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1 Introduction

The diffusion of new technologies is often coupled with standardization of product

and process innovations. New technologies, when first conceived and implemented,

are often complex and require skilled personnel to operate. At this stage, their use

in the economy is limited both by the patents of the innovator and the skills that

these technologies require. Their widespread adoption and use first necessitates the

tasks involved in these new technologies to become more routine and standardized,

ultimately enabling their cheaper production using lower-cost unskilled labor. How-

ever, such standardization not only expands output but also implies that the rents

accruing to innovators will come to an end. Therefore, the process of standardization

is both an engine of economic growth and a potential discouragement to innovation.

In this paper, we study this interplay between innovation and standardization.

The history of computing illustrates the salient patterns of this interplay. The

use of silicon chips combined with binary operations were the big breakthroughs,

starting the ICT revolution. During the first 30 years of their existence, computers

could only be used and produced by highly skilled workers. Only a lengthy process

of standardization made computers and silicon chips more widely available and more

systematically integrated into the production processes, to such a degree that today

computers and computer-assisted technologies are used at every stage of production

with workers of very different skill levels. At the same time that the simplification of

manufacturing processes allowed mass production of electronic devices and low prices,

competition among ICT firms intensified enormously, first among few industry leaders

and then more broadly at a global scale.

In our model, new products are invented via costly R&D and can first be pro-

duced only by skilled workers. This innovation process is followed by a costly process

of standardization, whereby the previously new goods are adapted to be produced

using unskilled labor.1 Free entry into standardization makes it a competing process;

standardization will be undertaken by newcomers, which may then displace incum-

bent producers. By shifting some technologies to low-skill workers, standardization

alleviates the pressure on scarce high-skill workers, thereby raising aggregate demand

1This view has a clear antecedent in Nelson and Phelps (1966), which we discuss further below.
See also Autor, Levy and Murnane (2003) on the comparative advantage of unskilled workers in
routine, or in our language “standardized,” tasks. We can also interpret innovation as product
innovation and standardization as process innovation. Evidence that firms engaging in product
innovation (e.g., Cohen and Klepper, 1996) are smaller and more skill intensive than firms engaging
in process innovation is consistent with our assumptions.
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and fostering incentives for further innovation. Yet, the anticipation of standardization

also reduces the potential profits from new products, discouraging innovation. This

implies that while standardization– and the technology adoption that it brings– is

an engine of economic growth, it can also act as a barrier to growth by potentially

slowing down innovation.

Our baseline framework provides a simple model for the analysis of this interplay.

Under some relatively mild assumptions, we establish the existence of a unique bal-

ance growth path that is saddle-path stable. We show that equilibrium growth is

an inverse U-shaped function of the “extent of competition”captured by the cost of

standardization. When standardization is very costly, growth is relatively slow be-

cause new products use skilled workers for a long while and this reduces their scale of

production and profitability. On the other hand, when standardization is very cheap,

growth is again relatively slow, this time because innovators enjoy ex post profits only

for a short while. This inverse U-shaped relationship between competition and growth

is consistent with the empirical findings in Aghion et al. (2005), and complements

the theoretical channel highlighted in Aghion et al. (2001, 2005), which is driven by

the interplay of their “escape competition”mechanism and the standard effects of

monopoly profits on innovation.

In our model, the laissez-faire equilibrium is ineffi cient for two reasons. First, as

in many models of endogenous technology, there is an appropriability problem: both

innovating and standardizing firms are able to appropriate only a fraction of the gain

in consumer surplus created by their investment and this makes the growth rate too

low. Second, there is a new form of “business stealing” effect, whereby the costly

standardization decisions reduce the rents of innovators.2 The possibility that the

laissez-faire equilibrium is ineffi cient and that growth is maximized by intermediate

levels of competition implies that welfare and growth maximizing policies are not

necessarily those that provide maximal intellectual property rights (IPR) protection

to innovators. Under the assumption that a government can affect markups and

the cost of standardization by regulating IPR protection, we characterize growth

and welfare maximizing combinations of IPR and competition policies. Contrary to

most of the literature, the optimal policy is not the result of a trade-off between the

static cost of monopoly power and dynamic gains. Rather, in our model an excess

2Another form of business stealing, studied extensively in Schumpeterian models of vertical in-
novation (e.g., Aghion and Howitt 1992), is when a monopoly is destroyed by new firms introducing
a “better” version of an existing products. We suggest that standardization is also an important
source of business stealing.
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of property right protection may harm growth by increasing the overload on skilled

workers, which are in short supply.

When the discount rate is small, we find that growth and welfare maximizing

IPR policy involves lower protection when R&D costs (for new products) are lower,

when markups for new products are higher and when the ratio of skilled to unskilled

labor supply is greater. The latter comparative static result is a consequence of the

fact that when there is a large supply of unskilled labor, standardization becomes

more profitable and thus innovators require greater protection against standardiza-

tion. We also show that when competition policy as well as IPR policy can be used,

the optimal combination of policies involves no limits on monopoly pricing for new

products, increased competition for standardized products and lower IPR protection

than otherwise. Intuitively, lower IPR protection minimizes wasteful entry costs, but

this may lead to excessive standardization and weak incentives to innovate. To max-

imize growth or welfare, this latter effect needs to be counteracted by lower markups

for standardized products. We also show that trade liberalization in less-developed

countries may create negative effects on growth by changing the relative incentives to

innovate and standardize. However, if increased trade openness is coupled by optimal

IPR policy, it always increases welfare and growth.

Finally, we show that under different parameter configurations or different assump-

tions on competition between innovators and standardizers, a new type of multiplicity

of equilibria (of balanced growth paths) arises. When too much of the resources of the

economy are devoted to standardization, expected returns from innovation are lower

and this limits innovative activity. Expectation of lower innovation reduces interest

rates and encourages further standardization. Consequently, there exist equilibria

with different levels (paths) of innovation and standardization. It is noteworthy that

this multiplicity does not rely on technological complementarities (previously studied

and emphasized in the literature), and has much more of the flavor of “self-fulfilling

equilibria,”whereby the relative prices change in order to support equilibria consistent

with initial expectations.

Our paper is related to several different literatures. In addition to the endoge-

nous growth and innovation literatures (e.g., Aghion and Howitt, 1992, Grossman

and Helpman, 1991, Romer, 1990, Segerstrom, Anant and Dinopoulos, 1990, Stokey,

1991), there are now several complementary frameworks for the analysis of technol-

ogy adoption. These can be classified into three groups. The first includes models

based on Nelson and Phelps’s (1966) important approach, with slow diffusion of tech-

nologies across countries (and across firms), often related to the human capital of

3



the workers employed by the technology adopting firms. This framework is incor-

porated into different types of endogenous growth models, for example, in Howitt

(2000), Acemoglu, Aghion and Zilibotti (2006), and Acemoglu (2009, Chapter 18).

Several papers provide more microeconomic foundations for slow diffusion. These

include, among others, Jovanovic and Lach (1989), Jovanovic and Nyarko (1996), Jo-

vanovic (2009) and Galor and Tsiddon (1997), which model either the role of learning

or human capital in the diffusion of technologies. The second group includes pa-

pers emphasizing barriers to technology adoption. Parente and Prescott (1994) is a

well-known example. Acemoglu (2005) discusses the political economy foundations of

why some societies may choose to erect entry barriers against technology adoption.

The final group includes models in which diffusion of technology is slowed down or

prevented because of the inappropriateness of technologies invented in one part of

the world to other countries (see, e.g., Acemoglu and Zilibotti, 2001, Atkinson and

Stiglitz, 1969, Basu and Weil, 1998 and David, 1975). Gancia and Zilibotti (2009)

propose a unified framework for studying technology diffusion in models of endoge-

nous technical change. Our approach emphasizing standardization is different from,

though complementary to, all three groups of papers.

Our paper is also related to Krugman’s (1979) model of North-South trade and

technology diffusion, whereby the South adopts new products with a delay. Krugman,

in turn, was inspired by Vernon’s (1966) model of the product cycle and his approach

has been further extended by Grossman and Helpman (1991) and Helpman (1993).3

Our approach differs from all these models because innovation and standardization

make different use of skilled and unskilled workers and because we focus on a closed

economy general equilibrium setup rather than the interactions between technolog-

ically advanced and backward countries as in these papers. A new implication of

our alternative set of assumptions is that, differently from previous models, growth

is an inverse-U function of standardization. More importantly, none of the above

paper characterizes the optimal IPR policy and how it varies with skill abundance.

Grossman and Lai (2004) and Boldrin and Levine (2005) study the incentives that

governments have to protect intellectual property in a trading economy. Their frame-

work, however, abstracts from the technology adoption choice and from the role of

skill which are central to our analysis.

Finally, our emphasis on the role of skilled workers in the production of new goods

and unskilled workers in the production of standardized goods makes our paper also

3Similar themes are also explored in Bonfiglioli and Gancia (2008), Antras (2005), Dinopoulos
and Segerstrom (2007, 2009), Lai (1998), Yang and Maskus (2001).
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related to the literature on technological change and wage inequality; see, among

others, Acemoglu (1998, 2003), Aghion, Howitt and Violante (2002), Caselli (1999),

Galor and Moav (2000), Greenwood and Yorukoglu (1997), and Krusell, Ohanian,

Rios-Rull and Violante (2000). The approach in Galor and Moav (2000) is particu-

larly related, since their notion of ability-biased technological change also generates

predictions for wage inequality similar to ours, though the economic mechanism and

other implications are very different.

The rest of the paper is organized as follows. Section 2 builds a dynamic model of

endogenous growth through innovation and standardization. It provides conditions for

the existence, uniqueness and stability of a dynamic equilibrium with balanced growth

and derives an inverse-U relationship between the competition from standardized

products and growth. Section 3 presents the welfare analysis. After studying the first

best allocation, it characterizes growth and welfare maximizing IPR and competition

policies as function of parameters. As an application of these results, we discuss how

trade liberalization in less developed countries affects innovation, standardization

and the optimal policies. Section 4 shows how a modified version of the model may

generate multiple equilibria and poverty traps. Section 5 concludes.

