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ABSTRACT

Climate policy is complicated by the considerable compounded uncertainties over the costs and benefits
of abatement.  We don’t even know the probability distributions for future temperatures and impacts,
making cost-benefit analysis based on expected values challenging to say the least.  There are good
reasons to think that those probability distributions are fat-tailed, which implies that if social welfare
is based on the expectation of a CRRA utility function, we should be willing to sacrifice close to 100%
of GDP to reduce GHG emissions.  I argue that unbounded marginal utility makes little sense, and
once we put a bound on marginal utility, this implication of fat tails goes away: Expected marginal
utility will be finite even if the distribution for outcomes is fat-tailed.  Furthermore, depending on
the bound on marginal utility, the index of risk aversion, and the damage function, a thin-tailed distribution
can yield a higher expected marginal utility (and thus a greater willingness to pay for abatement) than
a fat-tailed one.
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1.  Introduction  
 
 How much environmental damage would result from unabated water pollution, 

greenhouse gas (GHG) emissions, toxic waste disposal, and other potentially destructive 

activities?  And whatever that environmental damage is expected to be, what economic and 

social cost will it have?  In other words, what is the value of taking costly actions today or in the 

near future to reduce rates of pollution and emissions, and thereby reduce future damages?   

These questions are at the heart of environmental policy.  What makes these questions 

interesting – and difficult – are the considerable compounded uncertainties involved: uncertainty 

over the underlying physical or ecological processes, over the economic impacts of 

environmental damage, and over technological change that might reduce those economic impacts 

and/or reduce the cost of limiting the environmental damage in the first place.  This is especially 

the case for environmental damage that occurs or lasts over long time horizons, such as nuclear 

waste disposal, deforestation, and – my focus in this paper – GHG emissions and climate change.    

Incorporating uncertainty into the evaluation of climate change policy is often done by 

applying Monte Carlo simulation methods to an integrated assessment model (IAM).  Such 

models “integrate” a description of GHG emissions and their impact on temperature and other 

aspects of climate (a climate science model) with projections of current and future abatement 

costs and a description of how changes in climate affect output, consumption, and other 

economic variables (an economic model).  An IAM might be compact and highly aggregated, or 

large, complex, and regionally disaggregated.  But it will always contain physical and economic 

relationships that are subject to uncertainty over functional form and parameter values.1   In 

Monte Carlo simulations, the functional forms are usually assumed to be known with certainty, 

but parameter values for each individual simulation are drawn from probability distributions that 

might be estimated, otherwise inferred from data, or based on assumptions.  By running 

hundreds or thousands of simulations, expected values and confidence intervals can be calculated 

for variables of interest.  Adding some assumption about discount rates, one can compute and 

compare the present values of expected costs and benefits from some policy, along with 

                                                 
1 A well-known example of a relatively compact IAM is the Nordhaus (2008) DICE model.  A much larger and 
complex one is the model developed by the MIT Joint Program on the Science and Policy of Global Change; see 
Webster et al (2009).  For a general discussion of the inherent uncertainties, see Heal and Kriström (2002). 
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confidence intervals.2    

The validity of these approaches has been thrown into question by the “dismal theorem” 

developed in a recent paper by Weitzman (2009a).  The basic idea behind the dismal theorem is 

straightforward.  Suppose we are concerned with the increase in global mean temperature over 

the rest of this century, which I will denote by T.  Suppose we believe that T is normally 

distributed with a known mean, μ.  Note that the normal distribution is thin-tailed, i.e., its upper 

tail (reflecting probabilities of very high values of T) declines to zero faster than exponentially.  

(I will say more about this later.)  Finally, suppose we don’t know the variance of the 

distribution, and therefore we estimate the variance using all available data, with Bayesian 

updating of our estimate as new data becomes available.  In that case the posterior distribution 

for T (i.e., the distribution conditional on our estimation process for the variance) is necessarily 

fat-tailed, meaning that its upper tail declines to zero more slowly than exponentially.  To keep 

things clear, I will refer to this result as “Part 1” of the dismal theorem. 

Before proceeding, it is important to note that there are other routes by which one could 

conclude that the distribution for T has a fat tail.  For example, structural climate models with 

feedback loops can transform thin-tailed distributions for input variables into fat-tailed 

distributions for output variables such as temperature.3   Or, one might infer a fat-tailed 

distribution simply from observing distributions for T derived from existing climate science and 

economic studies.   

