accommodate x in a mixed-logit structure, 
 

 
( )

( )
k k

k M 1
m mm 1

exp
E s ,

1 exp
−

=

+
⎡ ⎤ =⎣ ⎦

+ +∑
xβ w δ

x w
xβ w δ

,   k=1,...,M.   (40) 

 
Of course, in the absence of an underlying RUM structure, the influences of such 
outcome-specific attributes could also be captured in a standard MFLOGIT 
conditional mean model with 
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( )

( )
k k

k M 1
m mm 1

exp
E s ,

1 exp
−

=

+
⎡ ⎤ =⎣ ⎦

+ +∑
xβ wδ

x w
xβ wδ

,   k=1,...,M,   (41) 

 
in which the kδ  would describe different patterns of own-w vs. cross-w effects 

across k=1,...,M. 
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Appendix 1: Average Partial Effects for MFLOGIT Models 
 The general formula for the APE is 

 

N N im ii i
mk mkiN Ni 1 i 1

ikn 1 n n 1 n

E yw w
APE PE

xw w= =
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞ δ ⎣ ⎦= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ δ⎝ ⎠ ⎝ ⎠Σ Σ∑ ∑
x

, 

 
where " "  denotes either " "  or " "δ Δ ∂  and where the wi are nonnegative weights 
that may be used to estimate, for instance, population average APEs (wi=1 for all i 

gives constant weight 1/N).  Note that  
M

mkm 1
APE 0

=
=∑  due to the adding-up 

restriction.  In the case where xik is a dummy variable, APEmk is computed as the 
(perhaps weighted) sample average, evaluated at =β β , of the difference 
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or the derivative 
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where x-k,i is the vector xi for the i-th observation with the k-th element excluded.26 
 Hansen, 2010, gives the lower and upper limits of the C2 ( )1 − α -CI for 

arbitrary statistic θ  as: 
  

 { }( ) { } ( )bL b
CI , , q 1 .5

θ
α θ θ = θ − − α  and  { }( ) { } ( )bU b

CI , , q .5
θ

α θ θ = θ − α , 

 

where { } ( )
b

q
θ

τ  is the τ -th quantile of the bootstrap sampling distribution { }bθ .  

When θ= mkAPE , there are at least three possibilities for bootstrapping to estimate 
the ( )1 − α -CI: 

                         
26 When dummy variables are included in x as mutually exclusive and exhaustive 
(save an "omitted" category) members of sets of indicators -- e.g. race/ethnicity 
groups, educational attainment indicators -- setting up the discrete APE to capture 
the proper counterfactual is accomplished by zeroing out all of the group's dummy 
variables at baseline (i.e. setting all group dummies for all observations equal to 
the omitted category) and then setting the xik the variable in question equal to one 
for all observations. 
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(a) Accommodate variation in x and β : Bootstrap the APEs via bootstrap draws 

( )b b,y x = ( ) ( )( )i b i b,⎡ ⎤
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y x  from ( ),y x  that estimate bβ  and, correspondingly, 

( )bmkb bAPE ; =x β  ( ) ( )( )( )
N

bmki b i bi b 1

1
PE ;

N =∑ x β ; accumulate the ( )bmkb bAPE ;x β  

in the B-vector ( )bmkb bAPE ;⎡ ⎤
⎢ ⎥⎣ ⎦

x β , and base CIs on suitable percentiles of 

( )bmkb bAPE ;⎡ ⎤
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x β . 

(b) Accommodate variation in β  only: Bootstrap the APEs via bootstrap draws 

( )b b,y x  from ( ),y x  that estimate bβ  and, correspondingly, 

( ) ( )N
b bmkb mki ii 1

1
APE ; PE ;

N =
= ∑x β x β ; accumulate the ( )bmkbAPE ;x β  in the B-

vector ( )bmkbAPE ;⎡ ⎤
⎢ ⎥⎣ ⎦

x β ; and base CIs on suitable percentiles of 

( )bmkbAPE ;⎡ ⎤
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x β . 

