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1 Introduction

How likely is it that a severe economic disaster will occur in the next 100 years? With

a relatively short sample of historical data, it is difficult to accurately estimate the

likelihood of disasters or the size of their impact. For example, one cannot reject a

constant disaster intensity of 3% at the 5% significance level even after observing 100

years without a disaster. This suggests that there is likely to be significant hetero-

geneity in the beliefs of market participants about disasters. In this paper, we show

that such disagreements can generate strong risk sharing motives among investors and

significantly affect asset prices.

We study an exchange economy with two types of agents. Markets are complete, so

that the agents can trade contingent claims and achieve optimal risk sharing. Through

the affine heterogeneous beliefs framework, our model can capture very general forms

of disagreements among the agents while maintaining the tractability. For example,

the agents can disagree about the intensity of disasters or the severity of disasters, and

the amount of disagreements can fluctuate over time.

One of our main findings is that having a second type of agents with different

beliefs about disasters can cause the equity premium to drop substantially, even when

the new agents only have a small amount of wealth. This result holds whether the

disagreement is about the intensity or impact of disasters. In fact, the result can still

be true even when the new agents are generally more pessimistic about disasters. We

analytically characterize the sensitivity of risk premium to the wealth distribution and

derive its limit as the amount of disagreement increases. When we calibrate the beliefs

of one agent using international data (from Barro (2006)) and the other using only

consumption data from the US (where disasters have been relatively mild), raising

the fraction of total wealth for the second agent from 0 to 10% lowers the equity

premium from 4.4% to 2.0%. The decline in the equity premium becomes faster when

the disagreement is larger, or when the new agents also have lower risk aversion.
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There are two key reasons behind this result: (1) the equity premium is highly

sensitive to changes in the size of individual consumption losses during a disaster; (2)

the equity premium derives almost entirely from jump (disaster) risk, which implies

high prices for jump risk and induces aggressive risk sharing.

First, there is a highly nonlinear relationship between risk premium and disaster risk

exposure. For example, if an agent (with γ = 4) manages to reduce her consumption

loss in a disaster from 40% to 35%, the equity premium she demands will fall by

40%! This non-linearity is an intrinsic property of disaster models, which generate

high premium from rare events by making marginal utility in the disaster states rise

substantially with the size of the consumption losses. As a result, a small reduction

in the individual disaster risk exposure due to risk sharing can significantly lower the

premium.

Second, in our economy, as is typical in standard power utility models, there is very

little compensation for Brownian risk due to the low volatility of consumption and

moderate levels of risk aversion. Consequently, the equity premium derives primarily

from disaster risk, and the compensation for bearing disaster risk must be high. For

example, if the equity premium due to disaster risk is 4%, and there is a single type of

disaster resulting in a 40% loss to the market, then the annual premium for a disaster

insurance contract that pays $1 when disaster strikes must cost 10 cents or more,

regardless of the actual chance of payoff.

Such a high premium for disaster risk provides strong motivation for risk sharing

when agents have different beliefs about disasters. In a benchmark example of our

model, the pessimists are willing to pay up to 13 cents per $1 of disaster insurance

coverage, even though the payoff probability is only 1.7% under their own beliefs.

The optimists, who believe the payoff probability is just 0.1%, underwrite insurance

contracts with notional value up to 40% of their total wealth, despite the risk of losing

70% of their consumption if a disaster strikes.

Taken together, when we allocate a small amount of wealth to agents with hetero-
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geneous beliefs, the risk sharing they provide will be enough to significantly reduce the

equity premium in equilibrium. Importantly, the above mechanism does not require

the new agents to be “globally” more optimistic about disasters than the existing ones.

What is critical to the risk sharing mechanism is that the minority wealth holders

believe that the types of disasters the majority wealth holders fear most are relatively

unlikely. Although these minority wealth holders may fear other disasters (perhaps

even larger and/or more frequent ones), they will still be willing to share the disaster

risk that the majority wealth holders fear. Thus, heterogeneity among agents may

result in a low equity premium even if each would individually demand a high equity

premium when other types of agents are not present.

The model not only demonstrates the sensitivity of disaster risk premium to hetero-

geneous beliefs, but also highlights the conditions under which disaster risk premium

will be large, namely when disagreement across agents is small, or when the wealth

distribution is highly concentrated in those agents with similar fears of disasters. When

the wealth distribution across agents with different beliefs is not too concentrated, the

disaster risk premium will remain low and smooth as the average belief of disaster

risk in the market fluctuates. However, when a disaster strikes, those optimists will

lose a large fraction of their wealth and their risk sharing capacity will be greatly re-

duced. As a result, the disaster risk premium will jump up significantly, and become

more sensitive to fluctuations in disaster risk going forward. Similarly, the amount

of disagreement across agents also has important effects on disaster risk. If agents’

beliefs converge when disaster risk rises, that could amplify the rise of the disaster risk

premium. However, if beliefs diverge, the disaster risk premium can actually become

lower just as the average perceived disaster risk rises.

A number of other interesting results and predictions arises from our analysis. We

show that agents who are overly optimistic about disasters are likely to survive and

even gain wealth for long periods of time. This is quite different from the case of

disagreement about mean growth rates, where agents with wrong beliefs are likely to
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lose the majority of their wealth quickly. Also, similar to the link between asset prices

and the size of the market for riskless lending in Longstaff and Wang (2008), our model

predicts an inverse U-shaped relationship between the equity premium and the size of

the disaster insurance market.

This paper builds on the disaster risk model of Rietz (1988), Longstaff and Pi-

azzesi (2004), and Barro (2006). Barro has reinvigorated this literature by providing

international evidence that disasters have been frequent and severe enough to generate

a large equity premium.1 The majority of these studies adopt a representative-agent

framework. The two papers closest to ours are Bates (2008) and Dieckmann (2009).

Bates (2008) studies investors with heterogenous attitudes towards crash risk, which is

isomorphic to heterogeneous beliefs of disaster risk. He focuses on small but frequent

crashes and does not model intermediate consumption. Dieckmann considers only log

utility. In these settings, risk sharing has limited effects on the equity premium. In

addition, our model also captures more general disagreements about disasters, time-

varying disaster intensities, and time-varying disagreement.

The paper also contributes to the literature of heterogeneous beliefs and prefer-

ences.2 Our affine heterogeneous beliefs framework makes it tractable to study various

forms of heterogeneity in beliefs about disasters through the generalized transform re-

sults of Chen and Joslin (2009). Our main finding is related to the results of Kogan,

Ross, Wang, and Westerfield (2006), who show that irrational traders can still have

large price impact when their wealth becomes negligible.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 analyzes the effect of risk sharing in a setting with disagreement about disaster

1A series of recent studies include Liu, Pan, and Wang (2005), Weitzman (2007), Barro (2009),
Gabaix (2009), Wachter (2009), Martin (2008), Farhi and Gabaix (2009), Backus, Chernov, and
Martin (2009), and others.

2See Basak (2005) for a survey on heterogeneous beliefs and asset pricing. Recent developments
include Kogan, Ross, Wang, and Westerfield (2006), Buraschi and Jiltsov (2006), Yan (2008), David
(2008), Dumas, Kurshev, and Uppal (2009), Xiong and Yan (2009), among others. Among the works
on heterogeneous preferences are Dumas (1989), Wang (1996), Chan and Kogan (2002), and more
recently Longstaff and Wang (2008).
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intensity. Section 4 generalizes the forms of disagreements and calibrates two sets of

beliefs using historical data. Section 5 studies the effects of time-varying disagreement.

Section 6 concludes.

2 Model Setup

We consider a continuous-time, pure exchange economy. There are two agents (A,

B), each being the representative of her own class. Agent A believes that the aggre-

gate endowment is Ct = ecc
t+cd

t , where cc
t is the diffusion component of log aggregate

endowment, which follows

dcc
t = ḡdt + σcdW c

t , (1)

where ḡ and σc are the expected growth rate and volatility of consumption without

jumps, and W c
t is a standard Brownian motion under agent A’s beliefs. The term cd

t

is a pure jump process whose jumps arrive with stochastic intensity λt,

dλt = κ(λ̄A − λt)dt + σλ

√

λtdW λ
t , (2)

where λ̄A is the long-run average jump intensity under A’s beliefs, and W λ
t is a standard

Brownian motion independent of W c
t . The jumps ∆cd

t have time-invariant distribution

νA. We summarize agent A’s beliefs with the probability measure PA.

Agent B believes that the probability measure is PB, which we shall suppose is

equivalent to PA.3 She may disagree about the growth rate of consumption without

jumps, the likelihood of disasters or the distribution of the severity of disasters when

they occur. We assume that the two agents are aware of each others’ beliefs, but

nonetheless “agree to disagree”.4

3More precisely, PA and PB are equivalent when restricted to any σ-field FT = σ({cc
t , c

d
t , λt}0≤t≤T ).

4We do not explicitly model learning about disasters. Given the nature of disasters, Bayesian
updating of beliefs about disaster risk using realized consumption growth will likely be very slow, and
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Specifically, as in Chen, Joslin, and Tran (2010), agent B’s beliefs are characterized

by the Radon-Nikodym derivative ηt ≡ (dPB/dPA)t, which satisfies

ηt = eat+bcc
t−It , (3)

It =

∫ t

0

(

bḡ +
1

2
b2σ2

c + λs

(

λ̄B

λ̄A
− 1)

))

ds , (4)

for some constants b and λ̄B > 0, and at is a pure jump process whose jumps are

coincident with the jumps in cd
t and have size

∆at = log

(

λ̄B

λ̄A

dνB

dνA

)

, (5)

where dνB

dνA is a function of the disaster size and reflects the disagreement about the

distribution of disaster size (conditional on a disaster). It will be large (small) for the

type of disasters that agent B thinks are relatively more (less) likely than agent A.