2 A Model of Growth through Innovation and Standardization

2.1 Preferences

The economy is populated by infinitely-lived households who derive utility from con-

sumption Ct and supply labor inelastically. Households are composed by two types

of agents: high-skill workers, with aggregate supply H, and low-skill workers, with

aggregate supply L. The utility function of the representative household is:

U =

∫ ∞
0

e−ρt logCtdt,

where ρ > 0 is the discount rate. The representative household sets a consumption

plan to maximize utility, subject to an intertemporal budget constraint and a No-

Ponzi game condition. The consumption plan satisfies the standard Euler equation:

Ċt
Ct

= rt − ρ, (1)

where rt is the interest rate. Time-indexes are henceforth omitted when this causes

no confusion.
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2.2 Technology and Market Structure

Aggregate output, Y , is a CES function defined over a measure A of goods available

in the economy. As in Romer (1990), the measure of goods A captures the level of

technological knowledge that grows endogenously through innovation. However, we

assume that, upon introduction, new goods involve complex technologies that can

only be operated by skilled workers. After a costly process of standardization, the

production process is simplified and the good can then be produced by unskilled

workers too. Despite this change in the production process, good characteristics

remain unaltered so that all varieties contribute to final output symmetrically. Thus,

Y is defined as:

Y = Z

(∫ A

0

x
ε−1
ε

i di

) ε
ε−1

= Z

(∫ AL

0

x
ε−1
ε

L,i di+

∫ AH

0

x
ε−1
ε

H,i di

) ε
ε−1

, (2)

where AH is the measure of hi-tech goods, AL is the measure of low-tech (standard-

ized) goods and A = AH + AL. ε > 1 is the elasticity of substitution between goods.

The term Z ≡ A
ε−2
ε−1 is a normalizing factor that ensures that output is linear in tech-

nology and thus makes the final good production function consistent with balanced

growth (without introducing additional externalities in R&D technology as we will

see below). To see why, note that with this formulation when xi = x, aggregate

productivity, Y/ (Ax), is equal to A– as in AK models.4

From (2), the relative demand for any two goods i, j ∈ A is:

pi
pj

=

(
xi
xj

)−1/ε
. (3)

We choose Y to be the numeraire, implying that the minimum cost of purchasing

one unit of Y must be equal to one:

1 = A−1
(

1

A

∫ A

0

(pi)
1−ε di

)1/(1−ε)
. (4)

Each hi-tech good is produced by a monopolist with a technology that requires

one unit of skilled labor per unit of output. Each low-tech good is produced by a

4The canonical endogenous growth models that do not feature the Z term and allow for σ 6= 2
(e.g., Grossman and Helpman, 1991) ensure balanced growth by imposing an externality in the
innovation possibilities frontier (R&D technology). Having the externality in the production good
function instead of the R&D technology is no less general and simplifies our analysis.
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monopolist with a technology that requires one unit of labor per unit of output. Thus,

the marginal cost is equal to the wage of skilled workers, wH , for hi-tech firms and

the wage of unskilled workers, wL, for low-tech firms. Since high-skill worker can be

employed by both high- and low-tech firms, then wH ≥ wL.

When standardization occurs, there are two potential producers (a high- and a

low-tech one) for the same variety. The competition between these producers is

described by a sequential entry-and-exit game. In stage (i) a low-tech firm can enter

and produce a standardized version of the intermediate variety. Then, in stage (ii),

the incumbent decides whether to exit or fight the entrant. Exit is assumed to be

irreversible, i.e., when a hi-tech firm leaves the market it cannot go back to it and the

low-tech firm becomes a monopolist. If the incumbent does not exit, the two firms

compete à la Bertand (stage (iii)). We assume that all firms entering stage (iii) must

produce (and thus pay the cost of producing) at least ξ > 0 units of output (without

this assumption, stage (ii) would be vacuous, as incumbents would have a “weakly

dominant”strategy of staying in and producing x = 0 in stage (iii)).

Regardless of the behavior of other producers or other prices in this economy, a

subgame-perfect equilibrium of this game must have the following features: standard-

ization in sector j will be followed by the exit of the high-skill incumbent whenever

wH > wL. If the incumbent did not exit, competition in stage (iii) would result in all

of the market being captured by the low-tech firm due to its cost advantage and the

incumbent would make a loss on the ξ > 0 units that it is forced to produce. Thus,

as long as the skill premium is positive, firms contemplating standardization can ig-

nore any competition from incumbents. However, if wH < wL incumbents would fight

entrants and can dominate the market. Anticipating this, standardization is not prof-

itable in this case and will not take place. Finally, in the case where wH = wL, there

is a potential multiplicity of equilibria, where the incumbent is indifferent between

fighting and exiting. In what follows, we will ignore this multiplicity and adopt the

tie-breaking rule that in this case the incumbent fights (we modify this assumption

in Section 4). We summarize the main results of this discussion in the following

Proposition.

Proposition 1 In any subgame-perfect equilibrium of the entry-and-exit game de-

scribed above, there is only one active producer in equilibrium. Whenever wH > wL

all hi-tech firms facing the entry of a low-tech competitor exit the market. Whenever

wH ≤ wL hi-tech incumbents would fight entry, and no standardization occurs.
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In the rest of the paper, we focus on the limit economy as ξ → 0.5 Since in

equilibrium there is only one active producer, the price of each good will always be a

markup over the marginal cost:

pH =

(
1− 1

ε

)−1
wH and pL =

(
1− 1

ε

)−1
wL. (5)

Symmetry and labor market clearing pin down the scale of production of each firm:

xL =
L

AL
and xH =

H

AH
, (6)

where recall that H is the number of skilled workers employed by hi-tech firms and

L is the remaining labor force. Markup pricing implies that profits are a constant

fraction of revenues:

πH =
pHH

εAH
and πL =

pLL

εAL
. (7)

At this point, it is useful to define the following variables: n ≡ AH/A and h ≡
H/L. That is, n is the fraction of hi-tech goods over the total and h is the relative

endowment of skilled workers. Then, using demand (3) and (6), we can solve for

relative prices as:
pH
pL

=

(
xH
xL

)−1/ε
=

(
h

1− n
n

)−1/ε
(8)

and
wH
wL

=
pH
pL

=

(
h

1− n
n

)−1/ε
. (9)

Intuitively, the skill premium wH/wL depends negatively on the relative supply of

skill (h = H/L) and positively on the relative number of hi-tech firms demanding

skilled workers. Note that wH = wL at:

nmin ≡ h

h+ 1
.

For simplicity, we restrict attention to initial states of technology such that n > nmin.

As an implication of Proposition 1, if we start from n > nmin, the equilibrium will

always remain in the interval n ∈
[
nmin, 1

]
. We can therefore restrict attention to

this interval, over which skilled workers never seek employment in low-tech firms.

5The focus on the limit economy is for simplicity. We could alternative model the game differently,
and assume away stage (ii). Although conceptually similar, this case is less tractable.
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Using (7) and (8) yields relative profits:

πH
πL

=

(
h

1− n
n

)1−1/ε
. (10)

This equation shows that the relative profitability of hi-tech firms, πH/πL, is increas-

ing in the relative supply of skill, H/L, because of a standard market size effect and

decreasing in the relative number of hi-tech firm, AH/AL. The reason for the latter

effect is that a larger number of firms of a given type implies stiffer competition for

labor and a lower equilibrium firm scale.

Next, to solve for the level of profits, we first use symmetry into (4) to obtain:

pH
A

=

[
(1− n)

(
pL
pH

)1−ε
+ n

]1/(ε−1)
, and (11)

pL
A

=

[
1− n+ n

(
pH
pL

)1−ε]1/(ε−1)
.

Using these together with (8) into (7) yields:

πH =
H

ε

[
1 +

(
1

n
− 1

) 1
ε

h
1−ε
ε

] 1
ε−1

n
2−ε
ε−1 , and (12)

πL =
L

ε

[
1 +

(
1

n
− 1

)− 1
ε

h
ε−1
ε

] 1
ε−1

(1− n)
2−ε
ε−1 .

Note that, for a given n, profits per firm remain constant. Moreover, the following

lemma formalizes some important properties of the profit functions:

Lemma 1 Assume ε ≥ 2. Then, for n ∈
[
nmin, 1

]
:

∂πH
∂n

< 0 and
∂πL
∂n

> 0. (13)

Moreover, πL is a convex function of n.

Proof. See the Appendix.
The condition ε ≥ 2 is suffi cient– though not necessary– for the effect of compe-

tition for labor to be strong enough to guarantee that an increase in the number of

hi-tech (low-tech) firms reduces the absolute profit of hi-tech (low-tech) firms. In the
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rest of the paper, we assume that the restriction on ε in Lemma 1 is satisfied.6

2.3 Standardized Goods, Production and Profits

Substituting (6) into (2), the equilibrium level of aggregate output can be expressed

as:

Y = A
[
(1− n)

1
ε L

ε−1
ε + n

1
εH

ε−1
ε

] ε
ε−1

, (14)

showing that output is linear in the overall level of technology, A, and is a constant-

elasticity function of H and L. From (14), we have that

∂Y

∂n
=
A1−

1
εY

1
ε

ε− 1

[(
H

n

) ε−1
ε

−
(

L

1− n

) ε−1
ε

]
, (15)

which implies that aggregate output is maximized when n/ (1− n) = h. Intuitively,

production is maximized when the fraction of hi-tech products is equal to the fraction

of skilled workers in the population, so that xL = xH and prices are equalized across

goods. Equation (14) is important in that it highlights the value of technology diffu-

sion: by shifting some technologies to low-skill workers, standardization “alleviates”

the pressure on scarce high-skill workers, thereby raising aggregate demand. It also

shows that the effect of standardization on production, for given A, disappears as

goods become more substitutable (high ε). In the limit as ε→∞, there is no gain to
smoothing consumption across goods (xL = xH) so that Y only depends on aggregate

productivity A.

Finally, to better understand the effect of technology diffusion on innovation,

it is also useful to express profits as a function of Y . Using (2)-(4) to substitute

pH = A
ε−2
ε (Y/xH)1/ε into (7), profits of a hi-tech firm can be written as:

πH =
(Y/A)1/ε

ε

(
H

n

) ε−1
ε

. (16)

A similar expression holds for πL. Notice that profits are proportional to aggregate

demand, Y . Thus, as long as faster technology diffusion (lower n) through standard-

ization raises Y , it also tends to increase profits. On the contrary, an increase in

6An elasticity of substitution between products greater than 2 is consistent with most empirical
evidence in this area. See, for example, Broda and Weinstain (2006).
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n ≥ nmin reduces the instantaneous profit rate of hi-tech firms:

∂πH
∂n

n

πH
=

1

ε

∂Y

∂n

n

Y
− ε− 1

ε
< 0. (17)

2.4 Innovation and Standardization

We model both innovation, i.e., the introduction of a new hi-tech good, and standard-

ization, i.e., the process that turns an existing hi-tech product into a low-tech variety,

as costly activities. We follow the “lab-equipment”approach and define the costs of

these activities in terms of output, Y . In particular, we assume that introducing a

new hi-tech good requires µH units of the numeraire, while standardizing an existing

hi-tech good costs µL units of Y . We may think of µL as capturing the technical

cost of simplifying the production process plus any policy induced costs due to IPR

regulations restricting the access to new technologies.

