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1 Introduction

In this paper, we focus on solving dynamic economic models that have a
large �nite number of heterogeneous agents (consumers, producers, sectors,
countries, members of a group, etc.). Some of the heterogeneity can be in
the form of random variables. Models of this kind arise in many �elds of eco-
nomics (macroeconomics, game theory, industrial organization, international
trade among others). We consider a typical example which is a multi-country
stochastic growth model with a state space composed of capital stocks and
technology levels of all heterogeneous countries. Computing a numerical
solution to such a model can be costly. In particular, the cost grows expo-
nentially (curse of dimensionality) if an algorithm relies on a tensor-product
rule either in constructing a grid of points used for solution approximation
or in constructing nodes used for numerical integration; for example, this is
the case of the Galerkin projection method studied in Judd (1992).
We present a simple projection method that can deliver su�ciently accu-

rate solutions to models with hundreds of heterogeneous agents on a standard
desktop computer. A distinctive feature of our method is that it operates on
the ergodic set realized in equilibrium. Making the domain endogenous to
the model allows us to avoid costs associated with �nding a solution in areas
of state space that are never visited in equilibrium. In Figure 1a, we illustrate
the advantage of this strategy using an example of the standard one-country
neoclassical growth model with a closed-form solution (see Section 4 for a
description of this model). Standard projection methods compute a solution
in a square area, while one typically needs a solution in an ellipsoid area (the
ergodic set).1 The higher is the dimensionality of the problem, the larger is
the gain from focusing on the ergodic set.2

To construct a grid of points representing the ergodic set of the model in

1Having a control over the domain on which a problem is solved is particularly useful
for applications in which o�-equilibrium behavior is of interest, e.g., dynamic games or
developing economies. In such applications, our approach allows us to extend the domain
to include other, non-ergodic-set areas of state space which are relevant for a given appli-
cation. For example, if an economy starts with a low initial capital stock, we can compute
a solution both in the ergodic set and below the steady state (but not above the steady
state).

2The ratio of the volume of a hypersphere (representing the ergodic set) to that of a
hypercube (representing standard exogenous grids that contain the ergodic set) declines
rapidly with dimension. For example, with 2 state variables, this ratio is equal to 0�79,
whereas with 100 state variables, it is equal to 2 · 10�70.
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question, we proceed in three steps: (i) guess a decision rule to the model
and simulate a time series solution; (ii) distinguish clusters on the simulated
series; (iii) compute the centers of the constructed clusters and use them as a
grid of points for projections. To distinguish clusters, we use either hierarchal
or K-means algorithms from the �eld of cluster analysis; for a review of the
literature on data clustering see, e.g., Everitt, Landau and Leese (2001).
With the help of clustering algorithms, we are able to replace a large number
of closely-located simulated points with a given (small) number of uniformly
distributed "representative" points. The clustering algorithms we use are
relatively inexpensive even in high-dimensional applications. For example, it
takes us about a minute to construct a grid of 300 clusters using a panel of
10000 observations for an economy with 200 heterogeneous agents (400 state
variables).
We design our cluster-grid projection method to make it feasible for high-

dimensional applications: First, we parameterize the decision rules using
additively-separable polynomial functions which enable us to implement the
approximation step with fast and numerically stable linear regression meth-
ods. Second, we evaluate the conditional expectations using low-cost numer-
ical integration formulas that are particularly suitable for high-dimensional
applications. Third, we solve for the polynomial coe�cients using a �xed-
point iteration procedure whose cost does not considerably increase with the
dimensionality. Finally, we propose a cheap way of initializing the cluster-
grid method, which is to apply the cluster-grid method itself to an arbitrary
set of points and to use the obtained solution for constructing the ergodic
set.3

Nevertheless, the above design does not preclude the cost of the cluster-
grid method from growing with dimension: First, the approximation step
becomes more expensive (because the number of polynomial terms in the
approximating polynomial function increases and so does the number of grid
points necessary for identifying the polynomial coe�cients), and second, the
integration step becomes more expensive (because the number of nodes for
computing the conditional expectations in each grid point increases). To
make our method cost-e�cient, we identify the combinations of the approxi-
mation and integration strategies that match each other in terms of the over-

3An alternative way of initializing the cluster-grid method is to infer the ergodic set from
a solution delivered by other methods such as log-linearization and stochastic simulation
methods.
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all accuracy of solutions (we consider approximating polynomial functions of
di�erent degrees, and we explore a variety of alternative integration meth-
ods such as the Gauss-Hermite quadrature tensor-product rule, non-product
monomial rules and Monte Carlo simulation).
We �rst analyze the role of the approximation and integration strategies in

the method’s accuracy in the context of a one-country model. (As a measure
of accuracy, we use unit-free Euler equation errors in the ergodic set). We
�nd that accurate solutions require both a su�ciently �exible approximating
function and a su�ciently accurate integration method. If an integration rule
is not su�ciently accurate, the maximum accuracy is achieved under some
low-degree polynomial, and similarly, if an approximating function is not
su�ciently �exible, a more accurate integration rule does not help increase
accuracy. In particular, in our benchmark model, we have the following re-
sults: Under an accurate ten-node Gauss-Hermite integration rule, increasing
a degree of the approximating polynomial from one to �ve decreases the er-
rors from a size of 10�3 to that of 10�8; under a low accurate Monte Carlo
integration method, the minimum errors of size 10�4 are achieved under the
second-degree polynomial; and all the integration methods considered lead to
virtually the same errors of size 10�3 under a rigid �rst-degree polynomial.
We next study the version of the model with � countries. Under � = 2,

we approximate the decision rules by polynomials of the �rst, second and
third degrees; under 4 � � � 40, we consider polynomials of the �rst and
second degrees; and �nally, under � � 40, we use polynomials of the �rst
degree only. We consider �ve alternative integration strategies such as the
Gauss-Hermite product rule with 3� and 2� nodes, the monomial formulas
with 2�2+1 and 2� nodes and the Gauss-Hermite rule with one node.4 All
these integration strategies are feasible for the two-country model with the
polynomial approximating functions up to degree 3. Under the second-degree
polynomial, the above mentioned �ve integration strategies are feasible for
models with up to � = 6, � = 8, � = 12, � = 20 and � = 40 countries,
respectively. Under the �rst-degree polynomial, monomial formulas with 2�
nodes and the Gauss-Hermite rule with one node are feasible for the models
with up to � = 100 and � = 200 countries, respectively. The running time
ranges from 30 seconds to 24 hours depending on the number of countries, as

4We do not consider the Monte Carlo integration approach in the multi-country case
because it is not competitive in the context of our projection method. Under polynomials
of degrees higher than one, it typically restricts the overall accuracy of solutions even with
a long series of 10000 observations.
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well as on the speci�c approximation and integration strategies considered.
The solutions are su�ciently accurate: under the �rst-, second- and third-
degree polynomial approximations and accurate integration methods, the
maximum Euler equation errors in the ergodic set are typically smaller than
0�1%, 0�01% and 0�001%, respectively.
For the multi-country models, we observe the same regularities as for the

one-country model. Our key �nding is that under low-degree polynomials,
a speci�c integration method used plays only a minor role in the overall
accuracy of solutions. Speci�cally, under the �rst-degree polynomial approx-
imation, all the integration methods considered lead to virtually the same
accuracy. Under the second-degree polynomials, the Gauss-Hermite prod-
uct rule with 3� and 2� nodes and the two monomial formulas considered
lead to Euler equation errors which are identical up to the fourth digit, and
the one-node Gauss-Hermite rule increases the Euler equations errors only
by 5 � 10% relative to more accurate integration formulas (an acceptable
cost given that this formula allows us to advance from the 20-country to 40-
country models). These regularities are robust to variations in the model’s
parameters such as the volatility and persistence of shocks and the degrees
of agents’ risk-aversion. Finally, we �nd that both accuracy and numerical
stability of the cluster-grid method increase if the number of grid points is
not exactly equal to the number of terms in the approximating polynomial
function (this case is referred to as collocation) but is somewhat larger.
The rest of the paper is as follows: In Section 2, we discuss a relation

of our numerical method to the literature. In Section 3, we describe the
construction of our endogenous cluster grid. In Section 4, we formulate
the model. In Section 5, we design a projection method. In Section 6,
we discuss a variety of computational strategies that help us reduce cost in
high-dimensional applications. In Section 7, we describe the methodology
of our numerical study and present the numerical results. In Section 8, we
provide �nal comments.

