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1 Introduction

Understanding the nature of systemic risk is key to understanding the occurrence and

propagation of financial crises. The term usually refers to a situation where many (if

not all) financial institutions fail as a result of a common shock or a contagion process.

Herring and Wachter (2001) and Reinhart and Rogoff (2009) find evidence that a collapse

of residential or commercial real estate values is the main cause for system wide failures

of financial institutions during many financial crises. Allen and Gale (2000), Freixas,

Parigi and Rochet (2000) and numerous other subsequent papers (see Allen, Babus and

Carletti, 2009, for a survey) analyze the risk of contagion where the failure of one financial

institution leads to the default of other financial institutions through a domino effect. This

type of systemic risk is often used by central banks as the justification for intervening and

bailing out institutions that are “too big to fail”.

The recent developments in financial markets and the crisis that started in 2007 have

highlighted the importance of another type of systemic risk related to the structure of

connections among financial institutions and their funding maturity. The emergence of

financial instruments in the form of credit default swaps and other credit derivative prod-

ucts, loan sales and collateralized loan obligations has improved the possibility for financial

institutions to diversify risk. However, it has also led to more overlap and more similar-

ities among their portfolios. This has increased the probability that the failure of one

institution is likely to coincide with the failure of other similar institutions. Combining

this with a greater reliance on wholesale short term finance has increased rollover risk for

financial institutions. When a bank is in difficulty, investors may fear that other banks

with similar portfolios will also be in trouble and hence may refuse to reinvest their funds.

Financial markets can dry up and push all banks into difficulties.

In this paper we focus on the interaction between financial connections and funding

maturity in generating systemic risk. We develop a simple two-period model, where each

bank invests in a risky project and needs external funds to finance it. Investors provide

the funds to the banks in exchange for a debt contract. We initially consider the case of
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long term debt and subsequently that of short term debt. As projects are risky, banks

may default at the final date. When this occurs, investors recover the return of the bank’s

project net of bankruptcy costs, while the bank does not receive anything. When default

does not occur, investors obtain the repayment specified in the debt contract and the

bank retains any surplus. As project returns are independently distributed, each bank has

an incentive to diversify by exchanging shares of its own project with other banks. This

lowers banks’ individual default probabilities and bankruptcy costs thus allowing them to

promise investors a lower repayment. However, exchanging projects is costly. Banks incur

a due diligence cost for each project they exchange. In equilibrium, banks trade off the

advantages of diversification with the due diligence costs.

The exchange of project shares forms links among banks that lead to overlaps in their

portfolios. Banks choose the number of links but not the network structure that emerges

in equilibrium. For ease of exposition, we focus on the case of six banks with each of them

optimally forming two connections with other banks. This leads to two possible network

structures. In one, which we call clustered, banks are connected in two clusters of three

banks each. Within each cluster all banks hold the same portfolio, but the two clusters

are independent of each other. In the second network, which we call unclustered, banks

are connected in a circle. Each of them exchanges projects only with the two neighboring

banks so that none of the banks holds identical portfolios.

We show that with long term debt the structure of the network does not matter

for welfare. The reason is that in either network each bank’s portfolio is formed by

three independently distributed projects with the same distribution of returns. Thus,

the number of bank defaults and the expected costs of default are the same in the two

structures and so is total welfare.

In contrast, the structure of the network plays an important role in determining sys-

temic risk and welfare when banks use short term debt. The main difference is that at the

intermediate date investors decide whether to roll over their investments conditional on a

signal concerning banks’ future solvency. The signal indicates whether all banks will be
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solvent in the final period (good news) or whether at least one of them will default and

will not be able to repay investors the promised repayment (bad news). Upon observing

the signal, investors update the probability that their bank will be solvent at the final

period and roll over the debt if they expect to be able to recover their opportunity cost.

They always roll over the debt when there is a good signal but not when there is a bad

one. When rollover does not occur, all banks are forced into early liquidation. This source

of systemic risk is the focus of our analysis. Investors’ rollover decisions depend on the

structure of the network, investors’ opportunity cost and the magnitude of bankruptcy

costs.

We show that, upon the arrival of bad news, rollover occurs less often in the clustered

than in the unclustered network. When investors recover enough in the case of default

or have a low opportunity cost, debt is rolled over in both networks. As the amount

they recover decreases and their opportunity cost increases, debt is still rolled over in the

unclustered network but not in the clustered one. The reason is that defaults are more

concentrated in the clustered network than in the unclustered network. Investors infer

that the probability of default conditional on the bad signal is high and thus decide not to

roll over. In the unclustered network defaults are less concentrated and the arrival of the

bad signal indicates a lower probability of a rash of bank defaults. When investors obtain

little after banks default because of high bankruptcy costs or have a high opportunity cost,

banks are early liquidated in both networks.

The welfare properties of the two network structures with short term finance depend

on the investors’ rollover decisions, the proceeds from early liquidation and the bankruptcy

costs. When banks continue and offer investors a repayment of the same magnitude in

either network, total welfare is the same in the two network structures. When the debt

rollover requires a higher promised repayment in the clustered than in the unclustered

network, welfare is higher in the latter as it entails lower bankruptcy costs. When the

debt is not rolled over in the clustered network only, the comparison of total welfare

becomes ambiguous. Initially, when neither the bankruptcy costs nor the proceeds from
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early liquidation are too high, total welfare remains higher in the unclustered network.

However, as investors recover little in the case of bankruptcy and a large amount in the

case of early liquidation, welfare becomes higher in the clustered network, and remains so

even when early liquidation occurs in both network structures.

Our paper is related to several strands of literature. Concerning the effects of diversifi-

cation on banks’ portfolio risk, Shaffer (1994) argues that while diversification is good for

each bank individually, it can lead to greater systemic risk as banks’ investments become

more similar. Wagner (2010) shows in a model with two banks that diversification can

increase the likelihood of systemic crises and thus be undesirable. Ibragimov, Jaffee and

Walden (2010) identify conditions under which it may be socially optimal to have finan-

cial intermediaries hold less diversified portfolios in order to have a lower probability of

widespread collapses. In these papers, banks always have the same portfolios and social

welfare is non-linearly decreasing in the number of bank failures in the system. We consider

a framework where the degree of diversification, the network structure and the funding

structure of financial institutions interact in determining systemic risk and welfare.

In terms of the rollover risk entailed by short term finance, Acharya, Gale and Yorul-

mazer (2009) explain market freezes in the presence of rollover risk based on incoming

information and transaction costs. He and Xiong (2009) show that rollover risk leads to

dynamic bank runs. Concerning liquidity risk more generally, Diamond and Rajan (2009)

find that liquidity dry-ups can arise from the fear of fire sales; while Bolton, Santos and

Scheinkman (2009) look at maturity mismatch and its impact on liquidity demand when

there is asymmetric information. All these studies use a representative bank/agent frame-

work. By contrast, we analyze how different network structures affect the rollover risk

resulting from short term finance.

More generally, our paper is also related to a strand of literature stressing the im-

portance of externalities among banks as a source of systemic risk (see Allen and Babus,

2009, for a survey on contagion in financial networks). For example, Boyson, Stahel and

Stulz (2008) provide evidence of such externalities within the hedge fund sector, while
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Billio et al. (2010) measure the interconnectedness among hedge funds, banks, brokers,

and insurance companies and their impact on systemic risk. Adrian and Brunnermeier

(2009) and Danielsson, Shin and Zigrand (2009) point out that designing regulation on

banks’ individually optimal risk management may not be appropriate. Our paper relates

to this literature in that it analyzes how the individual choice of the optimal degree of

diversification may lead to multiple network structures with very different properties in

terms of systemic risk and welfare.