Next, we define VH and VL as the net present discounted value of a firm producing

a hi-tech and a low-tech good, respectively. These are given by the discounted value of

the expected profit stream earned by each type of firm and must satisfy the following

Hamilton-Jacobi-Bellman equations:

rVL = πL + V̇L (18)

rVH = πH + V̇H −mVH ,

wherem is the arrival rate of standardization, which is endogenous and depends on the

intensity of investment in standardization. These equations say that the instantaneous

profit from running a firm plus any capital gain or losses must be equal to the return

from lending the market value of the firm at the risk-free rate, r. Note that, at a flow

rate m, a hi-tech firm is replaced by a low-tech producer and the value VH is lost.

Free-entry in turn implies that the value of innovation and standardization can

be no greater than their respective costs:

VH ≤ µH and VL ≤ µL.

If VH < µH (VL < µL), then the value of innovation (standardization) is lower than

its cost and there will be no investment in that activity.
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2.5 Dynamic Equilibrium

A dynamic equilibrium is a time path for (C, xi, A, n, r, pi) such that monopolists

maximize the discounted value of profits, the evolution of technology is determined

by free entry in innovation and standardization, the time path for prices is consistent

with market clearing and the time path for consumption is consistent with household

maximization. We will now show that a dynamic equilibrium can be represented as a

solution to two differential equations. Let us first define:

χ ≡ C

A
; y ≡ Y

A
; g ≡ Ȧ

A
.

The first differential equation is the law of motion of the fraction of hi-tech goods, n.

This is the state variable of the system. Given that hi-tech goods are replaced by a

low-tech goods at the endogenous rate m, the flow of newly standardized products is

ȦL = mAH . From this and the definition n = (A− AL)/A we obtain:

ṅ = (1− n) g −mn. (19)

The second differential equation is the law of motion of χ. Differentiating χ and using

the consumption Euler equation (1) yields:

χ̇

χ
= r − ρ− g (20)

Next, to solve for g, we use the aggregate resource constraint. In particular,

consumption is equal to production minus investment in innovation, µHȦ, and in

standardization, µLȦL. Noting that Ȧ/A = g and ȦL/A = mn, we can thus write:

χ = y − µHg − µLmn

Substituting for g from this equation (i.e., g = (y − µLmn− χ) /µH) into (19) and

(20) gives the following two equation dynamical system in the (n, χ) space:

χ̇

χ
= r − ρ− y − µLmn− χ

µH
(21)

ṅ

n
=

(
1− n
n

)
y − χ
µH

−m
(

1 + (1− n)
µL
µH

)
, (22)

Note that y is a function of n (see equation (14)). Finally, r and m can be found

12



as functions of n from the Hamilton-Jacobi-Bellman equations. First, note that, if

there is positive imitation (m > 0), then free-entry implies VL = µL. Given that µL
is constant, VL must be constant too, V̇L = 0. Likewise, if there is positive innovation

(g > 0), then V̇H = 0. Next, equations (18) can be solved for the interest rate in the

two cases:

r =
πL
µL

if m > 0 (23)

r =
πH
µH
−m if g > 0. (24)

We summarize these findings in the following proposition.

Proposition 2 A dynamic equilibrium is characterized by (i) the autonomous system
of differential equations (21)-(22) in the (n, χ) space where

y = y(n) =
[
(1− n)

1
ε L

ε−1
ε + n

1
εH

ε−1
ε

] ε
ε−1

,

r = r (n) = max

{
πL (n)

µL
,
πH (n)

µH
−m

}
,

m = m (n) =


0 if r > πL(n)

µL

y(n)−χ
nµL

if r > πH(n)
µH
−m

,

and πH (n) and πL (n) are given by (12), (ii) a pair of initial conditions, n0 and A0,

and (iii) the transversality condition limt→∞

[
exp

(
−
∫ t
0
rsds

) ∫ At
0
Vidi

]
= 0.

2.6 Balanced Growth Path

A Balanced Growth Path (BGP) is a dynamic equilibrium such that ṅ = ṁ = 0 and,

hence, the skill premium and the interest rate are at a steady-state level. An “interior”

BGP is a BGP where, in addition, m > 0 and g > 0. Equation (19) implies that

an interior BGP must feature mss = g (1− n) /n = (r − ρ) (1− n) /n. To find the

associated BGP interest rate, we use the free-entry conditions for standardization and

innovation. Using (12), the following equation determines the interest rate consistent

with m > 0:

rL (n) ≡ πL
µL

(25)

=
L

µLε

[
1 +

(
1

n
− 1

)− 1
ε

h
ε−1
ε

] 1
ε−1

(1− n)
2−ε
ε−1 .
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Next, the free-entry condition for hi-tech firms, conditional on the BGP standardiza-

tion rate, determines the interest rate consistent with the BGP:

rssH (n) ≡ πH
µH
−mss = n

πH
µH

+ (1− n) ρ (26)

=
H

µHε

[
1 +

(
1

n
− 1

) 1
ε

h
1−ε
ε

] 1
ε−1

n
1
ε−1 + (1− n) ρ.

The curves rssH (n) and rL (n) can be interpreted as the (instantaneous) return from

innovation (conditional on ṅ = 0) and standardization, respectively. In the space

(n, r), the BGP value of n can be found as their crossing point: in other words,

along a BGP, both innovation and standardization must be equally profitable.7 We

summarize the preceding discussion in the following proposition:

Proposition 3 An interior BGP is a dynamic equilibrium such that n = nss where

nss satisfies

rL (nss) = rssH (nss) , (27)

and rL (nss) and rssH (nss) are given by (25) and (26), respectively. Given nss, the

BGP interest rate is rss = πL (nss) /µL, and the standardization rate is m
ss =

(rss − ρ) (1− nss) /nss, where πL is as in (12) [evaluated at n = nss]. Finally, AH ,

AL, Y and C all grow at the same rate, gss = rss − ρ.

To characterize the set of BGP, we need to study the properties of rL (n) and

rssH (n). Due to the shape of πL, rL (n) is increasing and convex. Provided that ρ

is not too high, rssH (n) is non-monotonic (first increasing and then decreasing) and

concave in n.8 The intuition for the non monotonicity is as follows. When n is

high, competition for skilled workers among hi-tech firms brings πH down and this

lowers the return to innovation. Moreover, when n is higher than h/ (h+ 1) aggregate

productivity and Y are low, because skilled workers have too many tasks to perform,

while unskilled workers too little. This tends to reduce πH even further. When n

is low, πH is high, but the flow rate of standardization is high as well (since, recall,

mss = g (1− n) /n) and this brings down the return to innovation.

Figure 1 shows the BGP relationship between r and n. Note that, as long as

m > 0, the equilibrium must lie on the (dashed) rL (n) curve. An interior BGP must

7It can also be verified straightforwardly that the allocation corresponding to this crossing point
satisfies the transversality condition.

8A formal argument can be found in the proof of Proposition 4.
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Figure 1: Solid = rssH (n), Dashed = rL (n)

also lie on the (solid) rssH (n) curve. Thus, the interior BGP value of n is identified by

the intersection. The following assumptions guarantee the existence and uniqueness

of a BGP, and that such BGP is interior.

Assumption 1 : 0 < ρ < H/ (µHε) .

This condition is standard: it guarantees that innovation is suffi ciently profitable

to sustain endogenous growth and that the transversality condition is satisfied.

Assumption 2 : µH < µL
h

1+h−ερµL/(H+L)
.

Assumption 2 ensures that rssH
(
nmin

)
> rL

(
nmin

)
, ruling out the uninteresting

case in which standardization is always more profitable than innovation when n is

expected to stay constant, and guarantees that the BGP is interior and unique. We

state the existence and uniqueness of the BGP in a formal proposition.

Proposition 4 Suppose Assumptions 1-2 hold. Then there exist a unique BGP equi-
librium.
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Proof. See the Appendix.
Proposition 4 establishes the existence and uniqueness of a BGP equilibrium,

denoted by (nss, χss). The next goal is to prove the (local) existence and uniqueness

of a dynamic equilibrium converging to this BGP. Unfortunately, the analysis of

dynamics is complicated by several factors. First, the dynamic system (21)-(22) is

highly nonlinear. Second, it may exhibit discontinuities in the standardization rate

(and thus in the interest rate) along the equilibrium path. Intuitively, at (nss, χss)

there is both innovation and standardization (otherwise we could not have ṅ = 0). It

is relatively easy to prove that, similar to models of directed change (e.g., Acemoglu

2002 and Acemoglu and Zilibotti 2001), there exists a dynamic equilibrium converging

to the BGP featuring either only innovation (when n < nss) or only standardization

(when n > nss). This implies that when the economy approaches the BGP from

the left, the standardization rate and the interest rate both jump once the BGP is

reached. In particular, when n < nss, there is no standardization, thus, m = 0, while

in BGP we have m > 0. Since throughout there is innovation and thus the value

of hi-tech firms must remain constant at VH = µH , there can be no jump in r + m.

Consequently, there must be an exactly offsetting jump in interest rate r when the

BGP is reached and the standardization rate, m, jumps.9

However, it turns out to be more diffi cult to prove that there exist no other

dynamic equilibria. In particular, we must rule out the existence of equilibrium

trajectories (solutions to (21)-(22)) converging to (nss, χss) with both innovation and

standardization out of BGP. Numerical analysis suggests that no such trajectory exists

as long as Assumptions 1 and 2 are satisfied. In particular, the system (21)-(22) under

the condition thatm = πH (n) /µH−πL (n) /µL (i.e., under the condition that there is

both innovation and standardization) is globally unstable around (nss, χss). However,

we can only prove this analytically under additional conditions. In particular, we must

impose the following parameter restriction:10

ε− 1

ε
(h+ 2) + ε >

2h+ 1

h (h+ 1)
. (28)

Proposition 5 Suppose that Assumptions 1 and 2 and (28) hold. Then there ex-

9Note that the discontinuous behavior of the standardization rate and interest does not imply
any jump in the asset values, VH and/or VL. Rather, the rate of change of these asset values may
jump locally.
10This restriction ensures that nmin = h/ (1 + h) be not too small, which is key in the proof

strategy (see Appendix). For example, when ε = 2, it requires nmin = h/ (1 + h) > 0.28 and when
ε = 3, nmin = h/ (1 + h) > 0.21.
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ists ρ̄ > 0 such that, for ρ < ρ̄, the interior BGP is locally saddle-path stable. In

particular, if nt0 is in the neighborhood of its BGP value, n
ss, and nt0 > nss [resp.,

nt0 < nss], then there exists a unique path converging to the BGP such that for some

finite t̄ > t0, we have τ ∈ [t0, t̄], mτ > 0, gτ = 0 and ṅτ < 0 [resp., mτ = 0, gτ > 0

and ṅτ > 0], and the economy attains the BGP at t̄ (i.e., for all τ ≥ t̄, we have

nτ = nss, mτ = mss, and gτ = gss).