Intuitively, ηt expresses the differences in beliefs between the agents by letting agent

B assign a higher probability to those states where ηt is large. The terms at and bcc
t

reflect B’s potential disagreements regarding the likelihood of disasters and the growth

rate of consumption, respectively. It follows from (3-5) that, under agent B’s beliefs, the

expected growth rate of consumption without jumps is ḡ + bσ2
c , a disaster occurs with

intensity λt×
λ̄B

λ̄A (with long run average intensity λ̄B), and the disaster size distribution

is νB (which is equivalent to νA). The jumps in ηt specified in (5) are given by the

log likelihood ratio for disasters of different sizes under the two agents’ beliefs. Within

this setup, agent B not only can disagree with A on the average frequency of disasters,

but also the likelihoods for disasters of different magnitude. Moreover, this setup also

has the advantage of remaining within the affine family as (cc
t , c

d
t , log ηt, λt) follows a

jointly affine process, which makes it possible to compute the equilibrium analytically.

We assume that the agents are infinitely lived and have constant relative-risk aver-

the disagreements in the priors will persist for a long time.
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sion (CRRA) utility over life time consumption:

U i(Ci) = EPi

0

[
∫ ∞

0

e−ρit
(Ci

t)
1−γi

1 − γi
dt

]

, i = A, B. (6)

We also assume that markets are complete and agents are endowed with some fixed

share of aggregate consumption (θA, θB = 1 − θA).

The equilibrium allocations can be characterized as the solution of the following

planner’s problem, specified under the probability measure PA,

max
CA

t , CB
t

EPA

0

[
∫ ∞

0

e−ρAt (C
A
t )1−γA

1 − γA

+ ζ̃te
−ρBt (C

B
t )1−γB

1 − γB

dt

]

, (7)

subject to the resource constraint CA
t + CB

t = Ct. Here, ζ̃t ≡ ζηt is the belief-adjusted

Pareto weight for agent B. From the first order condition and the resource constraint

we obtain the equilibrium consumption allocations: CA
t = fA(ζ̂t)Ct and CB

t = (1 −

fA(ζ̂t))Ct, where ζ̂t = e(ρA−ρB)tCγA−γB

t ζ̃t, and fA is in general an implicit function.

The stochastic discount factor under A’s beliefs, MA
t , is given by

MA
t = e−ρAt(CA

t )−γA = e−ρAtfA(ζ̂t)
−γAC−γA

t . (8)

Finally, we can solve for ζ through the life-time budget constraint for one of the agents

(see Cox and Huang (1989)), which is linked to the initial allocation of endowment.

Since our emphasis is on heterogeneous beliefs about disasters, for the remainder of

this section we focus on the case where there is no disagreement about the distribution

of Brownian shocks, and the two agents have the same preferences. In this case, b = 0,

γA = γB = γ, ρA = ρB = ρ. The equilibrium consumption share then simplifies to

fA(ζ̃t) =
1

1 + ζ̃
1
γ

t

. (9)

When a disaster of size d occurs, ζ̃t is multiplied by the likelihood ratio λ̄B

λ̄A
dνB

dνA (d) (see
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(5)). Thus, if agent B is more pessimistic about a particular type of disaster, she will

have a higher weight in the planner’s problem when such a disaster occurs, so that her

consumption share increases.

The equilibrium allocations can be implemented through competitive trading in a

sequential-trade economy. Extending the analysis of Bates (2008), we can consider

three types of traded securities: (i) a risk-free money market account, (ii) a claim to

aggregate consumption, and (iii) a series (or continuum) of disaster insurance contracts

with 1 year maturity, which pay $1 on the maturity date if a disaster of size d occurs

within a year.

The instantaneous risk-free rate can be derived from the stochastic discount factor,

rt = −
DAMA

t

MA
t

= ρ + γḡ −
1

2
γ2σ2

c − λt

(

E∆,A
t [

(

CA
t

)−γ
]

(CA
t )

−γ − 1

)

, (10)

where DA denotes the infinitesimal generator under Agent A’s beliefs of Xt = (cc
t , c

d
t , λt, ηt)

and we use the short-hand notation E∆,A
t defined for any function f of Xt as

E∆,A
t [f(Xt)] ≡

∫

f

(

cc
t , c

d
t + d, λt, ηt ×

λ̄B

λ̄A

dνB

dνA
(d)

)

dνA(d). (11)

The price of the aggregate endowment claim is

Pt =

∫ ∞

0

EPA
t

[

MA
t+τ

MA
t

Ct+τ

]

dτ = Cth(λt, ζ̃t) , (12)

where the price/consumption ratio only depends on the disaster intensity λt and the

stochastic weight ζ̃t. In the case where λt is constant, the price of the consumption

claim is obtained in closed form. Similarly, we can compute the wealth of the individual

agents as well as the prices of disaster insurance contracts using the stochastic discount

factor (see Appendix A for details).

In order for prices of the aggregate endowment claim to be finite in the heterogeneous-

agent economy, it is necessary and sufficient that prices are finite under each agent’s
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beliefs in a single-agent economy (see Appendix C for a proof). As we show in the

appendix, finite prices require that the following two inequalities hold:

0 < κ2 − 2σ2
λ(φ

i(1 − γ) − 1), (13a)

0 > κλ̄i κ −
√

κ2 + 2σ2
λ(1 − φi(1 − γ))

σ2
λ

− ρ + (1 − γ)ḡ +
1

2
(1 − γ)2σ2

c , (13b)

where φi is the moment generating function for the distribution of jumps in endow-

ment νi under measure Pi. The first inequality reflects the fact that the volatility of

the disaster intensity cannot be too large relative to the rate of mean reversion. It

prevents the convexity effect induced by the potentially large intensity from dominat-

ing the discounting. The second inequality reflects the need for enough discounting to

counteract the growth.

Additionally, the stochastic discount factor characterizes the unique risk neutral

probability measure Q (see, for example, Duffie (2001)), which facilitates the compu-

tation and interpretation of excess returns. The risk-neutral disaster intensity λQ
t ≡

E∆,i
t [M i

t ]/M
i
tλ

i
t is determined by the expected jump size of the stochastic discount fac-

tor at the time of a disaster. When the riskfree rate and disaster intensity are close

to zero, the risk-neutral disaster intensity λQ
t has the nice interpretation of (approxi-

mately) the value of a one-year disaster insurance contract that pays $1 at t + 1 when

a disaster occurs between t and t + 1. The risk-neutral distribution of the disaster size

is given by dνQ

dνi (d) = M i,∆
t (d)/E∆,i

t [M i
t ], where M i,∆

t (d) denotes the pricing kernel when

the state is (cc
t , c

d
t + d, λt, ηt ×

λ̄B

λ̄A
dνB

dνA (d)). These risk adjustments are quite intuitive.

The more the stochastic discount factor for agent i jumps up during a disaster, the

large is λQ
t relative to λi

t, i.e. disasters occur more frequently under the risk-neutral

measure. Thus, the ratio λQ
t /λi

t is often referred to as the jump-risk premium. More-

over, the risk-adjusted distribution of jump size conditional on a disaster slants the

probabilities towards the types of disasters that lead to a bigger jump in the stochastic

discount factor, which generally makes severe disasters more likely under Q.
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Finally, the risk premium for any security under agent i’s beliefs is the difference

between the expected return under Pi and under the risk-neutral measure Q. In the

case of the aggregate endowment claim, the conditional equity premium, under agent

i’s beliefs,which we denote by EPi
t [Re], is

EPi
t [Re] = γσ2

c + λi
tE

Pi
t [∆R] − λQ

t EQ
t [∆R], i = A, B (14)

where Em
t [∆R] ≡ E∆,m

t [Pt]/Pt − 1 is the expected return on the endowment claim in

a disaster under measure m.5 The difference between the last two terms in (14) is the

premium for bearing disaster risk. This premium is large if the jump-risk premium is

large, and/or the expected loss in return in a disaster is large (especially under the

risk-neutral measure).

It follows that the difference in equity premium under the two agents’ beliefs is

EPA
t [Re] − EPB

t [Re] = λA
t EPA

t [∆R] − λB
t EPB

t [∆R] .

This difference will be small relative to the size of the equity premium when the dis-

aster intensity and expected loss under the risk-neutral measure are large relative to

their values under actual beliefs. In the remainder of the paper, we report the equity

premium relative to agent A’s beliefs, PA. One interpretation for picking PA as the

reference measure is that A has the correct beliefs, and we are studying the impact of

the incorrect beliefs of agent B on asset prices.

3 Heterogeneous Beliefs and Risk Sharing

We start with a special case of the model where agents only disagree about the fre-

quency of disasters. First, we analyze the impact of heterogeneous beliefs and its

5To be concrete, we define the risk premium under measure i for any price process P (Xt, t) which
pays dividends D(Xt, t) to be DiP/P − (rt + Dt).
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Figure 1: Disagreement about the frequency of disasters. Panel A plots the
equity premium under the pessimist’s beliefs as a function of the wealth share of the
optimist. Panel B plots the jump-risk premium λQ

t /λA for the pessimist.

implications for survival when the risk of disasters is constant, i.e., λt = λ̄A (denoted

as λA for simplicity). We then extend the analysis to the case with time-varying disaster

risk.

3.1 Disagreement about the Frequency of Disasters

In the simplest version of our model, the disaster size is deterministic, ∆cd
t = d̄, and

the two agents only disagree about the frequency of disasters (λ). We set d̄ = −0.51

so that the moment generating function (MGF) φA(−γ) in this model matches the

calibration of Barro (2006) for γ = 4. It implies that aggregate consumption falls by

40% when a disaster occurs. Agent A (pessimist) believes that disasters occur with

intensity λA = 1.7% (once every 60 years), which is also taken from Barro (2006).

Agent B (optimist) believes that disasters are much less likely, λB = 0.1% (once every

1000 years), but she agrees with A on the size of disasters as well as the Brownian

risk in consumption. She also has the same preferences as agent A. The remaining

parameters are ḡ = 2.5%, σc = 2%, and ρ = 3%.
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Figure 1 shows the conditional equity premium and the jump-risk premium under

the pessimist’s beliefs. If all the wealth is owned by the pessimist, the equity premium

is 4.7%, and the riskfree rate is 1.3%. Since the optimist assigns very low probabilities

to disasters, if she has all the wealth, the equity premium is only −0.21% under the

pessimist’s beliefs, which reflects the low compensation the optimist requires for bearing

disaster risk and the higher frequency of the pessimist beliefs. Thus, it is not surprising

to see the premium falling when the optimist owns more wealth. However, the speed

at which the premium declines in Panel A is impressive. When the optimistic agent

owns 10% of the total wealth, the equity premium has fallen from 4.7% to 2.7%. When

the wealth of the optimist reaches 20%, the equity premium falls to just 1.7%.

