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1. Introduction

The idea that there is a systematic relationship between yield and

term to maturity on debt instruments is a persuasive one aria accounts for

one of the largest literatures in monetary economics, that of the term to

maturity structure of interest rates. On a purely descriptive level? the

scatter of points recording observed yield and term to maturity for

securities within a particular class at a given time strongly suggests the

existence of an underlying smooth function relating yield to maturity.

Such a function is called a yield curve.

The fitting of yield curves to yield/maturity data goes back at least

to the pioneering efforts of David Durand (1942) whose method of fitting

was to position a French curve on the scatter of points in such a way that

the resulting curve appeared subjectively reasonable. Yield •may be

transformed to present value and 3. Huston PicCulloch (1971, 1975) has

proposed approximating the present value function by a piecewise polynomial

spline fitted to price data. 6ary Shea (1982, 1984) has shown that the

resulting yield function tends to bend sharply towards the end of the

maturity range observed In the sample. This would seem to be a most

unlikely property of a true yield curve relationship and also suggests that

these models would not be useful for prediction outside the sample• maturity

range. Other researchers have fitted a variety of parametric models to

yield curves, including Cohen, Kramer, and Waugh (1966); Fisher (1966);

Echols and Elliott (1976); Dobson (1978); and Chambers, Carleton and

Waldman (1984). Some of these are based on polynomial regression; and all

include at least a linear term hich would force extrapolated very long—
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tore rates to to unbounood v laroc either positive or neoati : ta

their obities to fit closely within the rance 0+ the data. Vasicek and

Fono have ouooc-oteo eponariti ci spl rem am an etornoti ye

polynomial nplines. In a conicarison of the two spline thooiooes. Shea

1583 finds that exponential eplines are mubect to the same shortcominus

toot tolvroein.i spinen are.

That there is a need i-or readily Implemented tcchniaues for tlttlno

yield curves seen to us apparent from the popularity of vi eld curves am a

tool cf analysis in financial markets. Market letters from major brokerane

houses, ooverniient pub! icatlons-. and even the Ne York Times cater to

readers interest in seeing a representation cf the underlyina relationship

between vi ci d and maturity by publ i shino eraphe of vie! d curves. To our

knowiedqe these arc fitted by free hand methods. We feel that it ouoht to

be possible to develop a computer—based method for calculati na arid plotting

yield curves in real time which is both more satisfactory from a conceptual

viewpoint than are polynomial spi inca arid less dependent on the judgement

of an individual observer than is free hand sketching.

The objective of this paper is to present the prototype of a

parsimoneous modeling procedure which we believe meets these objectives.

e nave tested the procedure on U.S. Treasury bill yields taken from quote

sheets at four week intervals over a three year period. The algebraic form

of the niooel as moti vated by the soluti on -functi on for a second order

differential equation and ceneratem humped. monotonic and S—shared curves

using four parameters. We -find that the model fits the bill yield data

with a median standard deviation of just over seven basis points and

produces a mcdi an R—square of about .98. ll three basic yield curve



shapes are encountered in the sample. Study of the residuals reveals

specific maturity effects not previously identified. Extrapolation of

yields outside the maturity range of bills allows us to predict the price

of a long term bond. Comparison of the actual bond price with that

predicted by the basic model suggests refinements to the fitting procedure

and directions for further research.

2. Motivation for the Model

A U.S. Treasury bill is a promise to pay the amount of its face value

stated maturity date. Since there are no interim coupon payments on a

the market price Is necessarily less than its face value. The yield

the bill is defined to be that rate of return which produces the face

value from an investment equal to the market price in the time remaining

until maturity. Arbitrage assures that all bills with a given maturity

date sell at the same price, and therefore have the same yield, at any

instant in time. Bills of different maturities may of course sell at

prices which imply different yields to maturity at the same point in time.

The yields on any two bills of different maturities imply a forward yield

or rate for the time Interval between the maturities of the two bills. If

the laturities are, say, m1 days and m2 days (m2 > m1) then an investor can

secure the forward rate of return for an (m2—m1) day period to begin m1

days hence by selling bills of m1 days to maturity and replacing them with

bills of m2 days to maturity. The incentive to do this will vary directly

with the difference between the forward rate available in the market and

the investor1s assessment of the rates of return which are ljkely to be

available In the market on bills of (m2—m1) days to maturity m1 days from

on a

bill
on

S
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the orseent. Ihis suqoects that e>cectat1ons of tutors bali yields

influence the term to maturity structure of yields observed in the market.

it alec suonests that forward rates il I not exhibit increasino

tiuctuatione as one considers lonoer maturities because it seems

implausible that expected +uture interest rates would vary increasinolv as

crc I coke. further into the future.

considerations cf this sort lead us to posit that a satisfactory model

for the iel curve must imply forward rates that are smooth as a function

of horizon and that oscillations in the function, if any must damp down.

These will also be properties of the yield curve because yield to maturity

can be expressed as a sTioothinQ of the intervenino forward rates.

Specifically, consider the forward rate implied by bills of a days to

maturity and mi ÷ ) days where is arbitrarily small. This is an

instantaneous forward rate which we will denote by r(mi. The definition of

the forward rate implies that

= i/ff r(x)dx

wnere as the vied to maturity on a bill maturinaj in a days. Thus,

yield to maturity is just an averaae of the forward rates. Equivalently,

the forward rate rim) is given by

rni) = Rirn. + mP(m;

where R (in) is the slope of the yield curve at maturity m. This second

equation points out that any wrinkles in the yield curve, giving rise to

large values of the slope, have a maqnified effect on forward rates as we

consider laroer maturities. IF our hypothesis that the forward rate



function becomes smoother with increasing a is correct, then the relation

between R(m) and m must be even smoother.

Do actual yields on bills, plotted against maturity, display the

smoothness we expect to find? To form a preliminary impression, consider

the plot of U.S. Treasury bill yields displayed in Figure 1. These are

continuously compounded yields at an annual rate computed from closing

asked discount yields •on the New York Federal Reserve quote sheet for

January 22, 1981. The yields rise as a function of maturity untjl about

100 days maturity and then decline generally until about 300 days maturity

where they appear to level off. To be an acceptable candidate to fit this

data a function needs to have the capability of rising to a maximum and

then falling monotonically towards an asymptotic value.

