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ABSTRACT
& new model ic proposed for representing  the term 1o maturity
siructurs of interezt rates at & point in i1 ed

monctonic, and S-shaped vield curves using

a time decav parameter, ecstimates of the other three are obtained by least
SQUares. Yield curves for thirtvy-seven sets cof U.5, Treasury bill yields
with maturities up to one year are presented. The wmedian standard
daviation of it is just over seven basis points and the corresponding
median FR-sgquared is .96, Study of residuals suggests the existence of
specific maturity effects not previocusly identified. Uzing the madels to

predict the price of a long term bond provides a diagnocstic check and
suggests directicns for further research.
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1. Introduction

The idea that there is a svstematic relationchip between vyield  &nd
tersm to maturity on debt inefrumenis 15 A DErsuUaslye CAg &N KCLDOURLS var
one of the larpest literatures in monetary econcmics, that ot the term to
maturify structure of interest rates. On a purelv descriptive level, the
scatter of geints recording  ocbssrved vield and 1 1ty tor
securities within a particular class at a given time sircongly SUQOSeSTS ihe
existence of an underlying smooth function relating vield fo maturity.
Such a function is called a vield curve.

The fitting of yield curves to yield/maturity data goes b
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to the picneering efforts of David Durand (1%42) whose method
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was tp position a French curve on the scatter of peints in such a way that
the recultino curve appeared subjectively reasonable. field @may Dbe
transformed to opresent value and J. Huston McCulloch (19741, 1973} has

proposed approximating the present walue function by & plecewi
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spline fitted to price data. GBary Shea {182, 1984} has shown {hat

resulting vield function tends to bend csharply towards the =nd of the

maturity range obszerved in the sample. This would seesm to be a zost
unlikely property of a true yield curve relationship and =2is0 Suggests that
these models would not be useful for predicticn cutside the sample maturity
range Othsr researchers have fitted a variety of parametric wmodels to

vield curves, including Cohen, Kramer, and Waugh {19&&)3 Fisher (i7dé&!:

Echole and Elliott (197&)s Dobson (197813 and Chambers, LU=

Waldman (1984). Some of these are based on polynomial regress
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include at least & linear term which would force extrapolated very long-



term rate:s to be unboundediv
thelir abilitiec toc fit close
Fono {(198%) have =uooested ewponential szplines  as  an to
polvnomial splines, In a comparicscen cf the two sgline methodoclogies, Shea
(19831 finde that exponential =plines ars subject to the same shoricomings
that i splinesz are.

That +there is & need +or veadily implemented techniguses o fitiing
vield curves seem £G us apparent from the popularity of vield curves as a

[

tool et analysis in {financial markets., Market lettercs from major brokerage

houses, government publications, and even the Hew York Times cater to

readers’ interest 1n seeing a representation of the underlving relationship

between vield and maturity by publishing eraphs of vield curves To our

b=

knowledge, these are fitted by free hand methods. HdWe feel that 1t ought to

be poscible to develop a computer-based method for calculating and plotting
vield curves in real time which ic both more satisfactory from & conceptual
viewpaolnt than are polynomial splines and lesz dependent on the judgement
of an individual observer thanm is free hand sketching.

The ohjective of this paper 1is to present the prototvpe of a
carcimonecus modeling procedure which we believe meets these objectives.
fie have tested the procedure on U.S5. f{reasury bill yields taken +from guote
sheets at four week intervals over a three vear period. The algsbraic fora

of the medel i1s motivated by the solution fumction for & =second order
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ntial equation and generates humpoed, monotonic and S-shaped curves
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We find that the model fite the bill vyield data
with a wmedian <tandard deviation of just over seven basis points and

=

produces & median FR-sgquare of about .96, A1l three basic vyield curve



shapes are encountered i1n th2 sample. Study of the residualz revesls
specific maturity effects not previcusly identified, Extrapolation of

vields outside the maturity range of biills allows ug to predict the price
ot a long term Dbond. Comparizon of the actual bonrd price with  that

predicted by the basic model suogests refinements to the fitting procedure

and directicns for turiher
2. Motivation for the Model

4 U.5. Treasury Bill is a promize to pay the amount of 1ts face val
on a stated maturity date. Since there are no interis coupen pavments on oa
bill +the market price is necessarily less than 1ts face value. The vield
on the bill is defined to be thait rate of retern which producez the +ace
value from an investment egual to the market price ip the time remaining

until  maturity. firbitrage assures that
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Eille with a given maturity

gate sell at the same price, and therefore have the same vield, st any

instant in time. Bills of different maturitiss may of «course sell  at

prices which imply different vields to maturity at the same point in time,
The vields on any two bills of different maturities imply & forward vyield
or rate for the time interval between the maturitiesz of the two bills, If

the maturities are, say. m, davsz and m. davs (m. » ®, ) ther an investor can

{
sgcure the forward rate of return for an (®.,-@,) day geriacd to becin @,

days hence by selling bills of m, davs to maturity and repisacing them witn

bills of am, davs to maturity. The incentive to do thiz will wvery directly
with the difference betweern the forward rate available in the market and

the investor‘s ascsessment of the rates of return which are likelv teo be

available in the market on bills of im -ml) days to maturity m
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igns  of  tufure bkill vields

influence the term to maturity structure of yields observed in the market.

it also suggests that forward rates will not exhibit increasing
fluctuations 25 one considers longer maturities because it SEeEms

implausible that execected future interest rates would vary increasingly as
us to posit that a zatisfactory model
fgr  the yielc curve must imply forward rates thet are smooth as & function
0% horizon and that oscillationz in the function, 1f any, must damp down.
These will alsc be properties of the yield curve hecause yield to maturity

can be enpressed as a smoothing of the intervening f{orward rates.