(c) Accommodate variation in β  only, with weighting: Bootstrap the APEs via 

unweighted bootstrap replicates ( )b b,y x  from ( ),y x  that estimate bβ  and, 

correspondingly, ( )w
bmkbAPE ; =x β  ( )N i
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The estimates presented in tables 4 and 7 are based on approach (c), but in this 
application it turns out that the CIs estimated using (a), (b), or (c) are quite similar 
(tables showing alternatives are available on request). 
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Appendix 2: Computation of Wald Test Statistics for Slope-Parameter 
Aggregation 
 Let ( )1 N 1vec , , −= ⎡ ⎤⎣ ⎦θ θ θ…  denote the ( )p N 1 1− ×  vector of estimable 

parameters and suppose N>M.  Let θ  be defined such that: (a) disaggregated 
subcategory outcomes from the same multi-subcategory branch have 
corresponding kθ  that are adjacent in θ ; (b) that the first element of each kθ  is 

the "intercept" parameter, i.e. 
''

k k0 k1,⎡ ⎤= θ⎣ ⎦θ θ ; and (c) the K (0 K M≤ < ) aggregate 

outcome categories that branch to only single outcome subcategories correspond to 
the bottom rows of θ .  It is assumed that the normalization N =θ 0  has been 

imposed and, for simplicity of exposition, that subcategory vN is not being 
considered for aggregation with other subcategories.  Then the Wald test statistics 
described in section 7 are given by the standard formula 
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where ( )V θ  is the estimate of the robust MFLOGIT covariance estimator given in 

(25). 
 The test for the entirety of slope-parameter aggregations specifies R as 
follows.  Let 
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⎢ ⎥⎢ ⎥

−⎢ ⎥⎢ ⎥⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦

J

J
R J

J

,   k=1,...,(M-K),   

( ) ( ) ( )( ) ( )k k kdim p 1 #C 1 p#C= − − ×R . 

Then 

 ( )( ) ( ) ( )( ) ( )k p 1 N M p K 1k 1, , M Kblockdiag , − − × −= −
⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

R R 0… ,   

( ) ( ) ( ) ( )dim p 1 N M p N 1= − − × −R . 

 

In this case ( )wald θ  follows a ( )( )
2
p 1 N M− −χ  distribution under the null. 

 For testing subcategory aggregation under a single outcome aggregate (say 
the m-th), the corresponding specification of R is 
 

 
( )( ) ( )( )mp 1 #C 1 p #C p 1 #C 1 p N 1 #Cm k m kk m k m

, ,⎛ ⎞ ⎛ ⎞− − × − − × − −⎜ ⎟ ⎜ ⎟
⎝ < ⎠ ⎝ ≤ ⎠

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦∑ ∑

R 0 R 0 , 
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with Rm specified as Rk above and ( ) ( ) ( ) ( )mdim p 1 #C 1 p N 1= − − × −R .  In this case 

( )wald θ  follows a 2
(p 1)(#C 1)m− −χ  distribution under the null. 
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Appendix 3: Survey of Consumer Finances Data 
 Downloaded in February and March 2010, the public use data files are 
contained in: 

 http://www.federalreserve.gov/pubs/oss/oss2/2007/scfp2007.zip 
 http://www.federalreserve.gov/pubs/oss/oss2/2004/scfp2004.zip 

  http://www.federalreserve.gov/pubs/oss/oss2/2001/scfp2001.zip 
  
 The financial asset data used in this analysis are derived at the household 
level by averaging over the five SCF "implicates" (imputed replicates) for each 
category, summing these household averages to obtain household total financial 
assets, and then obtaining the category shares as the ratios of the category 
implicate averages to this household total, so-defined.  Specifically, for each survey 
year's sample, the Stata v.10 code used to compute the category shares is: 
 
sort yy1 
mac def nlfin "liq cds nmmf savb stoc bond cashli othma retq othf" 
mac def nlfina "aliq acds anmmf asavb astoc abond acashli aothma aretq aothf" 
foreach var of varlist $nlfin { 
  by yy1: egen a`var'=mean(`var') 
} 
egen afin=rowtotal($nlfina) 
foreach var of varlist $nlfin { 
  gen sh`var'=a`var'/afin  
} 
 
