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1 Introduction

The Disability Insurance (DI) program in the US is a large and rapidly growing social

insurance program offering income replacement and health care benefits to people with work

limiting disabilities. In 2007, the cash benefits paid by the DI program were three times

larger than those paid by Unemployment Insurance (UI) ($99.1 billions vs. $32.5 billions)1

and between 1985 and 2007 the proportion of DI claimants in the US has almost doubled

(from about 2.5% to almost 5% of the working-age population, see Autor and Duggan, 2006).

The key questions in thinking about the size and growth of the program are whether program

claimants are genuinely unable to work, and how valuable is the insurance provided. These

questions underlie the concerns that the greater use of DI explains the recent decline in labor

market participation of men and that the DI program is being used as a gateway for early

retirement, rather than providing insurance against health shocks that prevent work. To

assess these concerns and to evaluate the costs and benefits of changing the DI program to

try to reduce disincentives to work, we need a realistic modeling of the risks that individuals

face over their life-cycle to their ability to work and their wages, and a theoretical framework

that captures both the insurance benefit of DI as well as the incentive effects on individual

behavior. The broad aim of this paper is to provide this framework and to use it to evaluate

the DI program quantitatively in an explicit life-cycle setting.

More specifically, our paper makes three contributions. First, we propose a theoretical

framework that allows us to study in a life cycle setting the effect of disability risk on decisions

about labor supply, savings and applying for DI. We consider the problem of an individual

who faces two types of shock to wages: a permanent productivity shock unrelated to health;

and a disability or work limitation shock which reduces the ability to work. The distinction

between the two types of shock to wages is crucial for understanding the incentive problem

with the DI program: an individual with a disability shock above a certain threshold can

not work; while an individual with a productivity shock below a certain threshold may not

want to work. Since disability status is only imperfectly observable, either type may apply

for DI benefits.

Second, we estimate the parameters of this model using microeconomic data. We use

PSID data on wages, indicators of disability status, receipt of DI, consumption and employ-

ment status to help identify the wage and health risks that individuals face, their preferences

1The relative size of DI is even larger if we add the in-kind health care benefits provided by the Medicare
program to DI beneficiaries.
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and the parameters of the DI program. Almost half of the inflow onto DI comes from those

aged under 50, and so the use of the PSID is important for studying this behavior and behav-

ior across the whole life-cycle, rather than using the HRS which is restricted to those aged

over 50. Our estimates highlight that there are substantial false rejections in the allocation

of disability insurance, while false positives are somewhat less problematic.

Finally, we use our model and the estimates of the structural parameters to analyse the

impact on standard measures of household welfare and behavior of varying the key policy

parameters. We focus on addressing how well insured are individuals against disability

risk, how responsive are the number of false applications, labour supply and savings to

changes in the details of the DI program, and what are the implications for average household

welfare. The ability to evaluate these questions in a coherent unified framework is one

of the main benefits of the paper. We conduct counterfactual experiments by changing:

(a) stringency of the screening process, (b) re-assessment rate, (c) replacement rate, (d)

generosity of alternative social insurance programs. One striking finding of our paper is that

the high fraction of false rejections (Type I errors) associated with the screening process of

the disability insurance program leads to ex-ante average household welfare increases when

the program becomes less strict, despite the increase in false applications that this implies.

This is because coverage among those most in need goes up. On the other hand, average

household welfare is higher if the generosity of DI is cut and if reassessment is more frequent:

both of these reforms have a large impact reducing the number of false applicants at little

cost in terms of reduced coverage for those in need.

The issues raised in this paper relate to the literatures on the incentives to make a false

application for DI and the disincentive effects of DI on labor supply. It also relates to a small

literature on the costs of disability shocks. Since disability status is private information, DI

evaluators make two types of errors: awarding benefits to undeserving applicants, and denying

them to truly disabled individuals. The only direct attempt to measure such errors is Nagi

(1969), who uses a sample of 2,454 initial disability determinations. These individuals were

examined by an independent medical and social team. Nagi (1969) concluded that about

19% of those initially awarded benefits were undeserving, and 48% of those denied were truly

disabled. More recently, Benitez-Silva et al. (2006a) using HRS self-reported disability data

on the over 50s, conclude that over 40% of recipients of DI are not truly work limited and

this adds to the picture of an ineffi cient insurance program.

Suggested reforms to reduce these ineffi ciencies either recommend preventing false ap-
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plications in the first place, or providing incentives or mechanisms to make false claimants

leave the programme. At the heart of this different focus is the question of whether those

receiving DI unjustly were healthy (and hence could have worked) when they entered the

programme, or whether their health improved while on DI but they chose not to leave. The

incentive to make a false application rather than to work has been addressed by asking how

many DI recipients would be in the labor force in the absence of the program. Identifying an

appropriate control group has been controversial (see Parsons, 1980; Bound, 1989). Bound

(1989) uses DI applicants who were rejected as his control group. He finds that only 1/3 to

1/2 of rejected applicants are working, and this is taken as an upper bound of how many DI

beneficiaries would be working in the absence of the program. These estimates have recently

been confirmed by Chen and van der Klaauw (2008). Relatedly, Kreider (1999) finds that

although DI has important disincentive effects on labour supply, the effects due to changes in

DI generosity are not large enough to explain fully the fall in labour force participation. The

underlying assumption of these papers is that those who would be working in the absence of

DI are false applicants. To tackle false applications directly, Golosov and Tsyvinski (2006)

propose introducing an asset test for recipients of DI because those who anticipate making

a false claim will accumulate assets to help smooth consumption.

Evidence on the effectiveness of incentives to move the healthy off DI is weak: Hoynes

and Moffi tt (1997) conclude via simulations that some of the reforms aimed at allowing DI

beneficiaries to keep more of their earnings on returning to work are unlikely to be successful

and may, if anything, increase the number of people applying for DI. In a similar vein,

Acemoglu and Angrist (2001) and DeLeire (2000) examine the effect of the Americans with

Disabilities Act, which should have eased the transition back to work of the disabled, and

find that it actually led to a decline in the employment rate of people with disabilities.

Benitez-Silva et al. (2006b) evaluate the effectiveness of a “$1 for $2 offset”policy, which

consists of reducing DI benefits by $1 for every $2 of earnings above a certain level. They

find that the policy encourages work by DI beneficiaries, but also encourages entry into

the program by individuals attracted by the greater generosity who would not have applied

otherwise.

There have been some recent papers identifying the extent of health risk which underlie

the need for a DI programme. DeNardi, French and Jones (2010) estimate the risk to

health expenditure, but their focus is on the elderly, rather than those of working age when

disability insurance is an active option. Adda, Banks and Gaudecker (2007) estimate the
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effect of income shocks on health and find only small effects. Meyer and Mok (2007) and

Stephens (2001) have estimated in a reduced form way the effect of disability shocks on

household consumption. Gallipoli and Turner (2009) explore in a structural model the effect

of disability shocks on consumption and labor supply.

More generally, however, the broader issue of the value of DI and the effects of DI reform

requires combining estimates of the risk associated with health shocks in a framework that

allows the evaluation of the insurance and incentives provided by DI. Previous work by

Bound et al. (2004), Waidmann et al. (2003) and Rust et al. (2002) has also highlighted

the importance of considering both sides of the insurance/incentive trade-off for welfare

analysis.2 Our work builds on these papers but extends them by modelling explicitly the

joint decision over whether to apply for DI and whether to work at different ages across the

life-cycle, as well as an explicit measure of disability risk which allows for moderate as well

as severe disability. Further, we allow for a more flexible specification of the wage process

and of preferences, and the addition of labor market frictions and interactions with other

social insurance programs. None of these elements are purely cosmetic: we believe this is

a necessary set-up to provide enough realism to capture the trade-offs inherent in the DI

system. For example, negative productivity shocks unrelated to health (such as shocks to

skill prices), as well as a possible lack of employment opportunities, are at the root of the

incentive problem - both reduce the opportunity cost of applying for DI independent of health

status - and so we need such shocks alongside the risk of work-limiting disabilities if we want

to explain the decision to apply for DI when not disabled. Finally, the opportunity cost of

applying for DI depends on whether there are programs to finance consumption during the

period it takes for an application to be processed, and on what alternative mechanisms of

insurance exist.

The rest of the paper is structured as follows. Section 2 presents the life-cycle model

allowing for health status, and discusses the various social insurance programs available to

individuals. Section 3 summarizes the data used in the estimation of the model, focusing

on the data on disability status and on consumption. Section 4 discusses the identification

strategy. The key sections of the paper are Sections 5 and 6. Section 5 presents the estimates

of the structural parameters and discusses the effi ciency of the existing DI system. Section 6

carries out counter-factual policy experiments, reporting the effects on behavior and average

household welfare of potential reforms of DI. Section 7 concludes.

2See also Diamond and Sheshinski (1995) for a model of optimal disability insurance.
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2 Life-Cycle Model

2.1 Individual Problem

We consider the problem of an individual who maximizes lifetime expected utility:

max
c,P,DIApp

Vit = Et

T∑
s=t

βs−tU(cis, Pis;Lis)

where β is the discount factor, Et the expectations operator conditional on information

available in period t (a period being a quarter of a year), P a discrete {0, 1} labor supply
participation indicator, ct consumption, and Lt a discrete work limitation (disability) status

indicator {0, 1, 2}, corresponding to no limitation, a moderate limitation and a severe limi-
tation, respectively. Work limitation status is often characterised by a {0, 1} indicator (as in
Benitez-Silva et al., 2006a). We use a three state indicator to show the importance of distin-

guishing between moderate and severe work limitations. Individuals live for T periods, may

work TW years (from age 23 to 62), and face an exogenous mandatory spell of retirement of

TR =10 years at the end of life. The date of death is known with certainty and there is no

bequest motive.