Some other papers study the extent to which banks internalize the negative externali-

ties that arise from contagion. For instance, Babus (2009) proposes a model where banks

share the risk that the failure of one bank propagates through contagion to the entire sys-

tem. Castiglionesi and Navarro (2010) show that an agency problem between shareholders

and debt holders of a bank leads to fragile financial networks. Zawadowski (2010) takes a

different approach to show that banks that are connected in a network of hedging contracts

fail to internalize the negative effect of their own failure. Banks funded with short-term

debt hold insufficient capital to prevent lenders from running. All these papers rely on a

domino effect as a source of systemic risk. By contrast, we focus on diversification and

overlaps in banks’ portfolios as a source of systemic risk in the presence of information

externalities.

The rest of the paper proceeds as follows. Section 2 lays out the basic model when banks

use long term debt. Section 3 describes the equilibrium that emerges in this case in terms of

the individually optimal degree of diversification and the multiple network structures that

can arise from it. Section 4 introduces short term debt. It analyzes investors’ decision to

roll over the debt in response to information about banks’ future solvency and the welfare

properties of the different network structures. Section 5 discusses a number of extensions

of the basic model. Finally, Section 6 concludes.
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2 The basic model with long term finance

Consider a three-date ( = 0 1 2) economy with six banks, denoted by  = 1  6, and

a continuum of small, risk-neutral investors. Each bank  has access at date 0 to an

investment project that yields a stochastic return  = {  } at date 2 with probability
 and 1−, respectively, and     0. The returns of the projects are independently

distributed across banks.

Banks raise one unit of funds each from investors at date 0 and offer them, in exchange,

a long term debt contract that specifies an interest rate  to be paid at date 2. Investors

provide finance to one bank only and are willing to do so if they expect to recover at least

their two period opportunity cost 2  ().

We assume that   2   so that a bank can pay  only when the project yields

a high return. When the project yields a low return , the bank defaults at date 2 and

investors recover a fraction  ∈ [0 1] of the project return. The remaining fraction (1−)
is lost as bankruptcy costs. Thus, investors will finance the bank only if their participation

constraint as given by

 + (1− ) ≥ 2

is satisfied. The first term on the left hand side represents the expected payoff to the in-

vestors when the bank repays them in full. The second term represents investors’ expected

payoff when the bank defaults at date 2. The right hand side is the investors’ opportunity

cost.

When the project returns  , the bank acquires the surplus ( − ). Otherwise, it

receives 0. The bank’s expected profit is then given by

 = ( − )

Given projects are risky and returns are independently distributed, banks can reduce

their default risk through diversification. This reduces expected bankruptcy costs (1 −
)(1−) and investors’ promised repayment . Each bank exchanges shares of its own
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project with  other banks and connections are bilateral. That is, bank  exchanges a

share of its project with bank  if and only if bank  exchanges a share of its project with

bank . When this happens, there is a link between banks  and  denoted as  . Then

each bank  ends up with a portfolio of 1 +  projects with a return equal to

 =
1 + 2 + + 1+

1 + 


Exchanging shares of projects with other banks entails a due diligence cost  per link.

The idea is that banks know their own project, but they do not know those of the other

banks. Thus they need to exert costly effort to check that the projects of the banks they

want to form links with are bona fide as well.

The exchange of project shares creates linkages among banks. The collection of all

linkages can be described as a network . In any network, each bank has shares of 1 + 

independently distributed projects in its portfolio. The banks’ portfolios now overlap in

the sense that they hold not only their own project but those of other banks too. The

degree of overlap depends on the number of links  that each bank has with other banks

and on the structure of links among banks. For a given  there may be multiple network

structures as discussed below.

3 Long term finance

We model banks’ portfolio decisions as a network formation game. We first derive the

participation constraint of the investors and banks’ profits when each bank  has  links

with other banks and holds a portfolio of 1+ projects. An equilibrium network structure

is one where banks maximize their expected profits and do not find it worthwhile to sever

or add a link.

We denote as  ≡ ( ) the interest rate that bank  promises investors in a network

 where banks have  links and 1 +  projects. Investors receive  at date 2 when the

return of bank ’s portfolio,  is  ≥ , while they receive a fraction  of the bank’s
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portfolio return when   . The participation constraint of the investors is then given

by

Pr( ≥ ) + (  ) ≥ 2  (1)

where Pr( ≥ ) is the probability that the bank remains solvent at date 2 and ( 

) =
P

 Pr( = ) is the bank’s expected portfolio return when it defaults at

date 2. The equilibrium  is the lowest interest rate that satisfies (1) with equality.

Diversification increases the probability Pr( ≥ ) that investors receive their promised

return  thus reducing bankruptcy costs and allowing the banks to offer a lower rate of

return to investors.

Banks receive the surplus  −  whenever  ≥  and 0 otherwise. The expected

profit of a bank  in a network  is

() = ( ≥ )− Pr( ≥ ) −  (2)

where ( ≥ ) =
P

≥ Pr( = ) is the expected return of the bank’s portfolio,

Pr( ≥ ) is the expected repayment to investors when the bank remains solvent at

date 2, and  are the total due diligence costs. Substituting the equilibrium interest rate

 from (1) with equality into (2), the expected profit of bank  becomes

() = ()− 2 − (1− )(  )−  (3)

The bank’s expected profit is given by the expected return of its portfolio () minus

the investors’ opportunity cost 2 , the expected bankruptcy costs (1− )(  ), and

the total due diligence costs . As (3) shows, greater diversification involves a trade-off

between lower bankruptcy costs and higher total due diligence costs.

Banks choose the number of links  in order to maximize their expected profits. The

choice of  determines the (possibly multiple) equilibrium network structure(s). A network

 is an equilibrium if it satisfies the notion of pairwise stability introduced by Jackson and
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Wolinsky (1996). This is defined as follows.

Definition 1 A network  is pairwise stable if

(i) for any pair of banks  and  that are linked in the network , neither of them has

an incentive to unilaterally sever their link . That is, the expected profit each of them

receives from deviating to the network ( − ) is not larger than the expected profit that

each of them obtains in the network  (( − ) ≤ () and ( − ) ≤ ());

(ii) for any two banks  and  that are not linked in the network , at least one of them

has no incentive to form the link . That is, the expected profit that at least one of them

receives from deviating to the network ( + ) is not larger than the expected profit that

it obtains in the network  (( + ) ≤ () and/or ( + ) ≤ ()).

To make the analysis more tractable, we impose a condition to ensure that for any

 = 0  5 the bank is bankrupt and is unable to repay  to investors at date 2 only when

all projects in its portfolio pay off . When this is the case, the probability of the bank

defaulting at date 2 is Pr(  ) = (1 − )1+ and the probability of the bank being

solvent at date 2 is Pr( ≥ ) = 1− (1− )1+ . As shown in the Appendix, a sufficient

condition to ensure this is

(1− (1− )6)
5 +

6
+ (1− )6 ≥ 2  (4)

Condition (4) guarantees that there exists an interest rate  in the interval [2 
+
1+

]

that satisfies the investors’ participation constraint (1) for any  = 0  5, where
+
1+

is the next smallest return realization of a bank’s portfolio after all projects return .

Given (4), the bank’s expected profit (3) can be written as

() = ()− 2 − (1− )1+(1− ) − . (5)

It is easy to show that (5) is concave in  as the second derivative with respect to  is

negative.
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In what follows we will concentrate on the case where in equilibrium banks find it

optimal to have  = 2 links and only symmetric networks are formed. The reason is that

this is the minimum number of links such that there are multiple network structures. We

have the following.

Proposition 1 For any  ∈ [(1− )3(1−) (1− )2(1−)] a network 
∗ where

all banks have ∗ = 2 links is pairwise stable and Pareto dominates equilibria with ∗ 6= 2.

Proof. See Appendix.

In equilibrium banks trade off the benefit of greater diversification in terms of lower

expected bankruptcy costs with higher total due diligence costs. Proposition 1 identifies

the parameter space for the cost  such that this trade off is optimal at ∗ = 2.

Banks choose the number of links but not the network structure so that multiple

networks can emerge, for a given number of links. With ∗ = 2 there are two equilibrium

networks ∗ as shown in Figure 1. In the first network, that we define as clustered ( = ),

banks are connected in two clusters of three banks each. Within each cluster, banks hold

identical portfolios but the two clusters are independent of each other. In the second

network, denoted as unclustered ( = ), banks are all connected in a circle. Each of

them exchanges projects only with the two neighboring banks so that none of the banks

holds identical portfolios. In this sense, risk is more concentrated in the clustered than in

the unclustered network.