2 Relation to the literature

The cluster-grid method, developed in this paper, is similar to stochastic
simulation methods of Fair and Taylor (1984), Den Haan and Marcet (1990),
Rust (1996), Pakes and McGuire (2001), and Judd, Maliar and Maliar (2009)
in that it computes a solution on the ergodic set. However, we di�er from the
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above literature in two respects: �rst, we use a cluster-grid representation of
the ergodic set, which is more e�cient than a set of original closely-located
simulated points, and second, we use numerical integration methods that are
unrelated to the estimated density function and are more accurate than the
Monte Carlo integration method.
Furthermore, our algorithm is similar to Smolyak’s sparse grid method,

developed in Krueger and Kubler (2004), in that both methods use non-
product rules for ameliorating costs in high-dimensional applications. How-
ever, we di�er from Smolyak’s method in placement of grid points: our grid
is endogenous while Smolyak’s grid is exogenous. If a polynomial approxima-
tion and an integration formula are the same in the two methods, the cluster-
grid method would typically have an advantage (disadvantage) in accuracy
over Smolyak’s method inside (outside) the ergodic set. This is because we
�t a polynomial directly in the ergodic set, while Smolyak’s algorithm �ts a
polynomial in a larger hypercube domain and faces a trade-o� between the
�t inside and outside the ergodic set.
Finally, our projection method is comparable to perturbation methods

in its ability to solve models with a large number of agents.5 However, our
solutions are aimed to be accurate on the ergodic set, whereas solutions
produced by perturbation methods are accurate in a neighborhood of steady
state, which is much smaller than the ergodic set. As a consequence, accuracy
of our global solutions does not decline rapidly away from steady state as does
accuracy of local solutions obtained by perturbation methods.6

Large-scale heterogeneous-agent models are studied, for example, using
perturbation and projection methods in Gaspar and Judd (1997) and using
a stochastic simulation version of the parameterized expectations algorithm
in Den Haan (1996).7 A distinctive feature of the present paper is that we
focus on much higher dimensions than those considered in the literature,
namely, we compute global solutions to models with up to 400 state vari-

5Perturbation methods are studied in, e.g., Judd and Guu (1993), Gaspar and Judd
(1997), Collard and Juillard (2001), and Kim, Kim, Schaumburg and Sims (2008). A
collection of perturbation routines "DYNARE" is publicly available and can be adopted
to individual applications; see http://www.dynare.org.

6Accuracy of perturbation methods is assessed in, e.g., Judd and Guu (1993).
7There is a variety of numerical methods for solving dynamic economic models; see

Taylor and Uhlig (1990), Gaspar and Judd (1997), Judd (1998), Marimon and Scott
(1999), Santos (1999), Christiano and Fisher (2000), Aruoba, Fernandez-Villaverde and
Rubio-Ramirez (2006). However, most of the existing methods are not feasible for models
with a large number of state variables due to their high computational expense.
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ables. Furthermore, we carry out a systematic comparison of alternative
approximation and integration strategies di�ering in accuracy and cost. Fi-
nally, we investigate the properties of solutions in a wide range of the model’s
parameters including the volatility and persistence of shocks and the degrees
of a consumer’s risk aversion.8

3 Cluster grid

Because we want our projection method to operate on the ergodic set, we
should �rst construct a grid of points that covers the ergodic set. The sim-
plest possible grid of this kind can be obtained by simulation. We can use
either all or some of the simulated points as a grid for the projection method.
A more e�cient approach advocated in this paper is to replace the simulated
points with a relatively small number of appropriately chosen "representa-
tive" points. In this section, we describe how to implement this approach
using clustering algorithms. Such algorithms assign a set of observations
into groups called clusters so that observations within each cluster are more
similar to one another than observations belonging to di�erent clusters. We
then represent observations in each cluster with one point computed as the
average of all observations in the given cluster. We call the constructed
representative points a cluster grid.

3.1 Distance measure and data normalization

Any clustering algorithm requires measuring distance between observations.
As a measure of distance between observations � and �, denoted ���, we use
the Euclidean (or �2 norm) distance

��� =

"
�X

�=1

¡
��
� � ��

�

¢2#1�2
	 (1)

where ��
� is an �-th observation (object) on a variable 
 � {1	 ���	 �}.

8A companion paper by Maliar, Maliar and Judd (2010) implements a further test of
the cluster-grid method using a collection of 30 multi-country real-business cycle models
with up to 20 state variables. These models are proposed by Den Haan, Judd and Juillard
(2010) in the context of a JEDC project. Using a testsuite developed by Juillard and
Villemot (2010), Kollmann, Maliar, Malin and Pichler (2010) compare the performance of
six di�erent numerical methods contributed to the JEDC project.
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Before constructing clusters, we need to represent the ergodic set in a form
which is suitable for clustering under the Euclidean distance. As an example,
in Figure 1a, we plot the ergodic set of the standard one-country neoclassical
growth model with a closed-form solution using 10000 simulated points (see
Section 3 for a description of this model). As is seen from the �gure, two
state variables, which are capital and technology shock, have di�erent ranges
of values, and are highly correlated. Both measurement units of variables
and correlation between variables a�ect the distance measures and hence,
the outcome of a clustering procedure.
To transform variables into comparable measurement units, it is su�cient

to normalize variables to zero mean and unit variance; the normalized ergodic
set is shown in Figure 1b. To remove the correlation between variables, we
can use a principal components (PCs) transformation. To be speci�c, let� =¡
x1	 ���	x�

¢ � R�×� be a matrix of � variables which are normalized to zero
mean and unit variance, where R � (��	�) and �� � R�×1, 
 = 1	 ���	 �.
Consider the eigenvalue decomposition � 0� = � �� 0, where � � R�×� is
a diagonal matrix with diagonal entries 1 � 2 � ��� � � � 0 being
eigenvalues, and � � R�×� is an orthogonal matrix of eigenvectors. Perform
the following linear transformation of �: � 	 �� , where � � R�×�.9 The
variables z1	 ���	 z� are called principal components of �, and are orthogonal
(uncorrelated),

¡
z�
¢0
z� = � and (z�)0 z� = 0 for any � 6= 
. As is seen from

Figure 1c, switching to PCs rotates the original ergodic set so that the axes
of the ellipse become parallel to the coordinate axes (a higher dimensional
analogue of an ellipse is a hyperellipsoid). Since the obtained PCs have
di�erent ranges of values, we complete the transformation by normalizing
PCs to unit variance. Figure 1d plots the resulting ergodic set that has the
shape of a circle (a hypersphere in multi-dimensional space).
Figures 1a-1d give us an idea of how much we can save on cost in the

two-dimensional case if we solve the model on the ergodic set instead of the
standard squared domain containing the ergodic set 10 Our saving increases

9The PCs transformation can be equivalently de�ned using a singular value decompo-
sition instead of the eigenvalue decomposition considered; see, e.g., Hastie, Tibshirani and
Friedman (2009).
10In principle, we can solve models on domains, which are smaller than the ergodic

set, namely, we can consider ranges of values for the individual state variables, which are
smaller than the ergodic ranges. However, accuracy may decline rapidly when we deviate
from the domain on which the problem is solved; this happens with the solutions obtained
by perturbation methods.
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with the dimensionality of the problem: for a model with � state variables,
the ratio of a hypershere’s volume �	


 (with the hypershere representing the
ergodic set) to a hypercube’s volume ��


 (with the hypercube representing
the standard hypercube domain containing the ergodic set) can be estimated
by:

�	



��



=

�������
(��2)

��1
2

1·3··
 for � = 1	 3	 5���

(��2)
�
2

2·4··
 for � = 2	 4	 6���

� (2)

The ratio (2) declines very rapidly with �. For dimensions two, three, four,
�ve, ten, thirty and one hundred, this ratio is 0�79, 0�52, 0�31, 0�16, 3 · 10�3,
2 · 10�14 and 2 · 10�70, respectively.

3.2 Clustering algorithms

There exists a vast variety of clustering techniques in the �eld of cluster analy-
sis; see, for example, Romesburg (1984), Everitt et al. (2001) for reviews. In
this section, we describe two commonly used clustering algorithms, namely,
hierarchical and K-means, and we illustrate the construction of clusters by
way of examples.

3.2.1 Hierarchical algorithm

A hierarchical algorithm creates a multi-level hierarchy of clusters in the
form of a tree. The root corresponds to a single cluster that includes all
observations and the leaves correspond to individual observations. Given a
hierarchical tree, one can choose the most appropriate level of clustering for
a given application. We consider an agglomerative type of hierarchical algo-
rithm which begins from individual observations (leaves) and agglomerates
them into larger clusters. The algorithm proceeds in the following steps: �nd
the pairwise distances between the objects (observations) in the data; merge
the closest two clusters into a single cluster and continue to group the newly
created clusters into larger clusters until there is a single cluster that con-
tains all objects; �nally, cut o� the obtained hierarchical tree at some point
to obtain clusters.
In Section 3.1, we described how to measure a distance between individ-

ual observations. We shall now discuss how to measure a distance between
groups of observations (clusters). The inter-cluster distance between clusters
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� and �, denoted ���, can be computed from the set of pairwise distances
between observations, ���, where one member of the pair � is in � and the
other � is in�. The hierarchical algorithm can compute ��� using alternative
linkage algorithms. Single linkage (or the nearest neighbor) clustering uses
the shortest distance between objects in the two clusters, ��� = min

���� ���
���.