Polynomials are clearly not acceptable by this criterion. Whilt they

readily form hump shapes, they do not settle down to an asymptotic value but

instead head off towards plus or minus infinity. Of course, by choosing a

polynomial of sufficiently high degree we can pet a very close fit to the

data In the senseof generating a curve which comes close to the data

points. .A polynomial of degree equal to the number of data points less one

can be constructed that coincides exactly with each data point. The

function Itself will fluctuate wildly between the data points and one would

have to be willing to believe that yields on bills ar'e coincidentally close

to one another only at the specific maturities which the Treasury happens

tobave issued. This essential difficulty with the behavior of polynomials

can be mitigating by the method of splines which uses low' degree

polynomlils •to fit different sections of the maturity spectrum, Joining

them together at points called knots. It is easy to imagine that the data

of Figure 1 could be fitted quite closely by one quadratic polynomial over
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the range zero to 130 days1 another over 130 to 180 days! and a third over

180 to 350 days. This would be in the spirit of McCulloch's work although

he fitted splines to prices rather than yields. Our view of polynomial

splines is that they are a patchwork approach to the problem which does not

overcome the fundamental shortcoming of polynomials; that their slope tends

to increase labsolutely) topiards longer maturities. From the relation of

yields to forward rates it is clear that the forward rate function will

diverge even more rapidly. Extensive analysis of spline results by Shea

(1982, 1984) shows that even when the fitted yield curve appears reasonable

within much of the maturity range of the data, the implied forward rates

display erratic bhavlor at the high end of the range. We would like to

develop a class of models which incorporate Intrinsically the smoothness

and asymptotic damping we expect of yield curves and the implied

forward rates. Such models could meaningfully address the question: what

is. the yield we may expect to see on a 360 day bill to be issued by the

Treasury, today given observed yield on bills presently trading which have

maturities only up to 330 days? In contrast, polynomial splines are poorly

equipped to predict out—of—sample.

A. class of models which does possess the properties we seek is that

formed by the solutions to ordinary differential or difference equations.

Since the latter will be more familiar to most readers, consider the second

order difference equation
. .

.
.

rim) = l rim—I) +
a2

rcm—2) + .

and the evaluation of rim) for m—l,2,3,... given initial values rçO) and

ri—i). The dynamic behavior of rim) will of course depend on the values of
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and througn the characteristic equation = 0, while

[c(0/1—U1—t(23 will be the asymptotic level of rim) as m gets large if the

equation is stable. If the roots are real and lie outlide the unit circle

the solution has the form

rim) =
80

+ l exp(—m111) + 2 exp(—m/12)

where 1 and 12 are positive constants determined by ct1 and a2. and
82

are constants determined by the initial conditions. The parameters 1 and

2 are time constants which determine the rate at which the terms expt—m/11

decay to zero. Thus, at maturity m=1 we have exp(—1) = 0.37, at maturity

m2T we have exp(—2) — 0.14, and so forth. As . gets large both

exponential terms become small so r(m) approaches as its asymptotic

level. Differing rates of decay implied by 1 and 2 allow rim) to take on

humped shapes as well as monotonic shapes.

Some theories of the term structure of interest rates imply forward

rate equations of this form. The classical expectations theory equates

forecasts of short rates, which might be represented by a stochastic

difference equation, to forward rates. Richard (1978) studied a model in

which the term structure depends on two state variables: the real rate and

the rate of inflation. Under certainty the forward rate function in

Richard's model has precisely the above form if the two state variables

each obey a first order differential equation. Under uncertainty the

forward rate is a more complex function of exponentials. While we do not

feel obliged to tie our model to any specific model of the term structure,
I

these considerations add to the presumption that this is a class of models

worth investigating.
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Implementation of this model presents some practical difficulties

because of the interchangeability of (81,t1) and iD2I2); if the numerical

values of those pairs of parameters are switched around we have the same

function, a potential source of computer confusion. A more readily

implemented model with similar shape characteristics has the form

(2.1) r(m) = + B1 exp(—m/1) + 821(m/I) * expl—m/'t)].

This function arises as the solution to the second order difference

equation in the case of equal roots, or alternatively may be derived as an

approximation to the solution in the unequal roots case by replacing one of

the two exponential terms by its Taylor's series expansion (Appendix A).

The parameters of this model are more easily estimated because the model is

linear in B, and 2 for any provisional value of 1..

Model (2.1) may also be viewed as a constant plus a Laguerre Eunction,

which suggests a method for generalization to higher—order models.

Laguerre Functions consist of a polynomial, times an exponential decay term

and are a mathematical class of approximating functions; details may be

found (for example) in Courant and Hilbert (1953, pp..

While higher order models could generate more complex shapes, it is

not hard to show that even the second order model given above has

considerable shape flexibility and is therefore parsimoneous. Note that

r(0)is (B0+Bi) and the limiting value of r(m) as m gets large is simply B0

Setting these. arbitrarily at zero and one respectively for the purpose, of

studying shape and noting again that 1' is only a time scale parameter md

may be set at one for the same purpose, we are left with a function of one

parameter only

a



rim) = 1 — t1—am expi—mi.

Allowing this single shape parameter to vary from -6 to 12 in equal

increments produces the range of shapes seen in Figure 2. Tnese incluae

humps, S—shaped, and monotonic curves. Shapes produced by vertically

inverting these curves are also possible under this model, easily allowing

decreasing curves.

To obtain yield as a function of maturity for the second order model

one integrates r(*) in (2.1) from zero to m and divides by m. The

resulting function is

(2.2) Rim) = 8o + + * £1—exp(—m/1)]/(m/1) — 2 exp (—mit)

which is also linear in coefficients, given i. The limiting value of R(m)

as m gets large is B and as m gets small is (So+Bj) which are necessarily

the same as for the forward rate function since Rim) is just an averaging

of r(*). The range of shapes available for Rim) depends again on a single

parameter since for 1 1, B = 1, and (8 + B1)
= 0 we have

Rim) — 1 — (1—a) * [1—exp(—m)]im — a * exp(—mi.

Allowing a to take on valuès'from —6 to 12 in equal increments generates

the shapes displayed In Figure 3 which include humps, 9—ihapes, and

monotonic curves. On the basis of the range of shapes available to us in

the second order model our operating hypothesis is that we will be able to

capture the underlying relationship between yield and term to maturity

without resorting to more complex models involving more parameters. Wood

(1983) presents yield curves fitted by traditional methods annually from
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jQ: throuon 19E and all of thee +il within the ranoc of oonorc shapes

whi cn can be cenerated Lv our model

hnothor way to see the shape +leibi1tv of the second order model i a

to rearranee its elements into long tore and short term components as

+ o 1 1 owS

= i{l—enp—mT)l e/Tt — e:p—a/t) + * e;:D—m!.).