Proof. See the Appendix.

2.7 Growth and Standardization: an Inverse-U Relationship

How does the cost of standardization, µL, affect the BGP growth rate, g
ss? Answering

this question is important from both a normative and a positive perspective. First,

policies such as IPR protection are likely to have an impact on the profitability of

standardization. Therefore, knowing the relationship between standardization and

growth is a key step for policy evaluation. Second, the diffi culty to standardize may

vary across technologies and over time.

The cost of standardization affects rL (n), but not rssH (n). Thus, increasing the

cost of standardization amounts to shifting the rL (n) curve in Figure 1 and therefore

the intersection, form n = nmin (low µL) to n→ 1 (high µL). The effect on the growth

rate depends in turn on the relationship between gss and n:

gss (n) = rssH (n)− ρ = n

(
πH (n)

µH
− ρ
)
.

This expression highlights the trade-off between innovation and standardization: a

high standardization rate (and thus a low n) increases the instantaneous profit rate

πH (n), but lowers the expected profit duration. Taking the derivative and using (17)

yields:

∂gss (n)

∂n
=

πH (n)

µH
− ρ+

n

µH

∂πH (n)

∂n

=
πH (n)

εµH

(
1 +

∂Y (n)

∂n

n

Y (n)

)
− ρ.

From (15), ∂Y (n) /∂n = 0 at n = nmin. For n > nmin, we have ∂Y (n) /∂n < 0 with

limn→1 ∂Y (n) /∂n = −∞. Thus:

∂gss (n)

∂n

∣∣∣∣
n=nmin

=
H + L

µHε
2
− ρ and lim

n→1

∂gss (n)

∂n
= −∞.
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Provided that ρ < H+L
µHε

2 , gss (n) is an inverse-U function of n. Intuitively, at n = 1

the wage of unskilled workers is zero and hence the marginal value of transferring

technologies to them (in terms of higher aggregate demand and thus also profits)

is infinite. Instead, at n = nmin, aggregate output Y is maximized and marginal

changes in n have second order effects on aggregate production. Moreover, given that

future profits are discounted, the impact of prolonging the expected profit stream

(high n) on innovation vanishes if ρ is high. When ρ < H+L
µHε

2 , growth is maximized at

n∗ ∈
(
nmin, 1

)
that solves:

1− ρ εµH
πH (n∗)

= −∂Y (n∗)

∂n∗
n∗

Y (n∗)
. (29)

The condition ρ < H+L
µHε

2 is satisfied whenever Assumption 1 (which we imposed above

and which guarantees g > 0) and ε < 1 + 1/h, i.e., if skilled workers are suffi ciently

scarce. It is also satisfied when ρ and µH are suffi ciently low. Now recalling that in

BGP n is an increasing function of µL, we have the following result (proof in the

text):

Proposition 6 Let gss be the BGP growth rate and assume ρ < H+L
µHε

2 . Then, gss is

an inverse U-shaped function of the cost of standardization.

Figure 1 provides a geometric intuition. Starting from a very high µL such that

rssH (n) is in its decreasing portion, a decrease in µL moves the equilibrium to the left

along the schedule rssH (n) . This yields a lower nss and thus higher growth. Therefore,

in this region, a decrease in µL increases growth. However, after the maximum of the

rssH (n) schedule is passed, further decreases in µL reduce n and growth.

Proposition 6 also has interesting implications for the skill premium. Recall that,

in this model, the skill-premium is the market value of being able to operate new

technologies and produce hi-tech goods. For this reason, it is increasing in the frac-

tion of hi-tech firms (see equation (9)). Since growth is an inverse-U function of n,

the model also predicts a inverse U-shaped relationship between growth and wage

inequality, as shown in Figure 2. Intuitively, a very high skill-premium could be a

sign that standardization is so costly to slow down growth. A very low skill premium,

however, might be a sign of too fast standardization and thus weak incentives to

innovate.
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Figure 2: Growth and the Skill Premium

3 Welfare Analysis and Optimal Policies

We now turn to the normative analysis. We start by characterizing the Pareto optimal

allocation for a given µL, representing the technical cost of standardization. This

allows us to identify the ineffi ciencies that are present in the decentralized equilibrium.

Next, we focus on the constrained effi cient allocation that a government could achieve

with a limited set of instruments. In particular, we allow the government to increase

the cost of standardization above µL through IPR regulations and to influence the

level of competition. Finally, we briefly discuss how North-South trade affects the

optimal policies.

3.1 Pareto Optimal Allocation

The Pareto optimal allocation is the one chosen by a social planner seeking to max-

imize the utility of the representative agent, subject to the production function (14)

and for given costs of innovation, µH , and standardization, µL. The current value

Hamiltonian for the problem is:

H = ln (Y − IH − IL) + ξH
IH
µH

+ ξL
IL
µL
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where IH and IL are investment in innovation and standardization, respectively. The

control variables are IH and IL, while the state variables are A and AL, with co-state

variables ξH and ξL, respectively. From the first order conditions, the Pareto optimal

n solves:
∂Y

∂A

1

µH
=

∂Y

∂AL

1

µL
(30)

That is, the planner equates the marginal rate of technical substitution between hi-

tech and low-tech products to their relative development costs. The Euler equation

for the planner is:
Ċ

C
=
∂Y

∂A

1

µH
− ρ.

By comparing these results to those in the previous section, we can see that the

decentralized equilibrium is ineffi cient for two reasons.

First, there is a standard appropriability problem whereby firms only appropriate

a fraction of the value of innovation/standardization so that R&D investment is too

low. To isolate this ineffi ciency, consider the simplest case L = 0, so that there is

no standardization and Y = AH, πH = H/ε. In this case, the social return from

innovation is H while the private return is only r = H/ε < H. The same form of

appropriability effect also applies when L > 0.

Second, there is too much standardization relative to innovation due to a business

stealing externality: the social value of innovation is permanent while the private

benefit is temporary. A particularly simple case to highlight this ineffi ciency is when

ε = 2 so that (30) simplifies to:

n

1− n = h

(
µL + µH
µH

)2
,

In the decentralized equilibrium, instead, the condition rL (n) = rssH (n) yields:

n

1− n = h

[(
r

m+ r

)
µL
µH

]2
Clearly, n is too low in the decentralized economy.

To correct the first ineffi ciency, subsidies to innovation (and standardization) are

needed. On the other hand, the business stealing externality can be corrected by

introducing a licensing policy requiring low-tech firms to compensate the losses they

impose on hi-tech firms. In particular, suppose that firms that standardize must

pay a one-time licensing fee µlicL to the original inventor. In this case, the free-entry
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conditions together with the Hamilton-Jacobi-Bellman equations (18) become:

VL =
πL
r

= µlicL + µL

VH =
πH −m

(
VH − µlicL

)
r

= µH .

Clearly, the business stealing effect is removed when µlicL = µH , that is, when low-tech

firms compensate the hi-tech produces for the entire capital loss µH . We summarize

these results in the proposition (proof in the text).11

Proposition 7 The Pareto optimal allocation can be decentralized using a subsidy to
innovation and a license fee imposed on firms standardizing new products.

3.2 Constrained Efficiency: Optimal µL

Proposition 7 shows how the Pareto optimal allocation can be decentralized. However,

the subsidies to innovation require lump-sum taxes and in addition, the government

would need to set up and operate a system of licensing fees. In practice, both of

these might be diffi cult.12 Motivated by this reasoning, we now analyze a constrained

effi cient policy, where we limit the instruments of the government. In particular,

we assume that the government can only affect the standardization cost through IPR

regulations restricting the access to new technologies, and ask what would the optimal

policy be in this case.13 More precisely, we find the (constant) µ∗L that maximizes

11Note that there is no static distortion due to monopoly pricing. This is because in our model
all firms only use inelastically supplied factors (skilled and unskilled labor). Thus, markups do not
distort the allocation. In a more general model, subsidies to production would also be needed correct
for the static ineffi ciency.
12Some reasons emphasized in the literature why licensing may fail include asymmetric information

and bilateral monopoly (e.g., Bessen and Maskin, 2006). See also Chari et al. (2009) on the
diffi culties of using market signals to determine the value of existing innovations.
13We do not consider patent policies explicitly for a number of reasons. Patents are often perceived

as offering relatively weak protection of IPR, less than lead time and learning-curve advantage in
preventing duplication. Patents disclose information, the application process is often lengthy and
cannot prevent competitors from “inventing around”patents. Overall, Levin et al. (1987) found that
patents increase imitation costs by 7-15%. This support our approach of modeling IPR protection
as an additional cost.
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BGP utility:

max
µL

ρW = ρ

∞∫
0

[
ln

(
C

A

)
+ ln

(
A0e

gt
)]
e−ρtdt (31)

= ln (χss) +
gss

ρ
.

The optimal policy maximizes a weighted sum of the consumption level and its growth

rate. In turn, gss (µL) = n [πH (n) /µH − ρ] evaluated at the n (µL) that solves (27)

and χss = y(n) − g (µL) [µH + µL (1− n)], evaluated at the same n. In general,

problem (31) does not have a closed-form solution. Nonetheless, we can make progress

by considering two polar cases.

3.2.1 Optimal/Growth Maximizing Policy: ρ→ 0

As ρ→ 0, the optimal policy is to maximize gss. For this case, we have simple analytic

results. Manipulating the first order condition (29), the optimal n∗ is implicitly

defined by: (
1− n∗
n∗

h

) ε−1
ε

= 1− 1

n∗

(
1− 1

ε

)
(32)

Note that the LHS is decreasing in n, from infinity to zero, while the RHS is increasing

in n, ranging from minus infinity to 1/ε. Thus, the solution n∗ is always interior and

unique. Using the implicit function theorem yields:

∂n∗

∂ε

ε

n∗
=
ε (1− n∗)
ε− 1

> 0 and
∂n∗

∂h

h

n∗
= (1− n∗) (1− ε+ n∗ε) > 0 (33)

because, from (32), εn∗ − ε + 1 = ε (n∗)
1
ε (1− n∗)

ε−1
ε h

ε−1
ε > 0. That is, the optimal

fraction of hi-tech goods is increasing in the relative skill-endowment and in the

elasticity of substitution across products.