Both networks are pairwise stable if the due diligence cost  is in the interval [(1 −
)3(1 − ) (1 − )2(1 − )]. No bank has an incentive to deviate by severing or

adding a link as it obtains higher expected profit in equilibrium. Given that the bank’s

expected profit function is concave in  and that investors always recover their opportunity

cost, the restriction on  in Proposition 1 also guarantees that the equilibrium with ∗ = 2

is the best achievable.

We next consider welfare in the two networks. For either of them, the welfare per bank

is the sum of a representative bank ’s expected profit and its investors’ expected returns.
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Given that the investors always recover their opportunity cost, from (5) the welfare per

bank is simply given by

 () = ()− (1− )(  )−  (6)

Expression (6) indicates that in the case of long term financing total welfare per bank is

just equal to the sum of each bank’s expected portfolio return () net of the expected

bankruptcy costs (1−)(  ) and the total due diligence costs . In either equilib-

rium network each bank’s portfolio is formed by 1+ ∗ independently distributed projects

with the same distribution of returns. This implies that in both networks all banks offer

the same interest rate to investors and have the same bankruptcy probability. This gives

the following result.

Proposition 2 Total welfare is the same in the clustered and unclustered networks.

4 Short term finance

In the previous sections we have assumed that the maturity of the financing matches the

maturity of the assets. Now we analyze the case where banks use short term finance and

investors have per period opportunity cost  . As with long term finance, we continue

focusing on the clustered and unclustered networks with ∗ = 2 and on the range  

2  5+
6 . We show that the structure of the network matters for systemic risk and

total welfare when short term finance is used.

The main difference with short term finance is that it needs to be rolled over every

period. If adverse information arrives, investors may refuse to roll over the debt thus

forcing the bank into early liquidation. To capture this, we assume that a signal on the

banks’ future portfolio returns arrives at date 1. The signal can either indicate the good

news that all banks will be solvent at date 2 ( = ) or the bad news that at least one

bank will default ( = ). The idea is that investors hear of a bank failure and then have

to infer the prospects of their own bank. For simplicity, we assume that the signal does
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not reveal any information about any individual bank. As far as individual investors are

concerned, all banks look alike and have an equal probability of default once the signal

arrives.

Figure 2 shows the sequence of events in the model with short term finance. At date 0

each bank in network  =  raises one unit of funds and promises investors an interest

rate 01() at date 1. Investors know the network structure, but do not know the position

of any particular bank in the network. At the beginning of date 1, before investors are

repaid 01(), the signal  = {} arrives. With probability () the signal  = 

reveals the good news that all banks will be solvent at date 2. With probability 1− ()

the signal  =  reveals the bad news that at least one bank will default at date 2. Upon

observing the signal, investors decide whether to retain 01() or roll it over for a total

promised repayment of 12() at date 2. If rollover occurs, the bank continues till date 2.

Investors receive 12() and the bank  − 12() if it remains solvent. Otherwise, when

the bank goes bankrupt, investors receive  and the bank 0. If rollover does not occur,

the bank is forced into early liquidation at date 1. Investors receive the proceeds from

early liquidation, which for simplicity we assume to be equal to  , and the bank receives

0. We discuss the case where early liquidation pays off less than  in Section 5 below.

The interest rate 01() promised to investors at date 0 must be such that they recover

their per period opportunity cost  at date 1. Given that the proceeds from early liquida-

tion are equal to  , investors always recover their opportunity cost at date 1, irrespective

of whether the bank is continued or liquidated at date 1. This implies that they will always

finance the bank initially and that 01() =  .

At date 1, after the signal  is realized, the bank offers investors a promised repayment

12(). Investors roll over the debt if 

12() is such that they can recover 01() = 2 at

date 2. When  =  all banks will be solvent at date 2. Investors infer that the probability

Pr( ≥ 12()|) of receiving 12() at date 2 is equal to 1 as shown in Figure 2. Thus,
they roll over the debt and 12() = 2 .

When  = , at least one bank will default at date 2. Investors’ probability of receiving
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the promised repayment 12() at date 2 becomes Pr( ≥ 12()|). Rollover occurs if
there exists a value of 12() that satisfies investors’ date 1 participation constraint

Pr( ≥ 12()|)12() + (  12()|) ≥ 2 . (7)

The first term is the expected payoff to investors when  ≥ 12() and the bank remains

solvent at date 2 conditional on  = . The second term is the expected payoff to

investors conditional on  =  when   12() and the bank defaults at date 2 In this

case investors receive a fraction  of the bank’s portfolio expected return (  12()|)
=
P

12()
Pr( = |). The equilibrium value of 12() if it exists, is the minimum

promised repayment that satisfies (7) with equality and minimizes the probability of bank

default conditional on  = . As we discuss below, the terms Pr( ≥ 12()|) and
(  12()|) in (7) depend on the network . As a result, investors’ rollover decision
may differ in the two networks.

The expected profit of bank  at date 0 depends on the realization of the signal and

on the investors’ rollover decision at date 1. When rollover occurs and the bank continues

at date 1, the expected profit is given by

() = ()
£
( ≥ 2 |)− 2

¤
+(1−()) £( ≥ 12()|)− Pr( ≥ 12()|)12()

¤−2
(8)

The first term represents the expected profit when with probability () the good signal

 =  occurs. Investors receive 2 at date 2 and the bank retains the expected surplus

( ≥ 2 |)− 2 , where ( ≥ 2 |) =
P

≥2 Pr( = |) is the bank’s expected
portfolio return conditional on  =  when  ≥ 2 . The second term is the expected

profit when with probability 1 − () the bad signal  =  occurs. With probability

Pr( ≥ 12()|) the bank remains solvent. It pays 12() to investors and retains

the remaining ( ≥ 12()|) − Pr( ≥ 12()|)12(), where ( ≥ 12()|) =P
≥12() Pr( = |) is the bank’s expected portfolio return conditional on  = 

when  ≥ 12(). The last term 2 is the total due diligence costs with ∗ = 2.
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Substituting the promised repayment 12() from (7) with equality into (8), this sim-

plifies to

() = ()− 2 − (1− ())(1− )(  12()|)− 2 (9)

When rollover occurs at date 1, the bank’s expected profit can be expressed as in the

case of long term debt by the expected return of its portfolio () minus the investors’

opportunity cost 2 , the expected bankruptcy costs (1 − ())(1 − )(  12()|),
and the total due diligence costs 2.

When, after the realization of the bad signal, rollover does not occur and the bank is

early liquidated at date 1, its expected profit is given by

() = ()
£
( ≥ 2 |)− 2

¤− 2. (10)

The bank now has positive expected profit only when with probability () the good

signal is received. When with probability 1− () the bad signal occurs, the bank is early

liquidated and receives 0. Note that (9) and (10) imply that, in a given network , the

bank’s expected profit is higher when debt is rolled over at date 1 than when it is not.

4.1 Investors’ rollover decisions at date 1

The crucial difference between long and short term financing is that in the latter case the

network structure matters for the equilibrium interest rates, bank profits and ultimately

total welfare whereas it does not in the former case. The reason is that the probability

distribution of the signal and the associated conditional probabilities of bank default at

date 2 differ in the two networks.

To see this, we start by considering the distribution of the signal . We focus on the

case where ∗ = 2 and bankruptcy only occurs when all projects in a bank’s portfolio return

. Thus, the good signal arrives when all banks’ portfolios return at least (2+)3

and investors are able to obtain the opportunity cost 2 at date 2. In contrast, the bad

signal arrives when at least one of the banks has all three projects in its portfolio return
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 at date 2. This means that the probability of  = 

() = Pr(
T
( ≥ 2 ),

where Pr(
T
( ≥ 2 ) = Pr(1 ≥ 2 2 ≥ 2  6 ≥ 2 ) represents the probability

that none of the six banks defaults. The probability of  =  is then 1− ().