The intertemporal budget constraint during the working life has the form

Ait+1 = R


Ait + (with (1− τw)− F (Lit))Pit

+(BitE
UI
it

(
1− EDI

it

)
+DIitE

DI
it + SSIitE

DI
it E

W
it ) (1− Pit)

+WitE
W
it − cit


where A are beginning of period assets, R is the interest factor, w the hourly wage rate,

h a fixed number of hours (corresponding to 500 hours per quarter), τw a proportional tax

rate that is used to finance social insurance programs, F the fixed cost of work that depends

on disability status,3 B unemployment benefits, W the monetary value of the means tested

welfare payment, DI the amount of disability insurance payments obtained, SSI the amount

of Supplemental Security Income (SSI) benefits, and EUI , EDI , and EW are recipiency {0, 1}
indicators for unemployment insurance, disability insurance, and the means-tested welfare

3The fact that disabled individuals face direct costs of work is explicitly recognized by the Social Security
Administration (SSA), which allows individual to deduct costs of work (such as “a seeing eye dog, prescription
drugs, transportation to and from work, a personal attendant or job coach, a wheelchair or any specialized
work equipment”) from monthly earnings before determining eligibility for DI benefits (see SSA Publication
No. 05-10095).
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program, respectively.4

The worker’s problem is to decide whether to work or not. When unemployed he has to

decide whether to accept a job that may have been offered or wait longer. The unemployed

person will also have the option to apply for disability insurance (if eligible). Whether

employed or not, the individual has to decide how much to save and consume. Accumulated

savings can be used to finance consumption at any time, particularly during spells out of

work and retirement.

We use a utility function of the form

u (cit, Pit;Lit) =
(cit exp (θLit) exp (ηPit))

1−γ

1− γ
We set γ = 1.5 following Attanasio and Weber (1995), and estimate θ and η. To be

consistent with disability and work being “bads”, we require θ < 0 and η < 0, two restrictions

that are not rejected by the data. The parameter θ captures the utility loss for the disabled

in terms of consumption. Participation also induces a utility loss determined by the value

of η. This implies that consumption and participation are Frisch complements (i.e. the

marginal utility of consumption is higher when participating) and that the marginal utility

of consumption is higher when suffering from a work limitation.5

We assume that individuals are unable to borrow: Ait ≥ 0. In practice, this constraint

has bite because it precludes borrowing against social insurance and means-tested programs.

At retirement, people collect social security benefits which are paid according to a formula

similar to the one we observe in reality, and is the same as the one used for DI benefits (see

below). Social security benefits, along with assets that people have voluntarily accumulated

over their working years, are used to finance consumption during retirement. The structure

of the individual’s problem is similar to life-cycle models of savings and labour supply, such

as Low, Meghir and Pistaferri (2010). The innovations in our set-up are to consider the risk

that arises from disability shocks that cause a work limitation and the explicit modelling of

disability insurance.

There are important differences by skill level both in terms of probability of disability

shocks and disability insurance recipiency rates. In particular, if we proxy skill level by

4We do not have an SSI recipiency indicator because that is a combination of receiving DI and being
eligible for means-tested transfers.

5Lillard and Weiss (1997) also find evidence for θ < 0 using HRS savings and health status data. See
Finkelstein et al. (2008) for a recent attempt to measure the effect of health status on the marginal utility
of consumption using measures of subjective well-being as a proxy for utility.
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education, we find that individuals with low education (at most high school degree) and

high education (some college or more), have very similar DI recipiency rates until their mid

30s, but after that the difference increases dramatically. By age 60, the low educated are four

times more likely to be DI claimants than the high educated (16% vs. 4%). In part, this is

due to the fact that low educated individuals are more likely to have a severe disability at all

ages.6 To account for these differences, in what follows we assume that all the parameters of

the model are education-specific, and much of our focus is on the low educated. To simplify

notation, we omit subscripts defining the skill group of interest.

2.2 The Wage Process and Labour Market Frictions

We model the wage process for individual i as being subject to general productivity shocks

and shocks to work limitation status, as well as the contribution of observable characteristics

Xit:

lnwit = X ′itα + ϕ1L
1
it + ϕ2L

2
it + εit (1)

where Ljit = 1 {Lit = j}, and
εit = εit−1 + ζ it

Individuals work limitation status, Lit, evolves according to a three state first-order

Markov process. Upon entry into the labor market, all individuals are assumed to be healthy

(Li0 = 0). Transition probabilities from any state depend on age. We assume that these tran-

sition probabilities are exogenous and in particular, we rule out the possibility of individuals

investing in health prevention activities.7 We interpret εit as a measure of individual unob-

served productivity that is independent of health shocks - examples would include shocks to

the value and price of individual skills.

Equation (1) determines the evolution of individual productivity. Productivity deter-

mines the offered wage when individuals receive a job offer. In our framework, individuals

make a choice about whether or not to accept an offered wage. This will also depend on the

fixed costs of work, which in turn depend on the extent of the work limitation, F (L) . In

addition, there are labour market frictions which mean that not all individuals receive job

offers. First, there is job destruction, δ, which forces individuals into unemployment for (at

6See the Web Appendix for more details. This is available at
http://www.stanford.edu/~pista/papers/WA_LP.pdf.

7We allow the process to differ by education, which may implicitly capture differences in health invest-
ments.
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least) one period. Second, job offers for the unemployed arrive at a rate λ and so individuals

may remain unemployed even if they are willing to work.

This wage and employment environment implies a number of sources of risk, from in-

dividual productivity, work limitation shocks, and labor market frictions. These risks are

idiosyncratic, but we assume that there are no markets to provide insurance against these

risks. Instead, there is partial insurance coming from government insurance programs (as

detailed in the next section) and from individuals’own saving and labor supply.

2.3 Social Insurance

2.3.1 The SSDI Program

The Social Security Disability Insurance program (SSDI) is an insurance program for covered

workers, their spouses, and dependents that pays benefits related to average past earnings.

The purpose of the program is to provide insurance against health shocks that impairs

substantially the ability to work. The diffi culty with providing this insurance is that health

status and the impact of health on the ability to work is imperfectly observed.8

The award of disability insurance depends on the following conditions: (1) An individual

has to have filed an application; (2) There is a work requirement on the number of quarters

of prior participation: Workers over the age of 31 are disability-insured if they have 20

quarters of coverage during the previous 40 quarters; (3) There is a statutory five-month

waiting period out of the labour force from the onset of disability before an application will

be processed; and (4) Finally, the individual must meet a medical requirement, i.e. the

presence of a disability defined as “Inability to engage in any substantial gainful activity by

reason of any medically determinable physical or mental impairment, which can be expected

to result in death, or which has lasted, or can be expected to last, for a continuous period of

at least 12 months.”9

This requires that the disability affects the ability to work; and further, both the severity

and the expected persistence of the disability matter. The actual DI determination process

consists of sequential steps. After excluding individuals earning more than a so-called “sub-

8Besides SSDI, about 25% of workers in the private sector are also covered by employer-sponsored long-
term disability insurance plans.

9Despite this formal criterion changing very little, there have been large fluctuations over time in the
award rates: for example, award rates fell from 48.8% to 33.3% between 1975 and 1980, but then rose
again quickly in 1984, when eligibility criteria were liberalized, and an applicant’s own physician was used
to determine eligibility. In 1999, a number of work incentive programs for DI beneficiaries were introduced
(such as the Ticket to Work program) in an attempt to push some of the DI recipients back to work.
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stantial gainful amount”(SGA, $1000 a month for non-blind individuals as of 2010), the

SSA determine whether the individual has a medical disability that is severe and persistent

(per the definition above). If such disability is a listed impairment, the individual is awarded

benefits without further review.10 If the applicant’s disability does not match a listed impair-

ment, the DI evaluators try to determine the applicant’s residual functional capacity. In the

last stage the pathological criterion is paired with an economic opportunity criterion. Two

individuals with identical work limitation disabilities may receive different DI determination

decisions depending on their age, education, general skills, and even economic conditions

faced at the time the determination is made.

In our model, we make the following assumptions in order to capture the complexities

of the disability insurance screening process. First, we require that the individuals make

the choice to apply for benefits. Second, individuals have to have been at work for at least

one period prior to becoming unemployed and making the application. Third, individuals

must have been unemployed for at least one quarter before applying. Successful applicants

begin receiving benefits in that second quarter. Unsuccessful individuals must wait a further

quarter before being able to return to work, but there is no direct monetary cost of applying

for DI. Finally, we assume that the probability of success depends on the true work limitation

status, age, and education:

Pr
(
DIit = 1|DIAppit = 1, Lit, t

)
=

{
πY oungL

πOldL

if t < 45

if 45 ≤ t ≤ 62
(2)

The medical requirement in the SSDI program imposes a severity and persistence require-

ment on the work limitation. In our model, the expected persistence of the work limitation

is captured by the Markov process assumption and is age dependent. This age dependence

is the reason why we make the probability of a successful application for DI dependent on

age.11 The survey question we use to identify the work limitation (described fully below)

asks individuals about work-related limitations rather than medical conditions or health sta-

tus more generally. Eligibility does not depend on whether an individual quits or the job is

destroyed.

10The listed impairments are described in a blue-book published and updated periodically by the SSA
(“Disability Evaluation under Social Security”). The listed impairments are physical and mental conditions
for which specific disability approval criteria has been set forth or listed (for example, Amputation of both
hands, Heart transplant, or Mental retardation, defined as full scale IQ of 59 or less, among other things).
11The separation at age 45 takes also into account the practical rule followed by DI evaluators in the the

last stage of the DI determination process (the so-called Vocational Grid, see Appendix 2 to Subpart P of
Part 404– Medical-Vocational Guidelines, as summarized in Chen and van der Klaauw, 2008).
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Individuals leave the disability program either voluntarily (which in practice means into

employment) or following a reassessment of the work limitation and being found to be able to

work (based on (2)). The probability of being reassessed is 0 for the first year, then is given

by PRe, which is independent of L and age. If an individual is not successful on application

or if an individual is rejected on reassessment, the individual has to remain unemployed

until the next quarter before taking up a job. Individuals can only re-apply in a subsequent

unemployment spell, where again the probability of success is determined by (2).