Complete linkage (or the furthest neighbor) clustering uses the maximum
distance between objects in the two clusters: ��� = max

���� ���
���. Group aver-

age linkage clustering uses the average distance between all pairs of objects
in the two clusters: ��� =

1
����

P
���

P
���

���, where �� and �� is the number of

objects in clusters � and �, respectively. Finally, Ward’s linkage clustering
uses the increase in the sum of squared error, ���, or variance,

���� 	
X
���

�X
�=1

Ã
��
� �

1

��

X
���

��
�

!2
	

as a result of merging two clusters into a single cluster, ��� = ����� �
[���� + ����], where �� is a cluster obtained after merging � and �.
The following example illustrates the construction of clusters by the ag-

glomerative hierarchical algorithm under single linkage clustering.

A numerical example Consider sample data that contains �ve observa-
tions for two variables, �1� and �2� ,

Variable
Observation � �1� �2�

1 1 0�5
2 2 3
3 0�5 0�5
4 3 1�6
5 3 1

These data, as well as the steps of the clustering construction, are shown
in Figure 2. The Euclidean distance ��� between two observations (ob-
jects) � and � with variables values (�1� 	 �

2
� ) and

¡
�1� 	 �

2
�

¢
is given by ��� =h¡

�1� � �1�
¢2
+
¡
�2� � �2�

¢2i1�2
. Let us compute a matrix �1 of the inter-
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individual distances, in which each entry �� corresponds to the distance ���,

�1 =

1 2 3 4 5
1 0 2�7 0�5 2�3 2�1
2 2�7 0 2�9 1�7 2�2
3 0�5 2�9 0 2�7 2�5
4 2�3 1�7 2�7 0 0�6
5 2�1 2�2 2�5 0�6 0

The smallest non-zero distance for the �ve observations in �1 is �13 = 0�5, so
that we merge objects 1 and 3 into one cluster and call the obtained cluster
"object 6". The distances for the four objects, namely, 6, 2, 4, and 5, are
shown in a matrix �2,

�2 =

6 2 4 5
6 0 2�7 2�3 2�1
2 2�7 0 1�7 2�2
4 2�3 1�7 0 0�6
5 2�1 2�2 0�6 0

where, �62 = min {�12	 �32}, �64 = min {�14	 �34}, �65 = min {�15	 �35}. Given
that �45 is the smallest non-zero entry in �2, objects 4 and 5 should be
merged into a new object (cluster) 7. The distances for three objects 6, 7
and 2 are given in �3,

�3 =

6 7 2
6 0 2�1 2�7
7 2�1 0 1�7
2 2�7 1�7 0

where �67 = min {�14	 �15	 �34	 �35}, �62 = min {�12	 �32}, �72 = min {�42	 �52}.
The smallest non-zero distance in �3 is �72 = 1�7. Hence, objects 2 and 7
should be merged into object 8. The only two objects left unmerged are 6 and
8, so that the last step is to merge those two to obtain object 9 containing
all the observations. In sum, after progressive merging of clusters, we obtain
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the following hierarchical tree:

Cluster Clusters Shortest
created merged distance
6 1 3 0�5
7 4 5 0�6
8 2 7 1�7
9 6 8 2�1

For example, if we want to group the observations into three clusters, we
obtain the clusters: {1	 3}; {4	 5}; {2}. k

If clusters are well-de�ned, then all the above linkage clustering algo-
rithms produce similar cluster trees; otherwise, they can produce di�erent
trees. Single linkage tends to su�er from a phenomenon called chaining in
which well separated clusters are joined together if there are outliers in be-
tween them. Complete linkage tends to deliver compact clusters with small
diameters, however, it can �nd clusters in which observations are much closer
to some observations of other clusters than to some observations of their own
cluster. Group average linkage tends to merge clusters with a small variance
and is relatively robust, however, its results are not invariant to monotone
transformations to ���. Finally, Ward’s linkage tends to produce spherical
clusters of the same size; it has been observed to work well in many appli-
cations, however, it can deliver a spherical structure where such a structure
does not exist. For a detailed discussion of the strengths and weaknesses of
the above linkage clustering algorithms, see, e.g., Everitt et al. (2001).
The agglomerative hierarchical algorithm is relatively expensive in terms

of computational time and memory. Another weakness is that a decision
about combining two clusters is �nal and cannot be undone on a later stage.
These weaknesses of the hierarchical algorithm are addressed by partitional
class of algorithms.

3.2.2 K-means algorithm
A well-known member of the partitional class is a K-means clustering algo-
rithm: it obtains a single partition of data instead of a cluster tree generated
by a hierarchical algorithm. The algorithm starts with K random clusters,
and then moves objects between those clusters with the goal to minimize
variability within clusters and to maximize variability between clusters. The
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basic K-means algorithm proceeds as follows: choose the number of clusters,
K; generate randomly K clusters and determine the centers of the clusters;
given a current set of centers, assign each observation to the nearest clus-
ter center and re-compute the centers of the new clusters; iterate on the last
step until convergence.11 A frequently used criterion function in the K-means
algorithm is the ��� function,

��� =
KX

�=1

X
���

�X
�=1

¡
��
� � ����

¢2
	

where ��
� is the 
-th coordinate of a point in the �-th cluster, and ���� is the


-th coordinate of a center of the �-th cluster; see Hastie et al. (2009, p.
510). The center minimizing ��� of a cluster is given by the mean of the
points in the cluster, ���� 	 1

��

P
���

��
� , with �� being the number of objects in

the �-th cluster.
The K-means algorithm is relatively e�cient and computationally cheap

which makes it suitable for large data sets. However, it has an important
shortcoming, namely, it can give di�erent results with each run. This is
because the K-means algorithm is sensitive to initial random assignments of
observations into clusters and can converge to a suboptimal local minimum.

3.2.3 Clusters for the model with a closed-form solution

We use the hierarchical algorithm with Ward’s linkage clustering to construct
clusters for the ergodic set shown in Figures 1a-1d. The results under the
K-means algorithm are similar (not reported). In Figures 3a-3d, we plot
clusters obtained for the normalized ergodic set shown in Figure 1b (the
circles around clusters’ centers are drawn for expository convenience and
show approximately a set of points that each cluster represents). When the
number of clusters is small (see Figures 3a and 3b), all clusters are situated
along the direction of the largest principle component, while the direction of
the smallest principle component is not represented. When the number of
clusters increases (see Figures 3c and 3d), the clusters are distributed over
the ergodic set more uniformly. In Figures 4a-4d, we construct clusters on
the normalized PCs of the ergodic set shown in Figure 1d. In this case, both

11Note that for this clustering algorithm, we need not compute a distance between any
two observations but the one between an observation and a cluster center.
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PC directions are represented equally well, and the clusters cover the ergodic
set uniformly even if the number of clusters is small. In Figure 4d, we draw
attention to a cluster which is considerably separated from the rest of the
clusters (see the upper right part of the �gure). The ability of the clustering
algorithm to identify clusters outside of high-probability areas of state space
is especially valuable in applications in which ergodic sets do not have a
regular ellipsoid form or are possibly composed of disjoined sets. Given that
we obtain a more uniform coverage of the ergodic set when using PCs than
when using the original data, in the rest of the paper, we apply the clustering
algorithm to PCs.