We can derive the conditional equity premium as a special case of (14), where the

assumption of constant disaster size helps simplify the expression:

EPA
t [Re] = γσ2

c − λA

(

λQ
t

λA
− 1

)(

h(ζ̃t
λB

λA )ed̄

h(ζ̃t)
− 1

)

, (15)

where h is the price-consumption ratio from (12), with λt being constant. The first

term γσ2
c is the standard compensation for bearing Brownian risk. Heterogeneity has

no effect on this term since the agents agree about the brownian risk. Given the

value of risk aversion and consumption volatility, this term has negligible effect on

the premium. The second term reflects the compensation for disaster risk. It can be

further decomposed into three factors: (i) the constant disaster intensity λA, (ii) the

jump-risk premium λQ
t /λA, and (iii) the return of the consumption claim in a disaster.

How does the wealth distribution affect the jump-risk premium? From the definition

of the stochastic discount factor MA
t and the risk-neutral intensity λQ

t , it is easy to show

λQ
t /λA = e−γ∆cA

t , where ∆cA
t is the jump size of the equilibrium log consumption for

agent A in a disaster, which could be very different from the jump size in aggregate

endowment due to trading. Without trading ∆cA
t = d̄, which generates a jump-risk

premium of λQ
t /λA = 7.7. Since λQ

t is approximately the premium of a one-year disaster

12



insurance, before any trading the pessimist will be willing to pay an annual premium of

about 13 cents for $1 of protection against a disaster event that occurs with probability

1.7%.

Since the optimist views disasters as very unlikely events, she is willing to trade away

her claims in the future disaster states in exchange for higher consumption in normal

times. For example, she will find selling an $1 disaster insurance and collecting a 13

cents premium a lucrative trade. Such a trade helps reduce the pessimist’s consumption

loss in a disaster ∆cA
t , which in turn lowers the jump-risk premium. However, the

optimist’s capacity for underwriting disaster insurance is limited by her wealth, as she

needs to ensure that her consumption/wealth is positive in all future states, including

when a disaster occurs (no matter how unlikely such an event is). Thus, the more

wealth the optimist has, the more disaster insurance she is able to sell without making

her consumption too risky when a disaster strikes.

The above mechanism can substantially reduce the disaster risk exposure of the

pessimist in equilibrium. Panel B of Figure 1 shows that the jump-risk premium falls

rapidly. When the optimist owns 20% of total wealth, the jump-risk premium drops

from 7.7 to 4.2. According to equation (15), such a drop in the jump-risk premium

alone will cause the equity premium to fall by about half to 2.2%, which accounts for

the majority of the change in the premium (from 4.7% to 1.7%).

Besides the jump-risk premium, the equity premium also depends on the return of

the consumption claim in a disaster, which in turn is determined by the consumption

loss and changes in the price-consumption ratio. Following a disaster, the riskfree rate

drops as the wealth share of the pessimist rises. With CRRA utility, the lower interest

rate effect can dominate that of the rise in the risk premium, leading to a higher price-

consumption ratio.6 Since a higher price-consumption ratio partially offsets the drop

in aggregate consumption, it makes the return less sensitive to disasters, which will

6Wachter (2009) also finds a positive relation between the price-consumption ratio and the equity
premium in a representative agent rare disaster model with time-varying disaster probabilities and
CRRA utility.
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contribute to the drop in equity premium. However, our decomposition above shows

that the reduction of the jump-risk premium (due to reduced disaster risk exposure)

is the main reason behind the fall in premium.

Can we “counteract” the effect of the optimistic agent and restore the high equity

premium by making the pessimist even more pessimistic about disasters? The dashed

lines in Figure 1 plot the results when agent A believes that the disaster intensity is

2.5% (λA = 2.5%) and everything else equal. The results are striking. While the equity

premium becomes significantly higher (6.8%) when the pessimist owns all the wealth, it

falls to 4.1% with just 2% of total wealth allocated to the optimist (already lower than

the previous case with λA = 1.7%), and is below 1% when the wealth of the optimist

exceeds 8.5%. As the wealth share of the optimist grows higher, the premium can

even become negative. The decline in the jump-risk premium is still the main reason

behind the lower equity premium. For example, when the optimist has 10% of total

wealth, the jump-risk premium falls to 4.0, which will drive the premium down to 3.1%

(60% of the total fall). Thus, as the pessimist becomes more pessimistic, she seeks risk

sharing more aggressively, which can quickly reverse the effect of her heightened fear

of disasters.

To better illustrate the risk sharing mechanism between agents, we compute their

portfolio positions in the aggregate consumption claim, disaster insurance, and the

money market account. Calculating these portfolio positions amounts to finding a

replicating portfolio that matches the exposure to Brownian shocks and jumps in the

individual agents’ wealth processes. Appendix B provides the details. The first thing to

notice is that each agent will hold a constant proportion of the consumption claim. This

is because they agree on the brownian risk and share it proportionally. Disagreement

over disaster risk is resolved through trading in the disaster insurance market, which

is financed by the money market account.

We first plot the notional value of the disaster insurance sold by the optimist as a

fraction of her total wealth in Panel A of Figure 2. The dashed line is the maximum
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Figure 2: Risk sharing. Panel A and B plot the total notional value of disaster
insurance relative to the wealth of the optimist and total wealth in the economy. Panel
C plots the consumption share for the optimist in equilibrium. Panel D compares the
two agents’ consumption drops in a disaster with that of the aggregate endowment.
These results are for the case λA = 1.7%.

amount of disaster insurance the optimist can sell (as a fraction of her wealth) subject

to her budget constraint. When the optimist has very little wealth, the notional value

of the disaster insurance she sells is about 35% of her wealth. This value initially

rises and then falls as the optimist gains more wealth. When the optimist has little

wealth, the pessimist has great demand for risk sharing and is willing to pay a higher

premium, which induces the optimist to sell more insurance relative to her wealth. As

the optimist gets more wealth, the premium on the disaster insurance falls, and so does

the relative amount of insurance sold.

We can judge how extreme the risk sharing in equilibrium is by comparing the

actual amount of trading to its limit. At its peak, the amount of disaster insurance
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sold by the optimist is about half of the maximum amount that she can underwrite,

which might appear reasonable. The caveat is that, in reality, underwriters of disaster

insurance will likely be required to collateralize their promises to pay in the disaster

states, which raises the costs of risk sharing.7

Panel B plots the size of the disaster insurance market (the total notional value

normalized by total wealth). Naturally, the size of this market is zero when either agent

has all the wealth, and the market is bigger when wealth is more evenly distributed.

Notice that the model generates a non-monotonic relation between the size of the

disaster insurance market and the equity premium. The premium is high when there

is a lot of demand for disaster insurance but little supply, and is low when the opposite

is true. In either case, the size of the disaster insurance market will be small.

Panel C plots the equilibrium consumption share for the optimist. The 45-degree

line corresponds to the case of no trading. The optimist’s consumption share is above

the 45-degree line, especially when her wealth is small. This is because the optimist is

giving up consumption when disasters occur in order to have more consumption now

(and in the future, provided a disaster has not occurred.) Panel D shows that indeed

the optimist does bear much greater losses in the event of a disaster in order to sustain

higher current consumption. As for the pessimist, the less wealth she possesses, the

more disaster insurance she buys relative to her wealth. This will gradually lower her

disaster risk exposure, and can eventually turn the disaster insurance into a speculative

position — her consumption can jump up in a disaster. Finally, if we make agent A’s

beliefs more pessimistic (e.g. λA = 2.5%), the amount of disaster insurance traded (both

relative to the wealth of the optimistic agent and to total wealth in the economy) will

become higher, while the consumption shares will become more nonlinear. As a result,

the risk premium declines more rapidly with the optimist’s wealth share.

7The collateral constraint can be especially important when agents’ wealth is mostly in the form
of future labor income.

16



3.2 The Limiting Case for Risk Sharing

In order to highlight the key ingredients of the risk sharing mechanism demonstrated

in the previous section, we now characterize the properties of the equilibrium when

a small fraction of the wealth is controlled by an optimist who believe disasters are

extremely unlikely.8 Consider the effect of a disaster at time t on the marginal utility of

the pessimistic agent (agent A). Before the disaster, suppose that the equilibrium con-

sumption of the optimist agent is a fraction fA
t− of the aggregate endowment Ct−. After

the disaster, the aggregate endowment drops to Ct = ed̄Ct− but now the pessimistic

agent consumes essentially the entire endowment (i.e. fA
t ≈ 1). This is because the

optimist feels disasters are so unlikely that she is willing to sell all her share of the

endowment in this state to the pessimist. Such a jump in marginal utility is associated

with a jump risk premium of

λQ

t−

λA
≈

(

1 × ed̄Ct−

)−γ

(fA
t−Ct−)

−γ =
(

fA
t−

)γ
e−γd̄. (16)

For example, when the optimist has only 1% of the endowment to give up in disasters

to the pessimist, this decreases the jump risk premium from e−γd̄ to (.99)γe−γd̄, or

approximately a 4% drop when γ = 4.

Formally, we show in the Appendix D that

lim
λB→0+

∂

∂fB
t

λQ
t

λA

∣

∣

∣

∣

∣

fB
t =0

= −γe−γd̄. (17)

Thus we see that the effect of risk sharing (in terms of consumption share) becomes

stronger (i) when the size of the disaster increases and (ii) when risk aversion increases.9

This only partially reflects the steep slope in the risk premium near wB
t = 0 we see

8We thank Xavier Gabaix for suggesting this analysis.
9We take limits since with λB = 0, the beliefs are not equivalent and multiple equilibria are

possible.
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in Figure 1. Also reflected is the fact that if the optimist consumes a fraction fB
t of the

endowment at time t, his fraction of the aggregate wealth, wB
t , must be less than fB

t .

This is because the optimist consumes nothing in the valuable disaster states because

she thinks they are unlikely to occur. We can approximate this relation as follows.