SSDI benefits are calculated in essentially the same fashion as Social Security retirement

benefits. Beneficiaries receive indexed monthly payments equal to their Primary Insurance

Amount (PIA), which is based on taxable earnings averaged over the number of years worked

(known as AIME). Caps on the amount that individuals pay into the DI system as well as

the nature of the formula determining benefits (see equation 3 below) make the system

progressive. Because of the progressivity of the benefits and because individuals receiving

SSDI also receive Medicare benefits after two years, the replacement rates are substantially

higher for workers with low earnings and those without employer-provided health insurance.

However, benefits are independent of the extent of the work limitation.

In the model, we set the value of the benefits according to the actual schedule in the US

program. The value of disability insurance is given by

Dit =


0.9× wi
0.9× a1 + 0.32× (wi − a1)
0.9× a1 + 0.32× (a2 − a1) + 0.15× (wi − a2)
0.9× a1 + 0.32× (a2 − a1) + 0.15 (a3 − a2)

if wi ≤ a1

if a1 < wi ≤ a2

if a2 < wi ≤ a3

if wi > a3

(3)

where wi is average earnings computed before the time of the application and a1, a2, and

a3 are thresholds we take from the legislation.12 We assume wi can be approximated by the

value of the permanent wage at the time of the application.

To understand our characterization of the application process and the trade-off between

genuine applicants and non-genuine applicants, consider the following example. Assume

that the government receives a noisy signal Sit about the true disability status of a DI

applicant (independent of non-health related productivity εit), and that its decision rule is

to award benefits to applicants whose signal exceed a certain stringency threshold, Sit > S.

Some individuals whose actual disability is less severe than S may nonetheless wish to

apply for DI if their productivity is suffi ciently low because the government only observes

12In reality what is capped is wi (the AIME), because annual earnings above a certain threshold are not
subject to payroll taxation. We translate a cap on AIME into a cap on DI payments.
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Sit, a noisy measure of the true disability status. In contrast, some individuals with true

disability status above the threshold may not apply because they are highly productive

(they have high realizations of εit) despite their disability. Given the opportunity cost of

applying for DI, these considerations suggest that applicants will be predominantly low

productivity individuals or those with severe work limitations (see Black et al., 2004, for a

related discussion).

Benitez-Silva et al. (2006a) characterize in a compelling way the extent of false claimants

in disability insurance applications. In particular, they show that 40% of recipients do not

conform to the criterion of the SSA. This raises the question of whether the “cheaters”are

not at all disabled or whether they have only a partial disability. With our characterization

of individuals as falling into categories severely restricted (L = 2) and at least partially

restricted (L = 1), we are able to explore this issue.

The criteria quoted above specifies “any substantial gainful activity”: this refers to a

labour supply issue. However, it does not address the labour demand problem. Of course,

if the labour market is competitive this will not be an issue because workers can be paid

their marginal product whatever their productivity level. In the presence of imperfections,

however, the wage rate associated with a job may be above the disabled individual’s marginal

productivity. The Americans with Disability Act (1990) tries to address this question but

that tackles the issue only for incumbents who become disabled.

2.3.2 Unemployment Insurance

We assume that unemployment benefits are paid only for the quarter immediately following

job destruction. Unemployment insurance is paid only to people who have worked in the

previous period, and only to those who had their job destroyed (job quitters are ineligible for

UI payments, and we assume this can be perfectly monitored). We assume Bit = b×wit−1h,

subject to a cap, and we set the replacement ratio b = 75%. This replacement ratio is set at

this high value because the payment that is made is intended to be of a similar magnitude

to the maximum available to someone becoming unemployed. This simplifying assumption

means that, since the period of choice is one quarter, unemployment benefit is like a lump-

sum payment to those who exogenously lose their job and so does not distort the choice

about whether or not to accept a new job offer. Similarly, there is no insurance against the

possibility of not receiving a job offer after job loss.
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2.3.3 Universal Means-Tested Program

The universal means-tested program is an anti-poverty program providing a floor to income

for all individuals, similar to the actual food stamps program but with three important

differences. First, means-testing is on household income rather than on income and assets;

second, the program provides a cash benefit rather than a benefit in kind; and third, we

assume there is 100% take-up.13 Gross income is given by

ygrossit = withPit +
(
BitE

UI
it

(
1− EDI

it

)
+DitE

DI
it

)
(1− Pit) (4)

giving net income as y = (1− τw) ygross − d, where d is the standard deduction that people
are entitled to when computing net income for the purpose of determining food stamp

allowances. The value of the program is then given by

Wit =

{
T − 0.3× yit
0

if EW
it = 1

(
i.e., if yit ≤ y

)
otherwise

(5)

The maximum value of the payment, T , is set assuming a household with two adults and

two children. The term y is the poverty line and so only people with net earnings below the

poverty line are eligible.

As we discuss below, this means-tested program interacts in complex ways with disability

insurance: the Food Stamps program provides a consumption floor during application for DI,

and an alternative mechanism for income support for those of low productivity.

2.3.4 Supplemental Security Income (SSI)

Individuals who are deemed to be disabled according to the rules of the DI program and who

have income (comprehensive of DI benefits but excluding the value of food stamps) below the

threshold that would make them eligible for food stamps receive also supplemental security

income (SSI). The SSI program in the US is designed to help aged and disabled people who

have little or no income. The definition of disability in the SSI program is identical to the

one for the DI program. The definition of low income is similar to the one used for the Food

Stamps program.14 We assume that SSI generosity is identical to the means-tested program.

13The diffi culty with allowing for an asset test in our model is that there is only one sort of asset which
individuals use for retirement saving as well as for short-term smoothing. In reality, the asset test applies
only to liquid wealth and thus excludes pension wealth (as well as real estate wealth and other durables).
14In particular, individuals must have income below a “countable income limit”, which typically is slightly

below the offi cial poverty line (Daly and Burkhauser, 2003). As in the case of Food Stamp eligibility, SSI
eligibility also has an asset limit which we disregard (see note 13).
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2.3.5 Taxation on Earnings

We hold the government budget deficit, D̄, constant when varying parameters of the social

insurance programmes. This is achieved by adjusting the proportional payroll tax, τw, such

that the present discounted value of net revenue flows is constant:

N∑
i=1

T∑
t=1

1

Rt

[(
BitE

UI
it

(
1− EDI

it

)
+DitE

DI
it

)
(1− Pit) + EW

it Wit + q {Reit = 1}
]

(6)

=
N∑
i=1

T∑
t=1

1

Rt
τwwithPit + D̄

where q is the cost of undertaking a reassessment of an individual on disability, and Reit is

an indicator of whether such a reassessment has been undertaken.15 This is done iteratively

because labor supply and DI application decisions change as a consequence of changes in

government policy.

2.4 Solution

There is no analytical solution for our model. Instead, the model must be solved numerically,

beginning with the terminal condition on assets, and iterating backwards, solving at each

age for the value functions conditional on work status. The solution method is discussed in

more detail in the Web Appendix. Here we describe the main features of the algorithm used.

We start by constructing the value functions for the individual when employed and when

out of work. When employed, the state variables are {Ait, εit, Lit} , corresponding to current
assets, individual productivity and work limitation status. We denote the value function

when employed as V e. When unemployed, there are three alternative discrete states the

individual can be: unemployed and not applying for disability (denoted V n); unemployed

and applying for disability (V App); or unemployed and already receiving disability insurance

(V Succ). We describe here the specification of the value function when employed and leave

the discussion of the other value functions to the Web Appendix. The value function if

working can be written as:

15For the period 2004-2008, the SSA spent $3.985 billion to conduct 8.513 million “continuing disability
reviews”. This means a review costs on average $468, and we deflate this back to 1992 prices.
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V e
it (Ait, εit, Lit) =

max
c


U (cit, Pit = 1;Lit) +

βδEt

[
V n
it+1

(
Ait+1, εit+1, Lit+1, DI

Elig
it+1 = 1

)]
+β (1− δ)Et max

{
V n
it+1

(
Ait+1, εit+1, Lit+1, DI

Elig
it+1 = 1

)
V e
it+1 (Ait+1, εit+1, Lit+1)

}

where DIEligit+1 is an indicator for whether the individual is eligible to apply for DI (at the end

of the unemployment spell). Our model has discrete state variables for: Wage productivity,

Work limitation status, Participation, Eligibility to apply for DI (if not working), and Length

of time on DI (over 1 year or less than 1 year). The only continuous state variable is assets. In

the value functions above, the choice of participation status is determined by the maximum

of the conditional value functions.16

2.5 Structural Parameters to Estimate

To summarize, there are four sets of structural parameters that we want to estimate (sep-

arately by education). The first set includes parameters characterizing risk: Disability risk

(the probability of having a work limitation in t, given past health), the effect of disability on

wages (ϕ1 and ϕ2 in equation (1)), and productivity risk σ
2
ζ . The second set is labor market

frictions: The job destruction rate δ, the arrival rate of job offers when unemployed λ, and

the fixed cost of work F (L). The third set of parameters characterize the DI policy parame-

ters: The probability of success of a DI application when “young”(πY oungL=0 , πY oungL=1 , πY oungL=2 )

and when “old” (πOldL=0, π
Old
L=1, π

Old
L=2), and the probability of reassessment while on DI, P

Re.

The final set of parameters is preferences: The utility cost of a work limitation θ, the disu-

tility of work η, the coeffi cient of relative risk aversion γ and the discount rate β. As we

will discuss later, some of these parameters will be set to realistic values (taken from the

literature) rather than estimated.