Why does it matter whether or not the distribution for T is fat-tailed?  This brings us to 

what I will call “Part 2” of the dismal theorem.  Suppose higher temperatures cause “damage” by 

directly causing a reduction in consumption, which for simplicity I will model as 

 0

1
CC

T
=

+
 (1) 

where C0 is consumption in the absence of any warming.  I will assume that a reduction in C  

directly reduces social welfare via a utility function U(C), which I will take to have the widely 

used constant relative risk aversion (CRRA) form, i.e.,  

                                                 
2 An alternative approach, used in Pindyck (2009, 2010), is to calibrate probability distributions for variables of 
interest (e.g., temperature in the year 2100) from estimates of expected values and confidence intervals derived from 
climate science and economic studies done by others.  In work related to this paper, Newbold and Daigneault (2009) 
explore how alternative probability distributions and damage functions affect willingness to pay to reduce emissions. 
3 See, for example, Roe and Baker (2007), Weitzman (2009b), and Mahadevan and Deutch (2010). 
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1

U C C η

η
−=

−
 (2) 

Thus marginal utility is '( )U C C η−= , and η is the index of relative risk aversion.4  Note that as 

consumption approaches zero, marginal utility becomes infinite. 

 Now consider what happens in the upper tail of the distribution for T.  Very high values 

of T imply very low values for C, and thus very high values for marginal utility .  If T has 

a thin-tailed distribution, the probabilities of extremely high values of T will be sufficiently small 

that the expected value of marginal utility will be finite.  But if T has a fat-tailed distribution, 

those probabilities of extremely high values of T will be large enough to make expected marginal 

utility infinite.  And what’s wrong with that?  It means that the expected gain from any policy 

that would reduce warming is unbounded.  The reason is that with fat tails, the expected gain in 

utility from preventing or limiting increases in T will be infinite.  This in turn has an alarming 

consequence: it means that society should be willing to sacrifice close to 100 percent of GDP to 

reduce GHG emissions and thereby limit warming.  

'( )U C

 As a guide to policy, the conclusion that we should be willing to sacrifice close to 100 

percent of GDP to reduce GHG emissions is not very useful, or even credible, and it is unlikely 

that one would interpret the dismal theorem in this way.  A  more useful interpretation – and the 

one that Weitzman (2010) seems to be promoting – is that with fat tails, traditional cost-benefit 

analysis based on expected values (and this would include Monte Carlo simulation exercises 

with IAMs, no matter the number of simulations) can be very misleading, and in particular will 

underestimate the gains from abatement.  It also implies that when evaluating or designing a 

climate policy, we need to pay much more attention to the likelihood and possible consequences 

of extreme outcomes. 

While this interpretation makes sense, there is a problem with the dismal theorem itself, 

and with the implications I have just outlined.  As popular as it is among economists (largely 

because of the analytical tractability it provides), there is something not quite right about the 

CRRA utility function of eqn. (2) when applied to extreme events.  What does it mean to say that 

marginal utility becomes infinite as consumption approaches zero?   Marginal utility should 

indeed become very large when consumption approaches zero – after all, zero consumption 

                                                 
4 The index of relative risk aversion is defined as IRRA =  –CU”(C)/U’(C), which for the utility function of eqn. (2) 
is ηC-η/C-η = η. 
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usually implies death.  But “very large” is quite different from infinite. Perhaps marginal utility 

should approach the value of a statistical life (VSL) or (because an environmental catastrophe so 

bad that it drives total consumption close to zero might also mean the end for future generations) 

some multiple – even a large multiple – of VSL.  The point here is that if we put some upper 

limit on the CRRA utility function so that marginal utility remains finite as consumption 

approaches zero, then “Part 2” of the dismal theorem no longer holds: even if T has a fat-tailed 

distribution, the expected gain from a policy that would reduce warming is no longer unbounded, 

and society should not be willing to spend close to 100 percent of GDP on such a policy.   

We can call the part of the utility function that applies to very low values of C 

(corresponding to very high values of T) as the “tail” of the utility function.  I would then argue 

that there are two kinds of “fat tails” that we need to consider.  There is fat-tailed uncertainty of 

the kind that Weitzman (2009, 2010) has focused on, and there are “fat-tailed” damage or utility 

functions, such as the CRRA utility function discussed above, for which marginal utility 

approaches infinity as C becomes very small.  In terms of the implications for the economics of 

climate change, both kinds of “tails” are equally relevant. 

In the next section, I clarify some of the differences between fat-tailed and thin-tailed 

distributions, and provide an example by comparing two particular probability distributions for 

temperature change – the fat-tailed Pareto distribution and the thin-tailed exponential 

distribution.  In Section 3, I combine each of these two distributions with a CRRA utility 

function that has been modified by removing the “fat” part of the tail.  This will help to elucidate 

the implications of uncertainty (fat-tailed or otherwise) for climate change policy.5   In Section 4, 

I discuss environmental and other kinds of catastrophes more generally, and Section 5 concludes. 