First consider a claim on the aggregate endowment from now to the time of the first

disaster. The value of such a claim at a time when the pessimist has all the wealth is

VND ≡

∫ ∞

0

E0

[

MA
t

MA
0

Ct × 1{Nt=0}

∣

∣

∣

∣

fA
0 = 1

]

dt =
1

ρ + (γ − 1)ḡ − 1
2
σ2

c (1 − γ)2 + λA
.

(18)

Next, the value of the entire endowment claim is

V ≡

∫ ∞

0

E0

[

MA
t

MA
0

Ct

∣

∣

∣

∣

fA
0 = 1

]

dt =
1

ρ + (γ − 1)ḡ − 1
2
σ2

c (1 − γ)2 − λA(e(1−γ)d̄ − 1)
.

(19)

When the optimist current equilibrium consumption fraction of the entire endowment

is fB
t (close to 0), his wealth fraction is then approximately fB

t VND/V . For example,

in the calibration of Section 4.1, the price-consumption ratio for the claim to the entire

endowment when fA
t = 1 is 23.98 while the price-consumption ratio of the claim to the

endowment until the first disaster is 8.32. Using the approximation, it will be that in

the limiting case of λB = 0 we have fB/wB ≈ 23.98/8.32 = 2.88. Thus, if the optimist

has 1% of the aggregate wealth, he chooses to consume 2.88% of the endowment until

a disaster occurs, at which point he consumes nothing (approximately.)

In Appendix D, we show formally that

lim
λB→0+

∂fB
t

∂wB
t

∣

∣

∣

∣

fB
t =0

=
ρ + (γ − 1)ḡ − 1

2
σ2

c (1 − γ)2 + γ−1
γ

λA

ρ + (γ − 1)ḡ − 1
2
σ2

c (1 − γ)2 − λA(e(1−γ)d̄ − 1)
. (20)

This numerator in the limiting expression differs slightly from (18) in that it reflects

the fact that optimist will gain weatlh throughout time when no disaster occurs from

selling disaster insurance to the pessimist. This effect will be larger when disasters

are more frequent and larger. Additionally, when (i) the effect of disasters dominate

18



the effect of growth in the sense that λAe(1−γ)d̄ > (γ − 1)ḡ and (ii) volatility induced

convexity effects are small, increasing risk aversion will increase this multiplier.

In the calibrated example, the more precise limiting expression in (20) gives a

consumption-wealth multiplier of 2.78.10 Numerically, we compute the (non-limiting

value) when λB = 0.1% as a consumption-wealth multiplier of 1.86. Combining these

effects we see that the limiting derivative with respect to wealth fraction as λB ap-

proaches zero of the jump risk premium is -85.5, or -11.1 times the maximum jump

risk premium. Thus allocating 1% of the wealth to extreme optimist reduce the jump

risk premium by 11.1% of the maximum value in the limit.

We can summarize the effect of the disaster risk premium on the equity premium

from the decomposition in (14). Ignoring the effects on the disaster return generated

by risk sharing11, the limiting differential effect of optimist on risk premia is given by

lim
λB→0+

−(ed̄ − 1)
∂λQ

t /λA

∂wB
t

∣

∣

∣

∣

∣

fB
t =0

= −
∂λQ

t /λA

∂fB
t

∣

∣

∣

∣

∣

fB
t =0

×
∂fB

t

∂wB
t

∣

∣

∣

∣

fB
t =0

× (ed̄ − 1) × λA. (21)

In the calibrated example, the limiting factor (with λB = 0) equals −0.581. So allo-

cating only 1% of the endowment to extreme optimist results in a decline of 58.1 basis

points in the equity premium due to this effect. The value of λB = 0.1% results in a

factor of -0.19, indicating that the fact that these agents sell most, but not all, of these

claims to disaster states attenuates the effect to a fair degree.12

Figure 3 compares the jump risk premium for several cases. First, the dotted line

denotes the benchmark case from Section 3.1. We also plot the jump risk premium with

the same parameters but for the limiting case where λB approaches zero. Additionally,

10The relatively small fraction of value associated with non-disaster states (1/2.78) may be surpris-
ing, given the low likelihood of the disaster. In Appendix E we show, in fact, that this is a rather
robust feature of models with alternative preferences so long as they feature a significant disaster
component to the equity premium and a moderate wealth-consumption ratio.

11This is due to the fact that in disasters pessimist accumulate wealth (relatively) which drives
up the price-consumption ratio due to their savings motives which partially offsets the decrease in
consumption associated with the disasters.

12In the more severe calibration with λA = 2.5%, the limiting factor is 294.3 resulting in an 2.94%
drop in the equity premium by introducing only 1% of extreme optimist into the economy!
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Figure 3: Limiting Jump Risk Premia. This figure plots the jump-risk premium
λQ

t /λA for the pessimist, where λA = 1.7%.

we plot the case where we decrease the disaster size and increase the risk aversion to

maintain the same jump risk premium for the single agent economy (γ = 5, d̄ = 0.408).

First, we see that marginal effect of adding a small amount of optimist with λB = 0.1%

are less severe than the limiting case of extreme optimism. Second, when we decrease

the size of the disaster, but increase risk aversion, the effects become more severe.

This is because the risk sharing effect given in (17) increase and dominate the small

reduction in consumption-wealth effect given in (20).

3.3 Survival

In models with heterogeneous agents, one type of agents often dominates in the long-

run (a notable exception is Chan and Kogan (2002); see also Borovička (2010)). Our

model also has the property that the agent with correct beliefs will dominate in the

long run. For example, let’s assume that agent A has the correct beliefs. It is easy

to verify by the strong law of large numbers that log ζ̃t → −∞ almost surely. This
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Table 1: Survival of Agents who Disagree about the Frequency of Disasters.

This table provides the redistribution of wealth across a 50 year horizon in the model
of Section 3.1. Future relative wealth only depends on the initial wealth, the time
horizon, and the number of disasters that occur. The top panel provides the possible
wealth redistributions throughout time. The bottom panel provides the probability
(under each agent’s beliefs) for different numbers of disasters occurring.

Final Wealth of B after Nd Disasters

Initial Wealth of B Nd = 0 Nd = 1 Nd = 2 Nd = 3

1.0% 1.2% 0.6% 0.3% 0.1%
5.0% 6.1% 3.0% 1.5% 0.7%
10.0% 12.2% 6.0% 2.9% 1.4%
50.0% 55.7% 35.5% 19.3% 9.6%
99.0% 99.2% 98.3% 96.7% 93.5%

Probability under PA 42.7% 36.3% 15.4% 4.4%
Probability under PB 95.1% 4.8% 0.1% 0.0%

implies that agent A will take over the economy with probability one. We now show

that although agents with incorrect beliefs about disasters may not have permanent

effects on asset prices, their effects may be long-lived in the sense that these agents can

retain, and even build, wealth over long horizons.

With disaster intensity, λt, being constant, we need only consider the distribution

of the stochastic Pareto weight, ζ̃t, to analyze the wealth distribution over time. From

(3), we see that ζ̃t has a stochastic component, whereby the Pareto weight (and thus

wealth) of the pessimistic agent will jump up when a disaster occurs. This is because

the pessimist receives insurance payments from the optimist in a disaster. However,

regardless of the occurrence of disasters, there is also a deterministic component in

ζ̃t, whereby the optimist has a deterministic weight increase (and thus her relative

wealth increases) which comes from collecting the disaster insurance premium. Thus,

even when the pessimist has correct beliefs, her relative wealth will decrease outside of

disasters. Since disasters are rare, it will be common to have extended periods without

disasters, during which time an optimistic agent will gain relative wealth.
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Table 1 presents a summary of the conditional distribution of wealth after 50 years

for various initial wealth distributions. We report the results under the assumption that

either the pessimist or the optimist has correct beliefs. If the number of disasters is

either 0 or 1, the wealth of the agents remain relatively close to the original distribution.

We see that the optimist is likely to retain wealth for long periods of time and will

only be wiped out with the occurrence of several disasters, which is unlikely regardless

of whose beliefs are correct.

The evolution of the wealth distribution over time also has important implications

for the equity premium and other dynamic properties of asset prices. For example,

when the initial wealth of agent B is 5% (10%), the equity premium will drop from

3.5%(2.7%) to 3.3% (2.4%) over 50 years if no disasters occurs. If after 120 years there

are still no disasters, the equity premium would further drop to 2.9% (2.0%).

The survival results presented thus far stand in sharp contrast to survival in models

of disagreement over Brownian consumption growth. As discussed in Section 2, it is

possible to raise the equity premium under the true measure if there are agents who

are pessimistic about the growth rate of consumption. For example, if the volatility of

consumption is σc = 2.0%, two types of agents have γ = 4 and ρ = 3%, one believing

(correctly) consumption growth is 2.5%, the other believing it is 0% (no disasters in

either case), then the equity premium will be roughly 2.5% when the pessimist controls

most of the wealth in the economy. However, even if the pessimist controls 99% of the

wealth initially, her wealth share will be reduced to less than 1% after 50 years with

a probability of 92.4%. Thus, even a very small amount of agents with correct beliefs

will quickly dominate the economy in the Gaussian setting.

3.4 Time-varying Disaster Risk

In the previous sections we have analyzed in depth the impact of heterogeneous beliefs

when disaster intensity is constant. Now we extend the analysis to allow the risk of

disasters and the amount of disagreements about disasters to vary over time, which
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not only makes the model more realistic, but also has important implications for the

dynamics of asset prices. As in Gabaix (2009) and Wachter (2009), time-varying dis-

aster intensity serves to drive both asset prices and expected excess returns. We now

demonstrate that within our framework, wealth distribution becomes an important

factor that drives asset price dynamics through the risk sharing mechanism. In partic-

ular, it affects how sensitive the conditional risk premium will be to time variation in

disaster risk.

Our calibration of the intensity process λt in equation (2) is as follows. First,

the long-run mean intensity of disasters under the two agents’ beliefs are λ̄A = 1.7%

and λ̄B = 0.1%. Next, following Wachter (2009), we set the speed of mean reversion

κ = 0.142 (with a half life of 4.9 years). The volatility parameter is σλ = 0.05, so that

the Feller condition is satisfied.13 For simplicity, we assume that the size of disasters is

constant, d̄ = −0.51, as in Section 3.1. The remaining preference parameters are also

the same as in the constant disaster risk case.