4 The model

In this section, we describe the model that we use for a presentation of our
projection method. There is a �nite number of countries, � , and each coun-
try is populated by a representative consumer. A social planner maximizes
a weighted sum of expected lifetime utility functions of the countries’ repre-
sentative consumers,

max�{��� ����+1}��=1
��
�=0

�0

�X
�=1

��

Ã �X
�=0

���� (��� )

!
(3)

subject to the aggregate resource constraint,

�X
�=1

��� +
�X

�=1

��
�+1 =

�X
�=1

��
� (1� �) +

�X
�=1

��� ��� (��
� ) 	 (4)

where �� is the operator of conditional expectation; ��� , �
�
� , �

�
� and �� are,

respectively, consumption, capital, technology shock and welfare weight of
a country � � {1	 ���	 �}; � � (0	 1) is the discount factor; � � (0	 1] is
the depreciation rate; � is the level of technology. Initial condition (k0	�0)
is given, where k0 	

¡
�10	 ���	 �

�
0

¢
and �0 	

¡
�10	 ���	 �

�
0

¢
. The utility and

production functions, �� and ��, respectively, are increasing, concave and
continuously di�erentiable. The process for technology shocks of country �
is given by

ln ��� = � ln ����1 +  �� , (5)
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where � � (�1	 1) is the autocorrelation coe�cient; and  �� 	  � + !�� with
 � 
 N (0	 "2) being identical for all countries and with !�� 
 N (0	 "2) being
country-speci�c.
We restrict our attention to the case in which the countries are character-

ized by identical preferences, �� = �, and identical production technologies,
�� = � , for all �. The former implies that the planner assigns identical
weights, �� = 1, and consequently, identical consumption ��� = #�$� 	 �� to
all agents, where #� denotes aggregate consumption. If an interior solution
exists, it satis�es � Euler equations,

�0 (��) = ���

©
�0 (��+1)

£
1� �+ ���+1�� 0

¡
��
�+1

¢¤ª
	 (6)

where �0 and � 0 denote the �rst-order derivatives of � and � , respectively.
Thus, the planner’s solution is determined by process for shocks (5), resource
constraint (4) and the set of Euler equations (6).
The standard representative-agent neoclassical growth model can be ob-

tained as a one-country version of heterogeneous-agent economy (3)� (5) by
assuming that � = 1 and that  � = 0 for all %. Under the assumptions of a
logarithmic utility function, � (�) = ln (�), full depreciation of capital, � = 1,
and the Cobb-Douglas production function, � (�) = ��, the representative-
agent model admits a closed-form solution ��+1 = &'�����

� (here and further
in the text, we omit a country’s superscript in the one-country case). This
closed-form solution was used for simulating times series and for constructing
the ergodic set shown in Figures 1, 3 and 4.

5 A projection method

Our objective is to �nd � decision rules for capital, ��
�+1 = (� (k�	��), where

k� 	
¡
�1� 	 ���	 �

�
�

¢
and �� 	

¡
�1� 	 ���	 �

�
�

¢
are %-period vectors of state variables.

Given that the countries are identical in their fundamentals (preferences and
technology), the optimal decision rules are identical for all countries. Even
though we could use this fact to simplify the solution procedure, we will
not do so and will compute a separate decision rule for each country, thus,
treating the countries as completely heterogeneous. This strategy allows us
to evaluate the cost of �nding solutions in general multi-dimensional settings
with heterogeneous preferences and technology.
A projection method approximates a solution in a �nite number of spec-

i�ed points; see Chapters 11 and 17 in Judd (1998) for a detailed review of
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the projection methods. To solve the model described in Section 3, we para-
meterize the capital decision rules of each country, ��

�+1 = (� (k�	��) with a
�exible functional form �� (k�	��;�

�) depending on a vector of coe�cients
��. We then re-write Euler equation (6) as

��
�+1 = ��

½
�
�0 (��+1)
�0 (��)

£
1� �+ ���+1�� 0

¡
��
�+1

¢¤
��
�+1

¾
' �� (k�	��;�

�) 	 (7)

For each country � � {1	 ���	 �}, we need to compute a vector �� so that
�� (k�	��;�

�) is the best possible approximation of (� (k�	��) on some do-
main given the functional form ��. Note that using � assumed decision
rules ��

�+1 = �
� (k�	��;�

�), resource constraint (4) and process for shock (5),
we can express the variable inside the conditional expectation in (7) as a
function of the current-period state variables, k� and ��, and the next-period
errors, ��+1 	

¡
 1�+1	 ���	  

�
�+1

¢
,

�
�0 (��+1)
�0 (��)

£
1� �+ (��� )

� exp
¡
 ��+1

¢
�� 0

¡
��
�+1

¢¤
��
�+1 	 �� (k�	��	 ��+1) 	 (8)

where

�� =
1

�

�X
�=1

£
��
� (1� �) + ��� �� (��

� )� ��
�+1

¤
	

��+1 =
1

�

�X
�=1

£
��
�+1 (1� �) + (��� )

� exp
¡
 ��+1

¢
��
¡
��
�+1

¢� ��
�+2

¤
	

and ��
�+2 = �

� (k�+1	��+1;�
�)with k�+1 =

¡
�1
¡
k�	��;�

1
¢
	 ���	��

¡
k�	��;�

�
¢¢

and ��+1 =
£¡
�1�
¢�
exp

¡
 1�+1

¢
	 ���	

¡
���
¢�
exp

¡
 ��+1

¢¤
.

We can compute the capital decision rules as follows:

• Step 1. Choose a grid of points of state variables {k�	��}��=1.
• Step 2. Consider a country �. Fix some vectors of the coe�cients
�� and �nd the next period capital stock in all grid points using the
assumed decision rule for capital, i.e., e��

� 	 �� (k�	��;�
�) for all � =

1	 ���	 ).
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• Step 3. Using some numerical integration method, approximate the
conditional expectations in each of ) grid points and call the resulting
capital stock b��

� , i.e., b��
� 	 � {�� (k�	��	 �)} � (9)

Here, the expectation is computed with respect to a vector of normally
distributed random variables � 	 ¡ 1	 ���	  �¢.

• Step 4. Run a least-squares (LS) regression of response variables b��
� on

the functional form �� (k�	��;�
�),

b�� 	 argmin
��

�X
�=1

³b��
� ��� (k�	��;�

�)
´2

� (10)

Repeat Steps 2-4 for all � countries.

• Step 5. Compute the coe�cients for the next iteration
½bb��

¾�

�=1

as

bb��

= (1� *)�� + *b��
	 (11)

where * � (0	 1] is a dampening parameter.
• Step 6. Check the convergence criterion, which is the average rela-
tive di�erence between capital values on the grid before and after the
iteration, e��

� and b��
� , respectively, i.e.,

1

) ·�
�X

�=1

�X
�=1

¯̄̄̄
¯e��

� � b��
�e��

�

¯̄̄̄
¯ + 10��	 (12)

where , - 0. If criterion (12) is not satis�ed, go to Step 2.

The dampening procedure we use in (11) is called �xed-point iteration.
Fixed-point iterations can be unstable; see Judd (1998, p.557) for a discus-
sion. Setting dampening parameter * to a small value stabilizes �xed-point
iteration though it reduces the speed of convergence.
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Projection methods are also referred to in the literature as weighted resid-
uals methods because they minimize a weighted sum of residuals in speci�ed
points. Consider the residuals on the grid, b��

� ���
³
k�	��; b��

´
, � = 1	 ���	 ),

obtained in a country’s � LS solution to (10). If the number of grid points
) is the same as the number of coe�cients in �� (collocation), the system
in (10) has ) equations and ) unknowns, and the LS regression leads to zero
residuals in all grid points � = 1	 ���	 ) (assuming that the LS problem is
well-conditioned). If the number of grid points ) is larger than the number
of coe�cients in ��, the system in (10) has more equations than unknowns
(i.e., it is overdetermined), and the LS regression minimizes a squared sum
of equally weighted residuals on the given grid.

6 Strategies for high-dimensional problems

In the description of our projection method, we have not speci�ed how to
choose an approximating function for the capital decision rule, a grid of
points on which the solution is computed and a numerical integration method
for approximating the conditional expectations. These three choices play a
determinant role in the accuracy and speed of our method in the context of
high-dimensional problems, and they are discussed in Sections 5.1, 5.2 and
5.3, respectively.

6.1 Approximation step

To approximate the decision rules, we use a complete set of ordinary poly-
nomials.12 For a one-country model, the polynomial function of degree two
is given by

�(��	 ��;') = '0 + '1�� + '2�� + '3�
2
� + '4���� + '5�

2
� � (13)

The polynomial functions of degrees one, two, three, four and �ve have 3, 6,
10, 15 and 21 coe�cients, respectively.