16Value functions are increasing in assets At but they are not necessarily concave, even if we condition
on labor market status in t. The non-concavity arises because of changes in labor market status in future
periods: the slope of the value function is given by the marginal utility of consumption, but this is not
monotonic in the asset stock because consumption can decline as assets increase and expected labor market
status in future periods changes. This problem is also discussed in Lentz and Tranaes (2005) and in Low et
al. (2010).
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3 Data

We conduct our empirical analysis using longitudinal data from the 1986-1993 Panel Study of

Income Dynamics (PSID).17 The PSID offers repeated, comparable annual data on disability

status, disability insurance recipiency, earnings, and food consumption. Its main disadvan-

tage is that the sample of people likely to have access to disability insurance is small and

there may be some questions about the variables that define the disability (or work limita-

tion) status of an individual, especially in comparison to the definition of disability of the

Social Security Administration. Nevertheless, the PSID matches quite well a number of facts

and aggregate statistics. For example, estimates of disability rates in the PSID are similar

to those obtained in other, larger data sets (CPS, SIPP, NHIS - and HRS conditioning on

age, see Bound and Burkhauser, 1999). Moreover, PSID disability insurance rates by age

compare well with aggregate data (see Web Appendix). The match is good also in the time

series. In the population, the proportion of people on DI has increased from 2.4% to 4.3%

between 1985 and 2005. In the PSID the increase between 1985 and 2005 is from 2.4% to

4.5%.

The PSID sample we use excludes the Latino sub-sample, female heads, and people

younger than 23 or older than 62. We also exclude those with missing reports on education,

the state of residence, the self-employed, those with less than 3 years of data, and some

hourly wage outliers (those with an average hourly wage that is below half the state-level

minimum wage and those whose hourly wage declines by more than 75% or grows by more

than 400%).18 Given that the timing of the work limitation question does not coincide with

the timing of the DI receipt question (the former refers to the time of the interview, the

latter to the previous calendar year), we also lose the first cross-section of data for each

individual.

Disability Data We define a discrete indicator of work limitation status (Lit), based on

the following questions: (1) Do you have any physical or nervous condition that limits the

type of work or the amount of work you can do? To those answering “Yes”, the interviewer

then asks: (2) Does this condition keep you from doing some types of work? The possible

17Due to the retrospective nature of the questions on earnings and consumption, this means our data refer
to the 1985-1992 period. We use labor income data before 1985 to construct a measure of permanent income
for each individual and each year after 1985. We are unable to use more recent data because between 1993
and 2005 we do not have details on which household member receives DI, although such degree of detail may
be available in future releases of the data set.
18The hourly wage is defined as annual earnings/annual hours.
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answers are: “Yes”, “No”, or “Can do nothing”. Finally, to those who answer “Yes”or “No”,

the interviewer then asks: (3) For work you can do, how much does it limit the amount of

work you can do? The possible answers are: “A lot”, “Somewhat”, “Just a little”, or “Not

at all”.

We use answers to these questions to distinguish between having no work limitation

(Lit = 0), a moderate limitation (Lit = 1) and a severe limitation (Lit = 2). We assume that

those without a work limitation either answer “No”to the first question or “Not at all”to

the third question. Of those that answer “Yes”to the first question, we classify as severely

limited those who answer question 2 that they “can do nothing” and those that answer

question 3 that they are limited “a lot”. The rest have a moderate limitation: their answer

to question 3 is that they are limited either “somewhat”or “just a little”. This distinction

between severe and moderate disability enables us to target our measure of work limitation

more closely to that intended by the SSA. In particular, we interpret the SSA criterion as

intending DI for the severely work limited rather than the moderately work limited.

The validity of these self-reports is somewhat controversial for two reasons: first, indi-

viduals may over-estimate their work limitation in order to justify their disability payments

or their non-participation in the labour force. Second, health status may be endogenous,

and non-participation in the labour force may affect health (either positively or negatively).

Regarding the first criticism, Bound and Burkhauser (1999) survey a number of papers that

show that self-reported measures are highly correlated with clinical measures of disability.

Benitez-Silva et al. (2004) show that self-reports are unbiased predictors of the definition of

disability used by the SSA. Burkhauser and Daly (1996) show that the employment trends

for working-age men and women found in the CPS and the NHIS based on a work limitation

definition of disability yields trends in employment rates between 1983 and 1996 that are

not significantly different from the employment trends for the broader population of people

with an impairment. See however Kreider (1999) and Kreider and Pepper (2007) for evi-

dence based on bound identification that disability is over-reported among the unemployed.

Table 1 adds to the evidence in support of our self-reported measure of work limitation.

As in Burkhauser and Daly (1996), we use the 1986 PSID health supplement to show how

objective measures of limitation vary with self-reported status, but we distinguish between

reports of severe and moderate limitations. Table 1 shows that our distinction between a

severe and moderate disability is correlated with objective measures.

Regarding the second criticism of the endogeneity of health status, Stern (1990) and
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Table 1: Validity of Self-Reported Disability Status

Objective indicator No disability Moderate Severe
L = 0 L = 1 L = 2

Trouble walking/climbing stairs 7% 58% 79%
Trouble bending/lifting objects 4% 45% 75%
Unable to drive car 0% 9% 33%
Trouble with eyesight 2% 5% 16%
Need travel assistance 0% 2% 27%
Need to stay inside 0% 5% 28%
Confined to chair/bed 0% 5% 26%
Limited in physical activity 12% 80% 94%
Spent some time in hospital 5% 24% 35%
Average # of days in hospital 0.36 1.78 14.49
Notes: The sample is male heads of household, aged 23-62. Data refer to 1986.

Bound (1991) both find positive effects of non-participation on health, but the effects are

economically small. Further, Smith (2004) finds that income does not affect health once one

controls for education.

Disability Insurance To identify whether an individual in the PSID is receiving disability

insurance, we use a question that asks whether the amount of social security payments

received was due to disability.19 This question is asked from the 1986 wave onwards. Prior

to 1986, the question was not targeted to the head of the household, and so we cannot

distinguish the recipient of the insurance.

Consumption Data One diffi culty with the PSID is that the consumption in the data

refers only to food. By contrast, in the model, the budget constraint imposes that over the

lifetime, all income is spent on (non-durable) consumption. To compare consumption in the

model to consumption in the data, we obtain non-durable consumption in the data with

an imputation procedure that uses a regression for nondurable consumption estimated with

Consumer Expenditure Survey (CEX) data.

The CEX sample we construct to do the imputation of consumption tries to mimic as

19The survey first asks the amount of Social Security payments received in year t by the year t + 1
head. Then, it asks Was that disability, retirement, survivor’s benefits, or what?. Possible responses are: 1)
Disability, 2) Retirement, 3) Survivor’s benefits; dependent of deceased recipient, 4) Dependent of disabled
recipient, 5) Dependent of retired recipient, 6) Other, 7) Any combination of the codes above.
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closely as possible the sample selections we impose in the PSID. Hence, our CEX sample

includes only families headed by a male, reporting data between 1986 and 1992, with no

missing data on the region of residence, aged 23 to 62, not self-employed, reporting data

for all interviews (so an annual measure of consumption can be constructed), with complete

income response, non-zero consumption of food, and not living in student housing.

We estimate in the CEX the following regression:

ln cit =
K∑
j=0

θj (lnFit)
j +X ′itµ+ ξit

where F is food consumption.

We use a third-degree polynomial in lnF and control for a cubic in age, number of

children, family size, dummies for white, education, region, year, a quadratic in log before-

tax family income, labor market participation status, a disability status indicator of whether

the head is “ill, disabled, or unable to work”, an indicator for whether the head is receiving

social security payments (which for workers aged 62 or less should most likely capture DI),

and interactions of the disability status indicator with log food, log income, a dummy for

white, the DI indicator, and a quadratic in age. The R2 of the regression is 0.79.

We next define in the PSID the imputed value:

l̂n cit =
K∑
j=0

θ̂j (lnFit)
j +X ′itµ̂

This is the measure of consumption we use in the analysis that follows.

Sample Statistics Table 2 reports some sample statistics for individuals by work limi-

tation status and by education (using sampling weights throughout), where low education

is defined as high school graduate or less. Regardless of education, the disabled are older,

less likely to be married or white, with a smaller family, less likely to be working, and more

likely to be on DI. Their family income, wages, and food spending are lower, but income

from transfers (both private and public transfers) is higher. The high educated have higher

participation rates and lower DI recipiency rates.

Most of the structural analyses of DI errors have used HRS or SIPP data. Benitez-

Silva et al. (2004) use the HRS, which has the advantage over the PSID of asking very

detailed questions on disability status and DI application, minimizing measurement error

and providing a direct (reduced form) way of measuring errors. However, the HRS samples
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Table 2: Sample Statistics by Work Limitation Status

Low Education High Education
L = 0 L = 1 L = 2 L = 0 L = 1 L = 2

Age 40.28 44.80 48.81 39.46 42.69 46.07
% Married 0.79 0.84 0.69 0.77 0.72 0.61
% White 0.84 0.90 0.80 0.91 0.92 0.76
Family size 3.01 3.16 2.61 2.92 2.70 2.57
Family income 43,912 39,715 26,416 66,945 51,728 36,098
Income from transfers 1,758 4,667 10,284 1,637 4,700 11,358
% Working now 0.90 0.71 0.15 0.94 0.77 0.44
% Annual wages > 0 0.97 0.81 0.19 0.98 0.89 0.48
Hours|Hours>0 2,140 1,941 1,358 2,228 2,039 1,742
Wages|Hours>0 29,618 24,518 14,718 45,713 33,447 28,365
Hourly wage 12.64 11.78 9.33 19.33 15.60 14.68
% DI recipient 0.01 0.08 0.52 0.00 0.03 0.31
Food spending 5,352 5,223 4,198 6,232 5,738 5,223

N 9,112 784 635 8,003 415 171
Notes: monetary values are in 1992$; the sample is male heads of household, aged 23-62.
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Figure 1: Proportion of new DI awards
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only from a population of older workers and retirees (aged above 50). This is an important

limitation because the high current levels of DI were associated with sharp increases in the

flow-on rates for the under-50s: Figure 1 shows that male workers younger than 40 account

for 20 to 25% of new entrants in the Disability Insurance program in recent years, and

between 40% and 50% of new entrants are under 50. We use the PSID to understand this

behavior because it samples individuals from all ages and follows them across their life-cycle.

The SIPP has the advantage over the PSID of being a much larger data set, but it lacks any

consumption data. This is problematic because an important element of our model is the

state dependence in utility induced by health.