The expressi 01 in braces may be interpreted as trio lone tore component of

the yield function because it elves the onlv rearreneenient ci- terms which

starts out at zero and also decays at a rate much slower than exponential,

namely i,e. The second term is the short tore component since it starts at

a value of unity and has the fastest possible texponenti al decay to zero.

Thisdocoinposition is illustrated in Figure 4. It is easy to see how with

appropriate choice of weights for those components we can generate curves

with humps in thee and ones which are monotonic '.but not necessarily a

simple exponential function.;

3. Empirical Yield Curves for
U.S. Treasury Bills

The objective of our empirical work is to assess the adequacy of the

second order model for describing the relationship between yield and term

to maturity for U.S. Treasury bills. The data come from Federal Reserve

bank cf New 'lork oucte sheets sampled on every fourth Thursday (exceptinc

boll davsi from Januar 22, 1981 through October 27. 1983, thi rtv—severi in

all. The quote shoots give the bid and asked discount and bond equivalent

yield for the bills in each maturity date outstanding as of the close of

tradnc on the date of the quote sheet. Number of days to maturity is



calculated from the dei very dateS which is tne +ci I owina londav for a

Thursday transaction, until the maturity date. Typically there are thirt—

two maturities traded, which on these Thursdays wc.rl:. cut to terms of tro.rn 3

days to 178 days ui increments of sever days, 199 days.. and then u ncrecnents

of 28 days to 339 days. On three dates there was a! so a one year bill

traded. The bid and asked discounts ha,e been calciatmd as u+ there wers

a 360 day year ard are on a simple a ntarest basu s. The bond EqLki val ant

yield is intended to present the bill yield on a basis comparable to that

of a bond which pays a half—yearly coupon. The exact formula +or doing

this is not, to our knowledue, available publically. Bill prices
themselves are not displayed but are readily calculated from the discount

yields. We have converted the asked di scount to the corresponding pra ce

(that paid by an investor) and then calcui ated the continuously compounded

rate of return from delivery date to maturity date annualized to a 365.25

day year. These yields are the data we fit to the yield curve model.

Observations on the tirst two maturities, anu lu oavs, are oeitteo

because the yields are consistently higher, presumably due to relatively

large transaction costs over a short term to maturity. Thus leaves thirty

yield/maturity pairs observed on each of thirty—four market dates and

thirty—one on three dates.

For purposes c-f fitting yield curves we have paranieterlzed tne model

(2.2) in the form

(3.1) RCa) a b [l—expl—m/T)3 / (m/T. c *exp—m/T.

For any provisional value of 1 we may readily calculate sample values of

the two regressors. The best fitting values of the coefficients a, b, and

ii



c are than comouted usnq I inear least squares. Repeat no this procedure

over a ranoe of values for T reveals the overall best—fttinq values of T

a, b, and c. Recall that T is a ties constant which deteranes the rate at

which the reoressor variables decay to zero. Plots of the data sets reveals

that the yield/maturit relationship becomes quite flat in the range 200 to

00 days n F cure 13 , suqaesti na that best—fz tt nq values of would

he in the ranos 50 to 100. We consequently search over a grid from. 10 to

200 in increments of 10, and also 250, 300, and 35.

Small values of T correspond to rapid decay in the regressors and

therefore will be able to fit curvature at law maturities well, while being

unable to fit excessive curvature over longer maturity ranges.

Correspondingly, large values of t produce slow decay in the regressors

which can fit curvature over longer maturity ranges but will be unable to

+OiiOJ extreme curvature at short maturities. This trade—off is

illustrated in Figure 5 which shows the yields observed an February 19,

1981. The yields rise quite sharply at low maturities, from 13.80 percent

at 17 days to 14.94 percent at 59 days maturity. This portion of the data

is fitted such better by a model with = 20 than one with ¶ 100 as shown

by the two continuous curves plotted in Figure 5. On the other hand, the

smaller value produces a poor fit over the maturity range above 200 days

relative to that provided by the larger value. The best overall fit for

this data set is glven by T = 40 (not plotted).

It is also oui te clear from Fi oure 5 that no set of values of the

parameters would fit the data perfectly, nor is it our objective to find a

model which wou1d do so. A more highly parameterized model which could

follow all the wiggles in the data is less likely to predict well, in our



view, than a more parsimoneous model which assumes more smoothness in the

underlying relationship than one observes in the data. There are a number

of reasons why we would not expect the data to coniorm to the sct

underlying relationship between yield and maturity even if we knew what it

was. For example, there is not continuous trading in all bills, so

published quotes will reflect transactions whicn occurred at different

points in time during the trading day. Bills of specific maturities may

sell at a discount or premium. We hope that by studying departures of the

data from the fitted model we can identify !ntgn&Ls as well as

Idosyncratic features of the data which the model is failing to cApture.

The basic results for the second order model fitted to each of the 37

data sets are presented in Table 1. The first column gives the data set

number, the second column the best fitting value of 1, the third column the

standard deviation of residuals in basis points (hundreths of a percent),

and the fourth column the value of R—squared. Median values of these

statistics over the 37 samples are given at the end of the table. Ihe

first point worth noting is that the model accounts for a very large

fraction of the variation in bill yields; median R—squared is .959. The

median standard deviation of residuals is 7.25 basis points, or .0725

percentage points, or a .000725 in yield. Standard deviations range from

about 2 basis points to about 20. Best fitting values of ¶ have a median

of 50. They occurred at the lower boundary of the search range 1T10) in

two cases and at the upper boundary (1=365) in three cases. The first data

set, •which was seen in Figure 1, is displayed In Figure 6 along with the

fitted yield curve. It is clear from the pattern of deviations from the

curve that residuals are not random but rather seem to exhibit some
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dependence al orb tMe matur i tv an it ie therefore reFrain + roe m:k in:

statements about the ttistica1 sqn+cance of coe++icent estiectes

based on conventional stndsrd arror:. He wl1 3150 be interested to see

if such patterns are systematic across samples.