Figure 4 plots the conditional equity premium and the jump-risk premium under

agent A’s beliefs as functions of agent B’s wealth share wB
t and the disaster intensity

λt. First, in Panel A, holding λt fixed, the equity premium drops quickly as the wealth

share of the optimistic agent rises from zero, which is consistent with the results from

the case with constant disaster risk. Moreover, this decline is particularly fast when

λt is large, suggesting that the agents engage in more risk sharing when disaster risk

is high. Indeed, the jump-risk premium in Panel B also declines faster when λt is

large, which is the result of agent A reducing her consumption loss in a disaster more

aggressively at such times.

Next, we see that the sensitivity of the equity premium to disaster intensity can be

very different depending on the wealth distribution. The sensitivity is largest minority

wealth holders has all the wealth, but it becomes smaller as the wealth of the optimist

increases. When the optimist’s wealth share becomes sufficiently high, the equity

13The Feller condition, 2κλ̄A > σ2

λ
, ensures that λt will remain strictly positive under agent A’s

beliefs.
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Figure 4: Time-varying Disaster Risk. Panel A plots the equity premium under
agent A’s beliefs as a function of agent B’s wealth share (wB

t ) and the disaster intensity
under A’s beliefs (λt). Panel B plots the jump-risk premium λQ

t /λt for agent A.

premium becomes essentially flat as λt varies. This result has important implications

for the time series properties of the equity premium. It suggests that when λt fluctuates

over time, the equity premium can either be volatile or smooth, depending on the wealth

distribution.

We can understand the above results through the equity premium formula,

EA
t [Re] = γσ2

c − Et[∆R]

(

λQ
t

λt

− 1

)

λt , (22)

where now the return conditional on a disaster occurring, Et[∆R], does not depend on

the probability measure since there is a single disaster type. Variations in the wealth

distribution drive λQ
t /λt and Et[∆R]. Due to increased risk sharing, the jump-risk

premium declines with greater fraction of wealth controlled by the optimistic agent.

As a result, the premium becomes less sensitive to variations in λt. Moreover, we see

in Panel B of Figure 4 that the effect of wealth on the jump risk premium depends on
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the disaster intensity – when the disaster intensity is high, the risk sharing motives are

very strong, resulting in larger effect on the jump risk premium when the optimistic

agent controls even a small amount of wealth. Finally, the returns in disasters also

vary somewhat with the wealth distribution as the price-consumption ratio changes

after a disaster.

To further investigate the time series properties of the model, we simulate the dis-

aster intensity λt and the jump component of aggregate endowment cd
t under agent A’s

beliefs, which jointly determine the evolution of the stochastic Pareto weight ζ̃t. Then,

along the simulated paths, we compute the equilibrium wealth fraction of agent A, wA
t ,

and the conditional equity premium under A’s beliefs, EA
t [Re]. In each simulation we

start with λ0 = 1.7% and set the initial wealth share of agent A to wA
0 = 90%. The

results from two of the simulations are reported in Figure 5.

Panel A plots the paths of λt from the simulations. The disaster intensities from

both simulations are fairly persistent, and show similar amount of variation over time.

What are not shown in this graph are the occurrences of disasters. In Simulation I,

there are no disasters. In Simulation II, disasters occur three times within the first 50

years, around year 13, 18, and 46.

What determines the evolution of the wealth distribution? When there are no

disasters, holding λt fixed, agent A is losing wealth share to B as she pays B the

premium for disaster insurance. This effect is captured by the negative drift in the

Radon-Nikodym derivative ηt (see equation (3)), and is stronger when λA
t is larger. In

addition, as λt falls (rises), the value of the disaster insurance that agent A owns falls

(rises), causing her wealth to fall (rise) relative to agent B, who is short the disaster

insurance. As Panel B shows, the second effect appears to be the main force driving

the wealth distribution in Simulation I.

When a disaster strikes, the wealth distribution can change dramatically. In Sim-

ulation II, the wealth share of agent A jumps up each time a disaster strikes. This is

because the disaster insurance that A (pessimist) purchases from B (optimist) pays off
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Figure 5: Simulation with Time-varying Disaster Risk. The results are from two
simulations of the model with time-varying disaster risk under agent A’s beliefs. Panel
A plots the simulated paths of disaster intensity. Panel B and C plot the corresponding
wealth share of agent A and the conditional equity premium she demands.

at such times, causing the wealth of A to increase relative to B. The size of the jump

in wA
t is bigger in the first two disasters, which is due to two reasons. First, during the

first two disasters, the wealth distribution is not too concentrated in the hands of agent

A, so that agent B can still provide a fair amount of risk sharing. Second, the first dis-

aster occurs at times when λt is relatively high, i.e., they are less of a “surprise”. Thus,

agent A will have bought more insurance against the disaster beforehand, causing her

wealth share to rise more after the disaster.

Panel C shows the joint effect of the disaster intensity and wealth distribution on

the equity premium. In Simulation I (no disasters), despite the fact that the optimistic
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agent never owns more than 15% of total wealth and that disaster intensity λt shows

considerable variation over the period, the equity premium is below 2% nearly 90% of

the time. This result confirms our finding in Figure 4 that risk sharing between the

agents keeps the premium low and smooth when the wealth share of agent B is not too

small. In contrast, the equity premium in Simulation II shows large variation, ranging

from 0.5% to 9.2%. Besides becoming significantly more sensitive to fluctuations in

λt, the premium also changes with the wealth distribution. In particular, the premium

jumps up after each disaster. Since the wealth share of agent B drops in a disaster,

her risk sharing capacity is reduced, which drives up the equity premium. As show in

Figure 4, this effect is stronger when λt is high, which is why the jump in premium is

most visible after the first disaster (year 13).

4 General Forms of Disagreements

The affine heterogeneous beliefs framework in Section 2 can capture other forms of

heterogeneous beliefs besides disagreement about disaster intensity. In this section,

we first show that disagreement about the size of disasters has similar impact on the

risk premium as disagreement about the frequency of disasters. We then provide an

example with strong effects of risk sharing even when both agents are pessimistic about

disasters. Finally, we calibrate two sets of beliefs using international and US historical

data.14

4.1 Disagreement about the Size of Disasters

For simplicity, let’s assume that the drop in aggregate consumption in a disaster follows

a binomial distribution, with the possible drops being 10% and 40%. Both agents agree

on the intensity of a disaster (λ = 1.7%). Agent A (pessimist) assigns a 99% probability

14The general form of the analysis also generalizes to the case of heterogeneous risk aversion. See
Appendix F for details.
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the pessimist. In the case with “more disagreement”, the pessimist (optimist) assigns
99% probability to the big (small) disaster, conditional on a disaster occurring. With
“less disagreement”, the probability assigned to big (small) disaster drops to 90%.

to a 40% drop in aggregate consumption, thus having essentially the same beliefs as in

the previous example. On the contrary, agent B (optimist) only assigns 1% probability

to a 40% drop, but 99% probability to a 10% drop. The rest of the parameter values

are the same as in the first example.

Figure 6 (solid lines) plots the conditional equity premium and jump-risk premium

under the pessimist’s beliefs. When the pessimist has all the wealth, the equity pre-

mium is 4.6% (almost the same as in the first example). Again, the equity premium

falls rapidly as we starts to shift wealth to the optimist. The premium falls by almost

half to 2.4% when the optimist owns just 5% of total wealth, and becomes 1.4% when

the optimist’s share of total wealth grows to 10%. Similarly, the jump-risk premium

falls from 7.6 to 4.5 with the optimist’s wealth share reaching 10%, which by itself will

lower the premium to 2.4%.

These results show that, in terms of asset pricing, introducing an agent who dis-

agrees about the severity of disasters is similar to having one who disagrees about the
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frequency of disasters. Even though the two agents agree on the intensity of disas-

ters in general, they actually strongly disagree about the intensity of disasters of a

specific magnitude. For example, under A’s beliefs, the intensity of a big disaster is

1.7% × 99% = 1.68%, which is 99 times the intensity of such a disaster under B’s

beliefs. The opposite is true for small disasters. Thus, B will aggressively insure A

against big disasters, while A insures B against small disasters. For agent A, the effect

of the reduction in consumption loss in a big disaster dominates that of the increased

loss in a small disaster, which drives down the equity premium exponentially. Such

trading can also become speculative when B has most of the wealth: agent A will take

on so much loss in a small disaster that the jump-risk premium rises up again.

Naturally, we expect that the agents will be less aggressive in trading disaster

insurances when there is less disagreement on the size of disasters, and that the effect

of risk sharing on the risk premium will become smaller. The case of “less disagreement”

in Figure 6 confirms this intuition. In this case, we assume that the two agents assign

90% probability (as opposed to 99%) to one of the two disaster sizes. While the equity

premium still falls rapidly near the left boundary, the pace is slower than in the previous

case. Similarly, we see a slower decline in the jump-risk premium.

4.2 When Two Pessimists Meet

The examples we have considered so far have one common feature: the new agent we are

bringing into the economy has more optimistic beliefs about disaster risk, in the sense

that the distribution of consumption growth under her beliefs first-order stochastically

dominates that of the other’s, and that the equity premium is significantly lower when

she owns all the wealth. However, the key to generating aggressive risk sharing is not

that the new agent demands a lower equity premium, but that she is willing to insure

the majority wealth holders against the types of disasters that they fear most.

In order to highlight this insight, we consider the following example, which combines

disagreements about disaster intensity as well as disaster size. Both agents believe
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Figure 7: When Two Pessimists Meet. Panel A and B plot the equity premium
and jump-risk premium under agent A’s beliefs. Panel C and D plot the individual
consumption changes in small and big disasters.

that disaster risk accounts for the majority of the equity premium. The key difference

in their beliefs is that one agent believes that disasters are rare but big, while the

other thinks disasters are more frequent but less severe. Specifically, we assume that

disasters can cause aggregate consumption drops of a 30% or 40%. Agent A believes

that λA = 1.7%, and assigns 99% probability to the bigger disaster. B believes that

λB = 4.2%, and assigns 99% probability to the smaller disaster.