 

2. Fat-Tailed Uncertainty 
 A thin-tailed probability distribution is one for which the upper tail declines to zero 

exponentially or faster.  Such a distribution has a moment generating function, and all moments 

exist.  An example of a thin-tailed distribution which I use in this paper is the exponential 
                                                 
5 One important aspect of uncertainty, which I do not discuss in this paper, is its interaction with the irreversibilities 
inherent in climate change policy.  Atmospheric GHG concentrations decay very slowly, so that the environmental 
impact of emissions is partly irreversible.  But any policy to reduce emissions imposes sunk costs on society, e.g., to 
better insulate homes, improve automobile gas mileage, etc., and these sunk costs are also an irreversibility.  These 
two kinds of irreversibility have opposite implications for climate change policy.  For a discussion of these effects, 
see Pindyck (2007), and for a more technical treatment, see Pindyck (2002). 
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distribution.  If the increase in temperature at some point in the future, T, is exponentially 

distributed, its probability density function (for T > 0) is given by: 

 ( ) Tg T e λλ −=  (3) 

The kth moment is E(Tk) = k!/λk, so the mean is 1/λ and the variance around the mean is 1/λ2.  

A fat-tailed probability distribution is one for which the upper tail declines towards zero 

more slowly than exponentially, so there is no moment generating function.  The example I use 

in this paper is the Pareto or power distribution: 

 1( ) (1 )f T T αα − −= +  (4) 

where α > 0 and T ≥ 0.  The “fatness” of this distribution is determined by the parameter α; the 

kth moment of the distribution will exist only for k < α.  Thus the smaller is α the “fatter” is the 

distribution.  For example, if α = ½, the mean, variance, etc. are all infinite (and we might call 

the distribution extremely fat, or obese).  If α = 3/2, the mean of T is 1/(α-1) = 2, but the variance 

and higher moments do not exist.   

 What difference does it make for policy purposes whether T follows an exponential 

versus a Pareto distribution?  To address this question, I will choose α and λ so that for both 

distributions, the probability that T is greater than or equal to 4.5ºC (the upper end of the “likely” 

range for temperature change by the end of the century according to the IPCC (2007)) is 10%.  

Thus I set λ = .50 and α = 4/3.  (The expected value of T is then 2ºC for the exponential 

distribution and 3ºC for the Pareto distribution.) Table 1 shows the upper tails for these 

distributions, i.e., the probabilities of T exceeding various values, and can be compared to Table 

1 in Weitzman (2010b).6   Note that the probabilities of temperatures exceeding 6ºC or higher are 

much larger for the fat-tailed Pareto distribution.  Weitzman (2010a,b) argues that there is indeed 

a sizeable probability of a very large outcome for T, an outcome that could be catastrophic. 

These differences in the two distributions can also be seen graphically.  Figure 1a shows 

the two distributions for temperature changes in the range of 0 to 10ºC.  For each distribution, the 

probability mass for temperature changes greater than 4.5ºC is about 10 percent.  Note that both 

functions drop off sharply for temperature changes above 6ºC, and the tail weights appear to be 

about the same for these high temperatures.  However, Figure 1b shows the two distributions for 

                                                 
6 Weitzman compares a fat-tailed Pareto distribution to a thin-tailed normal distribution.  Although we use different 
thin-tailed distributions, the basic comparison is similar – the Pareto distribution has much more mass than either 
thin-tailed distribution at temperatures of 6ºC and higher.   
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temperature changes in the range of 10 to 30ºC, with the vertical scale magnified.  Clearly the 

Pareto distribution falls to zero much more slowly than the thin-tailed exponential distribution.   

 

Table 1 – Temperature Probabilities for Exponential Distribution (with λ = .50) and Pareto 
Distribution (with α = 4/3) 

 
            T* =  2ºC  3ºC  4.5ºC  6ºC  10ºC  15ºC  20ºC  E(T) 

Exponential: 
Prob(T ≥ T*) 

.361  .223  .105  .050  .0067  .00055  .000045  2ºC 

Pareto: 
Prob(T ≥ T*) 

.230  .161  .103  .075  .041  .025  .017  3ºC 

 