A si1l value o+ T will be indicated in cases where the yields change

sharclv lr; aaturl ties and tren I evel off qu1clv as in the case of data

set No. 5: for uoust 6. i581 plotted in Fqure 7 al onu with the fitted

yield curve for 1 10. Slow curvature which decays slowly will be fit

best by a 1 ares val LIe of T as in the case of set No. 22 for September 2,

1982 plotted in Fioure 8 with the fitted yield curve for c = 3Z. What is

not readily apparent in Figure 8 is that the plotted portion of the curve

represents only the rising portion of a very long hump see Fioure 9) which

ultimately decays to an asymptotic yield of —.025. Clearly the best fit to

the S35i e does not guarantee sensi ble extrapolation. Al thouch the best

fitting values of vary considerably, as these examples indicate! rather

little precision of fit is lost + we impose the median value of 50 for t

for all data sets. The resulting standard errors appear in the fifth

column of Table 1 and have a median value of 7.82 basis Diflt5q or only .57

basis points higher than when each data set was allowed to choose its own

For a few data sets this cor!straint makes a noticeable difference, as

in the case of data set No. B, for example, a small ¶ seems preferable.

However in the cases where 1 was 3b5 the constraint costs little in terms

of precision. The overall results. suggest that little may be gained in

practice by fitting T to each data set individually.

The lowest value of R—squared recorded was 49.7 for set No. 7 while

the highest was 99.5 +or set No. 24. The characteristics of the two data



TABLE 1

Second Order Model First Term Only

NOTES: (1) best fit realized at boundary of range of search.
Standard deviations are in basis points.

Std. Dcv.Set
No.

4

S
L

a

it)
11
12

13
14

15

16
17
is

19
21)

—

24
_iC

27
28

29
30

31

32

34

35
36

37

Pledi an

Std. 3ev.
at best

1. 0
13.

11 . 2
5.

12

15.61
10. 43
19.85
18.33
4.88
12.28— 11./a
11 . 08
1 0 . 5 1

L )GU.
5.11
1 C•I .
4.12
= 79

20.04
15. 08
10.01
2.91
7.25
5.18
3.71
5.38
L 1)
1 . 95
3.74
4.89
3.16
7.24

15.34
5.53
3.01

7.25

50
40

40

40
80
1 0 (1

SO

300
50

60
1. Ci (1)

11 0

20
170

20
20
365 (1)

40
30

11 (I

100
300
50
110
70

365(1)
S.

40
120
Q ti

365 (1)

180

50

Std. Dcv.
at best •1

4e. 71
. 42

1.
( C

1 8. 1 0

95
12. Is
/ .5/

ii . 22
1 5. 20

I
5.74
11 . i o
4. 05
c. QR

15.41
14.78
6.17
.7 -;a
5. 09

3.65
C.j. S.

4.59
L.

3.
4.33

7.11
15. 07
5.43
2.97

52. 4

88. 9

37. 8
93. 3
49. 7
1. /
88.8

2

88.8
93.8
99.4
98.0
95.7
97.3
98.3
8s.4
98.8
98.8
96.7
98.3
99.1
99.6
97.4
93.9
97.3
95.5
85.6
98. 0

'ii .6
9s.1
99.1

96.1
86.3
95.9
'1 i'.

95.9

10. 09

13.67
12. 45.
0.

14. 52

15. 90
22. 42
20.34
18.33
O. Ii

12.43
/. /5

11.32
10.75
7.30
5.71

1 0. 1 2

4.46

25.17
15.94
11.45
5.13
7.45
5.33
4.03
5.38
6.90
2. 1 0

4.02
5.80

7.82
15.51
4.17

7.82



sets which I cad to tri s rosul ts are en dent in Fioures I) and 11

respectve!y. Data set No. 7 in Figure 10 appears to be two data sets at

different levels which a smooth curve will have 1ttle ability to account

for. This apparent discontinuity is rare in our sample and cnav reflect

lack of late trading in the lonq sector of the market that day or perhaps

clerical error. 10 contrast data set Nc. 24 in Ficure 11 prssants a 'icr',

smooth. S—shaped pattern which is very precisely tracked by the model

ieavna residuals with a stanoard devataon of only about 3 basis points.

The ability of the second order model to ocnerate hump shapes was one

of its attractive attributes conceptuaily but the question remains whether

this flexibility is important empirically. n alternative more simple

model would be a simple exponential function for forward rates obtained by

setting 8, equal to zero in equation (2.1). The corresponding yield

function then has only the first term in which maturity appears in the

denominator but not the second term as can be seen by setting ,, = 0 in

equation (2.2). Only eonctonic ye1d curves can be generated bY this

restricted model. The final column of Table 1 shows the standard

deviations of residuals resulting from imposing this constraint (but now

allowing t to take its best fitting value). The median over the 37 data

sets is 9.00 basis points compared with the 7.25 reported for the

unconstrained model. In some cases the standard deviation rises sharply.

For example, i.t is no surprise that a monotonic curve does not fit the

first data set well: the standard deviation rises from 16.09 to 46.71 basis

points. In some cases the standard deviation is reduced slightly because

the constrained model fits about as well and uses one less parameter. The

ability to fit humps seems to have been quite important until the twenty—

fourth data set (from January 1981 until October 1982) after which point



the shape of the yield curve seems to have become simpler and monotonic.

Thus there appears to be a persistence of shape over time. Note that this

change in shape also seems to be associated with less dispersion in

residuals. Did the Federal Reserve start to stabilize interest rates again

in late 1982? A casual inspection of the behavior of the federal funds

rate over this period certainly suggests that it did.

4. Analysis of Residuals: Maturity and Issue Effects

Plots of fitted yield curves against the data have suggested some

dependence of residuals along the maturity axis. We would like to try to

determine whether this is due to a systematic influence of maturity on

yield which our model is unable to capture. If such an effect persists

through time then we should be able to detect it in the average of the

thirty—seven residuals corresponding to a specific maturity. Figure 12 is

a vertical stack of residual plots for the thirty—seven data sets with the

averaged residual at the bottom. The individual residual plots are

separated by intervals of 200 basis points and the scale for the averaged

residuals is lagnified by ten. The last data set appears at the top of the

stack. Note that the first averaged residual, corresponding to 17 days

maturity, is positive, the second negative, followed by a rising pattern to

Just under ninety days, a sharp drop, then a rising pattern again to just

under 180 days and another sharp drop. This is seen more clearly in Figure

13 where the magnified scale shows that these maturity effects are in the

range —5 to +5 basis points which is large relative to a rough standard

deviation of 1.2 basis points. We surmise that the positive yield effect

at 17 days is due.to higher tranmaction costs per unit time for shorter

17



term bills. Ihe fitted curve is pulled upward by this data point, leaving

the next point below the curve. We also surmise that the peak at 87 aays

maturity and sharp drop following is due to the fact that 90 days is the

maturity of a substantial portion of the bills issued by the Treasury and

will therefore bulk large in the inventory on dealers shelves. Similarly,

the Treasury tssues 180 day bills and 360 day bills and indeed we observe

the averaged residual rising to a peak at each of these maturities. To our

knowledge, these supply effects have not been previously documented nor

would they be apparent if our models did not impose quite a bit of

smoothness on the yield curve. A purchaser of bills may or may not find

these maturity premiums sufficiently attractive to influence maturity

choice, but at least they are now visible.