This results in defined shares for 12,723 of the 13,379 total household-level 
observations. 
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Figure 1 
Structured and Unstructured Aggregation: Examples 
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Figure 2 
Survey of Consumer Finances, Combined 2001, 2004, 2007 Sample: 

Financial Assets (N=13,379) and Financial Asset Shares (N=12,723), by Age and Year (Weighted) 
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Figure 3 
MFLOGIT Conditional Moment (CM) Tests Based on Percentiles of Estimated E[s|x]: Test Statistics mqN × λ  and Bootstrap 95%-CI 

Lower and Upper Bounds (CIs based on 500 Bootstrap Replications and Hansen C2 Method) 
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Figure 4 
Surveys of Consumer Finances: Financial Asset Share Category Tree Structure 

(Subcategories Shaded in Light Gray Are the N=20 vn Used in the Empirical Analysis; 
Subcategories Shaded in Dark Gray Are Not Used in Empirical Analysis) 
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Figure 5 

Comparison of Actual (Light Blue) and Estimated (Dark Blue) Marginal Distributions, Dirichlet-Multinomial Model, Selected Outcomes, 
T=10 and T=100 (Estimated Distributions are Unweighted Sample Averages of Estimated Cell Probabilities) 
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Figure 6 
Lorenz Curve Plots of DM Estimates (T=100) against Corresponding Coarsened Data 
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Table 1a 
MEPS, Combined 1996-2007 Sample, Data Extract: 

Healthcare Expenditure Shares, Nine Consecutive Observations with Defined Shares 
(dupersid is MEPS Individual Case Identifier, with Data Presented in dupersid Sort Order; Boundary Solutions Shaded) 

 
 

Healthcare Expenditure Category 
 

Observation 

Year dupersid 

Office-
Based 
Visits 

Prescr. 
Drugs 

Inpatient 
Stays ER Visits 

Out-
patient 
Visits 

Dental 
Visits 

Home 
Health 
Care 

Vision 
Aids 

Other 
S & E Total 

1997 00014013 0 0 0 0 0 1 0 0 0 1.000 

1997 00015011 1 0 0 0 0 0 0 0 0 1.000 

1997 00015015 0 0 0 0 0 0 0 1 0 1.000 

1997 00015022 0.045 0.126 0 0.828 0 0 0 0 0 1.000 

1997 00018036 0 0 0.903 0.097 0 0 0 0 0 1.000 

1997 00018059 0 0 0 1 0 0 0 0 0 1.000 

1997 00018073 0 0.001 0.952 0.006 0.041 0 0 0 0 1.000 

1997 00019014 0.108 0 0 0 0.481 0.411 0 0 0 1.000 

1997 00020011 0 1 0 0 0 0 0 0 0 1.000 
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Table 1b 
American Time Use Survey, Combined 2003-2008 Sample, Data Extract: 

Two-Digit Time Use Categories, Nine Consecutive Observations  
(tucaseid is ATUS Individual Case Identifier, with Data Presented in tucaseid Sort Order; Boundary Solutions Shaded) 
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Total 

2003 20030807033472 540 240 0 0 0 0 0 0 0 0 45 540 0 0 0 75 0 1440 

2003 20030807033485 615 0 10 0 540 0 0 0 0 0 60 140 0 0 0 0 75 1440 

2003 20030807033487 480 60 0 0 45 0 0 0 0 0 120 320 290 0 0 0 125 1440 

2003 20030807033489 1440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1440 

2003 20030807033490 705 90 0 0 0 0 0 0 0 0 0 450 35 0 0 150 10 1440 

2003 20030807033491 600 0 0 477 0 0 0 0 0 0 0 60 0 201 0 0 102 1440 

2003 20030807033494 720 0 0 470 0 0 0 0 0 0 10 240 0 0 0 0 0 1440 

2003 20030807033495 570 270 0 0 0 0 0 0 0 0 90 380 0 0 0 70 60 1440 

2003 20030807033498 705 30 0 0 180 0 0 0 0 0 20 315 0 0 0 0 190 1440 
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Table 1c 
Survey of Consumer Finances, Combined 2001, 2004, 2007 Sample, Data Extract: 