By themselves, the two agents both demand high equity premium. We have chosen

λB so that, under the beliefs of agent A, the equity premium is 4.6% whether A or B

has all the wealth. However, they have significant disagreement on the exact magnitude

of the disaster. Such disagreement generates a lot of demand for risk sharing. As we

see in Panel A of Figure 7, the conditional equity premium falls rapidly as the wealth
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share of agent B moves away from the two boundaries. In fact, the premium will be

below 2% when B owns between 9% and 99% of total wealth. In Panel B, the jump

risk premium also falls by half from 7.6 and 10 on the two boundaries when B’s wealth

share moves from 0% to 25% and from 100% to 91%, respectively.

To get more information on the risk sharing mechanism, in Panel C and D we

examine the equilibrium consumption changes for the individual agents during a small

or big disaster. Since agent A assigns a low probability to the small disaster, she

insures agent B against this type of disasters. As a result, her consumption loss in

such a disaster exceeds that of the aggregate endowment (-30%), and it increases with

the wealth share of agent B. When B has almost all the wealth in the economy, agent

A sells so much small disaster insurance to B that her own consumption can fall by as

much as 82% when such a disaster occurs. As a result, agent B is able to reduce her

risk exposure to small disasters significantly. In fact, her consumption actually jumps

up in a small disaster when she owns less than 75% of total wealth, sometimes by over

100% (when her wealth share is small).

The opposite is true in Panel D. As agent B insures A against big disasters, she

experiences bigger consumption losses in such a disaster than the aggregate endowment

(-40%). The equilibrium consumption changes of the two agents are less extreme

compared to the case of small disasters, which is due to two reasons. First, the relative

disagreement on big disasters is smaller than on small disasters. Second, the insurance

against larger disasters is more expensive, so that agent A’s ability to purchase disaster

insurance is more constrained by her wealth.

4.3 Calibrating Disagreement: Is the US Special?

Having considered a series of special examples of heterogeneous beliefs, we now extend

the analysis to a less stylized model of beliefs on disasters. We calibrate the beliefs of

the two types of agents is as follows. Agent A believes that the US is no different from

the rest of the world in its disaster risk exposure. Hence her beliefs are calibrated using
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cross-country consumption data. Agent B, on the other hand, believes that the US is

special. She forms her beliefs on disaster risk using only the US consumption data.

An important contribution of Barro (2006) is to provide detailed accounts of the

major consumption declines cross 35 countries in the twentieth century. Rather than

directly using the empirical distribution from Barro (2006), we estimate a truncated

Gamma distribution for the log jump size from Barro’s data using maximum likelihood

(MLE).15 Our estimation is based on the assumption that all the disasters in the sample

were independent, and that the consumption declines occurred instantly.16 We also

bound the jump size between −5% and −75%. In comparison, the smallest and largest

declines in per capital GDP in Barro’s sample are 15% and 64%, respectively. The

disaster intensity under A’s beliefs is still λA = 1.7%. The remaining parameters are:

the mean growth rate and volatility of consumption without a disaster, ḡ = 2.5% and

σc = 2%, which are consistent with the US consumption data post WWII.

As for agent B, we assume that she agrees with the values of ḡ and σc, but we

estimate the truncated Gamma distribution of disaster size using MLE from annual

per-capita consumption data in the US 1890-2008.17 Over the sample of 119 years, there

are three years where consumption falls by over 5%. Thus, we set λB = 3/119 = 2.5%.

Alternatively, we can also jointly estimate λB and the jump size distribution.

Panel A of Figure 8 plots the probability density functions of the log jump size

distributions for the two agents, which are very different from each other. The solid

line is the distribution fitted to the international data on disasters. The average log drop

is 0.36, which is equivalent to 30% drop in the level of consumption. In the US data,

the average drop in log consumption is only 0.075, or 7.3% in level. In addition, agent

15The truncated Gamma distribution has PDF f(d; α, β|dmin, dmax) =
f(d; α, β)/ (F (dmax; α, β) − F (dmin; α, β)), where f(x; α, β) and F (x; α, β) are the PDF and
CDF of the standard Gamma distribution with shape parameter α and scale parameter β.

16These assumptions are debatable. For example, many of the major declines cross European
countries are in WWI and WWII. Moreover, many of the declines spanned several years. See Barro
and Ursúa (2008), Donaldson and Mehra (2008), and Constantinides (2008) for more discussions on
the measurement of historical disasters.

17The data is taken from Robert Shiller’s web site http://www.econ.yale.edu/∼shiller/data.htm
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Figure 8: Calibrated Disagreements: International vs US Experiences. Panel
A plots the truncated Gamma distribution of disaster size for the two agents. Panel
B plots the equilibrium consumption drops for the two agents given the size of the
disaster. Panel C and D plot the equity premium and jump-risk premium under A’s
beliefs.

A’s distribution has a much fatter left tail than B. Thus, while A assigns significantly

higher probabilities than B to large disasters (where consumption drops by 15% or

more), agent B assigns more probabilities to small disasters, especially those ranging

from 5 to 12%. In fact, agent B’s beliefs are close to the calibration adopted by

Longstaff and Piazzesi (2004), who assume that the jump in aggregate consumption

during a disaster is 10%.

The differences in beliefs lead the two agents to insure each other against the types

of disasters they fear more, and the trading can be implemented using a continuum of

disaster insurance contracts with coverage specific to the various disaster sizes. Panel

B plots drops in the equilibrium consumption (level) for the two agents when disasters

33



of different sizes occur, assuming that agent B owns 10% of total wealth. The graph

shows that through disaster insurances, agent A is able to reduce her consumption loss

in large disasters (comparing the solid line to the dotted line). For example, her own

consumption will only fall by 24% in a disaster where aggregate consumption falls by

40%, a sizable reduction especially considering the small amount of wealth that agent

B has. At the same time, she also provides insurances to B on smaller disasters, which

increases her consumption losses when such disasters strike. Agent B’s consumption

changes are close to a mirror image of agent A’s. However, the changes are magnified

both for large and small disasters due to her small wealth share.

Panel C shows the by-now familiar exponential drop in the equity premium as the

wealth share of agent B increases. The equity premium is 4.4% when all the wealth is

owned by the agents who form their beliefs about disasters based on international data,

but drops to 2.0% when just 10% of total wealth is allocated to the agents who form

their beliefs using only the US data. The main reason for the lower equity premium

is again due to the decrease of the jump-risk premium (Panel D), which falls from 6.5

to 4.0 when agent B’s wealth share rises to 10%. This effect alone drives the equity

premium down to 2.4%. Notice that the jump-risk premium is no longer monotonic in

the wealth share of agent B. This is because when agent A has little wealth, she would

be betting against small disasters so aggressively that the big losses for her during

small disasters can cause the jump-risk premium to rise again.

5 Time-varying Disagreement

The results in the previous section not only demonstrate the large impact that risk

sharing can have on the equity premium, but also highlight the conditions under which

disaster risk matters the most. For example, the equity premium becomes higher and

significantly more sensitive to fluctuations in disaster risk λt when the pessimistic agent

has most of the wealth. Another way to reduce risk sharing is by having the beliefs of
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the agents converge, which has been ruled out in our model. In reality, investors’ beliefs

could converge or diverge. In particular, if there is information signaling that the risk

of disasters is rising in the economy, it is possible that the optimists will update their

beliefs more than the pessimists, so that the difference in beliefs becomes smaller.

In this section, we extend the model from Section 3.1 to capture the effect of

time variation in disagreement. We assume the economy can be in one of two states,

st = L, H . In state L, the two agents’ perceived disaster intensity are λA
L and λB

L ,

while in state H , they become λA
H and λB

H . The transitions between the two states are

governed by a continuous-time Markov chain, with the generator matrix

Λ =





−δL δL

δH −δH



 .

For example, the probability of the economy moving from state L to state H over

a short period ∆t will be approximately δL∆t. We assume that the agents agree on

the transition probabilities of the Markov chain. Moreover, they agree on the size of

disasters (which is constant) as well as the Brownian risk, and have the same preference

parameters as in Section 3.1.

The Radon-Nikodym derivative ηt now reflects the change of state st,

ηt = e
P

i∈{L,H}(∆aiN i
t−λA

i T i
t (eai−1)), (23)

where

∆ai = log

(

λB
i

λA
i

)

, (24)

T i
t =

∫ t

0

1{sτ=i}dτ, (25)

and N i
t counts the number of disasters that have occurred up to time t while the state

is st = i.
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We solve the planner’s problem in a similar way as before. Using the results on

the occupation time of continuous-time Markov chains (see e.g., Darroch and Mor-

ris (1968)), we derive the price of aggregate consumption claim and the equity risk

premium in closed form. The details of the derivation are in Appendix G.

We first analyze the case where beliefs converge (diverge) at times when disaster

risk rises (drops). In state L we assume the risk of disasters is low, and the amount of

disagreement between the two agents is large. The actual beliefs are λA
L = 1.7% and

λB
L = 0.1%, the same as in Section 3.1. In state H , the risk of disasters is higher, while

the relative differences in beliefs between agent A and B are smaller. Specifically, we

assume that λA
H = 2.5% and λB

H = 1.25%, so that agent A still views disasters twice as

likely as agent B does. For the Markov chain, we set δL = 0.1 and δH = 0.5, so that

the high-disaster-risk state is more transitory.

The results are quite intuitive. When there is a 10% probability of moving into a

high-disaster-risk state within a year, there is almost no effect on the equity premium in

state L. When the economy is in state H , the equity premium rises, especially at times

when agent B has a nontrivial share of total wealth. For example, when the economy

moves from state L to H , the equity premium agent A demands rises from 4.7% to

7% when B has no wealth. If agent B has 20% of total wealth, the equity premium

increases from 1.7% to 5.2%. The rise in premium is in part due to higher disaster

risk, as λA rises from 1.7% to 2.5%. Another reason is that there is less disagreement

between the two agents in state H , as λA
H/λB

H < λA
L/λB

L . Hence, there is less risk sharing

between the two agents, and the pessimistic agent will have to bear bigger losses in

consumption in a disaster.