Issue effects are distinguished from maturity effects in •that they

pertain to the bills which mature on a particular date rather than to bills

with a pirticular term to maturity. The issue of bills maturing on

December 31, 1981 were 339—day bills on our first quote sheet (January 22,

1981); became 311—day bills on our second quote sheet (February 19, 1981)

28 days later, and lo on through the months until they appear as 29—day

bills on the November 27, 1981 quote sheet. This gives us twelve residuals

for this particular issue of bills. Other issues will appear initially

with only 178—days to maturity which gives us six residuals until the issue

matures and disappears. The plots of residuals are lined up in Figure 14

so that each issue may be followed through time. Averages are plotted at

the bottom with the scale enlarged by a factor of three; these averages are

shown on a larger scale In Figure 13. There is some evidence in these

plots that issue effects exist since large residuals for a particular issue

18



show some tendency to persist t(OiT one quota steet to tre ret. For

example, the issues due January 7, 1982 and January 14, 1982 exhibited

large negative residuals in the ninth data sat September 3, 1551) anu dad

again a month later in the tenth data set (October 1. 1981i, however rio

abnormal deviation was evident thereafter. Simalarly, the issue due

September 30 1982 was associated wath -a I aroc nes-at -ie resdul ir the

twenty—first date set 4UgL5t 5, 1982) and aga:n in the twenti—secono

after which it case to maturity. Evidence 1-or issue ef+etts is less
compelling than that for maturity effects but would sees to warrant further

investigation.

5. Prediction Out—of-Sample:
Pricing a Long Term Bond

One of our criteria -for a satisfactory yield curve model is that it be

able to predict yields beyond the maturity range of the sample used to fit

it. An unreasonably exacting test would be to ask it to predict the yaeld

or price of a long term government bond, but this is what we have tried to

do. The particular bond chosen is the 12—3/4 percent coupon U.S. Treasury

bond maturing in 2010 (callable in 2O0) since this was the longest bond

appearing on all our quote sheets. A bond can of course be viewed as a

bundle of bills with maturities spaced at six month intervals until the

maturity date of the bond. Each component bill pays an amount equal to

the semi —annual coupon except the last which also pays the face value of

the bond. Values read off a yield curve can be used to discount each

component bill in the stream and the resulting total value can be compared

with the quoted price of the bond, adjusting first for accrueo interest

from the last coupon date which the buyer must pay to the seller.



ihe predlcte: hand price WI IL Ot course depen: primer a iv an the

portion of the yield curve which lies beyond the renQe of the sample bill

data uecause at most aniy the first two semi—annual coupon payments car be

due within the one year maturity limit of U.S. Treasury bills. For cur

vimid curve model with values of around 50 the f itted curve flattens out

coneadere.bi v for eaturi t es beyond a veer. The first exponential term in

the model cams from unit'- at zero maturl ty so . 1349 at 3 days maturity

and the secono term goes from unity to .0007 in the same interval. The

pricinG of the bond is therefore determined largely by the asymptotic level

cf the curve given by the intercept in the model .. Equival ently the

value of the intercept must be close to the yield to maturity on the bond

if the model is to price the bond accurately. Figure 16 is a plot of the

actual price of the bond chronologically for the thirty—seven dates in our

sample (light ijflE) and the corresponding predicted prices (dark line)

produced by the model when we allow T to take its best fi tting value. Two

predictions are drastically awry, the twelfth (138.063 aoainst an actual

price of ¶100. 34) and the twenty—second (404. 58 aqai nst an actual price of

¶103.59). These were both models which had large values of 1 (see Table

2>. In both cases the bill yield data was fitted as the rising portion of

a long hump with eventual decay to a much lower level which was .079 for

the twel fth model and, as the reader may recall neqative .025 for the

twenty—second. The resulting discount rates arm therefore too low and the

predicted bond price correspondingly too high. Constraining T to a value

of 50 in both cases costs little in standard deviation of fit (see Table 1)

but improves the predictions of bond prices dramatically, to ¶105.77 and

¶102.52 respecti vely. The improvement is cvi dent in Figure 17 where the



predjctmb bond prices h-ve E!E2fl oc-neratad t-rom modols +itteti uncer the

constraint that I is 50 the median value of I across the saOpiEs).

The rd ati on between tual and predcted bond price also is depi cted

as a scatter clot in FiQure 18. It is obvious tnat tne corral ati on bEtween

actual and predicted price is hi0ri, numerically t is .9a?. but also that

the rredi:tons OVCrE-n-OOt the actual a. Tho racnitude o ovrSh50t1fl is

much laroar than could be accounted for by +avc'rablm tax treat rn2nt for the

bond when it s sei1in at a aiscount from -facs value. Tnas suecests trat

our fitted curves may flatten out too rapidly. When yields oenerall/ were

high and the yield curve downward sicipi ne the models overesti mated 1oner

term discount rates and therefore underestimated the price of the bond, and

the reverse was true when yields were relatively low and the yield curve

was upward slopinu. Correcting the price predictions for these systematic

biases by simple linear reqression, we obtain a standard deviation -for the

adjusted bond price prediction of only S2.63. Evidently4 the value of I is

best chosen by +ittin across data sets rather than by select1n the value

for each individual data set.

What correspondence is there between the ability of a model to fit the

bill yield data well and its accuracy in estrapolating beyond the sample to

predict the yield on a bond? The short answer is none necessarily. A

function may have the flexibility to -fit data river a specific interval but

have very poor properties wher: extrapolated cutsibe that interval. bic

polynomial has the same number cf parameters as does our model and i rdeed

fits the bill yield data sliqhtl better. The median standard deviation of

residuals is only 7.1 basis points over the thirty—seven data sets.