As these numbers and those in Weitzman (2010b) suggest, if our concern is with the 

likelihood of a catastrophic outcome – which we might associate with a temperature increase 

greater than 6ºC – then the magnitude and behavior of the upper tail of the distribution seems 

critical.  But how can we decide whether the Pareto, exponential, or some other (fat- or thin-

tailed) probability distribution is the “correct” one for, say, the change in global mean 

temperature over the next century?  As Weitzman (2009a, 2009b) has shown, one can argue that 

based on structural uncertainty, whatever the distribution, it should be fat-tailed.  But such 

arguments are hardly dispositive.  First, there is no data of which I am aware that would allow us 

to test alternative distributional hypotheses, or directly estimate the parameters of some given 

distribution.7  Second, although one can construct theoretical models (or complicated IAMs) that 

transform distributions for inputs into distributions for outputs, there is no consensus on a single 

model, nor is there a consensus on input distributions, and in any case such models – depending 

on parameter values – can alternatively yield thin- and fat-tailed distributions.8     

If the concern is a catastrophic outcome, then perhaps assuming that the relevant 

distribution is fat-tailed is more conservative.  But before coming to that conclusion, we must 

address the question of what fat versus thin tails mean for expected losses and for policy.  I turn 

to this question next.   

                                                 
7 In Pindyck (2009, 2010), I specify a (thin-tailed) displaced gamma distribution for T, and calibrate the parameters 
to fit the mean, 86% and 95% points based on studies compiled by IPCC (2007).  But I do not do any statistical test 
of whether this is the “correct” distribution. 
8 For example, Mahadevan and Deutch (2010) develop a theoretical model of warming which for some parameter 
values yields a thin-tailed distribution for temperature change and for others a fat-tailed one. 
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3. Implications of Fat vs. Thin Tails 
 To make this discussion as straightforward as possible, I will use an ultra-simple stripped 

down model that directly connects temperature to welfare.  In particular, I will assume that 

higher temperatures reduce consumption according to eqn. (1), and with no loss of generality I 

will set C0 = 1.  Note that this “damage function” leads to losses at high temperatures far worse 

than those projected by the Nordhaus (2008) DICE model and summarized by Table 3 in 

Weitzman (2010b).  For example, the DICE model projects a 19% loss of GDP and consumption 

at a temperature of 10ºC, while eqn. (1) projects a 91% loss of consumption at that temperature.   

Of course consumption itself is not the relevant quantity – we need some kind of social utility 

function to measure the welfare effect of a 19% or 91% loss of consumption.  I will use the 

CRRA function given by eqn. (2).  I will also assume zero discounting of utility and assume zero 

economic growth in the absence of warming, so that there is also no consumption discounting.  

Thus if T remains at zero, consumption and utility both remain constant over time.9    

 Given eqn. (1) connecting consumption and temperature, marginal utility can be rewritten 

as a function of temperature in a very simple way: MU( ) ( 1)T T η= + .  Thus as T grows and 

consumption falls, the marginal utility of one more unit of consumption grows.  I will set the 

index of risk aversion, η, equal to either 2 or 3, which is well within the consensus range.  I can 

then calculate expected marginal utility using the Pareto and exponential distributions for T, 

which are given by eqns. (3) and (4).  

 Figure 2 shows the probability-weighted marginal utility as a function of the temperature 

increase, T, for probability weights given by the Pareto and exponential distributions, and for η = 

2.10   Observe that when weighted by the exponential distribution, marginal utility peaks at a 

temperature change of about 4ºC and then drops rapidly to zero for high values of T.  When 

weighted by the Pareto distribution, however, the probability weights for high temperatures are 

large enough so that marginal utility does not fall to zero – at any value of T.  Indeed, that is why 

expected marginal utility is infinite under the Pareto distribution.  

                                                 
9 In the deterministic Ramsey growth model, the consumption discount rate is the rate of interest, which is given by 
R = δ + ηg, where δ is the rate of time preference (the rate at which utility is discounted, and that I assume is zero) 
and g is the real rate of growth of consumption.  

10 The graph shows  and 2( )( 1)f T T + 2( )( 1)g T T + , where f(T) and g(T) are given by eqns. (3) and (4). 
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 For policy purposes, our concern is with expected marginal utility, because that is what 

determines the expected benefit from some policy that would reduce or limit T.  Under the 

exponential distribution for T and assuming that the index of risk aversion η = 2, expected 

marginal utility is given by E(MU) = 1 + 2/λ + 2/λ2, so that with λ = 1/2, E(MU) = 13.  Under the 

Pareto distribution for T, however, expected marginal utility is infinite.  This is why the Pareto, 

or any other fat-tailed distribution, implies a “willingness to pay” of 100 percent of GDP to limit 

T by even a small amount, and why the dismal theorem is so dismal.   