Tables 1 and 2 show all banks’ portfolio return realizations and the number of banks

defaulting for the clustered and unclustered networks, respectively. For simplicity, we

assume that the probability of a project  returning  is  = 1
2 and  is 1 −  = 1

2 .

This implies that all states are equally likely. Since there are 6 projects and each of them

can have two possible returns, there are 26 = 64 states numbered in the first column of

both tables describing the possible project return realizations at date 2.

Table 1 is for the clustered network. The first set of columns shows the return realiza-

tions of the six projects. The second set of columns shows each bank’s portfolio returns

in the two clusters. The last column shows the total number of bank defaults. The good

signal occurs when all banks have a portfolio return of at least (2+)3 and no banks

have a portfolio return  so there are no defaults. These are the unshaded states in the

table. It can be seen that there are 49 of them. This means that the good signal arrives

in the clustered network with probability

() =
49

64
.

The remaining 15 states are the default states and are shaded in gray in the table. In

14 of these there are 3 banks defaulting and in 1 of them all 6 banks default. This is

because banks hold identical portfolios within a cluster. There are 48 bank defaults across

all states.

Table 2 is for the unclustered network. The first set of columns shows the return

realizations of the six projects, while the second set shows each bank’s portfolio returns.

The last column shows the total number of defaults. It can be seen that there are now
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39 unshaded states where all banks are solvent. This means that the good signal in the

unclustered network occurs with probability

() =
39

64
.

The remaining 25 shaded states are where at least one default occurs. In 12 of these 1

bank defaults, in 6 states 2 banks default, in 6 other states 3 banks default and in 1 state

all 6 banks default. Again, there are 48 total bank defaults across all states, but they

are now more spread out across the states. There are more default states but with less

banks defaulting on average in each. The reason is that in the unclustered network banks

are all connected but none holds identical portfolios. Thus risk is less concentrated in the

unclustered than in the clustered network.

It can be seen that the probability of receiving the good signal  =  is higher in the

clustered network than in the unclustered network, that is

()  () (11)

What matters for investors’ rollover decisions are the conditional probability distri-

butions of banks’ portfolio returns. Tables 3 and 4 show these for the clustered and

unclustered networks, respectively. In the clustered network there are 49 states with the

good signal. Since none of them has any default, the probability of  =  conditional

on the good signal is 0 in Table 3. Counting the number of states among those unshaded

in Table 1 where bank  has portfolio return  =
2+

3 gives 21. Since this is the same

for all 6 banks, the probability that bank  has  =
2+

3 is 2149 . Similarly for the other

returns  given the good signal. There are 15 states where bankruptcy occurs and the

bad signal is realized. Among those states each bank  has portfolio return  =  in 8

states. Thus, the probability that any bank  has  =  is
8
15 . Similarly for the other

entries conditional on the bad signal.
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The difference in the unclustered network is that there are 39 rather than 49 states

where all banks are solvent and the good signal is realized. Again, since no banks default

in these states, the probability of  =  conditional on  =  in Table 4 is 0. Among

the 39 states, it can be seen from Table 2 that each bank  has  =
2+

3 in 13

states. Thus, the probability for any bank to have  =
2+

3 is 13
39 . Similarly for

the other entries conditional on  = . Among the shaded 25 states in Table 2 where

bankruptcy occurs, it can be easily seen that each bank  has a portfolio return  = 

with probability 8
25 as shown in Table 4. Similarly for the other entries conditional on

 =  in Table 4.

Comparing Tables 3 and 4, it can be seen that the conditional distributions of banks’

portfolio returns are quite different in the two networks. In particular, the probability

of  =  conditional on  =  in the clustered network, which is equal to 8
15  is

much higher than in the unclustered network, where it is 8
25 . This also implies that the

conditional probability Pr( ≥ 12()|) that the bank is solvent and repays 12() to
the investors at date 2 conditional on  =  is higher in the unclustered than in the

clustered network. That is,

Pr( ≥ 12()|)  Pr( ≥ 12()|) (12)

for 12() ∈ [
2+

3 ]. This difference means that rollover decisions can also differ

between the two networks. We study the clustered network first.

Proposition 3 When the bad signal ( = ) is realized in the clustered network and

  13
12,

A. For  ≥  (), investors roll over the debt for a promised repayment 

12() ∈

[2 
2+

3 ], where  () =
452−7(2+)

24
.

B. For () ≤    (), investors roll over the debt for a promised repay-

ment 12() ∈ [2+
3  +2

3 ], where () =
452−4−8

3(10+)


C+D. For   (), investors do not roll over the debt and the bank is early
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liquidated at date 1.

Proof. See the Appendix.

The proposition is illustrated in Figure 3, which plots investors’ rollover decisions as a

function of the exogenous parameters  and 2 . The result follows immediately from the

investors’ participation constraint at date 1. When the bad signal is realized, the bank

continues at date 1 whenever investors can be promised a repayment that satisfies (7).

Whether this is possible depends on the fraction  of the bank’s portfolio return that the

investors receive at date 2 when the bank defaults and on the opportunity cost 2 they

require over the two periods. When  is high or 2 is low as in Region A in Figure 3, there

exists a repayment 12() that satisfies (7). Investors roll over the debt and the bank

continues. The promised repayment compensates the investors for the possibility that

they obtain only  in case of default. Given  is high, 

12() does not need to be high

for (7) to be satisfied. Thus, the equilibrium 12() lies in the lowest interval of the bank’s

portfolio return, [2 
2+

3 ]. As  decreases or 2 increases so that Region B is reached,

investors still roll over the debt but require a higher promised repayment to compensate

them for the greater losses in the case of bank default. Thus, 12() is higher and lies in

the interval [2+
3  +2

3 ]. This also implies that, conditional on the realization of

the bad signal, bankruptcy does not occur at date 2 only when all projects in a bank’s

portfolio pay off  but also when they pay
2+

3 . As  decreases or 2 increases

further so that Regions C and D below () are reached, it is no longer possible to

satisfy (7) for any 12() ≤  . Then, investors do not roll over the debt and the bank is

early liquidated at date 1.

A similar result holds for the unclustered network.

Proposition 4 When the bad signal ( = ) is realized in the unclustered network,

A+B+C. For  ≥  (), investors roll over the debt for a promised repayment

12() ∈ [2  2+
3 ], where  () =

752−17(2+)

24
.

D. For    (), investors do not roll over the debt and the bank is liquidated at

date 1.
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Proof. See the Appendix.

Proposition 4 is also illustrated in Figure 3. As in the clustered network, debt is rolled

over when investors can be promised a repayment 12 enough to satisfy their participation

constraint (7) with equality. Whether such a repayment exists depends again on the

parameters  and 2 . When they lie in the Regions A, B and C above  (), it

is possible to satisfy investors’ participation constraint and the debt is rolled over. In

contrast, when  and 2 lie in Region D this is no longer possible and the debt is not

rolled over. Note that differently from the clustered network, when rollover occurs the

bank always offers investors a promised repayment 12() in the interval [
2
 
2+

3 ].

The reason is that the probability Pr( ≥ 12()|) is sufficiently high to ensure that
(7) can be satisfied for a low 12().

A comparison of propositions 3 and 4 shows that rollover occurs for a larger and early

liquidation for a smaller parameter space in the unclustered network than in the clustered.

The promised repayment is also the same or lower in the former.

4.2 Welfare with short term finance

We next consider welfare in the two networks with short term finance. As with long term

finance, in both networks we can focus on the total welfare per bank as defined by the sum

of a representative bank ’s expected profit and its investors’ expected returns. Welfare

now depends on the investors’ rollover decisions, since these affect the bank’s expected

profit. Using (9) and (10), when the bank is continued till date 2 welfare is given by

 () = ()− (1− ())(1− )(  12()|)− 2 (13)

and when the bank is liquidated at date 1 after the bad signal

 () = ()
£
( ≥ 2 |)

¤
+ (1− ())2 − 2 (14)

In (13), welfare is given by the expected return of bank portfolio () minus the
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expected bankruptcy costs (1 − ())(1 − )(  12()|) and the due diligence
costs 2. In contrast, in (14) welfare is given by the expected return of bank portfolio

()
h
( ≥ 2 |)

i
when the good signal is realized and the bank is solvent plus the

date 2 value of the liquidation proceeds (1− ())2 minus the due diligence costs 2.