However we know that a cubic poinomi el in maturity wall head off to either



plus 1fliflht.V L flIflUE. in+)nltv as satUrlty incraasas. the sign beperdInu

on the sion o the cubic tore. It is clEar then that 1+ we use a cubic

pci vnocr al ,' ci U cvr to pr 1CC oUt a bond i t will assi on Ci thor ver areas

present value or very little present value to distantly + uture payments.

For our data set the result IS prodctad bond prices which bunch n the

intervals i7 to ' and 364 to The correlation between actual and

oredicteb bond once 15 —.c2), so the polynomial model has no predlctlve

value aitriouch it sne sample oata very well.

h. Summary and Conclusions

The solution functIon of a second order differential equation provides

the basis for a parsimoneous model capable of representing the range of

shapes previ ously associated with the yield/term to maturity rel ationshi p

or yield curve. It has a number of properties which are appealing a

priori: smoothness; ability to assume monctonic, humped end S—shapes; and

asymptotic damping. The mode! is able to account for about 96 percent of

the variation in U.S. Treasury bills across maturities during the 1981—53

sample period with a standard deviation of residual errors of 7.25 basis

points. inalysis of residuals reveals maturity effects which seem to be

related to the specific eaturties issued by the Treasury. E>:trapolation

of the fitted curves to price a long term Treasury bond suggests that the

basic tmo constant in tne sodel exhbts consistency over time and is best

chosen on the basis of average experience across data sets rather than

individually for each yield curve. Given an appropriate value for the time

constant the three remaining parameters are fitted by simple least squares,

making the procedure operational in real time. polynomial fits the bill

yield data as wail but predicts poorly out—of—sample.



APPENDIX A: THE PROPOSED MODEL AS AN APPROXIMATION
IN THE UNEOIJAL ROOTS CASE

The proposed Model (2.1) is

(A.1) rcn) . ÷ exp(—m/T) + [(n1/i) exp—m)].

Our purpose is to show that this solution in the case of t->o equal roots. of

the characteristic equation is in tact an appro1eat1On to the unequal root

solution when those roots are not very different.

Suppose the two roots give rise to decay rates and t and hence to

the model

r(m) = + exp(m/T1) + I exp(—m/T2.

If we write 1112 = I/T + (liT2 — 1Ir1) and expand part of the second

exponential term to first order in this difference, we find

r(m) = I. + y. exp(—m/T1) + y2Lexp—m/'T1)](1—m(t1—T2)/T111)

= +
1

+ #2' exp(—mit1)

— Y[(11—'t2)1T2]lT2)[(ffii11) *

which we recognize as being in the form of our proposed sodel (A.1; with a

suitable reparametrization.



REFERENCES

Chamberc Donald R.i Carleton Willard T. and Waldirian, Donald H. A New

Approach to trim Estimation !f the Term Structure of Interest Rates,

L Fnnci orid Luntit-'j knILEiE I beptcsber 198—

pp.

Cohen, Kalman J. Kramer, obert L. ; and Jauoh , H. Howard. 'Regressi on

'Yield Uurves for U.b. bovernment becuritles, Maageme Science iIII

iLecmmber 19 B—ia8 to 8—175.

LourEcnt , P. ai-o Hilbert L. )lmtrioos of Mathematical Privaics-, Volume 1

i1953 Wllmy: New york.

Dobson , Steven H. 'Esti mati rig Term Structure Equations with Individual
Bond Data,' Journ of Finance ;XXIII March, 1978), 75—92.

Durand, David. ts gPEtS AQ:l Nati onal Bureau
of Economic Research, Technical Paper 3, 1942.

Echols, Michael E. and Elliott, Jan Walter. 'A Quantitative Yield Curve
Model for Estimating the Term Structure of Interest Rates,' Journai of
Financial arid Quantitatiy8 Anal tam XI (March, 1976), 87—114.

Fisher, Douglas. 'Expectations., the Term Structure of Interest Rates, and

Recent British Experience,' Econoe XXXIII (August, 1966), 319—329.

McCulloch, J. Huston. 'Measuring the Term Structure of Interest Rates,

JO of busanes XLIV (January, 1971), 19—31.

The Tax—Adjusted Yield CurveS' Journal of Finance XXX (June,
1975), 811—829.

Richard, Scott F. An Arbitrage Model of the Term Structure of Interest
Rates,' Journal of Financial Economiç VI (1978), pp. 33—57.

Shea, Sary S. 'The Japanese Term Structure of Interest Rates,' unpublished
Ph.D dissertaticn Unaversity of Washington, 1982.

Interest Rate Term Structure Estimation with Exponential Spi inesA1e'

3q C. cA.,SS)) 3
'Pitfalls in Smoothino Interest Rate Term Structure Data: Equilibrium
ilodele ard p11ne porocriations, Joirndl of Financiai and
Cuantitative Hnalsis XIX Septembmr 1964), Qf3— 2

Wood, John H. 'Do Yield Curves Normally Slope Up? The Term Structure 0+
Interest Rates, 1842—1982,' Economic Pers2ectiv Federal

oh of Chicago (July/August 1983), 17—23.



0
.
1
8
 

0
.
1
7
 

X
X
 

r__ 
1• 

X
 

X
 

U
.LU

 
X

 

x 
X

 
G

J 
X

X
 

X
X

X
X

X
X

xx 

0.15 
X
 

X
 

x 
X

 

0.14 

0
.
 
1
3
 0
 

1
0
0
 

2
0
0
 

3
0
0
 

4
0
0
 

D
a
y
s
 
t
o
 
m
a
t
u
r
i
t
y
 

D
u
o
t
h
s
 
1
/
2
2
/
8
1
.
 



R
 4 r 

a
)
 

>
 

L 3 0 a) 
-D

 
0 

1 
—
 

(1—
a*m

)*E
X

P
(m

) 

/ 

0
 

5
 

T
i
m
e
 
t
o
 
m
a
t
u
r
i
t
y
 

1
0
 



0 
'-I 

>.. E 
•1-1 
L 
4) >< 

LU 
1flE * 0 
0 

E 
E 

'—I 

E 

0 >< 
LU 

0 _ LJ 
AJflO apo * 

0 
'—4 

S. 