12In some numerical methods, the choice of a polynomial representation is related to the
choice of grid points. For example, the Galerkin method relies on Chebyshev polynomials
and uses zeros of such polynomials as an optimal grid; see Judd (1992). Our grids are
not related to any speci�c polynomial family. It is an open question which family of
approximating functions is the most appropriate for our endogenous grids.
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For an �-country model, the number of coe�cients in the .-th degree
polynomial, /� (�), that approximates the capital decision rule of each coun-
try is given by

/1 (�) = 1 + 2�	

/2 (�) = 1 + 2� +� (2� + 1) 	

/3 (�) = 1 + 2� +� (2� + 1) + 4�2 +
� (2� � 1) (2� � 2)

3
�

We illustrate how the number of polynomial coe�cients increases with � in
Table 1 (panel 1). For example, when � = 100, the number of terms in
the �rst-, second- and third-degree polynomials is equal to 201, 20301, and
1373701, respectively. Since the decision rules should be computed for each
country, the total number of polynomial coe�cients in the ��country case
is � · /� (�).
Given that the number of polynomial terms and, hence, the number of

polynomial coe�cients grows rapidly with the dimensionality, it is important
to design a procedure for �nding �xed-point values of the coe�cients so that
its cost does not considerably increase with the number of polynomial terms
(coe�cients). We achieve this objective by making two choices. First, we
employ a linearly additive polynomial representation like the one in (13);
this allows us to perform the regression in Step 4 using fast and reliable
linear approximation methods whose cost is low even in high-dimensional
applications. Second, in Step 5, we use �xed-point iteration (11) whose cost
does not considerably increase with the dimensionality of the problem (even
though �xed-point iteration is generically slow when a small * is required for
convergence).13

6.2 Three alternative grids

We now describe three alternative grids to be evaluated for our projection
method: the standard tensor-product grid, a grid composed from selected
13There are other iterative schemes for �nding �xed-point coe�cients such as time it-

eration and (quasi-)Newton methods; see Judd (1998, p. 553-558) and Judd (1998, p.
103-119), respectively. Time iteration can be more stable than �xed-point iteration, how-
ever, it requires solving costly nonlinear equations for �nding future values of variables.
(Quasi-)Newton methods can be faster, especially for low-dimensional problems, but can
become expensive when the dimensionality increases. Gaspar and Judd (1997) argue that
�xed-point iteration (referred to in their paper as successive approximation) has advan-
tages over time iteration and dominates Newton methods for large-scale models.
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simulated points and a grid constructed by clustering simulated data.

6.2.1 Tensor-product grid

In low-dimensional problems, we can construct a grid as a tensor (or Carte-
sian) product of state variables discretized on a relevant area of state space.
For example, in a one-country version of our model, a tensor-product grid can
be obtained by dividing some intervals for capital,

£
�	 �

¤
, and shock,

£
�	 �
¤
,

into )� and )� points, respectively, and by considering all possible pairs from£
�	 �

¤×£�	 �¤ (the limits �, �, �, � can be estimated by simulation). A version
of our projection method that uses a tensor-product grid is referred to in the
paper as tensor-product-grid algorithm (TPGA). The TPGA is not feasible
in high-dimensional applications since the number of grid points and, hence,
computational expense grows exponentially with the dimensionality of state
space.

6.2.2 Simulation grid

As is argued in Section 3, we can construct a grid that covers the ergodic set
using a set of points obtained by simulation. On one hand, simulated series
should be long enough to accurately approximate the ergodic set. On the
other hand, long simulated series have many points that are very close to
each other. The redundancy in grid points increases cost without increasing
accuracy which makes the projection method cost-ine�cient.
A more e�cient grid can be constructed by using simulated points which

are separated by a su�cient time interval. To be speci�c, if we have a simula-
tion of a length 0 , and we want to select ) points to be used as a grid, we can
take points separated by a time interval �

�
(rounded to the nearest smaller

integer if necessary). Our grid points are therefore the simulated points taken
in periods % = �

�
	 2�

�
	 ���	 (��1)�

�
	 0 . In expected terms, points separated in

time are more distant from each other and cover the ergodic set more uni-
formly than the original subsequently following simulated points. We call a
version of the projection method using a simulation grid a simulation-grid
algorithm (SGA).

6.2.3 Cluster grid

To construct a cluster grid, we use the hierarchical algorithm with Ward’s
linkage clustering as described in Section 3.2. An important practical ques-
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tion is: How costly is the clustering process, namely, how does the cost of
constructing clusters depend on the dimensionality of the problem, � , the
number of observations, 0 , and the number of clusters to be constructed, K?
In Table 1 (panel 2), we report time necessary for constructing K = 3, 30,
300 clusters under three alternative lengths of simulation, 0 = 1000, 3000,
10000 with the number of countries ranging from � = 1 to � = 200 (we
use time series solutions of our benchmark model with partial depreciation of
capital; see Section 7.1 for a description of our benchmark parameterization
of the models).
As is seen from the table, time for constructing clusters depends primarily

on the length of simulated series, 0 . An increase in 0 by one order of
magnitude (from 1000 to 10000) raises the clustering time by about two
orders of magnitude. In turn, an increase in � by two orders of magnitude
from � = 1 to � = 100 countries only triplicates the clustering time. The
largest time for constructing clusters is observed in the model with � = 200
and 0 = 10000 and is around one minute, which is not much time especially
taking into account that we use a standard desktop computer. Given that
clusters should be created only once (or sometimes twice, see Section 7.1) on
the initial step of the projection method, we do not explore possibilities for
reducing time for constructing clusters.

6.3 Numerical integration

Each iteration of our projection method requires computing the conditional
expectation (9) for all grid points and all countries. Let us �x a country � and
a grid point k�, ��, and let us denote the resulting function inside expectation
(9) by 1 (�) 	 �� (k�	��	 �). In our model, � follows a multivariate normal
distribution, � 
 N (�	�), where � is an � × 1 vector of means and � is an
�×� variance-covariance matrix. To compute � {1 (�)}, we should evaluate
a de�nite integral

R
R�

1 (�)2 (�) �� where the weighting function 2 (�) is a
density function of the multivariate normal distribution,

2 (�) = (23)���2 det (�)�1�2 exp
�
�1
2
(���)0��1 (�� �)

¸
	 (14)

with det (�) denoting the determinant of �. For the model studied in the
paper, � = (0	 ���	 0)0, and � has the diagonal terms equal to 2"2 and the o�-
diagonal terms equal to "2 (the o�-diagonal terms of � are non-zero because
individual and aggregate shocks are correlated by assumption).
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Numerical integration consists in approximating integrals by a weighted
sum of values that the integrand, 1, takes in a �nite set of nodes, i.e.,Z

R�

1 (�)2 (�) �� �
�X

�=1

4�1 (��) 	 (15)

where {��}��=1 and {4�}��=1 are integration nodes and integration weights,
respectively. Integration formulas di�er in their choices of integration nodes
and weights. Typically, there is a trade o� between accuracy and cost: in-
tegration formulas with more nodes (and thus, a higher cost) lead to more
accurate approximations.
The existing numerical integration formulas are constructed under the as-

sumption of uncorrelated variables with zero mean and unit variance. There-
fore, we should re-write the integral in (15) in terms of such uncorrelated
variables prior to numerical integration. Given that � is symmetric and
positive-de�nite, it has a Cholesky decomposition, � = ��0, where � is a
lower triangular matrix with strictly positive diagonal entries. The Cholesky
decomposition of � allows us to transform correlated variables in vector �
into uncorrelated ones in y with the following linear change of variables:

y =
��1 (�� �)�

2
� (16)

Note that �� =
¡�
2
¢�
det (�) �y. Using (16) and taking into account that

��1 = (��1)0��1 and that det (�) = [det (�)]2, we obtain

� {1 (�)} = 3���2

Z
R�

1
³�
2�y + �

´
exp (�y0y) �y� (17)

All subsequent numerical integration formulas are derived on the basis of
(17) under � = (0	 ���	 0)0.

6.3.1 Gauss-Hermite quadrature

In a one-dimensional case, � = 1, de�nite integrals can be accurately approx-
imated with the Gaussian quadrature approach. Under this approach, nodes
and weights are chosen so that the approximation is exact if the function 1
is a polynomial of a certain degree. For the integral in (17), the Gaussian
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quadrature approach leads to the Gauss-Hermite quadrature rule,

� {1 ( )} = 3�1�2
Z �

��
1
³�
2"5

´
exp

¡�52
¢
�5

� 3�1�2
�X

�=1

4�1
³�
2"5�

´
	 (18)

where the values of the Gauss-Hermite quadrature nodes {5�}��=1 and weights
{4�}��=1 are provided in tables; see, e.g., Judd (1998, p. 262).
We can extend one-dimensional Gauss-Hermite quadrature rule to the

case of multi-dimensional integral in (17) by way of a tensor-product rule:

� {1 (�)} = 3���2

Z
R�

1
³�
2�y

´
exp (�y0y) �y �

� 3���2

�1X
�1=1

���

��X
��=1

41�14
2
�2
· · · 4�

��
· 1
³�
2� · ¡51�1 	 ���	 5�

��

¢0´
	 (19)

where
©
4�

��

ª��
��=1

and
©
5�
��

ª��
��=1

are, respectively, weights and nodes in a
dimension � obtained from one-dimensional Gauss-Hermite quadrature rule
(note that in general, the number of nodes in one dimension, 6�, can di�er
across dimensions). The total number of nodes is given by the product
6162 · · · 6� . Assuming that 6� = 6 for all dimensions, the total number of
nodes, 6� , grows exponentially with the dimensionality � .
In the paper, we consider three di�erent versions of the multi-dimensional

Gauss-Hermite product rule, denoted 7 (1), 7 (2) and 7 (3), which have 1,
2 and 3 nodes in each dimension, respectively. The total number of nodes
under 7 (1), 7 (2) and 7 (3) is equal to 1, 2� and 3� , respectively, and is
reported in Table 1 (panel 3) for� ranging from 1 to 200. As is seen from the
table, 7 (2) and 7 (3) are not feasible for high dimensions if there are more
than one node in each dimension. In contrast, 7 (1) is the cheapest possible
integration formula as there is one node independently of the dimensionality
of the problem.