Financial Asset Shares, Nine Consecutive Observations with Defined Shares 
(yy1 is SCF Household Case Identifier, with Data Presented in yy1 Sort Order; Boundary Solutions Shaded) 

 
 

Financial Asset Category 
 

Observation 

Year yy1 
Liquid 
Assets 

Quasi- 
Liquid 
Retir. CDs 

Dir. 
Held 

Pooled 
Funds 

Savings 
Bonds 

Directly 
Held 

Stocks 

Directly 
Held 

Bonds 

Cash 
Val. 

Whole 
Life 

Other 
Mgd. 

Assets 

Other 
Fin. 

Assets Total 

2007 1531 1 0 0 0 0 0 0 0 0 0 1.000 

2007 1532 .167 .131 0 0 0 0 0 .702 0 0 1.000 

2007 1533 .146 .854 0 0 0 0 0 0 0 0 1.000 

2007 1534 0 1 0 0 0 0 0 0 0 0 1.000 

2007 1535 .255 .531 .204 0 .010 0 0 0 0 0 1.000 

2007 1536 .049 .904 .014 0 0 .007 0 .026 0 0 1.000 

2007 1537 0 0 0 0 0 0 0 1 0 0 1.000 

2007 1538 .359 .513 0 0 0 .128 0 0 0 0 1.000 

2007 1539 1 0 0 0 0 0 0 0 0 0 1.000 
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Table 2 
Survey of Consumer Finances, Combined 2001, 2004, 2007 Sample: Descriptive Statistics 

 

Mean Sample Percentages (Unweighted) Financial Asset Aggregate Category Shares, 
Estimation Sample (N=12,723) 

Unwtd. Weighted sim = 0 sim = 1 0 < sim < 1 

Liquid Assets .332 .399 .018 .170 .812 

Quasi-Liquid Retirement Accounts .292 .312 .355 .005 .640 

CDs .039 .044 .823 .001 .176 

Directly Held Pooled Investment Funds .074 .047 .745 .0002 .255 

Savings Bonds .010 .013 .820 .001 .180 

Directly Held Stocks .097 .050 .654 .001 .346 

Directly Held Bonds .022 .004 .907 0 .093 

Cash Value of Whole Life Insurance .065 .073 .669 .004 .326 

Other Managed Assets .037 .026 .885 .0001 .115 

Other Miscellaneous Financial Assets .032 .031 .258 .004 .738 

 
 

Full Sample 
(N=13,379) 

 
Subsample with Defined Shares 

(N=12,723) 

Mean Mean 

Covariates, 
Full and Estimation 

Samples 

Unwtd. Wtd. Min Max Unwtd. Wtd. Min Max 

Age 50.9 49.5 18 95 51.4 50.0 18 95 

White .78 .73 0 1 .80 .75 0 1 

Married .67 .59 0 1 .68 .60 1 1 

Number of Kids .85 .82 0 10 .84 .80 0 10 

High School Graduate .25 .32 0 1 .25 .32 0 1 

Some College .16 .18 0 1 .16 .19 0 1 

College Graduate .48 .35 0 1 .50 .37 0 1 

Year 2004 .34 -- 0 1 .34 -- 0 1 

Year 2007 .33 -- 0 1 .33 -- 0 1 



 43 

 
 
 

Table 3 
Financial Asset Shares, MFLOGIT Point Estimates and Robust Asymptotic Standard Errors 

(Normalization: Other  Financial Assets =β 0 ; Shaded Entries Denote Conservative FDR Rejection Recommendation for H0: km 0β = ) 
 

 
Financial Asset Category 

 

Liquid 
Assets 

Quasi- 
Liquid 
Retir. 
Accts. CDs 

Dir. 
Held 

Pooled 
Funds 

Savings 
Bonds 

Directly 
Held 

Stocks 

Directly 
Held 

Bonds 

Cash 
Val. 