-J 

- 



D 
'-I 

Ui 

0 

> 4) 
r-I 
L 
4) 
a 
E 

0 

aJ 
E 
F— 

F 

0 >< 
LU 

E 

ii E 

0 >< 
LU 

Li 

I.. 

E 

0 >< 
LU 

SAJflZJ IP0V4 

0 



'
0
.
1
4
 

U
u
o
t
s
 
2
/
1
9
/
8
1
,
 
t
a
u
 

2
0
 
a
n
d
 
1
0
0
.
 

-I, 

0
.
1
6
 

0
.
1
5
 

xxxx xx 

x 

0
.
1
3
 

0
.
 
1
2
 

I 
I 

0
 

I 
I 

1
0
0
 

D
a
y
s
 

—
F

 
200 

3
0
0
 

t
o
 
m
a
t
u
r
i
t
y
 

4
0
0
 



0.18 

0.17 

D
a
y
s
 

2
0
0
 

3
0
0
 

t
o
 
m
a
t
u
r
i
t
y
 

I - 400 

D
uoths 

1
/
2
2
/
8
1
,
 
t
h
u
 
=
 

50. 

X
X

 
X

 

-tJ 
.1 cii 
•
1
-
1
 

>
- 0

.
1
6
 

0
.
 
1
5
 

0
.
 14 

0. 
1
3
 

X
 

0 
100 



-D
 

0.16 

Q
uotes 

8
/
6
/
8
1
,
 

tau 
=
 

10. 

0.18 

0.17 

x 
x 

0.15 

0. 14 0 
100 

D
ay 

I 
+

 

200 
300 

s 
t
o
 
m
a
t
u
r
i
t
y
 

I 
I 

400 



0
.
1
2
 

0
.
1
1
 

0
.
1
0
 

0
.
0
9
 

0
.
0
8
 

0
.
0
7
 

0
.
0
6
 

0
.
0
5
 
0
 

D
a
y
s
 
t
o
 
m
a
t
u
r
i
t
y
 

D
u
o
t
2
s
 
9
/
2
/
8
2
,
 
t
h
u
 
=
 

365. 

-D
 

a.' 

>
-
 

x 
X

X
 

1
0
0
 

2
0
0
 

3
0
0
 

4
0
0
 



T
h 

1- 

1 

1 
.1 

I 

5
0
0
 

D
a
y
s
 
t
o
 
m
a
t
u
r
i
t
y
 

0
u
o
t
s
 
9
/
2
/
8
2
,
 
t
a
u
 
=
 

365. 

-D
 

a) 
r
1
 

>
- 0

.
1
2
 

0
.
1
1
 

0
.
1
0
 

0
.
0
9
 

0
.
0
8
 

0
.
0
7
 

0
.
0
6
 

0
.
0
5
 0
 

I 
I 

I 

iobo 



0.17 

0.16 
x 

X
X

X
 

X
x 

xxxxx 

-D
 

0.15 
>

- 0.14 

0. 13 0 
100 

200 
300 

400 

D
ays to m

aturity 

O
uot2s 7/9/81, 

tau 
=

 
80. 



-D
 

>
—

 0.10 

0.09 

0.08 

0.07 

0.06 
-F

 

0 

Q
uot2s 

1
0
/
2
8
/
8
2
,
 

+
 

100 

D
ays 

2
0
0
 

bb 
400 

t
o
 
m
a
t
u
r
i
t
y
 

t
a
u
 

3
0
.
 



N
.N

N
N

N
N

N
N

N
N

N
N

N
N

A
N

N
N

N
N

N
N

N
 

N
 

I. 
N

 
N

 

*X
N

N
M

N
*N

N
N

N
N

N
1*N

N
*N

N
N

 
N

 
N

 
4 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
M

N
N

 
N

 
N

 
N

 
N

 
N

 

N
 

N
 

N
 

A
*N

M
N

N
N

N
N

M
N

N
N

N
R

N
N

U
N

N
N

N
N

N
 

4 
N

 
N

 
N

 
N

 

N
N

N
M

*N
N

IS*N
N

N
N

N
N

N
N

N
N

M
N

N
N

N
 

N
 

N
 

N
 

N
 

N
 

IS 
N

 
N

 
N

 
N

 

N
 

N
 

N
 

N
 

N
N

N
N

M
N

N
N

N
N

N
N

N
N

..N
N

N
N

N
N

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
N

N
N

N
*N

N
N

N
N

M
*N

N
N

N
N

N
N

N
N

N
 

N
 

N
 

N
 

N
 

N
 

U
N

N
N

N
N

N
N

N
M

N
N

N
M

N
N

N
N

N
N

N
N

N
N

 
N

 
N

 
N

 
N

N
N

N
N

N
N

N
N

N
*N

N
N

N
N

N
N

M
N

N
N

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

*N
.N

N
N

N
N

N
N

N
N

N
N

.N
N

*N
N

N
N

N
 

* 
N

 
N

 
N

 

*N
N

N
N

N
N

N
N

N
$N

N
N

N
N

N
N

N
N

N
N

N
N

 
N

 
N

 
N

 
N

 
N

 
N

 
N

 
N

 
N

 
N

 

*$N
N

W
N

N
***N

X
*N

M
N

N
N

SN
- 

N
 

N
 

N
 

N
 

N
 

N
N

N
..JN

N
X

N
A

N
N

N
N

N
N

*N
***N

N
N

 
N

 
N

 
N

 
N

 
N

 
N

 
X

N
N

N
U

N
N

N
N

N
N

N
N

N
N

U
N

M
N

N
M

N
N

N
 

N
 

N
 

N
 

*N
N

,..*N
N

N
N

N
N

N
N

N
N

N
*N

N
** 

N
 

N
 

N
 

N
 

N
*N

N
N

N
N

*N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

 
N

 
N

 
N

 
N

 
N

 
—

N
*--flN

-N
-$-*-N

-N
-*-N

*-*-N
-N

-N
N

N
N

N
N

 
N

 
N

 
N

 
N

 
N

 

..A
N

*N
**N

N
*I.N

*N
N

N
N

N
N

N
N

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

N
 

4A
N

N
.N

N
N

N
N

N
N

_N
N

N
*N

N
N

K
 

N
 

N
 

N
 

N
 

-—
--4I-,IS-N

N
-N

-N
IS-It-X

-N
-N

-4S*-IIN
1IN

N
N

 
N

 
N

 
N

 
N

 
N

 