Once we have n∗, we can use the indifference condition between innovation and

standardization, VH
VL

= µH
µL
, to solve for the µ∗L that implements n

∗. When ρ→ 0 and

m = g (1− n) /n we obtain:

πH
πL

=
µH
µL

1

n
→
(

1− n
n

h

) ε−1
ε

=
µH
µL

1

n
(34)

The equilibrium fraction of hi-tech goods, n, depends on relative profits (πH/πL),
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relative R&D costs (µH/µL), and the standardization risk faced by hi-tech firms

(captured by the factor 1/n). Note that a decline in the relative skill supply, h, leads

to a more than proportional fall in n because πH/πL falls and m rises. Substituting(
1−n∗
n∗ h

) ε−1
ε from (32) we can find the optimal standardization cost as:

µ∗L = µH

(
n∗ − 1 +

1

ε

)−1
=

µHε

1− ε+ n∗ε
. (35)

This expression has the advantage that it only depends on h through n∗ and can be

used to study the determinants of the optimal policy. Differentiating (35) and using

(33), we obtain the following proposition (proof in the text).

Proposition 8 Consider the case ρ → 0. BGP welfare and growth are maximized

when the cost of standardization µL satisfies (35) and n
∗ is the solution to (32). The

following comparative static results hold:

∂µ∗L
∂µH

µH
µ∗L

= 1

∂µ∗L
∂h

h

µ∗L
= −εn∗ (1− n∗) < 0

∂µ∗L
∂ε

ε

µ∗L
=

n∗ε− 1

ε− 1
> 0.

The results summarized in this proposition are intuitive. Changes in the cost of

innovation should be followed by equal changes in the cost of standardization, so as to

keep the optimal n constant. A decline in the relative supply of skilled workers makes

technology diffusion relatively more important. However, the incentive to standardize

increases so much (both because of the change in instantaneous profits and because

the equilibrium m increases too) that the optimal policy is to make standardization

more costly. Thus, somewhat surprisingly, a higher abundance of unskilled worker

calls for stronger IPR protection. Finally, given that ε ≥ 2, a lower elasticity of

substitution makes the diffusion of technologies to low-skill workers more important

for aggregate productivity and reduces the optimal IPR, µ∗L.
14

3.2.2 Optimal Policy: high ρ

To understand how the optimal policy changes with the discount rate, we consider

the other polar case. In particular, assume that ρ → H+L
µHε

. As we will see, this is

14To see this, recall that εn∗ − ε+ 1 > 0. Then, ε ≥ 2 implies (εn∗ − 1) / (ε− 1) > 0.
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the highest ρ compatible with positive growth. In this case, Section 2.7 shows that

g is maximized at the corner nmin = h/(h + 1). Moreover, for n → nmin we have

πH = L+H
ε
and g = H+L

µHε
− ρ → 0 (since ρ → H+L

µHε
). Next, the result that g must

be close to zero yields χss = y, which is also maximized at nmin. Thus, with high

discounting the optimal policy is the same as the one that maximizes static output

(and consumption) only. Reaching this point requires setting µ∗L = µH . Note that,

in this extreme scenario, the optimal policy becomes independent of h and other

parameters. Comparing the policy µ∗L = µH to (35) shows, not surprisingly, that high

discounting implies a lower optimal protection of IPR.

3.3 Other Competition Policies

In practice, several other competition policies, besides licensing fees and intellectual

property rights, are used in order to affect the profitability of standardization. We

now briefly discuss the implications of such policies. Suppose that the government

can directly affect markups in the hi-tech and the low-tech sectors. In particular, it

can set εH ≥ ε and εL ≥ ε in the pricing equations (5).

When markups vary across firms, profits (16) become:

πL =
y1/ε

εL

(
L

1− n

) ε−1
ε

and πH =
y1/ε

εH

(
H

n

) ε−1
ε

(36)

From rL (n) = πL/µL and the above expressions, it is immediate to see that the

BGP n only depends on the product µLεL. This result highlights that competition

policy (εL) and IPR protection (µL) are substitutes. Intuitively, with lower mark-ups

(high εL) for low-tech firms, there is less entry in the L-sector. Yet, the government

can offset this effect by reducing µL, so that it becomes easier to standardize. On the

contrary, gss (n) does not depend on εL, so that n∗ is as before. Given that intervening

on µL or εL is equally effective to implement a desired n
∗, the optimal mix depends

on the relative costs of the two policies.

Now when we also have ρ→ 0, equation (35) becomes:

µL =
εH
εL
· µHε

1− ε+ n∗ε
. (37)

Then, under the assumptions that εL can be changed at no cost, it is easy to see that
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the optimal policy is:

εH = ε

µ∗L = µminL

εL =
εH
µminL

· µHε

1− ε+ n∗ε

where µminL ≥ 0 is the minimum “technical” cost of standardization (i.e., with no

IPR protection). Intuitively, full monopoly among hi-tech firms ensures high innova-

tion; µ∗L = µLmin minimizes the resources spent on standardization; high competition

among low-tech firms yields the optimal n∗. If the desired level of competition εL
cannot be achieved, then µ∗L should be adjusted upward accordingly.

15

3.4 North-South Trade and IPR Policy

We now ask how trade opening in countries with a large supply of unskilled workers

affects the optimal IPR policy. This question is interesting because there is an un-

settled debate on whether trade liberalization in less developed countries should be

accompanied by tighter IPR protection, as implied by the TRIPs Agreement, or by

less strict IPR policies, which serve to encourage technology diffusion to less advanced

economies. We can investigate this question using our model.

Consider an integrated world economy (the North), described by the model in

Section 2. For simplicity, let us also assume that there is a single large developing

country endowed with unskilled workers only (the South). Without trade, we assume

that Northern technologies are copied at no cost by competitive firms in the South.

However, this form of technology transfer is imperfect: when a low-tech good is

introduced in the South, labor productivity there is only a fraction ϕ ∈ (0, 1]. There

is no innovation in the South.

Now imagine that the South opens its economy to trade. We assume that economic

integration allows Northern firms to produce in the South. In the new integrated equi-

librium factor prices are equalized (or else firms would relocate to the country where

15Another way to highlight the same result is that policy does not affect markups, but rather
patent duration in the low-tech sector. In the model considered so far, patent length is infinite in
the low-tech sector. Suppose, however, that patent duration is finite and, once the patent expires,
the good is produced by unskilled workers under competitive conditions. Here, the key trade-off
is between the cost of standardization and the duration of the subsequent monopoly position in
the low-tech sector. The gist of the argument is that the best combination is, in a sense, low
IPR everywhere (low µL and short patents). However, it has to be carefully tailored, since the
cost-relative-to-duration must be pinned down so as to get the right n.
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labor is cheaper) and Southern firms are replaced by their Northern counterpart. This

result stems from the fact that Northern firms are more productive and can capture

the entire market by charging a price equal to or lower than the marginal cost of

the Southern imitators, pL ≤ wL/ϕ. However, if ϕ > (1− 1/ε), Northern firms must

compress their markup to keep Southern imitators out.

In sum, the effect of trade opening in the South is isomorphic to an increase

in the world endowment of L and possibly a reduction in the markup and profit

margins of low-tech firms (higher εL). What are the implications for the BGP growth

rate and the optimal IPR policy? The change in L and εL have opposite effects on

πL (see equation (36)) and hence on the return from standardization, so the rL (n)

curve in Figure 1 may either shift up or down. The rssH (n) curve, instead, always

shifts up because the greater supply of low-tech goods increases the price and thus

the profitability of hi-tech products. As a result, in the new BGP, nss and gss may

be higher or lower. Despite this ambiguity, it is easy to see that trade opening is

necessarily growth (and welfare) enhancing if IPR policy, µL, is correctly adjusted.

This follows immediately from the upward shift of the rssH (n) curve, implying that

the maximum attainable r must be higher.

The crucial question, then, is how µL should be changed. As already seen, a higher

L/H increases the optimal level of IPR protection, µ∗L. On the other hand, higher

competition among low-tech firms, εL, calls for a reduction in µL, to compensate for

the fall in profit margins (see equation (37)). The net effect depends on which force

dominates. If the liberalizing country is large and ineffi cient (low ϕ), the competitive

pressure posed by imitators on low-tech firms is weak, while the threat to hi-tech

firms, due to the increased incentives to standardize, is high. In this case, integration

should be followed by a tightening of IPR policies.16

4 Extension: Multiple Equilibria and Poverty Traps

We have so far assumed that, at wH = wL, standardization stops implying that in

a BGP n stays in the range (nmin, 1). This is an immediate consequence of the as-

sumption that, at wH = wL, incumbent hi-tech firms fight (see Proposition 1) so that

low-tech firms do not find entry profitable. Under this assumption and Assumption

2, Proposition 4 established the uniqueness of a BGP equilibrium. However, either

16These are the policies that a world planner would choose starting from the optimum. Yet,
governments of individual countries face different incentives, because an increase in µL leads to a
higher skill premium and redistributes income towards skill-abundant countries. This conflict of
interests between the North and the South is studied, among others, by Grossman and Lai (2004).
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when we adopt the alternative tie-breaking rule– whereby at wH = wL hi-tech firms

facing the entry of a low-tech competitor exit– or relax Assumption 2, the model may

generate multiple equilibria and potential poverty traps. In this section, we briefly

discuss this possibility.

For brevity, we focus on the case where Assumption 2 still holds but the competi-

tion between hi-tech firms and entrants at wH = wL is resolved according to the polar

opposite tie-breaking rule. Even under this alternative tie-breaking rule, we still have

that wH ≥ wL for any n ∈ [0, 1] since skilled worker can always take unskilled jobs.

But in contrast to Proposition 1 now standardization may continue even at n < nmin.

As a first step in the analysis of this case, we characterize the static equilibrium

for low levels of n. Recall that wH = wL at n = nmin. For n < nmin, the skill premium

is constant at wH = wL and some high skill workers are employed in low-tech firms.

In this case, the allocation of labor between the two type of firms, h, is determined

endogenously by equation (9) after setting wH = wL. This yields h = n/(1− n) and

a profit rate of πH = πL = L+H
ε
. In other words, for suffi ciently low n, it is as if

workers were perfect substitutes, prices are equalized pH = pL, and so are profits.

To find the steady states, we draw the rL (n) and rssH (n) schedules over the entire

domain n ∈ [0, 1]. Figure 3 shows the determination of nss for two possible rL (n)

schedules, corresponding to different values of µL. Compared to Figure 1, the first

part of both schedules is a straight line, as there the skill premium is constant and

equal to one. The interior BGPs are again the intersections between the rssH (n) (solid

line) and rL (n) (dashed line) schedules.

In addition to balanced growth equilibria, now there might exist “corner steady-

states” such that n = g = m = 0 and r = ρ. A corner steady state can arise in

two different circumstances: (i) at n = 0, there is no incentive to innovate nor to

standardize, i.e., ρ > πL
µL

= H+L
µLε

and ρ > πH
µH

= H+L
µHε

; (ii) at n = 0, firms have an

incentive to standardize, i.e., ρ < H+L
µLε

, but there are no goods to standardize, since

n = 0. Moreover, innovation is discouraged by the expectation that new hi-tech

goods would trigger a high standardization rate. Formally, innovating firms expect

that m > H+L
µHε
− ρ whenever n > 0. This conjecture does not violate the resource

constraint since the absolute investment in standardization would be infinitesimal

when n = 0 even though the standardization rate were high. The uninteresting case

in which rL (n) lays above rssH (n) for all n is still ruled out by Assumption 2.