 But suppose we believe that there is some upper limit to marginal utility, so that no 

matter how high the temperature, marginal utility cannot be infinite.  That upper limit might 

reflect the value of a unit of consumption when total consumption is only a small fraction of 

today’s consumption, it might reflect a fraction of the value of a human life (assuming that an 

environmental catastrophe leads to the death of some fraction of the population), or it might be a 

multiple of the value of a human life (to reflect the fractional or total loss of future generations).  

I will assume that marginal utility reaches its maximum at some temperature Tm and that for 

temperatures above Tm marginal utility remains constant at that maximum level.  For example, 

we might believe that any temperature change above 10ºC would be catastrophic in that it would 

lead to a roughly 90% loss of consumption (which certainly seems catastrophic to me).   

 With this assumption and given our CRRA utility function, MU( ) ( 1)T T η= + for T < Tm 

but MU( ) ( 1)mT T ημ= + for T ≥ Tm .  Thus if μ = 1, when T ≥ Tm marginal utility simply remains 

at the value it reaches at Tm but if μ > 1, marginal utility jumps to a multiple of its value at Tm and 

then remains at this level for any temperature above Tm.  This is illustrated in Figure 3, which 

shows marginal utility as a function of temperature, for η = 2, μ = 2, and Tm = 15ºC.  Note that if 

T = 0 (no warming), C = MU = 1.  If T = 15ºC, C = 1/16 = .06, i.e., consumption falls by 94%, 

and marginal utility would jump by a factor of about 500 to 2(16)2 = 512, which is shy of 

infinity, but very large.  (A reader who feels that these numbers are not sufficiently 

“catastrophic” can try other numbers for μ, etc.) 

 With this limit on marginal utility, expected marginal utility will be finite, even if T 

follows the Pareto (or any other fat-tailed) distribution.  Figure 4 shows expected marginal utility 

as a function of the temperature Tm at which marginal utility reaches its maximum value of 
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( 1)mT ημ + , for both the exponential and Pareto distributions, for η = 2.11    For the solid lines, μ = 

1, and for the dashed lines, μ = 3.  Note that for the Pareto distribution, expected marginal utility, 

E[MU(Tm)], is always increasing in Tm but is finite for any finite Tm and any finite maximum 

marginal utility.  The fact that the tail of the Pareto distribution falls to zero more slowly than 

exponentially as T increases no longer matters because marginal utility no longer increases 

without bound.  For the exponential distribution, if μ > 1, E[MU(Tm)] first increases to a 

maximum and then decreases to an asymptotic value that is independent of μ. 12    

But most importantly, note in Figure 4 that for either value of μ, there is a range of Tm for 

which E[MU(Tm)] is larger for the (thin-tailed) exponential  distribution than for the (fat-tailed) 

Pareto distribution.  Thus there is a range of Tm for which the expected benefit of an abatement 

policy, and thus the willingness to pay for that policy, is greater for the exponential than for the 

Pareto distribution.  When μ = 1, that range extends from 0 to nearly 10ºC, and when μ = 3, it 

extends from 0 to 6ºC.  These calculations illustrate a simple but important point.  The value of 

an abatement policy to avoid (or insure against) a catastrophic climate outcome depends on two 

equally important factors: (1) the probability distribution governing outcomes (e.g., the 

probability of a temperature change large enough to be “catastrophic”); and (2) the impact of a 

catastrophic outcome, which might be summarized in the form of lost consumption and the 

resulting increase in the marginal utility of consumption.   

I do not mean to downplay the importance of the probability distribution governing 

outcomes.  As Figure 4 shows, if μ = 3 and marginal utility happens to reach its maximum value 

at, say, Tm = 15ºC, the Pareto distribution will yield a much larger value for expected marginal 
                                                 
11 Expected marginal utility under the Pareto distribution is given by:  

1 1

0

E[MU( )] (1 ) (1 ) (1 ) [(1 ) 1] (1 )
m

m

T

m m m
T

T T dT T T dT T Tm
η α η α η ααα μ α μ

η α

∞
− − − − − −= + + + + = + − + +

−∫ ∫ η α

e

Figure 4 shows E[MU(Tm)] for η = 2 and α = 4/3.  Expected marginal utility under the exponential distribution is: 

 
0

E[MU( )] (1 ) (1 )
m

m

T
TT

m mT T e dT T λη λ ηλ μ −−= + + +∫  

The integral on the right-hand side must be evaluated numerically.  Figure 4 shows E[MU(Tm)] for η = 2 and λ = 1/2.  
12 Using the equation in the previous footnote for E[MU(Tm)] for the exponential distribution, take the derivative 

with respect to Tm , and note that for μ > 1 that derivative is positive (negative) if ( ) 1
( 1)mT ημ

λ μ
< >

−
− .  For η = 

2, μ = 3, and λ = ½, E[MU(Tm)] reaches a maximum at Tm = 5ºC. 
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utility than will the exponential distribution.  Thus it is important to determine (as best as we 

can) what distribution is most realistic.  However, the focus on whether that distribution is fat- or 

thin-tailed is misplaced.  For example, by changing the parameter λ, one can obtain an 

exponential distribution that would yield a very high expected marginal utility at Tm = 15ºC.  