Deriving  () and  () from (13) and (14) for the two networks gives the following

result.

Proposition 5 The comparison of total welfare in the two networks is as follows:

A. For  ≥  (), total welfare is the same in the clustered and unclustered net-

work:  () = ().

B+C1. For      (), total welfare is higher in the unclustered network

than in the clustered network:  ()   (), where  =
152−3−4

8
.

C2+D. For    , total welfare is higher in the clustered network than in the un-

clustered network:  ()   ().

Proof. See the Appendix.

Figure 4 illustrates the proposition by showing the welfare in the clustered and un-

clustered network. It can be seen that with short term finance total welfare depends on

the network structure. Which structure is better depends crucially on the parameters 

and 2 . As (13) shows, the parameter  affects welfare when debt is rolled over as it

determines the size of the expected bankruptcy costs that are lost when the bank defaults

at date 2. As (14) shows, the parameter 2 is important for welfare because when the debt

is not rolled over it is equal to the date 2 value of the proceeds from early liquidation.

In Region A, where  ≥  (), investors roll over the debt for a promised total

repayment 12() ∈ [2  2+
3 ] in both networks. Each bank defaults when its portfolio

pays off  and makes positive profits in all the other states in either network. As with

long term finance, total welfare is then the same in both networks.

In Region B, where  lies in between () and  (), investors still roll over

the debt in both networks, but in the clustered network they now require a higher total
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promised repayment 12() ∈ [2+
3  +2

3 ]. This implies that bank  defaults not

only when  =  but also when  =
2+

3 . As a result total welfare is lower in the

clustered network relative to the unclustered network because expected bankruptcy costs

are higher.

In Regions C1 and C2 in Figure 4 the debt is rolled over when the bad signal is realized

in the unclustered network but not in the clustered one so that banks now make positive

profits only when the good signal is realized in the latter network. Total welfare is then

given by (13) and (14) in the unclustered and clustered networks, respectively. In the

former, welfare is decreasing in the bankruptcy costs, 1 − . Thus, it decreases as 

falls. In the latter, welfare is increasing with 2 as this increases the proceeds from early

liquidation and there are no bankruptcy costs. As  falls and 2 increases, total welfare

in the unclustered network becomes equal to that in the clustered network, and it then

drops below.

Finally, in Region D, where  ≤  (), banks are early liquidated in both networks

when the bad signal is realized so that total welfare is always given by (14). The clustered

network attains higher welfare in this region as from (11) the good signal occurs more often.

This leads to a higher expected return ()
h
( ≥ 2 |)

i
in the clustered network and

to a higher date 2 value of the early liquidation proceeds (1− ())2 in the unclustered

network. The first term dominates, thus leading to higher total welfare in the clustered

network.

5 Discussion

In this section we consider a number of extensions of the basic model. In particular, we

discuss long term versus short term finance, different types of signal arriving at the interim

date, a more general specification of the early liquidation proceeds, and finally different

types of coordination mechanisms in the formation of linkages among banks.
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5.1 Long term versus short term finance

In Section 3 we assumed that the maturity of the financing matches the maturity of the

assets, while in Section 4 we considered short term finance. In practice, banks and other

financial institutions have a choice of long and short term finance. There are a number

of theories as to why different maturities are used. For example, Flannery (1986) and

Diamond (1991) suggest that short term finance of long term assets can help overcome

asymmetric information problems in credit markets. Calomiris and Kahn (1991) and

Diamond and Rajan (2001) argue that short term debt in a bank’s capital structure can

play a role as a discipline device to ensure managers behave optimally. Brunnermeier

and Oehmke (2009) suggest that creditors shorten the maturity of their claims to obtain

priority, leading to an excessive use of short term debt. Another important rationale for

the use of short term debt is the upward sloping yield curve. Borrowing short term at low

rates to finance high yielding long term assets allows significant profits to be made.

We have not specifically modelled the choice of maturity structure. However, a simple

way to do this is to assume that the short term rate  is sufficiently below the long

term rate  so that the use of short term debt is optimal. This raises the issue of

what determines the yield curve. One approach is that the rates for different horizons

are determined by the access of investors to risk free technologies that last for different

maturities.

5.2 Different types of signal

The core of our analysis is the interaction between the signal arriving at date 1, the network

structure, and the funding maturity. So far the signal has been modelled as indicating

whether at least one bank will default at date 2 without any information about the identity

of potentially failing banks. Investors know the network structure but do not know any

bank’s position in it. Upon observing the signal, they update the conditional probability

that their own bank will default at date 2. The important feature for our result is that

the conditional probability of default in the clustered network is different from that in
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the unclustered network. The reason is that the signal generates a different information

partition of the states in the two network structures. This leads to different rollover and

early liquidation decisions with short term debt in the two networks.

Any signal that generates different information partitions and leads to different condi-

tional probabilities across network structures will have the same qualitative effect as in our

basic model. For example, a signal indicating that a particular bank, say bank 1, has gone

bankrupt would lead to the same kind of results. Similarly for a signal indicating that a

particular real sector is more likely to fail. This would correspond in our model to a signal

indicating that a particular project or set of projects has a higher default probability than

originally believed. This signal would generate different information partitions on banks’

future defaults depending on the different compositions of banks’ portfolios and would

thus still lead to different conditional probabilities across the two networks.

A signal that does not lead to different conditional probabilities is one bringing general

information about the fundamentals of the economy. For example, a signal indicating

simply how many projects have a payoff of  at date 2 without specifying the identity

of these projects or the banks owning them would rule out a number of states but would

not generate different information partitions across the two networks. Another example

would be a signal indicating a reduction of the same size in the success probability of all

projects.

5.3 Early liquidation proceeds

In our basic model early liquidation gives proceeds  . This simplifies the analysis because

it ensures that the date 1 repayment 01() promised to investors at date 0 is always equal

to  . A more general formulation would be to assume that the early liquidation proceeds

are  with  ≤ 1. A value of  less than 1 would mean that 01() would have to be
greater than  in the case where there is early liquidation to allow the investors to recover

their opportunity cost. There would be higher deadweight costs and thus lower welfare

with early liquidation. This would affect the welfare analysis, but qualitatively the results
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would be similar.

5.4 What is the market failure?

An important feature of the network literature and of the equilibrium concept of Jackson

and Wolinsky (1996) that we have used is that banks are not able to determine the network

structure. Each bank individually chooses the links it wishes to have taking as given the

choices of the other banks. Since banks form links simultaneously, this implies that with

∗ = 2 either a clustered or an unclustered network can emerge. With long term finance the

multiplicity of network structures does not matter since banks and investors are indifferent

between them. However, with short term finance it does matter since systemic risk and

welfare are different as described in Proposition 5. Investors are still indifferent as they

always obtain their opportunity cost, whereas banks clearly prefer the network structure

that gives them higher expected profits. The market failure in our analysis is the lack of

a coordination mechanism that allows them to choose the preferred network.

One type of mechanism that may allow a degree of coordination would be to have

banks condition their linkages on the connections between all other banks in the system.

With this conditionality, it would be possible to ensure that only efficient networks are im-

plemented. However, this kind of conditionality would be hard to implement particularly

as the number of banks grows large and it is not observed in practice.

Government regulation could also potentially be used to ensure only the efficient net-

work is chosen. This would require the gathering of a significant amount of information

from banks and a determination of the optimal network structure. Such regulation may

be difficult to implement.

6 Concluding remarks

Understanding connections among financial institutions is important for understanding

systemic risk. In this paper we have developed a model where the number and shape

of financial connections interact with the funding structure of financial institutions in
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determining systemic risk.