4 Identification

Identification of the unknown parameters proceeds in a number of steps. First, we estimate

disability risk directly from transitions between disability states. Second, we estimate the

effect of disability on wages using wage data, controlling for selection into work. Third,

we estimate productivity risk from unexplained innovations to wages, again controlling for

selection into work. Finally, we use indirect inference for the remaining parameters: prefer-

ences, labour market frictions, and the parameters that characterize the disability insurance

process. To do this, we use a range of auxiliary equations: coeffi cients from a consumption

regression, participation over the life-cycle, health status of DI recipients and the DI status

of individuals of different health.

4.1 Disability Risk

Disability risk is independent of any choices made by individuals in our model, and is also

independent of productivity shocks. This means that the disability risk process can be

identified structurally without indirect inference. By contrast, the same is not true for the

variance of wage shocks: because wages are observed only for workers, wage shocks are

identified using a selection correction.

4.2 The Wage Process

We modify the wage process (1) to include a measurement error ωit:

lnwit = X ′itα + ϕ1L
1
it + ϕ2L

2
it + εit + ωit (7)
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with εit = εit−1 + ζ it as before. We make the assumption that the two errors ζ it and ωit

are independent. Based on evidence from e.g., Bound and Krueger (1995), we assume that

the measurement error ωit may be serially correlated (an MA(1) process). Our goal is to

identify the variance of the productivity shock σ2
η as well as ϕ1 and ϕ2. A first complication is

selection effects because wages are not observed for non-participants and non-participation

depends on the wage offer. Further, non-participation may depend directly on disability

shocks as well as on the expectation that the individual will apply for DI in the subsequent

period (which requires being unemployed in the current period). We observe neither these

expectations, nor the decision to apply.

Our selection correction is based on a reduced form rather than on our structural model,

although the structural model is consistent with the reduced form. An alternative would be

to include the wage risk parameters in the indirect inference estimation but this is compu-

tationally burdensome. Our reduced form model of participation is:

P ∗it = X ′itγ + δ1L
1
it + δ2L

2
it + θGit + ϑit (8)

= sit + ϑit

where P ∗it is the utility from working, and we observe the indicator Pit = 1 {P ∗it > 0}. Here
Git is a vector of exclusion restrictions: They affect the likelihood of observing an individual

at work (through an income effect and through affecting the expectation that the individual

will apply for DI in the subsequent period), but they do not affect the wage, conditional

on Xit and Lit. We assume that income transfers and an indicator of UI generosity serve

as exclusion restrictions. The unobserved “taste for work”ϑit is freely correlated with the

permanent productivity component εit. We assume that(
εit
ϑit

)
∼ N

((
0
0

)
,

(
σ2
ε σεϑ

1

))
Under these assumptions, the wage for labor market participants is thus:

E (lnwit|P ∗it > 0, Xit, Lit) = X ′itα + ϕ1L
1
it + ϕ2L

2
it + E (εit|P ∗it > 0, Xit, Lit)

= X ′itα + ϕ1L
1
it + ϕ2L

2
it + σεϑλ (sit)

assuming no selection on the measurement error. The Mills’ratio term λ (sit) = φ(sit)
Φ(sit)

, where

φ (.) and Φ (.) denote the p.d.f. and c.d.f. of the standard normal distribution, respectively.

Thus, one can estimate
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lnwit = X ′itα + ϕ1L
1
it + ϕ2L

2
it + σεϑλ (sit) + vit (9)

only on the sample of workers, and with E (vit|P ∗it > 0, Xit, Lit) = 0 (Heckman, 1979). The

resulting estimates of ϕ1 and ϕ2 should be interpreted as the estimates of the effect of work

limitations on offered wages.

4.3 Productivity Risk

To identify the variance of productivity shocks, we define first the “adjusted”error term:

git = ∆
(
lnwit −X ′itα− ϕ1L

1
it − ϕ2L

2
it

)
(10)

From estimation of α, ϕ1 and ϕ2 described above we can construct the “adjusted”residu-

als (10), and use them as they were the true adjusted error terms (MaCurdy, 1982). Assuming

for simplicity of notation that ωit is i.i.d., we can then identify the variance of productivity

shocks and the variance of measurement error using the following moment restrictions:

E (git|Pit = 1, Pit−1 = 1) = ρζϑσζλ (sit) (11)

E
(
g2
it|Pit = 1, Pit−1 = 1

)
= σ2

ζ

(
1− ρ2

ζϑsitλ (sit)
)

+ 2σ2
ω (12)

−E (gitgit+1|Pit = 1, Pit−1 = 1) = σ2
ω (13)

(see Low, Meghir and Pistaferri, 2010). Here ρζϑ denotes the correlation coeffi cient between

ζ and ϑ (which is not of direct interest). Standard errors are computed with the block

bootstrap.

4.4 Preferences and Disability Insurance Parameters

Identification of the remaining structural parameters of interest (η, θ, δ, FL=0, FL=1, FL=2) and

the DI policy parameters (πY oungL=0 , πY oungL=1 , πY oungL=2 , πOldL=0, π
Old
L=1, π

Old
L=2, and P

Re) will be achieved

by Indirect Inference (see Gourieroux et al, 1993). Indirect inference is a simulation-based

method that is used when the relevant likelihood function has no analytical expressions.

This is indeed the case for our complex theoretical model. The difference between indirect

inference and other methods based on simulations (such as Simulated Method of Moments)

is that indirect inference relies on moments from an approximate model (known as auxiliary

model) which can be estimated on both real and simulated data, rather than on moments
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from the correct data generating process. The key idea behind indirect inference is that

the parameters of the auxiliary model are related (through a so-called binding function) to

the structural parameters of interest. The latter are estimated by minimizing the distance

between the parameters of the auxiliary model estimated from the observed data and the

parameters of the auxiliary model estimated from the simulated data. Any bias in estimates

of the auxiliary model on actual data will be mirrored by bias in estimates of the auxiliary

model on simulated data, under the null that the structural model is correctly specified.

However, the closer the link between the parameters of the auxiliary equations and the

structural parameters, the more reliable is estimation.

We use the following Indirect Inference auxiliary equations, which overall give us 30

moments: (1) Regression of log consumption on work limitation, disability insurance, par-

ticipation (and interactions), controlling for a number of other covariates; (2) Participation

rates, conditional on disability status and age; (3) Stock of recipients of DI, conditional on

disability status and age; and (4) DI status of people of different age and health status.

The Indirect Inference statistical criterion that we use is:

φ̂ = arg min
φ

(
α̂D − S−1

S∑
s=1

α̂S (φ)

)′
Ω

(
α̂D − S−1

S∑
s=1

α̂S (φ)

)

where α̂D are the moments in the data, α̂S (φ) are the corresponding simulated moments

(which we average over S simulations) for given parameter values φ. The function α (φ) is

the binding function relating the structural parameters to the auxiliary parameters, and Ω

is the weighting matrix. The optimal weighting matrix is the the inverse of the covariance

matrix from the data, Ω̂ = var
(
α̂D
)−1
.20

Standard errors of the structural parameters can be computed using the formula provided

in Gourieroux et al. (1993),

var
(
φ̂
)

= (J ′ΩJ)
−1
J ′ΩVΩJ (J ′ΩJ)

−1

where J = ∂α̂S(φ)
∂φ

, and V = var
(
α̂D − α̂S

(
φ̂
))
. Asymptotically, V reduces to

(
1 + 1

S

)
var

(
α̂D
)
,

but when we present standard errors, we calculate V using the simulated moments explicitly.

We calculate J by finite difference.

In what follows we discuss the mapping between structural and auxiliary parameters.

20To reduce computational issues, we use diag
(

Ω̂
)
. We compute standard errors (and the test of overi-

dentifying restrictions) using a formula that adjusts for the use of the non-optimal weighting matrix.
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4.4.1 Moments: Disability Insurance

There are two ways in which we calculate moments involving the stock of DI recipients.

First, we consider the composition of DI recipients by health status. This identifies the

fraction of DI recipients who are not truly disabled and helps to pin down the incentive cost.

Second, we consider the DI status of individuals within work limitation-types. For example,

we use the fraction of those with a severe limitation who are in receipt of DI to help identify

the fraction of the truly disabled who benefit from the insurance. This fraction is related to

the parameter governing the probability of a successful application: it would be particularly

informative if all L = 2 individuals applied and no one left the programme. Of course, in

practice, the fraction who apply depends on the probability of acceptance and this is why we

need to use our model to identify the actual probability of acceptance rather than just taking

the observed fractions on DI as the probabilities of acceptance. For both sets of moments,

we condition on being younger or older than age 45.

4.4.2 Moments: Consumption Regression

Disability is likely to have two separate effects on consumption: first, disability affects earn-

ings and hence consumption through the budget constraint. The size of this effect will depend

on the extent of insurance, both self-insurance and formal insurance mechanisms, such as

DI. The extent of insurance from DI obviously depends on being admitted onto the program,

but conditional on receiving DI, the extent of insurance is greater for low income individuals

because of the progressivity of the system through the AIME and PIA calculation.

The second possible effect of disability on consumption is through non-separabilities in the

utility function. For example, if being disabled increases the marginal utility of consumption

(e.g. through increased needs) then consumption will rise on disability even if there is full

insurance and marginal utility is smoothed over states of disability.

It is important to separate out these two effects. Stephens (2001) calculates the effect of

the onset of disability on consumption, but does not distinguish whether the effect is through

non-separability or through the income loss directly.

Our method for separating out these two effects is to use the parameters of the following

auxiliary regression:

ln cit = α0 + α1L
1
it + α2L

1
itDIit + α3L

2
it + α4L

2
itDIit + α5DIit

+α6Y
P
it + α7t+ α8t

2 + α9Ait + α10Pit + υit
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The effect of a (severe) work limitation on consumption for individuals who are not in

receipt of DI is given by the parameter α3. This captures both the income effect and the

non-separability. For individuals who are in receipt of DI, the effect of a severe disability on

consumption is (α3 + α4), and so (α3 + α4) captures the preference effect induced by non-

separability.21 The split between α3 and α4 is clear when insurance is full. More generally,

if insurance is partial, then (α3 + α4) captures both the non-separable part and the lack

of full insurance for those receiving DI. However, the degree of partial insurance through

DI depends on permanent income and age through the AIME formula. Indirect inference

exploits this identification intuition without putting a structural interpretation directly on

the values of the α parameters. The coeffi cients α1 and α2 correspond to the effects of a

moderate disability. We control for permanent income and age because we want to compare

individuals facing the same level of insurance through the DI system.22 We control for

unearned income to compare individuals with the same potential for self-insurance.