This can be seen in Figure 5, which is the same as Figure 4 except that the parameter λ in the 

exponential distribution has been reduced from 1/2 to 1/3 (so that both the mean temperature and 

standard deviation are now 3ºC).  Note that this small change in λ greatly increases the range of 

Tm over which E[MU(Tm)] is larger for the exponential  distribution  than for the Pareto.  

In my ultra-simple model, I assumed that the only uncertainty was over T, and that given 

T, we can precisely determine C and the resulting marginal utility.  In reality, there is 

considerable uncertainty over the relationship between temperature and economic variables such 

as consumption (probably more uncertainty than there is over temperature itself).  There is also 

uncertainty over the measurement of total welfare, and the use of a simple CRRA utility function 

is clearly an oversimplification.  I could have introduced additional uncertainties and made the 

model more complicated, but the basic results would still hold: Expected marginal utility, and 

thus the expected benefit from abatement, depend not only on the probability distribution 

governing climate outcomes, but also on the relationship between those outcomes and 

consumption and welfare.  Furthermore, whether the probability distribution happens to be fat- 

or thin-tailed is not by itself the determining factor.   

These results are also quite robust to the choice of parameters.  I set the index of risk 

aversion, η, equal to 2, but the macroeconomics and finance literatures would put that parameter 

in the range of 1.5 to 4.  Figure 6 is the same as Figure 4 (λ is again 1/2), except that η has been 

increased to 3.  Note that expected marginal utility rises more rapidly under the Pareto 

distribution than it did before, because now marginal utility goes as (1 + T)3.  However, there is 

still a range (although somewhat smaller) of Tm over which E[MU(Tm)] is larger for the 

exponential  distribution.  Readers can experiment with other parameter values for the 

probability distributions (α and λ), the index of risk aversion η, and the multiplier μ on maximum 

marginal utility.13    

 

                                                 
13 The MATLAB program used to generate the results in this paper is available from the author on request. 



 11

4.  Catastrophic Outcomes 
 Many environmental economists would agree that our central concern with respect to 

climate change policy should be the possibility that “business as usual” would lead to a 

catastrophic outcome – warming to such a degree, and with such a large impact, that welfare (as 

measured by some function of GDP or more broadly) will fall substantially and irreversibly.  It is 

difficult to justify the immediate imposition of a very stringent abatement policy (something 

much more stringent than, say, the emission reductions specified in the Kyoto Accord) based on 

“likely” scenarios for GHG emissions, temperature change, economic impacts, and abatement 

costs.14   As Weitzman (2010a) has argued, the case for an immediate stringent policy might then 

be justified as an “insurance policy” against a catastrophic outcome.  Is such an insurance policy, 

which would be costly, indeed warranted? 

 

4.1. Climate Catastrophes. 
Doesn’t buying insurance against a catastrophic climate outcome make immediate sense?  

It may or may not.  As with any insurance policy, the answer depends on the cost of the 

insurance and the likelihood and impact of a catastrophe.  The cost might indeed be warranted if 

the probability of a catastrophe is sufficiently large and the likely impact is sufficiently 

catastrophic.  But note that we don’t need a fat-tailed probability distribution to determine that 

“climate insurance” is economically justified.  All we need is a significant (and it can be small) 

probability of a catastrophe, combined with a large benefit from averting or reducing the impact 

of a catastrophic outcome.  As shown in the previous section, depending on parameter values, the 

specific damage function, and the welfare measure, the justification for “climate insurance” 

could well be based on a probability distribution for climate outcomes that is thin-tailed.  

We might even push this conclusion further, so that much of the analysis in studies such 

as Weitzman’s (2010a) might be bypassed altogether.  If there is a significant probability 

(whether based on a fat- or thin-tailed distribution) of T > 10ºC, and if the outcome T > 10ºC 

would be catastrophic according to some generally agreed upon criteria, then clearly we should 

act quickly.  We don’t need a complicated analysis or a debate about social utility functions to 

                                                 
14 An exception is the Stern Review (2007), but as several authors have pointed out, that study makes assumptions 
about outcomes, abatement costs, and discount rates that are well outside the consensus range. 
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come to this conclusion.  If we face a near-existential and not totally improbable threat that we 

can do something to avert or at least reduce, then we should do something about it.   