We have shown that the structure of financial networks matters for systemic risk and

total welfare when banks use short term finance, but not when they use long term finance.

The reason is that short term finance entails rollover risk, which is absent with a longer

maturity of debt. Investors base the decision to roll over the debt on interim information

about banks’ future solvency. When negative information arrives, investors may infer that

they will not to be able to recover the opportunity cost associated with the renewal of

the debt. When this occurs, they do not roll over the debt thus forcing all banks into

early liquidation. The rollover risk entailed by short term finance differs depending on the

structure of connections among banks.

The key trade off between the clustered and the unclustered structure in our frame-

work derives from the different overlap and risk concentration among banks’ portfolios in

the two networks. Banks have identical portfolios in each of the two groups when they

are clustered, while they have diverse portfolios when they are unclustered. This implies

different conditional probabilities in the two networks. The consequence is that there is

more often early liquidation and hence systemic risk in the clustered than in the unclus-

tered network, but the former can lead to higher welfare when the bankruptcy costs and

the proceeds from early liquidation are high.

In our model banks swap projects. This allows us to use a standard approach based

on network formation games. The analysis is simplified because swapping projects leads

to symmetry. Allowing banks to buy and sell shares of projects would be an interesting

extension. In addition to the symmetric equilibria that we have analyzed, there would

also be asymmetric equilibria.

We have derived our results assuming that bankruptcy costs are constant irrespective

of the number of banks defaulting. If, as in several other papers, such as Wagner (2010)

and Ibragimov, Jaffee and Walden (2010), we were to assume that they were increasing in

the number of defaults, the clustered network would be less attractive but our qualitative

results would be similar. The case where the bankruptcy costs are independent of the
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number of bank defaults is an interesting benchmark.

Our results provide some insights on the desirability of risk concentration depending on

the magnitude of the bankruptcy costs and the proceeds from early liquidation. The main

insight is that when bankruptcy is inefficient but early liquidation is not, it is optimal to

have fewer instances with more banks defaulting as in the clustered network rather than

more frequent instances with less banks defaulting as in the unclustered network. In other

cases it is better to spread out default across states as in the unclustered network.

The crucial market failure in our analysis is that banks choose their individual degree

of diversification but do not determine the network structure. Hence there can be multiple

network structures with different properties in terms of systemic risk for a given level of

individual diversification. An important topic for future research concerns the implication

of this result for financial regulation. One possibility is that governments and central banks

are directly able to regulate the network of linkages. However, this would require a great

deal of information. One measure to ensure clustered networks rather than unclustered

networks if this was optimal might be to limit financial institutions to their home countries

rather than allowing them to pursue opportunities in other countries. Much work clearly

remains to be done on such policy issues.
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A Appendix

Derivation of sufficiency of condition (4). To ensure that bankruptcy only occurs

when all projects in a bank’s portfolio return  for any  = 0  5, we need to show

that there exists a value of  in the interval [2 
+
1+

] that satisfies the investors’

participation constraint (1). Substituting Pr(  ) = (1 − )1+ and Pr( ≥ ) =

1− (1− )1+ into (1), this requires

(1− (1− )1+)
 +

1 + 
+ (1− )1+ ≥ 2 (15)

for any  = 0  5. To show that (4) is sufficient for (15) to hold, we show that the left

hand side of (15) is decreasing in  for  = 0  5. To see this, we differentiate the left

hand side of (15) with respect to  and obtain

¡
1− (1− )1+

¢
1 + 

∙
 − ( +)

1 + 

¸
+ (1− )1+(1− )

∙
 − ( +)

1 + 

¸

≤
∙
(1− (1− )1+)

1 + 
+ (1− )1+(1− )

¸ ∙
 − ( +)

1 + 

¸
 (16)

It is sufficient that the last expression is negative for any  = 0  5. To see this is

the case, initially consider the first term
h
(1−(1−)1+)

1+
+ (1− )1+(1− )

i
. Its value

is 0 when it is evaluated at  = 0. Differentiating it with respect to  gives

−(1 + )(1− )(1− )  0

for any  ∈ (0 1). This guarantees that the first term is positive for any  = 0  5. The

second term is  − (+)
1+

 0 since   . Together, these imply that the right

hand side of (16) is negative and hence also that the left hand side of (15) is decreasing

in  as required. It is then sufficient to assume that (15) holds for  = 5 to ensure that

it holds for any other . ¤

Proof of Proposition 1. Given that condition (4) implies that bankruptcy only
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occurs when all projects in a bank’s portfolio return , a bank’s expected profit (3) with

 = 2 simplifies to

() = ()− 2 − (1− )3(1− ) − 2

To show pairwise stability, we first consider severing a link. Suppose that bank 1 severs

the link with bank 3 so that its portfolio is now 2
31 +

1
32 and its profit is

1( − 13) = ()− 2 − (1− )2(1− ) − 

Bank 1 does not deviate if () ≥ 1( − 13), which is satisfied for  ≤ (1 −
)2.

Suppose now that bank 1 adds a link with bank 4 so that its portfolio is now 1
61 +

1
32 +

1
33 +

1
64 and its profit is

1( + 14) = ()− 2 − (1− )4(1− ) − 3

when bankruptcy occurs when all projects pay off . If bankruptcy occurs more often

than this, the expected profit from the deviation will be lower. Thus, it is sufficient for the

deviation not to be profitable that () ≥ 1(+14) which requires  ≥ (1−)3(1−).

Since all banks are symmetric, this shows that ∗ = 2 is a pairwise stable equilibrium for

the range of  given in the proposition.

To see that ∗ = 2 is the Pareto dominant equilibrium it is sufficient to show that bank’s

expected profit is highest in this case since the investors always obtain their opportunity

cost. First note that (5) is concave in . Combining this with the condition that  lies in the

range given in the proposition, it follows that a bank’s expected profit in the equilibrium

with ∗ = 2 is greater than in either the equilibrium with ∗ = 1 or ∗ = 3 or any other

equilibrium. ¤

Proof of Proposition 3. We proceed in two steps. First, we find the minimum
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value of  as a function of the short term risk free rate 2 in each interval of the bank’s

portfolio return such that investors’ participation constraint (7) is satisfied for a feasible

promised repayment 12(). Second, we compare the functions representing the minimum

values of  found in the first step to find the equilibrium value of 12().

Step 1. We start by determining the minimum value of  such that (7) is satisfied for

12() ∈ [2  2+
3 ]. Substituting 12() =

2+
3 in (7) and using the distribution

probability Pr( = |) as in Table 3, we obtain

7

15

2 +

3
+ 

8

15
 = 2 

from which

 () =
452 − 7(2 +)

24
.

This implies that for any  ≥  (), there exists a value of 

12() ∈ [2  2+

3 ]

such that investors roll over their debt. Analogously, for 12() ∈ [2+
3  +2

3 ], we

obtain

4

15

 + 2

3
+ (

8

15
 +

3

15

2 +

3
) = 2

from which

() =
452 − 4 − 8

3(10 +)
.

Finally, for 12() ∈ [+2
3   ] we obtain

1

15
 + (

8

15
 +

3

15

2 +

3
+
3

15

 + 2

3
) = 2

from which

() =
152 −

11 + 3
.

The interpretation of () and () is the same as the one for  ().

Step 2. To find the equilibrium value of 12() defined as the minimum promised
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repayment that satisfies (7), we now compare the functions  () () and

(). We then obtain:

()−  () =
72 + 20 + 108

2
 − 452 (2 +)

24(10 +)


We note that () −  () is positive for 2  2 =
72+20+108

2


45(2+)


5+
6 , and negative otherwise. Similarly, it can be shown that ()−() 

0 for any 2 ∈ [2  5+
6 ] and   13

12, while () −  ()  0 for any

2 ∈ [ 
2
 ]. Given that in equilibrium the bank offers the minimum level of 12() that

satisfies (7), the proposition follows. ¤

Proof of Proposition 4. We proceed in two steps as in the proof of Proposition 3.