As shown in Figure 3, depending on the standardization cost, there are two

regimes:

High µL : For µL > (H + L) / (ρε) (lower rL (n) schedule in Figure 3), there is a
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unique steady state (BGP) corresponding to the unique crossing point of the

rL (n) and rssH (n) schedules.

Low µL : For µL < (H + L) / (ρε) (upper rL (n) schedule) there are two interior and

a corner steady state. The two interior steady states can be seen in Figure

3. In this case, a corner steady state also exists, since rssH (0) = ρ < rL (0) =

(H + L) / (µLε) . Hence, standardization is profitable at n = 0.

The reason for the potential multiplicity is a complementarity between investment

decisions by firms. If firms expect n to be high in the BGP, they also anticipate a low

standardization rate, m, and this encourages further innovation. Greater innovation

in turn increases the demand for resources (i.e., the demand for “investment”rather

than consumption) and raises the interest rate. A greater interest rate reduces the

value of standardization more than the value of innovation), confirming the expecta-

tion of a low m. In contrast, when a large fraction of the resources of the economy

are devoted to standardization, expected returns from innovation decline and this

limits innovative. Expectation of lower innovation reduces the interest rates, leading

to reverse reasoning– i.e., encouraging standardization (more than innovation) and
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confirming the expectation of a high m.17 Note that this complementarity was also

present in the model analyzed in the previous sections. Yet, it did not give rise to

multiplicity because Assumption 2 guarantees that the other candidate steady states

correspond to levels of n below nmin, which was ruled out by Proposition 1 under our

baseline tie-breaking rule.18 Thus, the fact that standardization is profitable only if

unskilled labor is strictly cheaper than skilled labor prevents the economy from falling

to low-growth traps where innovation is discouraged by the expectation of a very fast

standardization rate.

We summarize the characterization of the set of steady-state equilibria in the

following proposition (proof in the text).

Proposition 9 Suppose that Assumptions 1 and 2 hold. Then:

1. If µL > (H + L) / (ρε) there exists a unique BGP which is interior.

2. If µL < (H + L) / (ρε) there exist two interior BGP equilibria and a corner

steady state.

It is also noteworthy that the non-monotonic relationship between the gss and

µL and the policy analysis derived in the previous sections now apply to the higher

interior BGP. The main novelty, however, is that too low a cost of standardization

may lead to multiple steady states, with the equilibrium determined by self-fulfilling

expectations, and stagnation.

5 Concluding Remarks

New technologies often diffuse as a result of costly adoption and standardization de-

cisions. Such standardization also creates cheaper ways of producing new products,

for example, substituting cheaper unskilled labor for the more expensive skilled labor

necessary for the production of new complex products. This process endogenously

17To see the role of the interest rate, consider a more general formulation of preferences where θ
is the inverse of the intertemporal elasticity of substitution. In this case, the Euler equation takes
the form Ċ/C = (r − ρ) /θ. Using this, equation (26) becomes:

rssH (n) =
θn

nθ + 1− n
πH
µH

+ ρ

(
1− n

nθ + 1− n

)
.

Note that, as θ → 0 the rssH (n) curve becomes flat and the BGP is necessarily unique.
18When Assumption 2 is relaxed, it is possible that the rL (n) and rssH (n) schedules cross twice

over the range n ∈
[
nmin, 1

]
.
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generates competition to original innovators. In this paper, we studied the implica-

tions of this costly process of standardization, emphasizing both its role as an engine

of growth and its potential negative effects on innovation (because of the “business

stealing”effect that it creates).

Our analysis has delivered a number of new results. First, the tension between

innovation and standardization generates an inverse U-shaped relationship between

competition and growth. Second, while technology diffusion is potentially beneficial,

it can also have destabilizing effects. Standardization can open the door to multiple

equilibria (multiple growth paths). Finally, we characterized the optimal competition

and IPR policy and how it depends on endowments and other parameters, such as the

elasticity of substitution between products. We found that innovation rents should

be protected more when skilled workers are perceived as scarcer, that is, when they

are in short supply and when the elasticity of substitutions between goods is high.

We also showed that these results provide new reasons for linking North-South trade

to intellectual property rights protection.

It is also worth noting that a key feature of our analysis is the potential compe-

tition between standardized products and the original hi-tech products. We believe

that this is a good approximation to a large number of cases in which standardization

takes place by different firms (and often in the form of slightly different products).

Nevertheless, the alternative, in which standardization is carried out by the original

innovator, is another relevant benchmark. In our follow-up work, Acemoglu et al.

(2010), we study a model of offshoring, where offshoring can be viewed as a costly

process of standardization carried out by the original innovator to make goods pro-

ducible in less developed countries with cheaper labor.

Our model yields a number of novel predictions that can be taken to the data. In

particular, it suggests that competition and IPR policy should have an impact on skill

premia. Furthermore, data on product and process innovation might be used to test

the existence of a trade-off between innovation and standardization at the industry

level. These seem interesting directions for future work.
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6 Appendix

6.1 Proof of Lemma 1

Recall πH = pHH
εHAH

= pHH
εHnA

. From (11) it is immediate to see that ∂πH
∂n

< 0 if pH ≥ pL,

which is true in equilibrium. To establish the properties of πL, note that:

∂ (ε− 1) lnπL
∂n

=
1
ε

(
n
1−n
) ε+1

ε
(
1
n2

)
h
ε−1
ε

1 +
(

n
1−n
) 1
ε h

ε−1
ε

+
ε− 2

1− n > 0 if ε > 2−
1
ε
1
n
h
ε−1
ε(

1−n
n

) 1
ε + h

ε−1
ε

.

For ε ≥ 2, lim n→1
∂πL
∂n

=∞. Convexity of πL follows immediately because the function
∂πL
∂n

has no critical point.

6.2 Notes on Figures

The benchmark economy used to draw all figures has the following parameter values:

ρ = 0.02; ε = 2; µH = 22.7, µL = 59.1; H = 1; L = 3

implying in steady state:

g = 0.02; r = 0.02; m = 0.02; n = 0.5;
wH
wL

= 1.5.

6.3 Proof of Proposition 4

A BGP must be a rest point of the dynamical system (21)-(22). We first note that

there cannot be a rest point at the boundaries n = nmin and n = 1 in view of Proposi-

tion 1. Thus any BGP must be interior as defined in Proposition 3, or equivalently, it

must be a zero of the dynamical system (21)-(22). We denote such a zero by (nss, χss),

where nss satisfies rL (nss) = rssH (nss) (see again Proposition 3). We prove the exis-

tence of a unique interior BGP by showing that there is a unique value nss ∈
(
nmin, 1

)
such that rL (nss) = rssH (nss), that there is a unique corresponding value of χss and

that at (nss, χss) the transversality condition is satisfied.

We prove the first step by establishing that rssH (nss) is a continuous inverse

U-shaped function whereas rL (nss) is a continuous, increasing and convex func-

tion. Moreover rssH
(
nmin

)
> rL

(
nmin

)
(which follows immediately from Assump-

tion 2) and limn→1 (rL (nss)− rssH (nss)) = ∞. Then, the intermediate value theo-
rem establishes the existence of such a BGP, while the shape of the two func-

31



tions implies uniqueness. Let φ (x) ≡
[
x+ x

(
1
x
− 1
) 1
ε h

1−ε
ε

] 1
ε−1

where ε ≥ 2 and

h ≥ 0. Standard algebra establishes that φ (x) is a continuous inverse U-shaped con-

cave function, such that limx→0 φ
′ (x) = ∞ and limx→1− φ

′ (x) = −∞. Thus, φ (x)

has a unique interior maximum in the unit interval. Next, note that rssH (nss) =

φ (nss) · H/ (µHε) + (1− nss) ρ. Since rssH (nss) is a linear transformation of φ (nss) ,

it is also a continuous inverse U-shaped concave function, with a unique interior

maximum in the unit interval. Consider now rL (nss) . Since rL (nss) = πL (nss) /µL,

Lemma 1 establishes that rL (nss) is increasing and convex, with limnss→1 rL (nss) =∞
(implying that limnss→1 (rL (nss)− rssH (nss)) =∞).

Next, straightforward algebra immediately implies that, conditional on n = nss,

m = m (nss) and z = z (nss) there exists a unique value χ = χss that yields a zero of

the dynamical system (21)-(22). Finally, since in BGP r = ρ + g > g (from (1) and

Assumptions 1-2), the transversality condition is satisfied in the unique candidate

BGP.

6.4 Proof of Proposition 5

Recall that dynamic equilibria are given by solutions to dynamical system (21)-(22)

with boundary conditions given by the initial condition n = n0 and the transversality

condition. By the same argument as in the proof of Proposition 4, there cannot be

any dynamic equilibrium path where n→ nmin and n→ 1. Any dynamic equilibrium

must thus either converge to the unique (interior) BGP (nss, χss) or involves cycles.

We will show in this proof that starting from any initial condition n = n0 in the

neighborhood of nss (the BGP), there exists a unique path converging to (nss, χss)

and that there cannot be cycles, thus establishing local saddle-path stability of the

dynamic equilibrium.

Because there are two sources of technical change (innovation and standardiza-

tion), we first distinguish between three possible types of potential dynamic equilibria

(which may converge to the BGP, (nss, χss)).

CASE 1: VH = µH and VL < µL (⇒ m = 0 and g = (y (n)− χ) /µH). In

this case, from Proposition 3 the dynamics are governed by the following system of

ordinary differential equations:

χ̇

χ
=

πH (n)

µH
− ρ− y (n)− χ

µH
(38)

ṅ = (1− n)
y (n)− χ

µH
.
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CASE 2: VH < µH and VL = µL (⇒ m = (y (n)− χ) / (nµL) and g = 0). In this

case, again from Proposition 3 the dynamics are governed by the following system of

ordinary differential equations:

χ̇

χ
=

πL (n)

µL
− ρ (39)

ṅ = −
(
y (n)− χ

µL

)
.

CASE 3: VH = µH and VL = µL (⇒ m = πH (n) /µH − πL (n) /µL and g =

(y (n)− µLmn− χ) /µH). In this case, the dynamics are governed by the following

system of ordinary differential equations:

χ̇

χ
=

πL (n)

µL
− ρ− y (n)− µLmn− χ

µH
(40)

ṅ = (1− n)
y(n)− χ
µH

−mn
(

1 + (1− n)
µL
µH

)
.

In all three cases, the differential equations are defined over the region χ ∈
[0, y (n)], n ∈ [nmin, 1].