Of course determining the probability of a catastrophic outcome and its impact is no easy 

matter.  We have very little useful data and a very limited understanding of both the climate 

science and the related economics.  Referring back to Table 1, is the probability of T > 10ºC less 

than 1% or greater than 4%?  If we believe that T follows the fat-tailed Pareto distribution 

(because of “structural uncertainty” or because of feedback loops in the climate system), then the 

larger probability would apply.  And if we are concerned only with these extreme outcomes, the 

fat-tailed distribution implies a much stronger policy response. 

However, if we are evaluating climate policies with a concern for all possible outcomes, 

then the fat-tailed distribution need not imply a stronger abatement policy.  As was illustrated in 

the previous section, once we bound the damages from warming (or more precisely, the welfare 

effects of those damages), it is no longer clear a priori which distribution, fat-tailed or thin-

tailed, will support the stronger abatement policy. 

 

4.2. Other Catastrophes. 
Let’s return to the question of whether stringent abatement can be justified as an 

insurance policy against a climate catastrophe.  As explained above, answering this question is 

difficult because we know so little about the probability and likely impact of climate catastrophe.  

But that is not the only difficulty.  Suppose we could somehow determine the probability 

distribution for climate outcomes as well as the distribution for impacts of various outcomes.15  

Then given a parameterized social utility function, we could in principle estimate the net benefits 

from various abatement policies and the willingness to pay to avoid extreme outcomes (i.e., the 

WTP for insurance to avoid a climate catastrophe).  Suppose further that this willingness to pay 

turned out to be large – say 10% of GDP.  If 10% of GDP were sufficient to pay for an 

abatement policy that would indeed avert an extreme outcome, shouldn’t we go ahead and buy 

this insurance?   

                                                 
15 Such distributions are calibrated to sets of studies done by others in Pindyck (2009, 2010), but that is a far cry 
from saying that we “know” the true distributions. 
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If a climate catastrophe were our only concern, then the answer is straightforward – yes, 

we should buy the insurance.16   But matters are more complicated because a climate catastrophe 

is only one of a number of potential catastrophes that could cause major damage on a global 

scale.  Readers can use their imaginations to come up with their own examples, but ones that 

come to my mind include a nuclear or biological terrorist attack (far worse than 9/11), a highly 

contagious “mega-virus” that spreads uncontrollably, or an environmental catastrophe unrelated 

to GHG emissions and climate change.17   These other potential catastrophes may be just as 

likely (or even more likely) to occur than a climate catastrophe, and could occur much sooner 

and with much less warning (and thus less time to adapt).  And as with climate, the likelihood 

and/or impact of these catastrophes could be reduced by taking costly action now. 

Suppose that with no other potential catastrophes, the willingness to pay to avoid a 

climate catastrophe is 10% of GDP.  How will this WTP change once we take into account the 

other potential catastrophes?  First, suppose that all potential catastrophes were equally likely 

and were “homogenous” in the sense that the likelihood, impact, and cost of reducing the 

likelihood and/or impact is the same for any one of them.  Then the WTP for climate would be 

affected in two ways, depending on the total number of potential catastrophes, their likelihood 

and expected impact, and the social utility function.  On the one hand, the non-climate potential 

catastrophes reduce the expected growth rate of GDP, thereby reducing expected future GDP and 

increasing expected future marginal utility before a climate catastrophe occurs.  This in turn 

would increase the benefit of avoiding the further reduction of GDP that would result from a 

climate catastrophe.  On the other hand, because all of these potential catastrophes are equally 

threatening, the WTP to avoid each one must be the same, which implies a large fraction of GDP 

would be needed to keep us safe.  This “income effect” would reduce the WTP for climate.  

Unless the number of potential catastrophes is small, this “income effect” will dominate, so that 

the WTP for climate will fall.  To see why, consider an extreme example in which there are 12 

potential catastrophes, each with a WTP (when taken individually) of 10% of GDP.  Spending 

                                                 
16 This answer is not quite right because if what we mean by a catastrophe is something that substantially reduced 
GDP, we would also have to account for general equilibrium effects, which are missing from standard cost-benefit 
analyses.  See Pindyck and Wang (2010) for details. 
17 For additional examples, see Posner (2004) and Bostrom and Ćirković (2008).  For a sobering discussion of the 
likelihood and possible impact of nuclear terrorism, see Allison (2004). 
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120% of GDP on catastrophe avoidance is clearly not feasible, so when taken as a group, the 

WTPs for each potential catastrophe would fall.  