N
 

N
 

N
*N

N
N

N
N

N
N

N
N

N
hM

N
N

N
N

N
N

 
N

 
N

 
N

 
N

 

N
 

*N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

 
N

 
N

 
N

 

X
N

N
N

A
*N

N
N

N
*N

3SN
N

N
R

N
N

N
*N

 
N

 
N

 
N

 
N

 
N

 

M
 

N
 

N
 

N
 

N
 

X
N

X
V

N
N

.V
*N

N
N

N
N

N
N

N
N

N
*N

N
N

X
 

$. 
N

 
N

 

N
 

N
 

N
 

N
 

N
 

N
A

.N
*N

N
N

N
N

N
N

*N
N

N
N

N
N

N
K

*X
N

N
 

N
*N

N
X

N
N

*N
N

A
*N

3IN
N

N
*N

*N
N

 
N

 
N

 
A

 
N

 
N

 
N

N
N

A
N

N
N

N
N

N
***N

N
N

N
A

A
A

A
A

N
 

N
 

N
 

N
 

N
 

N
,.N

N
N

N
N

N
N

N
N

N
N

*N
N

N
N

N
N

N
N

N
N

 
N

 
N

 
N

 
N

 

N
N

N
IIN

N
N

N
N

**N
N

N
N

N
N

*N
*N

N
*N

 
A

 
A

 
N

 
N

 

N
X

N
N

.N
A

N
N

*N
N

A
A

N
A

N
N

N
N

*N
N

 
N

 
N

 
N

 
N

—
 

N
 

M
A

N
A

A
3.N

*N
N

N
N

N
A

N
N

N
 

N
 

N
 

N
 

N
 

N
 

M
 

* 
N

 
X

X
 

X
* 

*W
 

—
V

-N
- 

X
 

• 
* 

11111t14 
I 

5 
5 

I i I I 
I 

I 
I 

i 
• i 

• 
. 

. 
. 

. hit I 
I 

100 
200 

300 
400 

D
ays 

t
o
 
m
a
t
u
r
i
t
y
 

R
G
s
i
d
u
a
l
s
 
a
n
d
 a
v
r
a
g
 
r
2
S
l
d
U
Q
l
N
 

iT
 

\I ) 

0
 



PP
0
DI.
c-fl

P 0
U

00I'0

P
AvGragG rsidua1 yi1d

___IIIlltIItt till_-ti], lilt II It III

000
Ui

P
0D00

P
00D
U'

00I.0
S S S S S S I I I S S I • S S I 1 I I I I I I I I I I I I I

00
c-fl

cj
0

(I)

(1
0
3
0
C
-3
I-I.

0

00

r)0D

w00

0..0



N
 N

 N
 M

M
 N

 

*N
N

N
N

N
 

N
 N

 N
 N

 N
 N

 

N
M

 N
 N

 

11—
M

M
 N

M
 N

 

N
 N

 N
 N

 U
-N

 
N

-N
--N

 N
M

 U
 

M
U

*iS
1 N

 
X

M
N

N
N

M
 

N
..N

M
N

N
 

*N
N

M
N

N
 

N
 

_N
N

*M
M

N
 

—
 

M
N

N
N

M
N

 
N

 N
 N

 N
 N

 
M

N
 N

 N
 —

 

N
 =

 N
 N

 N
 N

 
L__ 

M
N

N
N

N
. 

N
 

M
N

N
M

N
 

—
 

-N
-N

-N
--M

U
M

 
—

 

N
 N

 U
 N

 N
 N

 

N
 U

 N
 N

 N
 N

 

N
 N

 N
 N

U
N

 
P._..___ 

N
N

N
N

M
M

 
N

 N
 N

 U
 N

 N
 

—
1t--II1,------------------------------- 

1..._ M
N

N
 

t- 
-*-*-N

N
M

 
=

 
IIF

tJLM
IN

M
M

N
N

' 
M

M
 N

 N
M

 
-- 

_._r 
gM

 N
 N

 
N

 N
 N

 N
 

=
 N

 N
 N

 

il--N
-N

-N
—

--—
- 

ill 
I—

f 
I—

I 
I 

I 
I 

I 
I 

I—
I 

I 

o 
500 

1
0
0
0
 

1
5
0
0
 

D
a
y
s
 
s
i
n
c
e
 
s
t
a
r
t
 

R
s
i
d
u
a
1
s
 
a
n
d
 -
a
v
G
r
a
g
G
 
r
G
s
i
d
u
a
l
 
b
y
 
1
S
S
U
U
I
 



0 .0 LI) 

co 

_ 
-'--4 

'--4 

a) 

• 0 
C 

0U) 

___ : ________ 
0 

_ 
D 

I I I I I I I I I 

U t (T) (\J .10 (' (1) t LI) 
O DODD DO DODD O DODD DODD DO 
a a a a a a a a 

DODD 000000 D 
I I I I I 

pX TonpT aBDJaAy 



P
r
Q
d
i
c
t
2
d
.
 
a
c
t
u
a
l
 
a
s
k
 
p
r
i
c
G
s
 
F
o
r
 
b
p
2
.
 s
t
r
.
 

LU
 

C
-) 

0 D
 

z 0 Q
J 1

o
.
 

1
4
0
 

1
3
0
 

1
2
0
 

1
1
0
 

1
0
0
 

g
o
 

.
8
0
 

7
0
 

I 
I 

0
 

1
0
 

2
0
 

I 
I 

3
0
 

D
A
T
A
 
S
E
T
 

4
0
 



150 

140 

130- 

120 

11o 

1oo 90 

80 

70- 
D

A
T

A
 

SE
T

 

P
redicted, 

actual ask prices 
F

or 
bp2. m

ed 

LU
 

ci 
II 0 

I 
I 

I 
I 

I 
I 

I 
I 

0 
10 

20 
30 

40 



w
 

U
 

II 0 C
o 1

5
0
 

1
0
0
 

1
2
.
7
5
 
c
o
u
p
o
n
 
2
0
0
5
—
1
0
,
 
m
o
d
G
i
 

2
.
 m
e
d
.
 

K
L) 

x 
* 

F
- 

U
 

* 
* 

I 

A
 

* 
* 

I 
N

 
* 

* 
A

 

A
 

* 
A

 

* 

* 

1
0
0
 

1
5
0
 

P
R
E
D
I
C
T
E
D
 
P
R
I
C
E
 