Recall that in the BGP m > 0 and g > 0. This implies that VH = µH and

VL = µL. Therefore, (nss, χss) is a zero of the dynamical system (40), but it is not

a zero either of (38) or of (39). Nevertheless, we will show that CASE 3 cannot

describe dynamic equilibrium behavior at any point with (n, χ) 6= (nss, χss). Instead,

the equilibrium will be given by either CASE 1 or CASE 2 (depending on whether

n is above or below nss) and will be unique. Then under the equilibrium dynamics,

the economy will converge in finite time to (nss, χss) , and then a jump in m and r

will create a switch to CASE 3 at that point, and since (nss, χss) is a zero of (40), the

economy will have reached the BGP and will stay at (nss, χss) thereafter.

We prove by first establishing several Lemmas. First, Lemma 2 establishes that,

if n < nss, there exists a unique trajectory converging to (nss, χss) (it is immediate

that, if n < nss, there exists no trajectory converging to (nss, χss) following the

dynamics (39), since these would imply ṅ ≤ 0). Second, Lemma 3 establishes that,

if n > nss, there exists a unique trajectory converging to (nss, χss) following the

dynamics (39) (it is immediate that, if n > nss, there exists no trajectory converging

to (nss, χss) following the dynamics given by (38), since these imply ṅ ≥ 0). Third,

Lemma 4 provides a complete characterization of equilibrium dynamics when the

transition involves either only innovation or only standardization, followed by a jump
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in either the innovation of standardization rate as the economy reaches (nss, χss),

but continuous changes in asset values. Fourth, Lemma 5 establishes that (under

the suffi cient conditions of the Proposition) there exists no trajectory converging

to (nss, χss) following the dynamics (40). Finally, Lemma 6 rules out transitional

dynamics in the neighborhood of the BGP in which there is a jump from CASE 3 to

either CASE 1 or CASE 2 or between CASE 1 and CASE 2. These lemmas together

establish local saddle-path stability.

Lemma 2 Suppose n0 < nss. Then, there exists a unique trajectory attaining (nss, χss)

in finite time following the dynamics of CASE 1, (38). This trajectory features

monotonic convergence in n (ṅ > 0).

Proof. Consider the phase diagram depicting the system of differential equa-

tions (38) shown in Figure 4. This system has no zero over the feasible region

[nmin, 1] × [0, y (n)] (i.e., over the region where n ∈ [nmin, 1] and χ ∈ [0, y (n)]). In

particular, in the interior of the region [nmin, 1] × [0, y (n)], and hence at (nss, χss),

ṅ > 0 and χ̇ R 0 ⇔ χ R χ̂ (n) , where χ̂ (n) = µHρ + y (n) − πH (n) < y (n) . The

last inequality follows from Assumption 1. Although whether χ̂ (nss) R χ (nss) is in

general ambiguous, the phase diagram shows that there is a unique trajectory (and a

unique initial level of the control variable, χ0) converging in finite time to (nss, χss) .

In particular, since (nss, χss) is not a zero of the system (38), the determination of

the converging trajectory can be expressed as an initial value problem with (nssT , χ
ss
T )

being the boundary (terminal) condition. From the standard result of existence and

uniqueness of solutions for systems of ordinary differential equations, this initial value

problem has a unique solution. Fixing the initial condition n0 yields a unique solution

for T (the length of the transition) and χ0. The monotonicity of the dynamics of n

ensures that this solution is unique, i.e., there does not exist two solutions (n0, T, χ0)

and (n0, T
′, χ′0) with T 6= T ′ and χ0 6= χ′0. This argument also proves that convergence

is attained in finite time.

Lemma 3 Suppose n0 > nss. Then, there exists a unique trajectory attaining (nss, χss)

in finite time following the dynamics of CASE 2, (39). This trajectory features

monotonic convergence (ṅ < 0 and χ̇ > 0).

Proof. The proof is similar to that of Lemma 2. The dynamical system again has

no zero over the feasible region [nmin, 1]× [0, y (n)]. In particular, for n0 ≥ nss, ṅ > 0

and χ̇ > 0. The latter follows from the observation that χ̇ R 0 ⇔ πL (n) /µL R ρ,
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Figure 4: Saddle Path, n0 < nss

where π′L (n) < 0 and πL (nss) /µL > ρ, implying that πL (n) /µL > ρ for all n ≥ nss.

The phase diagram in Figure 5 shows that there is a unique trajectory converging in

finite time to (nss, χss) . This trajectory features monotonic dynamics.

The previous two Lemmas together imply our key characterization result.

Lemma 4 There exists equilibrium dynamics with the following characteristics.

If n0 < nss, the economy converges in finite time to (nss, χss) following the system

of differential equations (38), with monotonic convergence in n. Throughout this con-

vergence, VH = µH , VL < µL, m = 0 and g = (y (n)− χ) /µH . When the economy

reaches (nss, χss) , there is a discrete increase in standardization offset by a fall in the

interest rate such that r (nss) = r′ (nss)+m (nss) . Thereafter, VH = µH and VL = µL.

If n0 > nss the economy converges in finite time to (nss, χss) following the system of

differential equations (39), with monotonic convergence in n and χ. Throughout this

convergence, VH < µH , VL = µL, m = (y (n)− χ) / (nµL) > 0 and g = 0. When

the economy reaches (nss, χss) , there is a discrete fall in standardization offset by an

increase in innovation such that y (nss) − χ remains constant. Thereafter, VH = µH
and VL = µL.

Proof. The proof follows from Lemmas 2 and 3 combined with the following obser-
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Figure 5: Saddle Path, n0 > nss

vations. Suppose we start with n0 < nss, then the dynamic equilibrium is given by

the system of differential equations (38), so from Lemma 2 until T , we have m = 0.

At T , we reach (nss, χss) and m jumps from zero to its steady state, mss. This is

offset by an equal jump down in r implying that VH does not change (i.e., it remains

at VH = µH). Moreover, at T, VL attains its steady state (BGP) value, VL = µL.

Note that there is no discontinuity in the asset value VL, since the change in r and

m are perfectly anticipated, causing a continuous change in the value VL before the

actual change occurs to reach VL = µL exactly at T (the continuity of VL ensures

that there is no arbitrage opportunity in buying and selling shares of L-sector firms).

Thus at this point, the dynamics switch to those given by the system of differential

equations (40) with both innovation and standardization. Since (nss, χss) is a zero of

(40), the economy stays at (nss, χss) thereafter. The fact that this path satisfies the

transversality condition follows by the same argument as in the proof of Proposition

4.

Next, suppose that we start with n0 > nss. Then the dynamic equilibrium is given

by the system of differential equations (39) and from Lemma 3, until T , g = 0. At

T , investment in standardization and mT fall discretely (the latter declining to mss),

and investment in innovation and g jumps up (the latter increasing to gss). There is
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no change in overall investment and thus neither r, nor consumption nor VL change

at T . As m jumps down, VH attains its stead state value, VH = µH exactly at T (note

that the path of VH is continuous at T, as the change in m is perfectly anticipated

by investors). As a result, again at T , the dynamics switch to those given by the

system of differential equations (40) with both innovation and standardization. Since

(nss, χss) is a zero of (40), the economy stays at (nss, χss) thereafter. The fact that

this path satisfies the transversality condition again follows by the same argument..

We next show that transitional dynamics converging to (nss, χss) cannot feature

both VH = µH and VL = µL since the system (40) is unstable in the neighborhood of

(nss, χss) .

Lemma 5 Suppose n0 6= nss. Then, under the (suffi cient) conditions of the Proposi-

tion, there exists no trajectory converging to (nss, χss) following the dynamical system

(40).

Proof. The proof, which is long, is presented in the next subsection.
Lemmas 2-5 establish that in the neighborhood of (nss, χss) , we must have either

VH < µH or VL < µL, implying that there is either only innovation or only standard-

ization. However, the results established so far do not rule out “switches”between

different regimes while nt 6= nss, and thus cycles. Moreover, with such switches, the

equilibrium might also be indeterminate, with multiple paths starting from some ini-

tial n0 converging to the BGP. Lemma 6 rules out all of these possibilities by showing

that in the neighborhood of the BGP, there cannot be a switch from the dynamics

given by any one of (38), (39) and (40) to one of the other two. (For notational

convenience, in this lemma, we write VH,t = µH to mean that VH,t′ = µH for t
′ in a

neighborhood of t).

Lemma 6 Consider an equilibrium trajectory in the neighborhood of the BGP, (nss, χss).

Then, there cannot be a switch from any one of (38), (39) and (40) to one of the other

two, i.e., if at t0 in the neighborhood of (nss, χss), we have VH,t0 = µH and VL,t0 = µL,

then an equilibrium cannot involve VH,t < µH and/or VL,t < µL for t > t0; if we have

VH,t0 = µH and VL,t0 < µL, then an equilibrium cannot involve VH,t < µH and/or

VL,t = µL for t > t0; and if we have VH,t0 < µH and VL,t0 = µL, then an equilibrium

cannot involve VH,t = µH and/or VL,t < µL for t > t0.

Proof. We will prove that if in the neighborhood of (nss, χss), we have VH,t0 = µH
and VL,t0 = µL, then an equilibrium cannot involve VH,t = µH and VL,t < µL for

t > t0. The other cases are analogous.
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Suppose to obtain a contradiction that this is the case and denote the last instance

where VL = µL by T (i.e., VL,T+ε < µL for ε > 0. We need to distinguish two cases.

First, VL,t′ < µL for all t
′ > t, and second, there exists T ′ > t, such that we again

have VL,T ′ = µL.

Case 1: the fact that VL,t′ < µL for all t
′ > t contradicts the hypothesis that the

equilibrium path will converge to the BGP.

Case 2: we write VL,T as follows:

VL,T =

∫ ∞
T

exp

(
−
∫ τ

T

r(nν)dν

)
πL (nτ ) dτ

=

∫ T ′

T

exp

(
−
∫ τ

T

r(nν)dν

)
πL (nτ ) dτ + exp

(
−
∫ T ′

T

r (nτ ) dτ

)
µL,

where the equality exploits the fact that by hypothesis VL,T ′ = µL. Moreover, we also

have, again by hypothesis, that VL,T = µL, which implies∫ T ′

T

exp

(
−
∫ τ

T

r(nν)dν

)
πL (nτ ) dτ =

(
1− exp

(
−
∫ T ′

T

r (nτ ) dτ

))
µL. (41)

Suppose next that nT > nss. By the instability result in Lemma 5, this implies ṅT > 0

and thus nτ > nss for all τ ∈ [T, T ′]. But then from Lemma 1, πL(nτ ) > πL(nss) for

all τ ∈ [T, T ′]. Moreover, since VH,τ = µH and VL,τ < µL, we also have that for all

τ ∈ [T, T ′],

r (nτ ) =
πH (nτ )

µH
>
πL (nτ )

µL
>
πL (nss)

µL
= r (nss) ,

where the second inequality again follows from Lemma 1 in view of the fact that

nτ > nss for all τ ∈ [T, T ′]. But then,

∫ T ′

T

exp

(
−
∫ τ

T

r(nν)dν

)
πL (nτ ) dτ <

(∫ T ′

T

exp

(
−
∫ τ

T

r(nν)dν

)
dτ

)
πL (nss)

<

(
1− exp

(
−
∫ T ′

T

r(nτ )dτ

))
µL,

where the second inequality follows from the fact that r (nτ ) < r (nss) for all τ ∈
[T, T ′]. This inequality contradicts (41).