Making matters more complicated, potential catastrophes are not homogenous, and as 

with climate change, are subject to considerable uncertainties (and disagreement) over their 

likelihood, impact, and costs of avoidance and mitigation.  For example, should we buy 

“insurance” (by spending more to inspect all goods that enter the U.S., gather more extensive 

intelligence, etc.) to reduce the likelihood of nuclear terrorism?  As with climate change, it 

depends on the expected costs and benefits of that insurance.  But it also depends on the other 

potential catastrophes that we face and might insure against, and the probability distributions 

governing their occurrence and impact.18   For some or all of these potential catastrophes, one 

could argue that there are structural uncertainties that would make the probability distributions 

fat-tailed.  However, if social welfare is bounded so that expected marginal benefits cannot be 

infinite, the fat-tailed versus thin-tailed distinction by itself gives us little guidance for policy. 

5.  Conclusions. 

The design of climate change policy is complicated by the considerable compounded 

uncertainties over the costs and benefits of abatement.  Even if we knew what atmospheric GHG 

will be over the coming century under alternative abatement policies (including no policy), we 

don’t know the temperature changes that will result, never mind the economic impact of any 

particular temperature change, and the welfare effect of that economic impact.  Worse, we don’t 

even know the probability distributions for future temperatures and impacts, making any kind of 

cost-benefit analysis based on expected values challenging to say the least.   

As Weitzman (2009a) and others have shown, there are good reasons to think that those 

probability distributions are fat-tailed, which has the “dismal” implication that if social welfare is 

measured using the expectation of a CRRA utility function, we should be willing to sacrifice 

close to 100% of GDP to reduce GHG emissions and limit temperature increases.  The reason is 

that as temperature increases without limit, so does marginal utility, and with a fat-tailed 

distribution the probabilities of extremely high values of T will be large enough to make 

                                                 
18 Pindyck and Wang (2009) estimate the WTP (in terms of a permanent tax on consumption) to reduce the 
likelihood or expected impact of a generic catastrophe that could occur repeatedly and would reduce the useable 
capital stock by a random amount.  They use a calibrated general equilibrium model to estimate the likelihood and 
expected impact of a catastrophe.  
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expected marginal utility infinite.  I have argued, however, that the notion of an unbounded 

marginal utility makes little sense, and once we put a bound on marginal utility, the “dismal” 

implication of fat tails goes away: Expected marginal utility will be finite no matter whether the 

distribution for T is fat- or thin-tailed.  Furthermore, depending on the bound on marginal utility, 

the index of risk aversion, and the damage function, a thin-tailed distribution can yield a higher 

expected marginal utility than a fat-tailed one. 

Of course a fat-tailed distribution for temperature will have --- fat tails, making the 

probability of an extreme outcome larger than it would be under a thin-tailed distribution.  (See 

Table 1 and Figure 1b.)  Weitzman (2010a) suggests that this in turn justifies stringent abatement 

as an “insurance policy” against an extreme outcome.  If our only concern is with avoiding an 

extreme outcome, then a fat-tailed distribution makes such an insurance policy much easier to 

justify.  But as with any insurance policy, what matters for climate insurance is the cost of the 

insurance (in this case the cost of abatement) and its expected benefit, in terms of how it will 

shift the distribution for possible outcomes.  What matters here is the entire distribution for 

outcomes, and not necessarily whether that distribution has fat or thin tails.  Once again, 

depending on the damage function, parameter values, etc., climate insurance might turn out to be 

easier to justify with a thin-tailed distribution for outcomes. 

The case for climate insurance is made more complicated (and harder to justify) by the fact 

that we face other potential catastrophes that could have impacts of similar magnitudes to a 

climate catastrophe.  If catastrophes – climate or otherwise – would each reduce GDP and 

consumption by a substantial amount, then they cannot be treated individually.  Potential non-

climate catastrophes will affect the willingness to pay to avert or reduce a climate catastrophe, 

and affect the economics of “climate insurance.”   

So where does this leave us?  The points raised in this paper do not imply that we can 

dismiss the possibility of an extreme outcome (a climate catastrophe), or that a stringent 

abatement policy (i.e., purchasing “climate insurance”) is unwarranted.  On the contrary, the 

possibility of an extreme outcome is central to the design and evaluation of a climate policy.   

We need to assess as best we can the probability distributions for climate outcomes and their 

impact, with an emphasis on the more extreme outcomes.  We also need to better understand the 

cost of shifting those distributions, i.e., the cost of “climate insurance.”  And all of this needs to 
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be done in the context of budget constraints and other societal needs, including schools, 

highways, and defense, as well as the cost of “insurance” against other potential catastrophes.   
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