Whole 
Life 

Other 
Managed 

Funds 
Age .001 .006 .049 .034 -.007 .039 .069 .020 .058 
     s.e. .003 .003 .004 .003 .005 .003 .004 .003 .004 
               
White -.264 .097 .203 .796 .508 .796 1.952 -.438 .946 
     s.e. .102 .104 .139 .133 .192 .125 .288 .115 .181 
               
Married .270 .873 .398 .890 .400 1.101 1.351 .546 .615 
     s.e. .086 .088 .108 .100 .152 .097 .145 .101 .117 
               
Number of Kids -.033 -.023 -.073 .001 .099 -.025 .021 .054 .012 
     s.e. .039 .039 .052 .044 .054 .043 .059 .044 .055 
               
High School Graduate -.024 .972 .672 1.405 .920 .945 1.287 .445 .888 
     s.e. .154 .165 .193 .234 .340 .211 .421 .177 .256 
               
Some College -.280 .898 .415 1.736 1.197 1.388 2.108 .271 1.113 
     s.e. .161 .171 .204 .239 .341 .215 .413 .186 .262 
               
College Graduate -.296 1.384 .678 2.681 .787 2.341 3.181 .161 1.923 
     s.e. .145 .155 .183 .221 .330 .198 .388 .166 .239 
               
Year 2004 -.041 -.069 -.208 -.164 -.014 -.332 -.034 -.486 -.331 
     s.e. .100 .101 .125 .111 .161 .108 .137 .113 .128 
               
Year 2007 -.249 -.118 -.296 -.216 -.336 -.508 -.394 -.714 -.656 
     s.e. .100 .101 .122 .111 .166 .108 .140 .113 .130 
               
Constant 2.611 .277 -3.184 -4.150 -2.285 -3.843 -9.356 -.199 -5.313 
     s.e. .224 .231 .308 .305 .453 .298 .642 .259 .385 
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Table 4 
Financial Asset Shares, MFLOGIT Estimates: Weighted APE Point Estimates and Bootstrap 95%-CI Lower and Upper 

Bounds (CIs based on 500 Bootstrap Replications and Hansen C2 Method) 
 

 
Financial Asset Category 

 

Liquid 
Assets 

Quasi- 
Liquid 
Retir. 
Accts. CDs 

Dir. 
Held 

Pooled 
Funds 

Savings 
Bonds 

Directly 
Held 

Stocks 

Directly 
Held 

Bonds 

Cash 
Val. 