Participation in the labour force can also provide insurance against disability shocks.

In addition, participation has a direct effect on the marginal utility of consumption. We

use α10, combined with the average participation rates over the life-cycle, to capture this

non-separable component and the fixed cost of work.

4.4.3 Moments: Participation over the Life-Cycle

We calculate participation rates by age and by disability status. This is equivalent to run

the following auxiliary regression

pit =
X∑
x=1

ψx1 {ageit ∈ x}+ υit

where pit is an indicator for whether a person is working at age t, x denote the age bands

and there are overall X age bands (we use four 10-year age bands: 23-32, 33-42, etc.). The

moments we use as auxiliary parameters are the ψx estimated separately for the three work

limitation groups, so there are X × L = 12 auxiliary parameters overall.

21A heuristic argument for identification is the following. A regression of consumption on work limitation
does not identify the non-separability effect because of the presence of budget constraint effects. However,
if we could find a group of individuals who are fully insured against disability shocks, then the consumption
response to disability would only capture preference effects. Our auxiliary regression is designed to capture
this idea through the interaction with the indicator for whether the disabled are insured through the DI
program.
22We construct Y Pit by using the information on individual wages available from entry into the PSID

sample until the particular observation at age t.
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These moments are related to fixed cost of participation with different disabilities, F (L) ,

the utility cost of participation, η, and the labor market frictions. Frictions are identified by

average labor market participation and unemployment duration over the life cycle. Unem-

ployment rates in the first periods of the life cycle are informative about the job destruction

rate δ because assets are very low at young ages and so very few quit employment. The

differences in participation by disability status is informative about the fixed costs of work

and how these differ by work limitation status (i.e., the extent that work is more costly for

disabled than for healthy workers).

5 Results

5.1 Disability Risk

Figure 2 plots selected Pr (Lit = j|Lit−1 = k).23 These are transition probabilities that are

informative about “disability risk”. For example, Pr (Lit = 2|Lit−1 = 0) is the probability

that an individual with no work limitations is hit by a shock that places him in the severe

work limitations category. Whether this is a persistent or temporary transition can be

answered by looking at the value of Pr (Lit = 2|Lit−1 = 2).

The top left panel of Figure 2 plots Pr (Lit = 0|Lit−1 = 0), i.e., the probabilities of staying

healthy. This probability declines over the working part of the life cycle from 0.97 to about

0.92 for the high educated and more rapidly, 0.96 to 0.88, for the low educated. The decline

is equally absorbed by increasing probabilities of transiting in moderate and severe work

limitations. The top right panel plots the latter, Pr (Lit = 2|Lit−1 = 0). This probability

increases over the working life, and the increase is faster for the low educated (rising from

1% to 4% vs. 1% to 2%). The probability of full recovery following a severe disability (shown

in the bottom left panel) declines over the life-cycle. For the low educated, such probability

is consistently below that of the high educated. Finally, the probability of persistent severe

work limitations, Pr (Lit = 2|Lit−1 = 2) (bottom right panel) increases strongly with age,

and more so for those with low education. In sum, the low educated face worse health risk

than the high educated group, with higher probabilities of bad shocks occurring and a lower

probability of recovery.

23To obtain these plots, we first construct a variable that equals the mid-point of a 10-age band (23-32,
33-42, etc.). We then regress an indicator for the joint event {Lit = j, Lit−1 = k} on a quadratic in the mid-
age variable, conditioning on education and the event {Lit−1 = k}. The predicted value of this regression is
what we plot in the figure.
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Figure 2: Selected (smoothed) Markov transition probabilities Pr (Lit = j|Lit−1 = k), by
education.

These differences across education, alongside the much greater prevalence of DI among

the low educated, are the reasons why we focus our remaining analysis on the subsample of

individuals with low education.

5.2 Wage Process

In Table 3 column (1) we report marginal effects from a probit regression for participation.

Participation is monotonically decreasing in the degree of work limitations. Among the

low educated, the probability of working declines by 13 percentage points at the onset of

a moderate work limitation, and by 55 percentage points at the onset of a severe work

limitation. Regarding our exclusion restrictions, the signs are correct: higher income from

transfers and a more generous welfare system increase the opportunity cost of work, and the

effects are statistically significant.24

In columns (2) and (3), we report estimates of the log wage process with and without

correcting for endogenous selection into work. The key coeffi cients are the ones on {L = 1}
24To obtain a measure of the generosity of the UI program in the state where the worker lives, we rank

states according to the maximum weekly UI benefit (which we take from current legislation). Our measure
of generosity is the rank variable, which varies over time and across states. Income from transfers is the sum
of private and public transfers. We also used a measure that excludes transfers received by the head, and
find virtually identical results.
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and {L = 2} , which are estimates of ϕ1 and ϕ2, the effect of the work limitation on wages. A

moderate work limitation reduces the offered wage rate by 21 percentage points, whereas a

severe limitation reduces the offered wage by 40 percentage points. The selection correction

to recover the offered wage from the observed wage makes a substantial difference. The

effect of a severe work limitation on the observed wage is 8 percentage points less than on

the offered wage: those who remain at work despite their work limitation have higher-than-

average permanent income (shown by the positive sign of the Mills ratio).

Table 3: The Log Wage Equation

Variable Participation Wage w/out Wage with
equation selection selection
(1) (2) (3)

{Lit = 1} −0.133
(0.015)

−0.196
(0.020)

−0.212
(0.022)

{Lit = 2} −0.545
(0.026)

−0.323
(0.041)

−0.402
(0.058)

Age 0.007
(0.001)

0.057
(0.004)

0.059
(0.004)

Age2

100
−0.011

(0.002)
−0.058

(0.005)
−0.060

(0.005)

White 0.045
(0.005)

0.254
(0.010)

0.259
(0.010)

Married 0.055
(0.007)

0.149
(0.014)

0.155
(0.014)

Year dummies Yes Yes Yes
UI generosity −0.0002

(0.0001)
-.- -.-

Income from transfers
1000

−0.005
(0.0003)

-.- -.-

Mills ratio -.- -.- 0.079
(0.039)

N 10,531 9,542 9,542

5.3 Productivity Risk

We use the residuals of the wage equation to estimate the variance of permanent productivity

shocks as well as the variance of measurement error (and the MA(1) parameter, which turns

out to be statistically insignificant), allowing for endogenous selection into work (expressions

(11)-(13)). The results are in Table 4. The numbers are similar to estimates reported

elsewhere (see Meghir and Pistaferri, 2004). This suggests that stripping out the variability
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in wages due to health shocks does not have much impact on the estimates of productivity

risk, presumably because disability is a relatively low probability event.

Table 4: Variances of the Productivity Shocks

Parameter Estimate
Permanent shock 0.028

(0.009)

Measurement error (Transitory) 0.036
(0.007)

ρζϑ 0.468
(0.117)

5.4 Estimates from Indirect Inference

In this section, we present results on the moments matched by Indirect Inference and the

corresponding parameters.25 All moments are presented in the three sections of Table 5.

The first section comes from matching DI policy moments: the work limitation status of

DI recipients (Panel A) and the work limitation status of DI recipients (Panel B) separately

for younger (age<45) and older workers (age≥ 45). Our model is capable of matching most

of the moments with great accuracy. For example, it matches quite closely the proportions

of “false recipients”, Fr(L = 0|DI = 1, t) , as well as the proportion of workers “insured”by

the DI program, Fr(DI = 1|L = 2, t), which are the reduced form equivalents of the incentive

cost/insurance benefit tradeoff. The second section of Table 5 reports the moments obtained

from estimating the auxiliary log consumption equation (using imputed data, as detailed

above).26 The signs and in most cases the magnitude of the coeffi cients are similar. Finally,

the third section shows participation over the life cycle for people of different work limitation

status. Our simulations match quite well participation of all disability types, but we do not

match the full decline in participation with age that is observed in the data, especially for

people with severe disability.

25We set some parameters to realistic values: the risk aversion parameter γ = 1.5, the annualised interest
rate is 1.5% and the discount rate 2.5%. A life-span is 50 years, from age 22, with the last 10 years in
compulsory retirement. The quarterly arrival rate is set to 0.73. Ideally, we would identify the value of λ by
using durations of unemployment by disability status. However, censoring problems, as well as noise when
we stratify by education and work limitation status, lead us to take the value of λ from Low, Meghir and
Pistaferri (2010).
26Our measure of consumption is per adult equivalent (using the OECD equivalence scale 1+0.7 (A− 1)+

0.5K, where A is the number of adults and K the number of children in the household).
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Table 5: Matched Moments

Section A: Disability Insurance Moments

Panel A: “Coverage” Panel B: “Composition of Recipients”
Moment Data Sims Moment Data Sims

Fr(DI = 1|L = 2, t < 45) 28.2 27.5 Fr(L = 2|DI = 1, t < 45) 63.6 65.1
Fr(DI = 1|L = 2, t ≥ 45) 58.5 60.7 Fr(L = 2|DI = 1, t ≥ 45) 73.2 73.5

Fr(DI = 1|L = 1, t < 45) 5.8 5.7 Fr(L = 1|DI = 1, t < 45) 22.9 23.0
Fr(DI = 1|L = 1, t ≥ 45) 15.5 14.7 Fr(L = 1|DI = 1, t ≥ 45) 17.0 14.8

Fr(DI = 1|L = 0, t < 45) 0.23 0.24 Fr(L = 0|DI = 1, t < 45) 13.6 11.9
Fr(DI = 1|L = 0, t ≥ 45) 1.4 2.2 Fr(L = 0|DI = 1, t ≥ 45) 9.8 11.7

Section B: The Log Consumption Regression

Variable Data Sims
{Lit = 1} −0.121 −0.072
{Lit = 2} −0.184 −0.146
{Lit = 1}DI 0.276 0.131
{Lit = 2}DI 0.486 0.260
DI −0.278 −0.008
Employed 0.456 0.337
Controls: Age, Age2, Unearned income, Permanent income

Section C: Labor Market Participation by Disability Status

Age band No limit Moderate Severe
Data Sims Data Sims Data Sims

23-32 0.98 0.99 0.87 0.96 0.47 0.46
33-42 0.98 0.99 0.88 0.93 0.31 0.38
43-52 0.98 0.97 0.80 0.82 0.21 0.30
53-62 0.88 0.89 0.53 0.64 0.10 0.23
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In Table 6 we report the Indirect Inference parameter estimates corresponding to these

moments. We estimate that a moderate (severe) disability induces about a 4% (8%) loss

of utility in terms of consumption. Participation induces a 32% loss.27 The fixed costs of

work per quarter rise substantially with the degree of disability. We estimate that a job is

destroyed on average every 26 quarters. The probability of success of DI application increases

with age and disability status. Each DI recipients faces a 5% probability of being re-assessed

after the first period on DI. The estimates of the success probabilities by type (age and work

limitation status) provide information on the extent of type I and type II errors, which we

discuss further in the next section.