Step 1. We determine first the minimum value of  such that (7) is satisfied for

12() ∈ [2  2+
3 ]. Substituting 12() =

2+
3 in (7) and using the distribution

probability Pr( = |) as in Table 4, we obtain

17

25

2 +

3
+ 

8

25
 = 2 

from which

 () =
752 − 17(2 +)

24
.

As before, this implies that for any  ≥  (), there exists a value of 

12() ∈

[2 
2+

3 ] such that investors roll over their debt. Analogously, for 12() ∈ [2+
3  +2

3 ]

and 12() ∈ [+2
3   ], respectively, we obtain

6

25

 + 2

3
+ (

8

25
 +

11

25

2 +

3
) = 2

from which

() =
752 − 6( + 2)

46 + 11
;
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and

1

25
 + (

8

25
 +

11

25

2 +

3
+
5

25

 + 2

3
) = 2

from which

() =
252 −

17 + 7
.

Step 2. We now compare the functions  () () and () to find

equilibrium value of 12(). After some algebraic manipulation it is easy to see that

 ()  ()  () for any 2 ∈ [
5+

6 ]. Thus, the proposition

follows given that the bank always offers investors the minimum total repayment that

satisfies (7). ¤

Proof of Proposition 5. The proposition follows immediately from the comparison

of total welfare in the two networks in the different regions. We analyze each region in

turn.

Region A. For  ≥  ()   (), (7) is satisfied for 

12() ∈ [2  2+

3 ]

and investors roll over the debt in both networks. Given this, from (13) total welfare is

given by

 () =
 +

2
− 8

64
(1− ) − 2 (17)

for  =  as a bank’s expected probability of default at date 2 is the same in two

structures.

Region B. For  ()   ≥ ()   (), (7) is satisfied for 

12() ∈

[2+
3  +2

3 ] in the clustered network and for 12() ∈ [2  2+
3 ] in the un-

clustered network. Investors roll over the debt in both networks but the bank default

probabilities now differ in the two structures. From (13) and Table 3, total welfare in the

clustered network is given by

 () =
 +

2
− 15
64
(1− )[

8

15
 +

3

15

2 +

3
]− 2 (18)

and by (17) in the unclustered network. It follows immediately that  ()   ().
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Regions C1 and C2. For ()   ≥  (), (7) cannot be satisfied for any

12() ≤  in the clustered network, whereas it is still satisfied for 

12() ∈ [2  2+

3 ]

in the unclustered network. Thus, the bank is liquidated and, from (14), total welfare in

the clustered network is now equal to

 () =
49

64

∙
21

49

2 +

3
+
21

49

 + 2

3
+
7

49


¸
+
15

64
2 − 2

whereas  () is still given by (17) in the unclustered network.

Comparing  () and  () gives

 ()− () =
1

64
[4 + (3 + 8) − 152 ].

Equating this to zero and solving for  as a function of 2 gives the boundary between

Regions C1 and C2:

 =
152 − 3 − 4

8
.

It can be easily seen that  ()   () for    and  ()   () for    .

Region D. For    (), (7) cannot be satisfied for any 

12() ≤  so that banks

are early liquidated in both networks. Total welfare is still as in (18) in the clustered

network, while, from (14), it equals

 () =
39

64

∙
13

39

2 +

3
+
19

39

 + 2

3
+
7

39


¸
+
25

64
2 − 2

in the unclustered network. The difference between the two expressions is given by

 ()− () =
1

32
(2 + 3 +−52 )

which is positive for any 2 ∈ [
5+

6 ]. ¤
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St
at

e States of the world Banks’ portfolio returns 
Total 

defaults Cluster 1 Cluster 2 
θ1  θ2 θ3 θ4 θ5 θ6 X1 X2 X3 X4 X5 X6

1 RH RH RH RH RH RH RH RH RH RH RH RH 0
2 RH RH RH RL RH RH RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
3 RH RH RH RH RL RH RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
4 RH RH RH RH RH RL RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
5 RH RL RH RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RH RH RH 0 
6 RH RH RL RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RH RH RH 0 
7 RL RH RH RH RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RH RH RH 0 
8 RH RH RH RL RL RH RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
9 RH RH RH RH RL RL RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
10 RH RH RH RL RH RL RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
11 RH RL RH RL RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
12 RH RL RH RH RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
13 RH RL RH RH RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
14 RH RL RL RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RH RH RH 0 
15 RH RH RL RL RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
16 RH RH RL RH RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
17 RH RH RL RH RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
18 RL RL RH RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RH RH RH 0 
19 RL RH RH RH RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
20 RL RH RH RH RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
21 RL RH RH RL RH RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
22 RL RH RL RH RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RH RH RH 0 
23 RH RH RH RL RL RL RH RH RH RL RL RL 3 
24 RH RL RH RL RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
25 RH RL RH RL RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
26 RH RL RH RH RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
27 RH RH RL RL RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
28 RH RL RL RL RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
29 RH RH RL RL RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
30 RH RH RL RH RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
31 RH RL RL RH RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
32 RH RL RL RH RH RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
33 RL RH RH RH RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
34 RL RL RH RH RH RL (2RL +RH )/3 (2RL +RH )/3 (2RL +RH )/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
35 RL RH RH RL RL RH (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
36 RL RH RH RL RH RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
37 RL RL RH RL RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
38 RL RL RH RH RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
39 RL RL RL RH RH RH RL RL RL RH RH RH 3 
40 RL RH RL RL RH RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
41 RL RH RL RH RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
42 RL RH RL RH RH RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 0 
43 RH RL RH RL RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RL RL RL 3 
44 RH RH RL RL RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RL RL RL 3 
45 RH RL RL RL RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
46 RH RL RL RL RH RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
47 RH RL RL RH RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
48 RL RH RH RL RL RL (RL +2RH )/3 (RL +2RH )/3 (RL +2RH )/3 RL RL RL 3 
49 RL RL RH RH RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
50 RL RL RH RL RH RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
51 RL RL RH RL RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
52 RL RL RL RL RH RH RL RL RL (RL+ 2RH)/3 (RL+ 2RH)/3 (RL+ 2RH)/3 3 
53 RL RL RL RH RH RL RL RL RL (RL+ 2RH)/3 (RL+ 2RH)/3 (RL+ 2RH)/3 3 
54 RL RL RL RH RL RH RL RL RL (RL+ 2RH)/3 (RL+ 2RH)/3 (RL+ 2RH)/3 3 
55 RL RH RL RL RL RH (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
56 RL RH RL RH RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
57 RL RH RL RL RH RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 0 
58 RH RL RL RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RL RL RL 3 
59 RL RL RH RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RL RL RL 3 
60 RL RL RL RL RL RH RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 3 
61 RL RL RL RL RH RL RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 3 
62 RL RL RL RH RL RL RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 3 
63 RL RH RL RL RL RL (2RL+ RH)/3 (2RL+ RH)/3 (2RL+ RH)/3 RL RL RL 3 
64 RL RL RL RL RL RL RL RL RL RL RL RL 6 

 

Table 1: States of the world, banks’ portfolio returns and defaults in the clustered network 
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e States of the world 
 