Next, we analyze the case where beliefs diverge when disaster risk rises. In this

exercise, we assume that there is no disagreement in state L, λA
L = λB

L = 1.7%. The

beliefs in state H satisfy (1 − wB)λA
H + wBλB

H = 1.7%, where wB is the wealth share

of agent B. Thus, as we increase the disagreement about disaster intensity between

the two agents in state H , the wealth-weighted average belief remains the same. We
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Figure 9: Time-varying Disagreement. Panel A plots the equity premium in the
case where beliefs converge in the state with higher disaster risk. Panel B plots the
premium as a function of the amount of disagreement for given wealth distribution.

measure the the amount of disagreement with the standard deviation in beliefs,

Disagreement Measure =
√

(1 − wB)(λA
H − 1.7%)2 + wB(λB

H − 1.7%)2.

Again, we set the transition probabilities of the Markov chain to be δL = 0.1 and

δH = 0.5.

Figure 9 shows, holding the average belief constant, the premium can fall substan-

tially as the amount of disagreement increases. As a benchmark, the dash-dotted line

gives the equity premium (under agent A’s beliefs) in state L. Since the agents have the

same beliefs in that state, the premium remains at 4.7% as the amount of disagreement

increases in state H . The solid line plots the equity premium in state H when the two

agents have equal share of total wealth. The premium falls from 4.7% to 0.9% when

λB
H drops from 1.7% to 0.1% (where the disagreement measure is 0.016). When agent
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B has just 20% of total wealth, the premium falls by a smaller amount to 2.9% (when

the disagreement measure reaches 0.008). An interesting implication of this graph is

that the premium can actually be decreasing while the average belief of disaster risk

increases, provided that there is enough increase in the amount of disagreement at the

same time.

In summary, besides the variation in disaster risk and wealth distribution across

agents with heterogeneous beliefs, time variation in the amount of disagreement across

agents can be another importance source of fluctuations in disaster risk premium.

6 Concluding Remarks

We demonstrate the equilibrium effects of reasonable disagreement about disasters on

risk premia and trading activities. When agents disagree about disaster risk, they will

insure each other against the types of disasters they fear most. Because of the highly

nonlinear effect of disaster size on risk premia, the risk sharing provided by a small

amount of agents with heterogeneous beliefs can significantly attenuate the effect of

disasters on the equity premium. The model also has several important implications

for the dynamics of asset prices.

We should emphasize that our results do not necessarily diminish the importance

of disaster risk for the equity premium. The effectiveness of risk sharing hinges on

complete markets. The amount of disaster insurance being traded in our model, while

still within the limit imposed by the budget constraint, can be difficult to implement

in practice due to moral hazard. Even exchange trading and daily mark-to-market

will not eliminate the counterparty risks associated with these contracts without large

collateral constraints, because disasters will lead to sudden large changes in prices.

From this perspective, our results highlight the importance of incorporating market

incompleteness in disaster risk models. It would be very useful to study what happens

to asset prices when we limit the risk sharing among investors with heterogeneous
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beliefs about disasters, perhaps by imposing transaction costs, borrowing constraints,

and short-sales constraints18 as in Heaton and Lucas (1996).

Another possible way to reduce the effects of heterogeneous beliefs is through am-

biguity aversion. As Hansen (2007) and Hansen and Sargent (2009) show, if investors

are ambiguity averse, they deal with model/parameter uncertainty by slanting their

beliefs pessimistically. In the case with disaster risk, confronting investors with the

same model uncertainty facing econometricians could lead them to behave as if they

believe the disaster probabilities are high, even though their actual priors might sug-

gest otherwise. This mechanism could reduce the heterogeneity of the distorted beliefs

among agents, thus limiting the effects of risk sharing. We leave these implications to

future research.

18Since the primary risk in the aggregate endowment claim is disaster risk, shorting the stock might
serve as a close substitute to buying disaster insurance.
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Appendix

A Securities’ prices and portfolio positions

In this appendix we compute the prices of the claim on aggregate endowment (stock),
the claim on individual agents’ consumption streams (agents’ personal wealth), disaster
insurance, and the equilibrium portfolio positions. We begin with the general setting of
time-varying disaster intensity. To concentrate on the effects of heterogeneous beliefs,
we assume that the two agents have the same relative risk aversion γ.

A.1 Aggregate and individual consumption claim prices: gen-

eral setting

The price of the aggregate endowment claim is

Pt =

∫ ∞

0

EPA
t

[

MA
t+T

MA
t

Ct+T

]

dT , (A.1)

where MA
t is the stochastic discount factor

MA
t = e−ρtC−γ

t

(

1 + (ζ0e
log ηt)

1
γ

)γ

. (A.2)

This price can be viewed as a portfolio of zero coupon aggregate consumption claims

MA
t P t+T

t = EPA
t [MA

t+T Ct+T ]

= e−ρ(t+T )eT [ḡ(1−γ)+ 1
2
σ2

c (1−γ)2]e(1−γ)ct × EPA
t

[

e(1−γ)cd
t+T

(

1 + (ζ0e
log ηt+T )

1
γ

)γ]

.

Under our assumption of integer γ, the final term will be a sum of expectations of
the form

EPA
t [e(1−γ)cd

t+T +βi log ηt+T )] = eAi(T )+(1−γ)cd
t +βi log ηt+Bi(T )λt , (A.3)

where (Ai, Bi) satisfy a simplified version of the familiar Riccati differential equations

Ḃi = −
λ̄B

λ̄A
βi − κBi +

σ2
λ

2
B2

i + (φ(〈1 − γ, βi〉) − 1) , B0(0) = 0 , (A.4a)

Ȧi = κθBi , Ai(0) = 0 , (A.4b)

where φ is the moment generating function of jumps in 〈cd
t , at〉.

It follows that price/consumption ratio of the zero-coupon equity varies only with
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the stochastic weight ζ̃t and the disaster intensity:

P t+T
t = Cth

T (λt, ζ̃t) . (A.5)

Next, agent A’s wealth P A
t =

∫∞

0
EPA

t

[

MA
t+T

MA
t

CA
t+T

]

dT at time t is a portfolio of her

zero coupon consumption claims

MA
t P A,t+T

t = EPA
t [MA

t+T CA
t+T ]

= e−ρ(t+T )eT [ḡ(1−γ)+ 1
2
σ2

c (1−γ)2]e(1−γ)ct × EPA
t

[

e(1−γ)cd
t+T

(

1 + (ζ0e
log ηt+T )

1
γ

)γ−1
]

.

We can compute agent A’s wealth process by making a similar binomial expansion as
in the case of Pt, and then computing the expectation concerning the same affine jump
diffusion process. Finally, the wealth process of agent B is simply P B

t = Pt − P A
t .

A.2 Special case: constant disaster risk

Closed form expressions can now be obtained in the special case of constant disaster
intensity and constant disaster size. Let’s denote ζ̃t ≡ ζ0e

log ηt . Again by expanding
the binomial for the cases with integer γ,

EPA
t

[

MA
t+T Ct+T

]

= e−ρ(t+T )EPA
t

[(

1 + (ζ̃t+T )1/γ
)γ

C1−γ
t+T

]

= e−ρ(t+T )C1−γ
t

γ
∑

k=0

(

γ
k

)

EPA
t

[

(ζ̃t+T )k/γC1−γ
t+T

C1−γ
t

]

.

Plugging in the explicit expressions for aggregate consumption Ct, the stochastic dis-
count factor MA

t , and performing the simple affine jump diffusion expectation we obtain

P t+T
t = Ct

γ
∑

k=0

αk,te
−βkT , (A.6)

with

αk,t ≡

(

γ
k

)

(ζ̃t)
k/γ

(1 + (ζ̃t)1/γ)γ
, (A.7a)

βk ≡ ρ + (γ − 1)ḡ −
1

2
σ2

c (γ − 1)2 − λ̄(e(γ−1)d̄+ k∆a
γ − 1) +

λ̄k

γ
(e∆a − 1) ,(A.7b)

where ∆a is given in (5).

Finally, integrating over time T yields the explicit price of aggregate endowment
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claim

Pt =

∫ ∞

0

P t+T
t dT = Ct

γ
∑

k=0

αk,t

βk
. (A.8)

The restriction βA
k > 0 is needed to ensure finite value for Pt. We will come back to

this type of restriction below.

By identical approach, we obtain the price of agent A’s consumption claim (i.e. her
wealth process)

P A
t =

∫ ∞

0

P A,t+T
t dT = Ct

γ−1
∑

k=0

αA
k,t

βk
, (A.9)

where βk remains the same as above and

αA
k,t ≡

(

γ − 1
k

)

(ζ̃t)
k/γ

(1 + (ζ̃t)1/γ)γ
. (A.10)

Price of disaster insurance

Let P DI
t,t+T denotes the price of disaster insurance which pays $1 at maturity time t+T

if there was at least one disaster taking place in the time interval (t, t + T ). In the
main text we consider disaster insurance P DI

t of maturity T = 1 in particular.

P DI
t,t+T = EPA

t

[

MA
t+T

MA
t

1(Nt+T >Nt)

]

=
e−ρT

(CA
t )−γ

EPA
t

[

(CA
T )−γ1(Nt+T >Nt)

]

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
EPA

t [eγd̄∆NT (1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ1(∆NT >0)]

=
e(−ρ−γḡ+ 1

2
γ2σ2

c )T

(1 + (ζ̃t)1/γ)γ
{EPA

t [eγd̄∆NT (1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ]

− (1 + (ζ̃t)
1/γe−λ̄T (e∆a−1)/γ)γPA(∆NT = 0)} ,

where ∆NT ≡ Nt+T −Nt is number of disasters taking place in [t, t+T ], and PA(∆NT =
0) = e−λ̄T is the probability that no such disaster did happen. Again by expanding the
binomial (1 + (ζ̃t+T )1/γe(∆a∆NT −λ̄T (e∆a−1))/γ)γ, and then computing the expectation of
each resulting term, we obtain

P DI
t,t+T =

aT

(1 + (ζ̃t)1/γ)γ
{[

γ
∑

k=0

bk,T (ζ̃t)
k/γ] − e−λ̄T (1 + (ζ̃t)

1/γe−λ̄T (e∆a−1)/γ)γ} , (A.11)
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where

aT = e(−ρ−γḡ+ 1
2
γ2σ2

c )T , (A.12a)

bk,T =

(

γ
k

)

e−λ̄kT (e∆a−1)/γeλ̄T [e
(γd+∆ak

γ )
−1] . (A.12b)

B Equilibrium portfolio positions

In the current case of constant jump size with two dimensions of uncertainties (Brown-
ian motion and disaster jump), the market is complete when agents are allowed to trade
contingent claims on aggregate consumption (stock) Pt, money market account RFBt

and disaster insurance P DI
t . We can use generalized Ito lemma on jump-diffusion (see,

for example, Protter (2003)) to determine the price processes for each asset. Portfolio
positions are then determined by equating the exposures to the Brownian and jump
risks of each agents consumption claim to a portfolio of the aggregate claim and disaster
insurance, which are then financed with the risk free bond.