Table 6: Estimated Parameters

Frictions and Preferences Disability Insurance Program

Paramter Estimate Parameter Estimate

θ Cost of disability −0.039
(0.017)

πY oungL=0 0.002
(0.00002)

η Cost of part. −0.32
(0.0033)

πOldL=0 0.009
(0.00032)

δ Job destruction 0.049
(0.00003)

πY oungL=1 0.103
(0.0132)

πOldL=1 0.14
(0.0088)

FL=0 Fixed cost 0.10
(0.0014)

[$303] πY oungL=2 0.35
(0.041)

FL=1 Fixed cost 0.31
(0.013)

[$942] πOldL=2 0.72
(0.0044)

FL=2 Fixed cost 1.20
(0.0072)

[$3646] PRe 0.050
(0.00038)

Fixed costs are reported as the fraction of average offered wage income at
age 23 and also in 1992$ per quarter. Standard errors in parenthesis.

5.5 Implications: Flows onto and offDI

We use our model to simulate the rate of flows on and off DI by work limitation status,

and we compare these to rates in the data. We did not use these in the estimation because

27An alternative way to estimate the preference parameters η and θ is through a formal Euler equation,
using as instruments for the change in disability status and the change in participation past values of the
variables. We obtain estimates for θ of -0.036 (s.e. 0.060) and for η of -0.597 (s.e. 0.155). The Sargan
statistic has a p-value of 66%. The first-stage F-test is 746 for the change in disability and 365 for the
change in participation. It is comforting that two different estimation stategies give very similar results for
the two parameters of interest (albeit less precise).
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these moments are imprecisely estimated in the data. However, we reproduce in Table 7 the

main flow statistics and the simulated counterparts as an indication of the performance of

the model.

Table 7: Flows onto and offDisability

Data Simulations
Flows onto DI

Fr(DIt = 1|DIt−1 = 0, Lt = 2, t < 45) 0.12 0.12
Fr(DIt = 1|DIt−1 = 0, Lt = 2, t ≥ 45) 0.19 0.29

Fr(DIt = 1|DIt−1 = 0, Lt = 1, t < 45) 0.0055 0.016
Fr(DIt = 1|DIt−1 = 0, Lt = 1, t ≥ 45) 0.033 0.023

Flows off DI
Fr(DIt = 0|DIt−1 = 1, Lt = 2, t < 45) 0.109 0.109
Fr(DIt = 0|DIt−1 = 1, Lt = 2, t ≥ 45) 0.079 0.049

5.6 Implications: Success of the DI Screening Process

One important issue is to evaluate the success rate of the current DI Screening Process.

We first look at the Award rate: Pr(DI = 1|DIApp = 1). We estimate this rate (using

our structural model and estimated parameters) to be 0.40. During the period covered by

our data (1986-92), there were 3.3 million awards made to 7.8 million applicants, resulting

in a 42% average success rate.28 Our estimate contrasts quite well also with the reduced

form estimates (0.45) obtained by Bound and Burkhauser (1999) and others using data on

individual DI application and DI receipt from the HRS.

Given that the true disability status of an applicant is private information, SSA eval-

uators are bound to commit two types of errors: Admitting into the DI program unde-

served applicants and rejecting those who are truly disabled. Our estimates show how large

are the probabilities associated with these errors. Consider first the extent of false posi-

tives (the proportion of healthy applicants who receive DI). From Table 6, these type II

errors have probabilities ranging from 0.2% (young non disabled) to 14% (older workers

with a moderate disability). Similarly, we can use our model to estimate the Award Error:

28See Table 26, Annual Statistical Report on the Social Security Disability Insurance Program, 2000.
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Pr(L = {0, 1}|DI = 1, DIApp = 1) = 0.10. In the literature, we have found reduced form

estimates that are fairly similar, 0.16 to 0.22 in Benitez-Silva et al. (1999), depending on

the statistical assumptions made, and 0.19 in Nagi (1969).

Consider next the probability of false negatives (i.e., the proportion of severely disabled

who apply and do not receive DI). From Table 6, we estimate that the type I errors are

65% for the younger and 28% for the older workers. The fraction of rejected applicants

who are disabled, the Rejection Error, is given by Pr(L = 2|DI = 0, DIApp = 1) = 0.43.

This is again similar to Benitez-Silva et al. (1999), who report 0.52-0.60, and Nagi (1969),

0.48. These comparisons confirm that our structural model is capable of replicating quite

well reduced form estimates obtained using direct information on the application and award

process. Our estimated award process is slightly more effi cient than previous estimates, but

the differences are slight.

Finally, with an estimated reassessment rate of 5%, we predict that an individual on DI

is expected to have his disability status reviewed approximately every 20 quarters.29 To get

a gauge of the actual numbers involved, consider that during the fiscal years 1987-1992 (the

years covered by our sample) the SSA conducted a total of 1,066,343 Continuing Disability

Reviews (CDR). Subtracting from the stock of disabled workers in current payment status

the flow of awards for each year, we calculate a probability of re-assessment of 7%.

6 Reform of the DI Process

The most important use of our model and structural estimates is the ability to analyse the

effects on welfare and behaviour of changing the main parameters of the DI programs. We

consider four changes: first, making the program “stricter”by increasing the threshold that

needs to be met in order to qualify for benefits; second, changing the generosity of disability

payments; third, changing the reassessment rate of disability recipients; and finally, we

consider changing the generosity of the food stamp programme. For each scenario, we study

the implications for welfare, for the effi ciency of the DI process and for behaviour more

generally. We calculate the welfare implications by measuring the willingness to pay for the

new policy through a proportional reduction in consumption, π, at all ages which makes

29By law, the SSA is expected to perform Continuing Disability Reviews (CDR) every 7 years for indi-
viduals with medical improvement not expected, every 3 years for individuals with medical improvement
possible, and every 6 to 18 months for individuals with medical improvement expected. In practice, the
actual number of CDRs performed is lower.
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the individual indifferent between the status quo and the policy change considered.30 The

policy changes we consider generate behavioral effects, such as changes in labor supply and

savings. In all the experiments below the impact on the government budget is neutralised

by adjusting the wage tax iteratively using equation (6).

6.1 Strictness of DI Admissions

Increasing the strictness of DI admissions has been advanced as one possible solution to the

incentive problem. Increases in strictness in 1980 led to sharp declines in inflows onto DI,

although the criteria was relaxed again in 1984. The issue is whether the benefit of improved

incentives outweighs the worsening insurance. To tackle this issue, we need first to define a

measure of strictness of the program.

Suppose that Social Security DI evaluators decide whether to award DI as a function

of a noisy signal about the severity of the applicant’s disability status, which has some

distribution:

Sit ∼ f (L, t)

The properties of the distribution of the signal S vary by age (for simplicity, for two

age groups defined by age<45 and age≥45), and by work limitation status L. The Social
Security DI evaluators make an award if Sit > S. The parameter S can be interpreted as

a measure of the strictness of the DI program: ceteris paribus, an increase in S reduces the

proportion of people admitted into the program.

We assume that S lies between 0 and 1 and has a Beta distribution, β (aL,t, bL,t) , whose

parameters a and b vary with age and work limitation status. The values of aL,t and bL,t and

of S are pinned down by the six structural probabilities (πtL) estimated above:
31

1− πtL = Pr (Re jection| t, L,Apply)

= CDF (β (aL,t, bL,t))

30This is obtained by calculating expected utility at the start of the life-cycle before the resolution of any
uncertainty.
31We normalise the mean of the signal, S, for the old who are severely disabled and the mean of S for the

young who are not at all disabled to being 0.6 units apart, and we impose that the parameter b is identical
across age and work limitation status. These normalisations, alongside the use of the Beta distribution,
impose a particular distribution on the signals which we do not have the data to test. We considered
alternative assumptions, such as a normal distribution with age and disability shifting the mean of the
signal, and our results are qualitatively similar. The intuitive advantage of the Beta distribution is that the
precision of the signal increases as true disability status worsens.
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Figure 3 illustrates the resulting distributions of S for those over 45 by work limitation

status, and illustrates some of the errors under the estimated DI program. The area on

the left of S under the dashed light grey curve (labeled f(S|L = 2, t ≥ 45)) measures the

probability of rejecting a deserving DI applicant. The area on the right of S under the

solid grey curve (labeled f(S|L = 1, t ≥ 45)) measures the probability of accepting into

the DI program a DI applicant with only a moderate disability. Increasing the strictness

of the test (increasing S) reduces the probability of false positives (reduces the extent of

the incentive problem), but increases the probability of false negatives (reduces the extent

of insurance provided by the program). It also can have substantial effects on who applies.