6.3.2 Monomial rules

The Gauss-Hermite product rule constructs multi-dimensional nodes from
one-dimensional nodes, which makes the number of nodes grow exponen-
tially with dimension. In contrast, monomial integration rules construct

23



multi-dimensional nodes directly in a multi-dimensional space. To be spe-
ci�c, monomial rules yield a �nite number of �-dimensional nodes and the
corresponding weights so that the approximation is exact if the function 1
is an �-dimensional complete polynomial of a certain degree. Typically, the
number of nodes under monomial rules grows only polynomially with the
dimensionality of the problem.
Below, we describe three monomial formulas for approximating a multi-

dimensional integral (17) which, for the sake of notational convenience, we
label81,82 and83. These formulas come from Stroud (1971, p. 315-329)
and Judd (1998, p. 275), and are adopted by us to the case of correlated
variables.
The �rst formula, 81, has 2� nodes:

� {1 (�)} = 1

2�

�X
�=1

1 (±9e�) 	 (20)

where 9 	 ���, and e� is an � × 1 vector whose �-th element is equal to
one and the remaining elements are equal to zero, i.e., e� 	 (0	 ���	 1	 ���	 0)0.
The second formula, 82, has 2�2 + 1 nodes:

� {1 (�)} = 2

2 +�
1 (0	 ���	 0)

+
4��

2 (2 +�)2

�X
�=1

[1 (9e�) + 1 (�9e�)]+
1

(� + 2)2

��1X
�=1

�X
�=�+1

1
¡±�e� ± �e�

¢
	

(21)

where 9 	 �2 +�� and � 	
q

2+�
2
�.

The third formula, 83, has 2� nodes:

� {1 (�)} = 1

2�

X
1
¡±�e1	 ���	±�e�¢ � (22)

The number of nodes under monomial formulas 81 and 82 grows polyno-
mially, namely, it grows linearly under 81 and it grows quadratically under
82. Monomial formula83 happened to coincide with Gauss-Hermite prod-
uct formula 7 (2), so that the number of nodes grows exponentially. In Table
1 (panel 3), we show how the number of nodes under formulas 81, 82 and
83 (equivalently, 7 (2)) increases in � .
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6.3.3 An example of integration formulas for � = 2

In this section, we illustrate the integration formulas described in Sections
6.3.1 and 6.3.2 using an example of two-dimensional case, � = 2. We assume
that variables  1 and  2 are uncorrelated, have zero mean and unit variance.
Integral (17) is then given by

� {1 (�)} = 1

3

Z
R2

1
³�
251	

�
252
´
exp

h
� ¡51¢2 � ¡52¢2i �51�52�

(a) Gauss-Hermite product rule (19) with 3 nodes in each dimension (i.e.,

7 (3)) uses one-dimensional nodes and weights given by 5�
1 = 0, 5

�
2 =

q
3
2
,

5�3 = �
q

3
2
and 4�

1 =
2
�
�
3
, 4�

2 = 4�
3 =

�
�
6
for each � = 1	 2:
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(b) Gauss-Hermite product rule (19) with 1 node in each dimension (i.e.,
7 (1)) uses one-dimensional nodes and weights given by 5�1 = 0 and 4�

1 =
�
3

for each � = 1	 2:

� {1 (�)} = 1
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1X
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41�14
2
�2
1
³�
251�1	

�
252�2

´
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(c) Monomial formula (20) with 4 nodes (i.e., 81) is
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(d) Monomial formula (21) with 9 nodes (i.e., 82) is
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(e) Monomial formula (22) with 4 nodes (i.e., 83) coincides with Gauss-
Hermite product rule (19) with 2 nodes in each dimension (i.e., 7 (2)) and
is given by

� {1 (�)} = 1

4
[1 (1	 1) + 1 (�1	 1) + 1 (1	�1) + 1 (�1	�1)] �

6.4 Cost-e�cient projection method

For a given degree of the approximating polynomial function and a speci�c
integration formula, adding an extra dimension (country) makes both the ap-
proximation step and integration step more expensive. The approximation
step becomes more expensive because we have more polynomial coe�cients,
and we need more grid points for identifying such coe�cients. The integra-
tion step becomes more expensive because we have more integration nodes
to evaluate integrad on (except for the one-node Gauss-Hermite rule).14 As
is evident from Table 1, high-degree polynomials and certain integration for-
mulas are excessively costly in high dimensions. When the number of state
variables becomes large, we should use either low-degree polynomials or cheap
integration formulas or both. Moreover, to make the method cost-e�cient,
we need to coordinate properly the approximation and integration strategies,
speci�cally, we shall identify combinations of approximating polynomial func-
tions and integration methods that match each other in terms of the overall
accuracy of solutions.

7 Numerical analysis

In this section, we describe the methodology of our numerical study and
assess the performance of our projection method in the context of the one-
country and multi-country models.

7.1 Methodology

We solve the one-country version of the model (3) � (5) under three di�er-
ent grid constructions, described in Sections 6.2.1, 6.2.2 and 6.2.3, that lead
14In addition, introducing more countries to the model leads to extra Euler equations to

solve, and hence, to extra LS regressions to run and extra vectors of coe�cients to iterate
on. Furthermore, operating with large data sets can slow down computations or can lead
to a memory congestion.
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to three di�erent versions of our projection method, the tensor-product-grid
algorithm (TPGA), simulated-grid algorithm (SGA) and cluster-grid algo-
rithm (CGA), respectively. In the multi-country case, we use only the CGA,
which is our main algorithm among the three.

Model parameters We parameterize the model (3) � (5) as is typically
done in the macroeconomic literature. We assume the constant relative risk
aversion (CRRA) utility function, � (��) =

�1�	� �1
1��

with : � (0	�), and the
Cobb-Douglas production function, � (��) = ��

� with & � (0	 1). We set
the share of capital in production and the discount factor at & = 0�36 and
� = 0�99, respectively. We explore a wide range of the model’s parameters
including three values of the risk aversion coe�cient : � {0�2	 1	 5}; two
values of the depreciation rate � � {0�025	 1}, and two values for the auto-
correlation coe�cient and the standard deviation in the process for shocks
(5), � = {0�95	 0�99} and " = {0�01	 0�03}, respectively. In both the one-
country and multi-country models, our benchmark parameterization is : = 1,
� = 0�025, � = 0�95 and " = 0�01. We normalize steady state capital to one
by setting � = 1���(1��)

�
.

Clustering algorithm We construct a cluster grid using the hierarchical
algorithm with Ward’s linkage clustering, as described in Section 3.2.1. We
prefer the hierarchical algorithm over the K-means algorithm because the re-
sults of hierarchical algorithms are reproducible while those of the K-means
algorithmmight depend on a random assignment of observations into clusters
on the initial step (both algorithms are relatively inexpensive in our appli-
cations). Overall, we �nd that the appropriate distance measure between
objects and the appropriate change of variables are far more important for
the outcome of clustering than a speci�c clustering algorithm itself.

Approximation and integration strategies In the one-country model,
we parameterize the capital decision rule using polynomials of up to the �fth-
degree and we compute conditional expectation using Gauss-Hermite product
rule with 1, 2 and 10 nodes (i.e., 7 (1), 7 (2) and 7 (10), respectively), and
Monte Carlo simulation with 1000 and 10000 observations. In the multi-
country case, we consider polynomials of up to the third degree, and we
perform integration using the Gauss-Hermite product rule with 1, 2� and 3�
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nodes (i.e., 7 (1), 7 (2) and 7 (3), respectively), and the monomial formulas
81 and 82 with 2� and 2�2 + 1 nodes, respectively.

Initial guess Our projection algorithm requires a knowledge of the ergodic
set, however, the ergodic set is unknown before the model is solved. There-
fore, to initialize the algorithm, we �rst compute a low-accuracy solution,
and we then construct the ergodic set by simulation (our simulated panel
consists of 0 = 10000 observations). In the one-country case, we compute
a low-accuracy solution on an equally-spaced grid of 10 points in the inter-
val ±1% of steady state (we use this solution for deducing the limits of the
domain

£
�	 �

¤ × £�	 �¤ under the TPGA, for selecting a subset of simulated
points under the SGA and for constructing clusters under the CGA). In the
multi-country model, we initialize the CGA using the CGA itself as follows:
we parameterize the capital decision rule using an arbitrary initial guess
��
�+1 = 0�95�

�
� + 0�05�

�
� for all � (this guess matches the steady state level of

capital equal to one), simulate the model, construct the clusters and solve
the model on the constructed cluster grid; we next use the obtained solution
for simulating the model again and for constructing the ergodic set (thus, we
compute clusters twice). As an initial guess for polynomial approximations
of degrees higher than one, we use solutions obtained under the polynomial
approximations of the previous degree.