C Boundedness of prices

This appendix discusses the boundedness of securities prices in general heterogeneous-
agent economy. As claimed in the main text, as long as agents have different but
equivalent beliefs, necessary and sufficient condition for finite price of a security in
heterogeneous-agent economy is that this price be finite under each agent’s beliefs in
a single-agent economy. This is easy to see since

max(fγ
A,0, f

γ
B,0ηt) ≤ MA

t ≤ (2fγ
A,0) + (2fγ

B,0)ηt (C.1)

Conditions for the finiteness of prices in the single agent economy can be found by
studying the fixed points of the equations (A.4a). Setting dB/dt = 0, we find the fixed
point of this differential equation is

B∗ =
κ −

√

κ2 + 2σ2
λ(1 − φPi(1 − γi))

σ2
λ

, (C.2)

provided that (13a) holds. Otherwise there is no fixed point and B → ∞ implying
infinite prices. Furthermore, it is easily seen that the initial condition B(0) = 0 is in
the domain of attraction. For equity price to be finite, it is easy to see that the limiting
exponent in (A.3) must be negative, or

−ρ + (1 − γi)ḡ +
1

2
(γi − 1)2σ2

c + κλ̄iB∗ < 0 , (C.3)
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for both i = 1, 2. This is (13b) after we plug in the above expression for B∗.

D Proofs from Section 3.2

In this section, we provide the proofs for (17) and (20). It is useful to rewrite expression
for the consumption fractions in terms of the initial consumption sharing rule (fA

0 , fB
0 )

and the Radon-Nikodym derivative (ηt). In these terms,

fA
t =

fA
0

fA
0 + fB

0 η
1
γ

t

,

MA
t /MA

0 =

(

fA
0 + fB

0 η
1
γ

t

)γ

C−γ
t /C−γ

0 ,

λQ
t = λAe−γd

(

fA
t + fB

t

(

λB

λA

)
1
γ

)γ

.

Additionally, for ease of notation, we set N0 = 0 and C0 = 1 which results in the
expressions being fractions of the initial endowment.

Taking derivatives, we find

∂λQ

∂fA
0

= λAe−γdγ

(

fA
0 + fB

0

(

λB

λA

)
1
γ

)γ−1(

1 −

(

λB

λA

)
1
γ

)

.

Setting fA
0 = 1 and taking the limit λB → 0+, we obtain (17).

In order to compute the derivative of the wealth fraction of Agent B with respect
to fB

0 , we first compute the derivative of the value of his claim, call it P B, with respect
to fB

0 . Since

P B =

∫ ∞

0

EPA

0 [(fA
0 + fB

0 η
1
γ

t )γ−1fB
0 η

1
γ

t C1−γ
t ]e−ρtdt,

we have that

∂P B

∂fA
0

=

∫ ∞

0

(γ − 1)EPA

0 [(fA
0 + fB

0 η
1
γ

t )γ−2(1 − η
1/γ
t )fB

0 η
1
γ

t C1−γ
t ]e−ρtdt

−

∫ ∞

0

EPA

0 [(fA
0 + fB

0 η
1
γ

t )γ−1η
1
γ

t C1−γ
t ]e−ρtdt.
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From which it follows

∂P B

∂fA
0

∣

∣

∣

∣

fA
0 =1

= −

∫ ∞

0

EPA

0 [η
1/γ
t C1−γ

t ]e−ρtdt

= −
1

ρ + (γ − 1)ḡ − 1
2
σ2

c (1 − γ)2 + 1
γ
(λB − λA) − λA(e

(1−γ)d̄+ 1
γ

log
“

λB
λA

”

− 1)
.

And so

∂P B

∂fA
0

∣

∣

∣

∣

fA
0 =1

→ −
1

ρ + (γ − 1)ḡ − 1
2
σ2

c (1 − γ)2 + γ−1
γ

λA

as λB → 0+.

Now, it is easy to see that the derivative of the value of the claim to the entire endow-
ment is bounded and since PB = 0 when fA

0 = 1, the derivative ∂wB
0 /∂fA

0 is simply
∂P B

∂fA
0

divided by the value of the claim to the entire endowment. This proves (20).

E General valuation of disaster states

In Section 3.2, we demonstrated that within a simple calibration a large fraction of the
the value of the endowment claim arises from the disaster states, even though these
states are very rare. Here we demonstrate that in fact this property is a feature of a
broad class of models. Specifically, suppose that the model is such that the dynamics of
aggregate consumption under the actual measure, as well as the risk-neutral measure,
follow the dynamics in 1 and that the risk-free rate is constant. This is true in our model
with CRRA preferences and remains true with Epstein-Zin preferences (cf. Wachter
(2009).) In particular, this reduced form setting removes the link between risk aversion
and elasticity of intertemporal substitution.

Within this setting, let ḡQ denote the growth rate of consumption under the risk
neutral measure. The fractional value of consumption in the non-disaster states is then

∫∞

0
EQ

0

[

e−rtCt × 1{Nt=0}

]

∫∞

0
EQ

0 [e−rtCt]
=

r − ḡQ − .5σ2
c − λQ(ed̄ − 1)

r − ḡQ − .5σ2
c + λQ

The difference between the numerator and denominator is λQed̄. In order for disasters
to account for a substantial risk premium, this term should be sizeable (it is 6% in the
example of Section 3.1.) Moreover, it is reasonable to expect the price-consumption
ratio (the inverse of the denominator) should not be too small. Setting these to 4%
and 10 gives a fraction 4/14 due to disaster states. Setting them to 6% and 20 give a
fraction of 6/11 to the disaster states. In summary, under these very general reduced
form assumptions on the endowment and preferences along with the assumptions that
(i) disasters account for a significant risk premium and (ii) the price-consumption ratio
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Figure 10: The effects of heterogeneous risk aversion. This graph plots the
equity premium when the two agents have different risk aversion: γA = 4, γB = 2.
Their beliefs about disasters are specified in the legend. Disaster size is constant.

is not too small, the fraction of wealth due to non-disaster states is significant.19

F Heterogeneous Risk Aversion

In this section, we compare our results to models of heterogeneous preferences. Intu-
itively, besides heterogeneous beliefs, heterogeneity in risk aversion should also be able
to induce risk sharing among agents and reduce the equity premium in equilibrium.
Recall that the jump-risk premium is λQ

t /λi
t = e−γi∆ci

t, which is not only sensitive to
changes in individual consumption loss ∆ci

t, but also to the relative risk aversion γi.
Thus, we expect that heterogeneous risk aversion can have similar effects on the equity
premium as heterogeneous beliefs about disasters.

To check this intuition, we consider the following special case of the model. Agent
A is the same as in the example of Section 3.1: λA = 1.7%, γA = 4. Agent B has
identical beliefs about disasters but is less risk averse: λB = 1.7%, γB < γA. Figure
10 plots the equity premium as a function of agent B’s wealth share for γB = 2. The
equity premium does decline as agent B’s wealth share rises. However, the decline is
slow and closer to being linear. In order for the equity premium to fall below 2%,

19In the CRRA version of this equation, r = ρ + γḡ − .5σ2

cγ2 − (λQ − λP). This causes increasing
λP (and thus λQ) to increase the price-consumption ratio. In the general formula if we fix r and
increase λQ independently this decreases P/C so clearly the generic form dont have EIS-risk aversion
link problems.
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the wealth share of the less risk-averse agent needs to rise to 60%. The decline in the
equity premium becomes faster as we further reduce the risk aversion of agent B (not
reported here), but the non-linearity is still less pronounced than in the cases with
heterogeneous beliefs.

Combining heterogeneous beliefs about disasters and different risk aversion can
amplify risk sharing and accelerate the decline in the equity premium. As shown in the
figure, if agent B believes disasters are less likely than does agent A, and she happens
to be less risk averse, the equity premium falls faster. Consider the case where agent B
believes disasters only occur once every hundred years (λB = 1.0%). With 20% of total
wealth, she drives the equity premium down by almost a half to 2.5%. If λB = 0.1%,
the decline in the equity premium will be even more dramatic.

G Time-varying Disagreement

The model solution is generally analogous to the case without Markov regime-switching,
so we sketch the major differences between the models.

The key expectations to compute are of the form

EPA

0 [eaNL
t +bNH

t +cT L
t +dT H

t ], (G.1)

where N i
t is the number of disasters that occur in state i and T i

t is the occupation time
in state i defined in (25). These expectations can be computed by first conditioning on
the path of the Markov state and using the conditional independence of the Poisson
process in each state:

EPA

0 [eaLNL
t +bHNH

t +cT L
t +dT H

t ] = EPA

0

[

EPA

0 [eaLNL
t +bHNH

t +cT L
t +dT H

t |{Sτ}
t
τ=0]

]

(G.2)

= EPA

0

[

e(λA
L (ea−1)+c)T L+(λA

H(eb−1)+d)T H
]

(G.3)

This reduces the problem to computing the joint moment-generating function of the
occupation times (TL

t , TH
t ). Darroch and Morris (1968) show that this expectation

reduces to

EPA

0 [eαT L
t +βT H

t ] = π′
0 exp (At)~1, where A = Λ +

[

α 0
0 β

]

, (G.4)

andπ0 is either (1, 0)′ or (0, 1)′, as the initial state is L or H .

The price of consumption claims involve sums of integrals of such expectations.
These integral can be computed in closed form by diagonalizing A to deliver closed
form expressions for the prices of interest.
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