Whole 
Life 

Other 
Managed 

Assets 

Other 
Financial 
Assets 

Age -.0037 -.0020 .0013 .0010 -.0002 .0016 .0007 .0005 .0012 -.0004 
     CI-L -.0042 -.0024 .0011 .0008 -.0003 .0014 .0006 .0003 .0010 -.0006 
     CI-U -.0033 -.0017 .0015 .0012 -.0001 .0018 .0009 .0007 .0014 -.0002 
            White -.0999 .0150 .0059 .0333 .0050 .0414 .0149 -.0355 .0196 .0003 
     CI-L -.1174 -.0019 -.0009 .0270 .0022 .0348 .0127 -.0451 .0146 -.0069 
     CI-U -.0824 .0304 .0126 .0398 .0079 .0490 .0169 -.0245 .0253 .0072 
            Married -.1030 .0783 -.0079 .0144 -.0019 .0325 .0094 -.0004 -.0008 -.0206 
     CI-L -.1192 .0648 -.0141 .0088 -.0046 .0267 .0068 -.0081 -.0059 -.0272 
     CI-U -.0879 .0909 -.0021 .0210 .0010 .0380 .0121 .0068 .0042 -.0144 
            Number of Kids -.0054 -.0014 -.0022 .0011 .0013 -.0006 .0006 .0051 .0009 .0007 
     CI-L -.0115 -.0068 -.0052 -.0014 .0005 -.0033 -.0007 .0023 -.0018 -.0021 
     CI-U .0004 .0037 .0006 .0035 .0022 .0021 .0021 .0081 .0031 .0033 
            High School Graduate -.1889 .1267 .0112 .0238 .0052 .0177 .0038 .0066 .0087 -.0146 
     CI-L -.2153 .1056 .0022 .0176 .0009 .0083 .0007 -.0082 .0012 -.0255 
     CI-U -.1607 .1486 .0216 .0309 .0096 .0257 .0065 .0214 .0156 -.0010 
            Some College -.2495 .1306 .0026 .0419 .0106 .0459 .0128 -.0002 .0160 -.0108 
     CI-L -.2785 .1067 -.0081 .0343 .0056 .0351 .0086 -.0151 .0080 -.0238 
     CI-U -.2186 .1534 .0130 .0509 .0158 .0559 .0171 .0134 .0240 .0039 
            College Graduate -.3540 .1714 -.0027 .0819 .0015 .0968 .0256 -.0288 .0300 -.0217 
     CI-L -.3802 .1513 -.0110 .0748 -.0020 .0879 .0223 -.0424 .0237 -.0326 
     CI-U -.3274 .1917 .0061 .0904 .0056 .1050 .0292 -.0158 .0361 -.0102 
            Year 2004 .0295 .0159 -.0027 -.0013 .0012 -.0149 .0020 -.0275 -.0062 .0040 
     CI-L .0145 .0041 -.0087 -.0078 -.0015 -.0221 -.0014 -.0361 -.0111 -.0025 
     CI-U .0443 .0289 .0035 .0048 .0043 -.0084 .0048 -.0196 -.0005 .0100 
            Year 2007 .0069 .0429 -.0003 .0040 -.0008 -.0174 -.0014 -.0324 -.0112 .0096 
     CI-L -.0084 .0280 -.0066 -.0016 -.0036 -.0243 -.0038 -.0413 -.0163 .0036 
     CI-U .0208 .0565 .0055 .0102 .0018 -.0106 .0014 -.0247 -.0063 .0159 
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Table 5 
Model Prediction Performance: 80/20 Cross-Validation for MPEs and MSEs, and Linear Model Predictions outside [0,1] 

Interval (Averages over 100 Replicates) 
 

 
Out of Sample Predictions 

(Best for Each Asset Category is Shaded) 
 

Mean Prediction Error 
 

Mean Squared Error 

Linear Model: 
Fraction of 

Predictions < 0 
 

MFLOGIT Linear Tobit MFLOGIT Linear Tobit 
Out of 
Sample 

In- 
Sample 

Liquid Assets .0117 -.0002 -.0666 .1149 .1141 .1187 0 0 

Quasi-Liquid Retirement Accts. .0089 .0003 .0082 .1084 .1098 .1109 .0002 .0001 

CDs .0014 .0002 -.0031 .0180 .0183 .0184 .0322 .0292 

Directly Held Pooled Funds .0023 .0004 .0001 .0293 .0294 .0296 .0543 .0538 

Savings Bonds .0004 .0001 -.0048 .00387 .00388 .0040 .0221 .0193 

Directly Held Stocks .0018 -.0005 -.0034 .03641 .0370 .03642 .0750 .0750 

Directly Held Bonds .0005 .00003 -.0007 .0094 .0095 .0095 .1707 .1689 

Cash Value of Whole Life .0019 -.0002 -.0110 .03149 .03151 .0325 0 0 

Other Managed Assets .0005 -.0004 -.0006 .0196 .0197 .0197 .0987 .0984 

Financial 
Asset 

Category 

Other Financial Assets .0014 .0003 -.0043 .01879 .01879 .0190 .0007 .0006 
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Table 6 
Disaggregated Share Model: MFLOGIT Point Estimates, Robust Asymptotic Standard Errors, and 2χ  Aggregation Tests 

(Only Disaggregated Categories and Slope Parameters Shown; Normalization: Other  Financial Assets =θ 0 ) 
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Age .021 -.006 .001 .046 .001 .029 .054 .053 .051 .040 .034 .070 .093 .064 .076 .069 
     s.e. .003 .003 .003 .006 .003 .003 .005 .008 .008 .005 .003 .005 .012 .010 .009 .004 
                 
White .087 -.337 -.313 1.411 -.264 .751 .846 .766 1.405 1.017 .796 1.905 3.291 2.157 1.875 1.952 
     s.e. .124 .105 .110 .309 .102 .138 .228 .301 .469 .228 .133 .348 .525 .540 .428 .288 
                 