Approximation step and convergence parameters Under our pro-
jection methods, LS problem (10) is typically well-conditioned and the ap-
proximation step, Step 4, can be implemented with ordinary least-squares
(OLS) method. We solve the LS problem using a Matlab’s back-slash oper-
ator, which gives the same solution as the OLS method for well-conditioned
problems.
We set the dampening parameter in (11) at * = 0�1 for all experiments

except for the model with high risk aversion in which we use a smaller value
for * = 0�03 to enhance convergence. In the one-country model, high-degree
polynomials lead to very accurate solutions, and we use a tight convergence
criterion , = 11 in (12). In the multi-country models, we consider only low-
degree polynomials which lead to less accurate solutions than polynomials of
high degrees, and we use a less tight criterion of , = 8.
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Accuracy test We measure accuracy of the solutions by the size of Euler
equation errors in the ergodic set. We rewrite FOCs (6) in a unit-free form
to obtain Euler equation error �� (k 	� ) at ; ,

E� (k 	� ) 	 � 

�
���
 +1

���
 

³
1� �+ &� +1

¡
��
 +1

¢��1´¸� 1� (23)

In the true solution, E� (k 	� ) = 0 for all (k 	� ), so that accuracy can be
measured by howmuch E� (k 	� ) di�ers from zero. We draw a new sequence
of shocks of length 0 = 10000, and we use the decision rules to simulate the
time series {k 	 � }10000 =0 . We select 1000 observations separated by 10 periods,
; = 0	 10	 20	 ���. For each selected point (k 	� ), we compute E� (k 	� ) by
evaluating the conditional expectation in (23) with a given integration rule.
We then �nd the average absolute and maximum absolute Euler equation
errors across countries and time, E�!"� =

1
� ·�

P�
�=1

P
 =0�10�20� |E� (k 	� )|,

and Emax = max
³
{|E� (k 	� )|} =0�10�20�

´
, respectively.

Running time We report running time, denoted CPU, in seconds. For
the CGA, it includes the time necessary for clustering. For the one-country
model, running time for the �rst-degree polynomial approximation includes
time for constructing an initial guess. For the multi-country models, the
running time for the �rst-degree approximation does not include the time
for �nding the initial guess; if the latter time was included, the running time
would approximately double. (Recall that our initial guess is a �rst-degree
approximation computed by the CGA on an arbitrary grid of points).

Hardware and software We ran the computational experiments on a
desktop computer ASUS with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66
GHz), RAM 4MB. Our programs are written in Matlab, version 7.6.0.324
(R2008a).

7.2 The one-country model

In this section, we focus on the one-country model. For a wide range of
the model’s parameters, we explore how accuracy and cost of our projection
method depend on the degree of the approximating polynomial function, the
number and placement of grid points and the speci�c integration procedure

29



used. To evaluate accuracy of solutions (i.e., to compute the Euler equation
errors in (23)), we use a very accurate ten-node Gauss-Hermite rule.

Benchmark model In Table 2, we present the solutions to our bench-
mark model obtained by the three projection algorithms, the TPGA, SGA
and CGA, di�ering in their grid constructions. (Recall that our benchmark
parameterization is � = 0�025, : = 1, � = 0�95 and " = 0�01). For each
algorithm, we �rst consider the minimum number of grid points necessary
for identifying the coe�cients (collocation), K� (see case K = K� in Table
2), and we then increase the number of grid points by 20%, 100% and 400%
relative to K� (see cases K = 1�2K�, K = 2K� and K = 5K�, respectively,
in Table 2). To isolate the e�ect of a grid choice on accuracy, we use an
accurate ten-node Gauss-Hermite rule in the solution procedure.
Three tendencies can be observed from the table. First, a degree of the

approximating polynomial plays a determinant role in accuracy: the maxi-
mum errors decrease with a polynomial degree from errors of size 10�3 for
the �rst-degree polynomial to those of size 10�8 for the �fth-degree poly-
nomial. Second, accuracy of the three methods can be signi�cantly lower
under collocation than under more "generous" grids; even a moderate 20%
increase in the number of grid points has a sizable e�ect on accuracy. Third,
the SGA and CGA visibly dominate in accuracy the TPGA independently
of the number of grid points. This happens because the SGA and CGA �t
a polynomial only in a relevant part of the state space (the ergodic set),
whereas the TPGA �ts the same polynomial in a larger squared domain and
thus, faces a trade o� between the �t inside and outside the ergodic set.
Finally, the CGA dominates in accuracy the SGA when the number of grid
points is K = K�, K = 1�2K� and K = 2K�, and both of them have a compa-
rable performance when the number of grid points becomes large K = 5K�

(in the last case, many randomly drawn simulated points under the SGA
cover the ergodic set as e�ciently as do clusters under the CGA).

Sensitivity results In our sensitivity experiments, we vary one of the
model’s parameters holding the rest of the parameters �xed to the bench-
mark values. Speci�cally, we consider the cases of low risk aversion : = 1$5,
high risk aversion : = 5, high persistence of shocks � = 0�99 and high volatil-
ity of shocks " = 0�03. The results for these four sensitivity experiments are
presented in Table 3. The number of grid points is the same for the TPGA,
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SGA and CGA and is equal to K = 36. In some experiments, accuracy is
lower than in the benchmark model because of either a larger size of the do-
main or a greater curvature of the decision rules. Nevertheless, the accuracy
ranking of the three methods is typically the same as in the benchmark case.
In all the cases (except the one for low risk version : = 1$5), the CGA dom-
inates in accuracy the SGA, which in turn dominates the TPGA. Typically,
the di�erence in accuracy between the CGA and TPGA is around one order
of magnitude; it is surprising to see such a sharp contrast in the methods’
performance given that there are only two state variables. In the case of low
risk aversion : = 1$5, the SGA and CGA dominate in accuracy the TPGA
for low-degree polynomials but the accuracy ranking is mixed for high-degree
polynomials (in this case, the capital decision rule is close to linear so that
focusing on a smaller endogenous domain does not increase accuracy). Based
on the experiments reported in Tables 2 and 3, we select the CGA as our
preferred algorithm and concentrate on it in the rest of the paper.

Role of integration method in accuracy In Table 4, we explore how a
speci�c integration method a�ects the overall accuracy of the CGA by consid-
ering �ve alternative integration methods such as Gauss-Hermite product rule
with 1, 2 and 10 nodes (referred to as 7 (1), 7 (2) and 7 (10), respectively)
and the Monte Carlo integration method with 1000 and 10000 nodes. We
analyze four di�erent cases: the model with a closed-form solution (� = 1),
the benchmark model (� = 0�025), the model with highly persistent shocks
(� = 0�99), and the model with highly volatile shocks (" = 0�03) holding the
remaining parameters �xed to the benchmark values. In all the experiments
considered, the grid was constructed using K = 36 clusters.
We have three �ndings in the table. First, formulas 7 (2) and 7 (10)

deliver virtually the same solutions under the polynomial approximations of
up to degree three; a small di�erence in their performance becomes visible
only when we go to polynomials of degrees higher than three. Second, the
one-node formula, 7 (1), delivers su�ciently accurate solutions under polyno-
mials of up to degree two (even if we have highly volatile or highly persistent
shocks), however, a low accuracy of integration restricts the overall accuracy
under high-degree polynomials (the model with a closed-form solution is an
exception here). Third, the Monte Carlo integration method is less accu-
rate than quadrature integration even if as many as 10000 simulated nodes
are used, and it restricts the overall accuracy under high-degree polynomi-
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als (again, the model with a closed-form solution is an exceptional case). A
comparison of the 1000-node and 10000-node cases shows that accuracy of
the Monte Carlo integration method increases with the simulation length,
however, at a relatively low rate. We will not consider the Monte Carlo in-
tegration method in the multi-country context since better alternatives are
available (in our experiments, even the one-node Gauss-Hermite rule, 7 (1),
typically delivers more accurate solutions than the Monte Carlo integration
method with 10000 nodes).15

7.3 The multi-country model

In this section, we present the results for the multi-country version of the
model obtained under the cluster-grid method.