Suppose instead that nT < nss. By the instability result in Lemma 5, ṅT < 0 and

thus nτ < nss for all τ ∈ [T, T ′]. Moreover, by the same reasoning for all τ ∈ [T, T ′],
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πH(nτ ) > πH(nss) and since VL,τ < µL, m (nτ ) = 0. Therefore,

VH,T =

∫ ∞
T

exp

(
−
∫ τ

T

(r(nν) +m(nν)) dν

)
πH (nτ ) dτ

=

∫ T ′

T

exp

(
−
∫ s

T

r(nν)dν

)
πH (nτ ) dτ + exp

(
−
∫ T ′

T

r(nτ )dτ

)
µH . (42)

But since for all τ ∈ [T, T ′]

r (nτ ) =
πH (nτ )

µH
>
πH (nss)

µH

the first term in (42) is strictly greater than
(

1− exp
(
−
∫ T
t
r (nτ ) dτ

))
µH and thus

contradicts VH,T = µH .

Lemmas 2-6 establish the results of the Proposition. In particular, Lemmas 5 and

6 imply that starting at nt 6= nss in the neighborhood of the BGP we must have

VH < µH or VL < µL. If VH = µH and VL = µL, either we diverge from the BGP

in view of 5, or we have to switch to a regime where VH < µH or VL < µL, which is

ruled out by Lemma 6. If we have VH < µH or VL < µL in the neighborhood of the

BGP, then Lemmas 2-4 imply that there exists a unique path converging to the BGP.

This completes the proof of the Proposition.

6.5 Proof of Lemma 5

We take a linear approximation of the dynamical system (40) around (nss, χss) :

χ̇

χ
' Fχ (χss, nss) · (χ− χss) + Fn (χss, nss) · (n− nss)

ṅ

n
' Gχ (χss, nss) · (χ− χss) +Gn (χss, nss) · (n− nss)

where subscripts denote partial derivatives and

F (χ, n) ≡ r (n)− ρ− y (n)− µLm (n)n− χ
µH

,

G (χ, n) ≡
(

1− n
n

)
y (n)− χ

µH
−m (n)

(
1 + (1− n)

µL
µH

)
.
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implying that:

Fχ (χ, n) =
1

µH
> 0, Gχ (χ, n) = −

(
1− nss
nss

)
1

µH
< 0.

Solving for the schedules such that, respectively, χ̇ = 0 and ṅ = 0 yields:

χ (n) |χ̇=0 = y (n)− µLm (n)n− µH (r (n)− ρ)

χ (n) |ṅ=0 = y (n)− µLm (n)n− µHm (n)

(
n

1− n

)
,

with slopes:

χ′ (n) |χ̇=0 = −Fn (χss, nss)

Fχ (χss, nss)
and χ′ (n) |ṅ=0 = −Gn (χss, nss)

Gχ (χss, nss)
.

Suppose there were trajectories featuring both innovation and standardization

converging to (nss, χss) . Then, either one or both eigenvalues of the linearized system

would be negative. We show that this is impossible and that under the suffi cient con-

ditions of the Proposition both eigenvalues must be positive. Let the two eigenvalues

of the linearized system be denoted by λ1 and λ2. We know that

λ1 + λ2 = Fχ (χss, nss) +Gn (χss, nss)

λ1 · λ2 = Fχ (χss, nss) ·Gn (χss, nss)− Fn (χss, nss) ·Gχ (χss, nss) .

Claim 1 The following inequality holds

−Fn (χss, nss)

Fχ (χss, nss)
< −Gn (χss, nss)

Gχ (χss, nss)
.

Hence, λ1 · λ2 > 0

Proof. We need to show that χ′ (nss) |χ̇=0 < χ′ (nss) |ṅ=0. Define ∆ (n) = χ (n) |χ̇=0−
χ (n) |ṅ=0 = µHm (n)

(
n
1−n
)
−µH (r (n)− ρ). We know that m (n) = 0 for n ≥ nmax >

nss. Thus, at n = nmax we have:

∆ (nmax) = −µH (r (n)− ρ) = −µH
(
πH(n)

µH
− ρ
)
< 0

by Assumption 1. Next, recall that at nmin = H
H+L

we have y (n) = H + L, m (n) =
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H+L
ε

(
1
µH
− 1

µL

)
and r (n) = H+L

εµL
. Thus:

∆
(
nmin

)
= µH

H + L

ε

(
1

µH
− 1

µL

)
h− µH

(
H + L

εµL
− ρ
)
> 0

by Assumption 2. Moreover, we know that nss is unique. Thus, χ (nss) |χ̇=0 =

χ (nss) |ṅ=0 for a unique value of nss. Then, by the intermediate value theorem,

χ (n) |χ̇=0 > χ (n) |ṅ=0 for all n < nss and χ (n) |χ̇=0 < χ (n) |ṅ=0 for all n > nss.

Since we know that λ1·λ2 > 0, showing that λ1+λ2 > 0 establishes that the system

has two positive eigenvalues and is therefore unstable. The condition λ1 +λ2 > 0 can

be written as:

χ′ (n) |ṅ=0 = −Gn (χss, nss)

Gχ (χss, nss)
>
Fχ (χss, nss)

Gχ (χss, nss)
= −

(
n

1− n

)
1

µH
. (43)

A suffi cient condition for (43) to be satisfied is that the locus ṅ = 0 be upward sloping

in a neighborhood of the BGP. Let us first consider the case where ρ → 0. Using

y (n) = ε [nπH (n) + (1− n)πL (n)] and m (n) = πH(n)
µH
− πL(n)

µL
into χ (n)|ṅ=0:

χ (n) |ṅ=0 = y (n)−m (n)

(
n

1− nµH + nµL

)
= [πH (n)n] · A (n)

where A (n) ≡
[
µL
µH

+ πL(n)
πH(n)

(
1 + ε

n

)
+ 1

1−n

(
πL(n)
πH(n)

µH
µL
− 1
)]
. We know that the factor

πH (n)n is inverted U-shaped, with a maximum at n∗ > nmin (it corresponds to

the maximum g characterized in Section 2.7). Thus, for n ∈ [nmin, n
∗] a suffi cient

condition for χ′ (n)|ṅ=0 > 0 is ∂A(n)
∂n

> 0:

∂A (n)

∂n
=

∂

∂n

(
πL (n)

πH (n)

)(
1 +

ε

n

)
− πL (n)

πH (n)

ε

n2
+

1

(1− n)2

(
πL (n)

πH (n)

µH
µL
− 1

)
+
∂

∂n

(
πL (n)

πH (n)

)
1

1− n

For ρ → 0, in the BGP we have πL(n)
πH(n)

= µL
µH
n and ∂

∂n

(
πL(n)
πH(n)

)
= ε−1

ε
πL(n)
πH(n)

1
(1−n)n =

ε−1
ε(1−n)

µL
µH
. Thus:

∂A (n)

∂n
=

µL
(1− n)µH

[
ε− 1

ε
+ ε− 1

n
+

ε− 1

ε (1− n)
+
µH
µL

]
.

A suffi cient condition for χ′ (n) |ṅ=0 > 0 is then:

ε− 1

ε
+ ε− 1

n
+

ε− 1

ε (1− n)
+
µH
µL

> 0
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Finally, note that in the BGP πL(n)
πH(n)

= µL
µH
n → µH

µL
= πH(n)

πL(n)
n =

(
1−n
n
h
) ε−1

ε n. Thus,

the suffi cient condition become:

ε− 1

ε
+ ε− 1

n
+

ε− 1

ε (1− n)
+

(
1− n
n

h

) ε−1
ε

n > 0

Since this expression is increasing in n, we only need to verify that it is positive at

nmin. At nmin we have
(
1−n
n
h
) ε−1

ε = 1 and the condition becomes:

ε− 1

ε
+ ε− 1

n
+

ε− 1

ε (1− n)
+ n > 0. (44)

Substituting nmin = h/ (1 + h) yields (28) in the text.

Finally, for n > n∗, rewrite the necessary condition as:

χ′ (n) |ṅ=0
χ (n) |ṅ=0

=
π′H (n)

πH (n)
+

1

n
+
∂A

∂n

1

A
> −

(
n

1− n

)
1

µHχ (n) |ṅ=0

From equations (16) and (17):

π′H (n)

πH (n)
+

1

n
=

1

ε

[y (n)]
1−ε
ε

ε− 1

(
H

n

) ε−1
ε

− 1

ε

[y (n)]
1−ε
ε

ε− 1

(
L

1− n

) ε−1
ε

+
1

nε
.

Substituting [y (n)]
ε−1
ε = (1− n)

1
ε L

ε−1
ε + n

1
εH

ε−1
ε into this expression, we have

− 1

ε (ε− 1)

(1− n)−1

1 +
(

n
1−n
) 1
ε h

ε−1
ε

<
π′H (n)

πH (n)
+

1

n

This implies that ∂A(n)
∂n

1
A(n)

> 1
ε(ε−1)

1
1−n

1+( n
1−n)

1
ε h

ε−1
ε

is suffi cient for χ′ (n) |ṅ=0 > 0. Now

using the fact that in BGP πL(n)
πH(n)

= µL
µH
n, we obtain that A (n) = 1 − µH

µL
+ n + ε.

Thus, a suffi cient condition for χ′ (n) |ṅ=0 > 0 is:

ε−1
ε

+ ε− 1
n

+ ε−1
ε(1−n) + µH

µL

1− µH
µL

+ n+ ε
>

1

ε (ε− 1)

1

1 +
(

n
1−n
) 1
ε h

ε−1
ε

(45)

The LHS is increasing in n, the RHS is decreasing. Thus, if this condition is satisfied

at n∗, it will also be satisfied for higher values of n. Since n∗ ≥ 1/2 (see (32)), it can

be verified that condition (45) is always satisfied when (44) holds. In sum, (44) is suf-

ficient to prove that the dynamical system with both innovation and standardization
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is locally unstable in the limit where ρ → 0. By continuity, the same result applies

for ρ < ρ̄ for some ρ̄ > 0 suffi ciently small.
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