Married .718 .101 .283 1.116 .270 .850 1.229 .738 .947 1.020 .890 1.543 1.177 1.009 1.254 1.351 
     s.e. .103 .090 .094 .191 .086 .104 .164 .236 .249 .161 .100 .168 .361 .275 .265 .145 
                 
Number of Kids .017 -.041 -.049 .082 -.033 -.009 -.037 .064 -.067 .106 .001 .006 -.028 .041 .095 .021 
     s.e. .046 .041 .043 .072 .039 .045 .061 .089 .112 .067 .044 .065 .155 .099 .120 .059 
                      
H.S. Graduate .257 -.168 .147 .851 -.024 1.506 .872 2.773 2.969 1.272 1.405 .895 3.925 1.908 15.35 1.287 
     s.e. .196 .159 .166 .571 .154 .248 .396 .652 .652 .441 .234 .462 .905 .689 .401 .421 
                      
Some College .383 -.495 -.178 1.753 -.280 1.793 1.377 3.450 3.220 1.710 1.736 1.797 4.672 2.809 15.91 2.108 
     s.e. .203 .167 .175 .547 .161 .254 .387 .651 .650 .444 .239 .449 .879 .628 .380 .413 
                      
Coll. Graduate .917 -.761 -.240 2.684 -.296 2.734 2.284 4.173 4.523 2.782 2.681 2.880 5.737 3.876 17.13 3.181 
     s.e. .181 .150 .157 .511 .145 .235 .358 .609 .591 .410 .221 .414 .768 .572 .244 .388 
                      
Year 2004 -.085 .116 -.296 -.283 -.041 -.266 -.340 -.081 .183 .408 -.164 -.047 .147 -.402 .279 -.034 
     s.e. .114 .105 .108 .177 .100 .114 .155 .245 .236 .176 .111 .151 .320 .228 .220 .137 
                      
Year 2007 -.221 -.137 -.439 -.650 -.249 -.390 -.113 -.333 -.130 .582 -.216 -.351 -.861 -.422 -.420 -.394 
     s.e. .114 .105 .109 .188 .100 .114 .157 .227 .248 .173 .111 .154 .406 .235 .237 .140 
       
c2 Test Stats.       
   Within-Categ. 952.3 (d.f.=27, p<.0001) 

  
  
  153.5 (d.f.=36, p<.0001) 

  
  
  1,591.2 (d.f.=27, p<.0001) 

  
  
  

   Overall 2,75.8 (d.f.=90, p<.0001)          
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Table 7 
Financial Asset Shares, Weighted APE Point Estimates: MFLOGIT and DM (T=10 and T=100) Estimator Comparison 

(Shaded Cells Indicate Discordant Signs) 
 

 
Financial Asset Category 

 

Liquid 
Assets 

Quasi- 
Liquid 
Retir. 
Accts. CDs 

Dir. 
Held 

Pooled 
Funds 

Savings 
Bonds 

Directly 
Held 

Stocks 

Directly 
Held 

Bonds 

Cash 
Val. 