A policy of changing S therefore has both benefits and costs, trading off incentives against

insurance, and we use our model to determine which dominates when the strictness of the

test changes.32

Figure 3: The Distibution of S for the Older Worker by Work Limitation Status

Figure 4 reports the results of this experiment. The left-hand graph shows the implica-

tions for the DI program, the right-hand graph shows implications for welfare, participation

and asset accumulation. Increasing S̄ from 0.65 to 0.95 reduces the probability of accep-

tance for the severely disabled over 45 from close to 100% to less than 10%. This has a direct

effect of increasing the rejection error as L = 2 individuals are more likely to be rejected.

Furthermore, the increase in S̄ reduces the proportion of applicants from those with no or

only a moderate disability. This is shown in the downward sloping broken line (labelled

32An alternative policy might be to reduce the noise involved in the evaluation of the signal. We do not
evaluate such a policy. In theory, we could take the cost of extra SSA evaluations as being the same as the
cost of a review. However, the diffi culty is estimating the effect of evaluations on reducing the noise.
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“False Applications”), and this implies a fall in the actual number of healthy who are re-

jected. Corresponding to this fall in healthy applicants and lower rate of acceptance, there

is a clear decline in the fraction of awards being made to the healthy or moderately disabled

(the Award Error). Conditional on the composition of applicants, increased strictness means

fewer applicants are made awards, but the composition of applicants also changes, with fewer

false applicants, and this means that the fraction of awards made does not decline monoton-

ically as strictness increases (the Award Rate). The cost of increasing strictness is seen in

the decline, as S̄ increases, of the fraction of the severely work limited who are insured (the

line labeled “Insured (L = 2)”).

Figure 4: The Effects of Varying Strictness

The right hand graph shows the incentive effects of the alternative S̄, as well as the

willingness to pay. For all variables considered, the y-axis measures the proportional change

relative to the baseline.33 There is a direct effect of greater strictness leading to greater

participation in the labor force as more people are rejected or discouraged from applying.

This is particularly apparent for the severely work limited. For the moderately work limited,

there is an offsetting effect: as strictness increases, individuals expect to have to self-insure

and so accumulate more assets. These assets reduce participation rates among those who

are rejected by DI, and so participation can fall as strictness increases through this indirect

mechanism. The effects on participation for those who are not work limited at all are

negligible.
33We show participation rates only for those over 50 because the effects on participation at earlier ages are

qualitatively similar. The line “Assets” shows how the maximum average asset holding over the life-cycle
varies.
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The willingness to pay increases as S̄ decreases from its estimated value: the gain in

improved insurance from making the program less strict dominates the loss associated with

increased numbers of false applicants and a greater award error. The magnitude of the gain

in terms of consumption equivalent arising from reducing strictness from its estimated value

to S̄ = 0.65 is about 0.05 (0.5%). This gain is the net gain of two offsetting effects: there

is a benefit of increased insurance against disability which individuals are willing to pay

for, but this is partly offset by a loss arising from output being lower as individuals work

less. Part of the benefit of the relaxed strictness arises from the moderately disabled and

the severely-disabled young being offered better insurance. The key to this conclusion of

reduced strictness being welfare increasing is, however, the low acceptance rate of severely

disabled individuals onto DI in the baseline.34

6.2 Generosity of DI Payments

Figure 5 shows the effects of proportional changes in DI generosity, with the proportional

changes ranging from a cut to 30% of its current value to a 50% increase. The budget impact

of all changes are neutralised by adjusting the wage tax iteratively using equation (6).

Increasing the generosity of DI payments increases sharply the fraction of applicants who

are not severely disabled (the “False Applications”line on the left-hand side). This in turn

leads to an increase in the award error and in the fraction of the moderately disabled who are

receiving insurance (the “Insured (L = 1)” line shows this fraction for those 45 and over).

The fall in the rejection error arises mechanically: greater numbers of false applicants mean

the fraction of the rejections who are severely disabled falls. What is striking is that there

is very little change in the fraction of the severely disabled who receive insurance (the line

“Insured (L = 2)”), and this is because applications for DI from this group are insensitive

to the generosity of DI.

Given these effects, the welfare implications of changing generosity shown in the right

hand graph of Figure 5 are not surprising: increases in DI generosity funded by a wage

tax reduce welfare, and a 10% increase in generosity implies a welfare loss of 0.13% of

consumption. The broader incentive effects of changing generosity vary by work limitation

status: for the severely work limited, greater generosity has the direct effect of encouraging

applications for DI and individuals move out of the labour force. The greater generosity

34We have considered various alternative specifications for the distribution of the noise over work limitation
status and this conclusion remains. See also Denk and Michau (2010) for a similar result obtained using a
dynamic mechanism design approach to the insurance-incentive tradeoff.
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Figure 5: The Effects of Varying DI Generosity

also reduces asset accumulation, and this has the indirect effect of increasing participation

among those who are rejected, particularly among the moderately work limited.

6.3 Reassessment of DI Recipients

In Figure 6, we consider changing the reassessment rate. Given our estimate of the cost

per reassessment, this has a direct impact on the budget, as well as the effect induced by

changes in the number of recipients and in labour supply. These effects are again neutralised

through adjusting the wage tax. We assume that the probabilities of success, conditional on

work limitation status and age, are the same at reassessment as at initial application.

The left-hand graph shows that an increase in the reassessment rate discourages false

applications by those who are not severely disabled: an increase in the reassessment rate

from a 0.02 probability per quarter to a 0.08 probability, leads to a decline in the proportion

of false applications from 54% to 30%. This in turn leads to a decline in the award error, and

a decline in the fraction of the non-work limited who receive insurance. For the moderately

disabled who are 45 or over, the decline is from 24% to 10%. The cost of this is the reduced

coverage for the severely disabled: reassessment causes some severely disabled to be removed

from DI and this directly reduces coverage, as well as discouraging applications, as the

frequency of reassessment increases.

Despite this cost, increasing the reassessment rate increases welfare, albeit modestly,

with the consumption equivalent of increasing reassessment from the baseline of 0.05 to

0.06 being 0.043%. Increased reassessment increases participation among the severely work
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Figure 6: The Effects of Varying Reassessment Rates

limited, who are discouraged from applying or removed from the DI rolls. This also leads to

greater saving, which discourages participation, particularly among the moderately limited.

6.4 Generosity of The Food Stamp Program

Figure 7: The Effects of Changing the Generosity of Food Stamps

Figure 7 shows the effects of changing the generosity of food stamps. Increases in food

stamps have a non-monotonic effect on the number of false applications: when food stamps

are very low, the waiting period for a decision about a DI application is costly for those of

low productivity and they do not apply. Increasing food stamps (a "consumption floor")
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mitigates this cost, and leads to greater numbers of false applicants. After a point, however,

food stamps are suffi ciently generous that false applications for DI fall. This effect translates

into the fraction of those not severely disabled who are in receipt of DI (the “Insured (L = 1)”

line shows this for those 45 and over) and into the award error: both of which decline as

food stamps become suffi ciently generous. By contrast, the fraction of the severely disabled

who receive DI increases as food stamps become more generous: this highlights the beneficial

effect of food stamps making it less costly for the severely disabled to remain out of work

and to apply for DI. In addition, more generous food stamps provide direct insurance against

low productivity with no risk of rejection. Together, these effects imply substantial welfare

increases as the generosity of food stamps, funded by a wage tax, increases. A 10% increase

in generosity implies a welfare gain of 1.4% of consumption. This is despite the fall in

participation and the fall in saving that greater generosity induces for all types.

7 Conclusions

In this paper, we provide a life-cycle framework for estimating the extent of work-limiting

health risk that individuals face and for analysing the effectiveness of government disability

insurance against that risk. Work limitations have substantial effects on wages, with wages

falling by 40% for the severely work limited. Government insurance against these shocks is

incomplete: There are substantial false rejections. We estimate that 26% of the older workers

with a severe work limitation who apply for benefits are rejected. This is alongside other

negative effects, with some workers discouraged from applying because of the uncertainty

surrounding the application process. Similarly, there are large rates of false acceptances,

with between 10 and 14% of applications from those with a moderate work limitation being

accepted.

We use the model to simulate various policy changes aimed at improving the insurance

and mitigating the incentive costs of DI. These are intended to illustrate the trade-offs

from the various policy options. Increasing the strictness of the screening process through

increasing the work limitation threshold for qualification reduces the number of individuals

receiving benefits among both the severely work limited and among the healthy because of the

noisiness of the signal of work limitation status. Thus increased strictness leads to a decline

in welfare because the existing program already suffers from turning down large numbers of

severely disabled. For other reforms, the simulations show that the number of moderately

disabled individuals receiving DI is particularly sensitive to the policy parameters, whereas
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the number of severely disabled is less sensitive. Thus, reducing DI generosity leads to a fall

off in false applications and mis-directed insurance, without reducing applications from the

severely disabled. Of course, the severely disabled will then receive less insurance, but this

change increases welfare ex-ante. Similarly, increasing the generosity of Food Stamps leads

to a fall off in false applications for DI and mis-directed insurance, leading to better targeting

of DI and a welfare improvement. More frequent reassessments of recipients directly reduces

the number of claimants who are not severely work limited, but equally importantly more

frequent reassessments substantially reduce the proportion of false applicants. This leads

to welfare gains. In summary, welfare increases if the threshold for acceptance is lower,

disability payments are lower, reassessment more frequent and food stamp payments more

generous. The conclusions arose because welfare improving reforms lead to a separation of

the severely work limited from the moderately limited for whom work is a realistic option.

One diffi culty with this conclusion is the clear non-linearities in behaviour apparent from

the simulations in section 6.

In terms of extensions, our model of the disability insurance process is incomplete:

Benitez-Silva et al. (2004) have emphasised the importance of the appeal process, whereas

we have allowed the social security administration to make just one decision. In the con-

text of capturing behaviour over the life-cycle this may be less problematic, but it means

we cannot examine one dimension of reform, namely the strictness and length of the appeal

judgement relative to the initial judgement. A second restriction is in terms of the stochastic

process for work limitations, which we take to be exogenous. The probability of receiving a

negative shock to the ability to work is likely to be partly under individuals’control, through

occupation choice and other decisions on the job. These decisions will be affected by the

properties of the disability insurance scheme.
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