Role of integration rule in accuracy of solution and test When we
approach high dimensions, the accurate Gauss-Hermite product rule becomes
unfeasible not only in the solution but also in testing procedures. Therefore,
as a �rst step, we need to determine how reliable di�erent integration formu-
las are for the purpose of accuracy testing (it might happen that low accuracy
of integration in the testing procedure contaminates the results of the test).
This issue did not arise in the one-country case since a very accurate inte-
gration method, 7 (10), was feasible for testing.
In Table 5, we report the results for the two-country and six-country mod-

els obtained under the benchmark parameterization. We use a grid composed
of 300 cluster-grid points. In both the solution and testing procedures, we
use �ve alternative integration methods, namely, 7 (3), 7 (2), 82, 81, and
7 (1).16 Common sense suggests that an integration method used for testing
should be as good as or better than the one used for �nding a solution. We
therefore do not consider those cases in which an integration method used
in the testing procedure is inferior to the one used in the solution procedure
(these cases are replaced by dashes in the table).

15The standard Monte Carlo integration method considered in the context of our cluster-
grid algorithm requires summing up � observations in each grid point. Stochastic sim-
ulation approaches, described in Judd et al. (2009), rely on a more e�cient integration
method combining Monte Carlo simulation and a regression step, namely, � observations
are used for inferring the conditional expectations in � points simultaneously.
16Compared to the one-country case, we substitute � (10) by � (3) as � (10) is too

computationally demanding for the multi-country case.
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The main �ndings in the table are as follows. Under the most accurate
integration method in the testing procedure, 7 (3), the solutions produced by
four integration methods, 7 (3), 7 (2), 82 and 81, are virtually identical
in terms of the Euler equation errors (typically, up to the �fth digit); the
solution delivered by 7 (1) is similar to that of the other methods for the
�rst-degree polynomial approximation but is about 10% less accurate for the
second-degree polynomial approximation. For any integration method used
in the solution procedure, the four integration methods 7 (3), 7 (2),82 and
81 are adequate for the purpose of testing, as they lead to very similar test
results (again di�ering only in the �fth digit). An exception is 7 (1) applied
for testing the 7 (1) solution, which under the second-degree polynomial
approximation understates the errors relative to more accurate integration
methods.

Role of the number of clusters in accuracy of solutions We next
carry out a comparison of accuracy depending on the number of clusters for
the models with � = 2, � = 4 and � = 6 (see Table 6). We use 7 (2)
both in the solutions and testing procedures. As in the one-country model,
we start from collocation, K = K�, and then augment the number of clusters
to K = 1�2K�, K = 2K� and K = 5K�. We �nd that collocation performs
poorly in the context of our cluster-grid method not only in terms of accuracy
but also in terms of numerical stability (our method failed to compute the
third-degree polynomial approximations for the models with � = 2 and the
second-degree polynomial approximations for the models with � = 4 and
� = 6). However, even a moderate increase in the number of clusters, for
example, by 20 %, i.e., K = 1�2K�, is su�cient for restoring the numerical
stability. Overall, we �nd that accuracy of solutions typically increases in
the number of clusters, as was seen in the one-country case.

Coordinating approximation and integration strategies Table 7 is
the core of the paper. In this table, we compute solutions to our bench-
mark model by ranging the number of countries from 2 to 200. To enhance
accuracy and numerical stability of the cluster-grid method, we keep the
number of clusters larger than the number of coe�cients (see the table for
the number of clusters in each experiment). In the solution procedure, we use
four alternative integration formulas, 7 (2), 82, 81 and 7 (1). Under the
second-degree polynomial, 7 (2),82,81 and 7 (1) were feasible for models
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with up to � = 8, � = 12, � = 20 and � = 40 countries, respectively. To
test accuracy of solutions, we use 7 (2) for � up to 12, use 82 for � from
12 to 20, and use 81 for � larger than 20.
As far as accuracy is concerned, the tendencies are the same as those

previously seen in Table 5 for the two-country and six-country models. For
the second- and third-degree polynomial approximation, the Euler equation
errors obtained under 7 (2), 82 and81 are nearly identical, and the errors
obtained under7 (1) are about 10% larger than under more accurate integra-
tion formulas (an acceptable reduction in accuracy given that this formula
allows us to advance from the 20-country to 40-country models). Overall,
our second-degree polynomial approximations are su�ciently accurate: the
maximum error is always less than 0�01% in the ergodic set (even under
7 (1)). Furthermore, if an integration method is su�ciently accurate, the
third-degree polynomial approximation in the two-country model produces
maximum errors which are lower than 0�001%.
Unlike accuracy, computational cost of our projection method depends

dramatically on a speci�c integration formula used. For example, for � = 8,
the running time for computing the second-degree approximations under82
and 7 (1) is, respectively, 3774 and 109 seconds, i.e., it di�ers by up to a
factor of 35, while for � = 12, the running time under 82 and 7 (1) is,
respectively, 69025 and 226 seconds, i.e., it di�ers by up to a factor of 300.
The running time increases rapidly with dimension under 7 (2) and 82,
and it increases slower with dimension under 81 and 7 (1). In particular,
under81, we can compute a second-degree approximation to the model with
� = 20 for about 4 hours and 40 minutes (16895 seconds), and under 7 (1),
we can compute such an approximation with � = 40 for about 24 hours and
25 minutes (87748 seconds).
After we reach � = 40 countries, the second-degree polynomial approxi-

mation becomes expensive even under the cheapest integration formula7 (1).
We thus restrict attention to the �rst-degree polynomial: we use 81 and
7 (1) for � up to 100, and we use 7 (1) for � up to 200. As is observed
from the table, our linear solutions are still su�ciently accurate: the maxi-
mum error never reaches 0�1%. Another class of numerical methods in the
literature that allows us to solve models with a very large number of state
variables is perturbation. However, as was pointed out in Section 3, pertur-
bation methods compute solutions only in one point of state space (steady
state), and accuracy of their local solutions reduces rapidly away from that
point. In contrast, the cluster-grid method delivers global solutions that are

34



su�ciently accurate in the whole ergodic set. As far as the cost is concerned,
under 81, we compute a linear solution to the model with � = 100 for
about 10 hours and 46 minutes (38782 seconds), and under 7 (1), we can
compute a linear solution with � = 200 for about 1 hour and 45 minutes
(6316 seconds), respectively. The latter running time is small for such a large
number of countries, which indicates that we can easily go beyond � = 200.

Sensitivity experiments We �nally explore the robustness of our re-
sults obtained for the benchmark multi-country model by varying one of the
model’s parameters at a time, holding the rest of the parameters �xed to the
benchmark values. We illustrate the observed regularities in Table 8 using
an example of the model with � = 6. To evaluate the accuracy of solutions,
we use Gauss-Hermite product formula 7 (2). We �nd it more di�cult to
enforce convergence in the experiment with high risk aversion, : = 5, than
in other sensitivity experiments; hence, we reduce the dampening parameter
* in (11) which leads to an increase in computational time. Overall, our
sensitivity experiments in the multi-country case show the same regularities
as those seen in Table 3 for the one-country case. All the integration for-
mulas considered lead to very similar results except for 7 (1) which yields
somewhat lower accuracy.

8 Conclusion

An ergodic set is a tiny fraction of a hypercube domain, which is normally
examined by numerical methods. The cluster-grid method presented in this
paper provides a simple and inexpensive way of solving a dynamic economic
model on the ergodic set directly. For a given polynomial degree and a given
integration method, a parsimonious representation of the ergodic set allows
us to achieve essentially the same accuracy in high-dimensional models as
we do in low-dimensional models. Our method can be especially useful for
applications that require controlling the domain on which the problem is
solved (development economics, dynamic games, etc).
Given that accuracy of the cluster-grid method depends primarily on the

�exibility of the approximating function used, we can potentially improve the
method’s performance using other families of approximating functions. One
possibility is to extend a complete polynomial of a given degree to include
some high-degree polynomial terms. If a relatively few terms are added, it
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could be that cost does not growmuch but accuracy does. Another possibility
is to explore whether non-polynomial families of approximating functions can
lead to the same (a higher) accuracy with a smaller (the same) number of
basis function.
Our assessment of accuracy and cost shows that a proper coordination be-

tween the approximation and integration strategies is needed for constructing
e�cient numerical methods. An example of such a coordination is a combi-
nation of a �exible second-degree polynomial with a cheap one-node Gauss-
Hermite rule (as opposed to a combination of a rigid �rst-degree polynomial
with expensive integration formulas). Overall, in our applications, low-cost
integration formulas (i.e., the monomial formula with 2� nodes and the
one-node Gauss-Hermite rule) have enough accuracy to be compatible with
accuracy of solutions attainable under low-degree polynomial approximations
(high-degree polynomials are not feasible with high dimensions anyway). Our
results are suggestive for other economic applications.
Finally, we shall reiterate that our solutions are computed using a stan-

dard desktop computer. The speed of the cluster-grid method can be con-
siderably increased using more powerful hardware. Furthermore, the cluster-
grid approach is a natural candidate for parallelizing since we can compute
integrals in di�erent grid points independently of each other using di�erent
machines (processors). This will enable us to solve even more ambitious
applications than those studied in the paper.
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