Whole 
Life 

Other 
Managed 

Assets 

Other 
Financial 
Assets 

Age  MFLOGIT -.0037 -.0020 .0013 .0010 -.0002 .0016 .0007 .0005 .0012 -.0004 
  DM, T=100 -.0029 -.0016 .0010 .0007 -.0003 .0012 .0005 .0010 .0006 -.0001 
  DM, T=10 -.0018 -.0022 .0009 .0007 -.0001 .0012 .0005 .0003 .0007 -.0002 
            White  MFLOGIT -.0999 .0150 .0059 .0333 .0050 .0414 .0149 -.0355 .0196 .0003 
  DM, T=100 -.0868 .0236 .0055 .0220 .0044 .0304 .0099 -.0162 .0101 -.0030 
  DM, T=10 -.0679 .0166 .0016 .0245 .0029 .0300 .0092 -.0259 .0113 -.0023 
            Married MFLOGIT -.1030 .0783 -.0079 .0144 -.0019 .0325 .0094 -.0004 -.0008 -.0206 
  DM, T=100 -.0978 .0702 -.0028 .0077 -.0032 .0217 .0050 .0112 .0010 -.0132 
  DM, T=10 -.0736 .0629 -.0049 .0084 -.0040 .0225 .0055 -.0010 -.0007 -.0150 
            N. of Kids MFLOGIT -.0054 -.0014 -.0022 .0011 .0013 -.0006 .0006 .0051 .0009 .0007 
  DM, T=100 -.0074 -.0005 -.0014 .0020 .0031 -.0003 .0007 .0049 .0003 -.0015 
  DM, T=10 -.0031 -.0014 -.0024 .0015 .0011 -.0002 .0007 .0039 .0008 -.0007 
            H.S. Grad. MFLOGIT -.1889 .1267 .0112 .0238 .0052 .0177 .0038 .0066 .0087 -.0146 
  DM, T=100 -.1410 .0844 .0071 .0156 .0116 .0141 .0018 .0127 .0020 -.0083 
  DM, T=10 -.1298 .0951 .0055 .0168 .0046 .0141 .0029 .0010 .0028 -.0130 
            Some Coll. MFLOGIT -.2495 .1306 .0026 .0419 .0106 .0459 .0128 -.0002 .0160 -.0108 
  DM, T=100 -.1911 .0904 .0001 .0272 .0147 .0375 .0093 .0070 .0088 -.0037 
  DM, T=10 -.1666 .0935 -.0017 .0283 .0075 .0364 .0082 -.0042 .0103 -.0120 
            Coll. Grad. MFLOGIT -.3540 .1714 -.0027 .0819 .0015 .0968 .0256 -.0288 .0300 -.0217 
  DM, T=100 -.2921 .1465 -.0057 .0568 .0026 .0776 .0173 -.0085 .0139 -.0085 
  DM, T=10 -.2380 .1302 -.0107 .0572 -.0009 .0737 .0180 -.0274 .0154 -.0176 
            Year 2004 MFLOGIT .0295 .0159 -.0027 -.0013 .0012 -.0149 .0020 -.0275 -.0062 .0040 
  DM, T=100 .0209 .0019 -.0028 -.0041 .0017 -.0053 -.0006 -.0117 -.0027 .0027 
  DM, T=10 .0129 .0125 -.0001 -.0013 .0012 -.0082 .0012 -.0159 -.0040 .0016 
            Year 2007 MFLOGIT .0069 .0429 -.0003 .0040 -.0008 -.0174 -.0014 -.0324 -.0112 .0096 
  DM, T=100 .0108 .0203 .0051 -.0038 -.0006 -.0106 -.0022 -.0167 -.0055 .0033 
  DM, T=10 .0013 .0304 .0032 .0024 -.0003 -.0123 -.0008 -.0197 -.0077 .0034 
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Table 8 
DM Estimator Fit Performance: ( )kPr s 0=  and ( )kPr s 1=  

 
 

Financial Asset Category 

 

Liquid 
Assets 

Quasi- 
Liquid 
Retir. 
Accts. CDs 

Dir. 
Held 

Pooled 
Funds 

Savings 
Bonds 

Directly 
Held 

Stocks 

Directly 
Held 

Bonds 

Cash 
Val. 

Whole 
Life 

Other 
Managed 

Assets 

Other 
Financial 
Assets 

Sample 
Frequency 

.018 .355 .823 .745 .820 .654 .907 .669 .885 .856 

DM Estimate, 
T=10 

.137 .450 .908 .811 .975 .760 .942 .857 .921 .935 ( )kPr s = 0  

DM Estimate, 
T=100 

.105 .335 .840 .740 .910 .658 .910 .721 .889 .882 

Sample 
Frequency 

.170 .005 .001 .0002 .001 .001 0 .004 .0001 .004 

DM Estimate, 
T=10 

.166 .028 .003 .003 .001 .004 .0004 .005 .001 .002 ( )kPr s =1  

DM Estimate, 
T=100 

.099 .012 .002 .001 .001 .002 .0002 .003 .001 .001 

 