Banks’ portfolio returns Total 
defaults 

θ1  θ2 θ3 θ4 θ5 θ6 X1 X2 X3 X4 X5 X6

1 RH RH RH RH RH RH RH RH RH RH RH RH 0
2 RH RH RH RL RH RH RH RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 RH 0 
3 RH RH RH RH RL RH RH RH RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
4 RH RH RH RH RH RL (RL +2RH)/3 RH RH RH (RL +2RH)/3 (RL +2RH)/3 0 
5 RH RL RH RH RH RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 RH RH RH 0 
6 RH RH RL RH RH RH RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 RH RH 0 
7 RL RH RH RH RH RH (RL +2RH)/3 (RL +2RH)/3 RH RH RH (RL +2RH)/3 0 
8 RH RH RH RL RL RH RH RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 0 
9 RH RH RH RH RL RL (RL +2RH)/3 RH RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 0 
10 RH RH RH RL RH RL (RL +2RH)/3 RH (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 0 
11 RH RL RH RL RH RH (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 RH 0 
12 RH RL RH RH RH RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 RH (RL +2RH)/3 (RL +2RH)/3 0 
13 RH RL RH RH RL RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
14 RH RL RL RH RH RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 RH RH 0 
15 RH RH RL RL RH RH RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 RH 0 
16 RH RH RL RH RL RH RH (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 0 
17 RH RH RL RH RH RL (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
18 RL RL RH RH RH RH (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 RH RH (RL +2RH)/3 0 
19 RL RH RH RH RH RL (2RL+RH )/3 (RL +2RH)/3 RH RH (RL +2RH)/3 (2RL+RH )/3 0 
20 RL RH RH RH RL RH (RL +2RH)/3 (RL +2RH)/3 RH (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 0 
21 RL RH RH RL RH RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
22 RL RH RL RH RH RH (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 RH (RL +2RH)/3 0 
23 RH RH RH RL RL RL (RL +2RH)/3 RH (RL +2RH)/3 (2RL+RH )/3 RL (2RL+RH )/3 1 
24 RH RL RH RL RL RH (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 0 
25 RH RL RH RL RH RL (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 0 
26 RH RL RH RH RL RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 0 
27 RH RH RL RL RL RH RH (RL +2RH)/3 (2RL+RH )/3 RL (2RL+RH )/3 (RL +2RH)/3 1 
28 RH RL RL RL RH RH (RL +2RH)/3 (2RL+RH )/3 RL (2RL+RH )/3 (RL +2RH)/3 RH 1 
29 RH RH RL RL RH RL (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 0 
30 RH RH RL RH RL RL (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 0 
31 RH RL RL RH RL RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 0 
32 RH RL RL RH RH RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
33 RL RH RH RH RL RL (2RL+RH )/3 (RL +2RH)/3 RH (RL +2RH)/3 (2RL+RH )/3 RL 1 
34 RL RL RH RH RH RL RL (2RL+RH )/3 (RL +2RH)/3 RH (RL +2RH)/3 (2RL+RH )/3 1 
35 RL RH RH RL RL RH (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 0 
36 RL RH RH RL RH RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 0 
37 RL RL RH RL RH RH (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 0 
38 RL RL RH RH RL RH (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 0 
39 RL RL RL RH RH RH (2RL+RH )/3 RL (2RL+RH )/3 (RL +2RH)/3 RH (RL +2RH)/3 1 
40 RL RH RL RL RH RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 0 
41 RL RH RL RH RL RH (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 0 
42 RL RH RL RH RH RL (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 0 
43 RH RL RH RL RL RL (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 RL (2RL+RH )/3 1 
44 RH RH RL RL RL RL (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 RL RL (2RL+RH )/3 2 
45 RH RL RL RL RL RH (RL +2RH)/3 (2RL+RH )/3 RL RL (2RL+RH )/3 (RL +2RH)/3 2 
46 RH RL RL RL RH RL (2RL+RH )/3 (2RL+RH )/3 RL (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 1 
47 RH RL RL RH RL RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 0 
48 RL RH RH RL RL RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 RL RL 2 
49 RL RL RH RH RL RL RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 RL 2 
50 RL RL RH RL RH RL RL (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 1 
51 RL RL RH RL RL RH (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 0 
52 RL RL RL RL RH RH (2RL+RH )/3 RL RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 2 
53 RL RL RL RH RH RL RL RL (2RL+RH )/3 (RL +2RH)/3 (RL +2RH)/3 (2RL+RH )/3 2 
54 RL RL RL RH RL RH (2RL+RH )/3 RL (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 1 
55 RL RH RL RL RL RH (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 RL (2RL+RH )/3 (2RL+RH )/3 1 
56 RL RH RL RH RL RL (2RL+RH )/3 (2RL+RH )/3 (RL +2RH)/3 (2RL+RH )/3 (2RL+RH )/3 RL 1 
57 RL RH RL RL RH RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 0 
58 RH RL RL RL RL RL (2RL+RH )/3 (2RL+RH )/3 RL RL RL (2RL+RH )/3 3 
59 RL RL RH RL RL RL RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 RL RL 3 
60 RL RL RL RL RL RH (2RL+RH )/3 RL RL RL (2RL+RH )/3 (2RL+RH )/3 3 
61 RL RL RL RL RH RL RL RL RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 3 
62 RL RL RL RH RL RL RL RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 RL 3 
63 RL RH RL RL RL RL (2RL+RH )/3 (2RL+RH )/3 (2RL+RH )/3 RL RL RL 3 
64 RL RL RL RL RL RL RL RL RL RL RL RL 6 

 

Table 2: States of the world, banks’ portfolio returns and defaults in the unclustered network 
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Table 3: Conditional distribution of bank 0s portfolio returns in the clustered network
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Table 4: Conditional distribution of bank 0s portfolio returns in the unclustered network
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X1=(θ1+θ2+θ3)/3 X4=(θ4+θ5+θ6)/3 X1=(θ1+θ2+θ6)/3 X2=(θ2+θ1+θ3)/3

X2=(θ1+θ2+θ3)/3

X5=(θ4+θ5+θ6)/3

X6=(θ6+θ1+θ5)/3

X3=(θ3+θ2+θ4)/3

C     
X6=(θ4+θ5+θ6)/3X3=(θ1+θ2+θ3)/3

U
X4=(θ4+θ3+θ5)/3X5=(θ5+θ4+θ6)/3

Figure 1: Clustered (C) and unclustered (U) network

The figure depicts the clustered (C) and the unclustered (U) networks. In the former, banks are connected in two clusters of three banks 
each. Within each cluster, banks hold identical portfolios Xi but the two clusters are independent of each other. In the latter, banks are all 
connected in a circle Each of them e changes projects onl ith the t o neighboring banks and none of the banks holds identicalconnected in a circle. Each of them exchanges projects only with the two neighboring banks and none of the banks holds identical
portfolios.
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Figure 2: Sequence of events 
The figure shows the timing of the model with short term finance. At date 0 each bank in network g=C,U raises one unit of funds in exchange 
for a promised return r01(g) at date 1. At the beginning of date 1, before investors are repaid, a signal S=G,B is realized. With probability q(g), 
it brings the good news that all banks will be solvent at date 2. With probability 1-q(g) it brings the bad news that at least one bank will default 
at date 2. Investors decide whether to retain r01(g) or roll it over for a total promised repayment of ρ12

S(g) at date 2. When the debt is rolled 
over, the bank continues till date 2. If it remains solvent, which occurs with probability Pr(Xi ≥ ρ12

S(g)/B), investors obtain ρ12
S(g) and the bank 

Xi - ρ12
S(g). If the bank defaults at date 2, , which occurs with probability Pr(Xi < ρ12

S(g)/B), investors obtain αXi  and the bank zero. When the 
debt is not rolled over, the bank is forced into early liquidation at date 1. Investors obtain rf and the bank zero. 
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Figure 3: Investors’ rollover decision in the clustered and unclustered networks

The figure depicts investors’ rollover decision in both networks when the bad signal arrives as a function

RL (5RL+RH)/6

The figure depicts investors  rollover decision in both networks when the bad signal arrives as a function 
of the opportunity cost rf

2 and the fraction α of the bank’s portfolio return that investors receive in case of 
default. In Region A debt is rolled over for a repayment                                                 in both networks. 
In Region B rollover occurs still in both networks but in the clustered network the repayment is now                         

In Region C debt is rolled over in the unclustered network but 
not in the clustered one. In Region D rollover does not occur in either networks.
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Figure 4: Total welfare in the clustered and unclustered networks

The figure depicts total welfare in the clustered and unclustered networks as a function of the investors’ 

RL (5RL+RH)/6

opportunity cost rf
2 and the fraction α of the bank’s portfolio return that they receive in case of default. In 

Region A, total welfare is the same in both networks. In Region B+C1, total welfare is higher in the 
unclustered network. In Region C2+D, total welfare is higher in the clustered network.