Specifically, consider the forward rate implied by bills of @ days to
maturity and im + 4 davs where a is arbitrarily small. This is an

instantaneous forward rate which we will denote by rim). The definition of

the forward rate implies that

Rim! = 1ia rinddx
wherse Fim) is the vield to maturity on & bill maturing in m days. Thue,
vield to maturity ig just an average of the forward rates. Eqguivalently,

the forward rate r{ml is glven by
rim) = Rim) + nR’ {m}

where F ' im} iz the slope pf the vield curve at maturity a. This second
equaticn points out that any wrinkles in the vield curve, giving rise to
large values of the slope, have a magnified effect on forward rates as we

consider larger maturities. I our hypothesis that the forward rate
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comes m iz correct, then the relatiaon
between Rim) and m must he even smoother,

Do actual vislds on Bills, glotted agzinmet maturity, disclavy  the
smopthness we expect to find? To form a preliminary impreszsion, CORsSlger
the plot of U.8. Treasury bill vields displaved in Figure 1. These are
gontinuously comoounded zn annual rate cowmputsd frop clozing
acked discount vields on the Mew York Federal gucte sheet  for
January 22, 1381, The vielgs rise as a function of maturity until about
100 daye maturity and then decline generally until about davs maturity
where they appear to level coff. To be an accepiable candidate to 1t this
data & function needs tc have the capability of rising to 3 maximum  and

then falling monotonically tewards an asymptotic value.

Folynomials are clearly not acceptable by this criterion. While thev
resgily fors hump shapes they do not settle douwn to an asvaptotic vaiue but
instead head off towards plus or minus infinity. 0f course, by choozing a

data in the sence of generating a curve which comes close to the date

soints. A polynomial of degree equal to the number of data points less cne

can be constructed that coincides evactly with each data peint. The
function itself will fluctuate wildly between the datas points and one would
have to be willing to believe that yields on bills are coincidentally close
to one ancther only at the specific maturities which ihe Treasury nappens

to have 1ssuyed. This e
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difficulty with the behavior of polvnomials

can be mitigating by the wmethed of eplines which
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polynomials to fit different sections of the maturity spectrum, Joining
them tooether at points called knots. It is easy to imaoine that the data

of Figure ! could bz fitted guite clasely by cne guadratic polvnomial  over

n



igd to 330G davs. Thie would be in
he  fitted splines to prices rather

vields Lo forward rates 1t is cies
diverge esven mors rapidly, Eutens
(1587, 19B4) shows that even when th

-

within much of the maturl

v range of

display erratic behavior at the high

he spirit of MoCulleoch = work althouab
than vielos. Jur view of polvnomial

approach to the problem which does not

ve analysiz of spline results by GShea

the datsz, the implied forward vrates

end of the range. We would like tnm

develop a clase of models which incorporate intrinsically the smocothness

and acympiotic damping we expe

forward rates. Such model
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Since the latter will be more f

order difterence sguation

and the evaluation of rim) for

ri-11. The dynamic behavior of

cQ
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riori of vield curves and the 1implied

uld meaningfully address the guestion: what

le.

rim)

C

n a 350 day bill to be issued by the
an bills presently trading which  have

ontrast, polynaomial splines are poorly

models which does possess the properties we seek 1s  that

diftferential or difference eguations.

r to mest readers, consider the secaond
S N

U
¢3y... given initial values r{0) and
will of course depend on the values of

g



©, and 4, throudn the characteristl = u, whiie
4 o

[“9/1_“1"“ﬁ} wili be the asymptotic , f rim! as large i+ the

equation is stable. if{ the roots are real and lie outside the unit circle

the sclution hacs the form

wherea r! and (2 are ppsitive constants determinsd Dy L and W El ang ﬁb
are constants determined by the imitial conditions. The parameters O and
1, are time constants which determine the rate at which the terms expi-m/1)
decay to zero. Thus. at maturity m=7 we have expi-1) = 0.37, at maturity
m=21 we have expf-2) = 0.14, and sa forth. fs m gets large both
exponential terms become samall se rim) approaches B. as 1ts  asymptotic

level. Differing rates of decay implied by 1, and 7, zllaw riml fto take on
humped shapes as well as monotcnic shapes.

Som2 theories of the term structure of interest rates imply forward

rate eguations of this form. Thes clas=ical expectations theory eguates

forecasts of short rates, which might be represented by & stochastic
difference equation, to forward rates. Richard i1%78) studied a medel 1n
which the term structure depends on two state variables: the real rate and
the rate of inflatien. Under certainty the {ferward rate function In

Richard’'s model if the two cetaste varlables
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pach obey a first crder differential egusation. linder upcertainty the
forward rate is a more complex function of exponentials. Mhile we do ncot

feel obliged to tie our model to any specific model gt the terms structure,

these considerations add to the presumption that this 1Is & cl
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worth investigating.
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are switched around we have the same

fuynction, a potentiz
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computer confucsion. A more readily

implemented model with similar shape characteristics has the form

This “function arises as the soclution to the second order difference

in the case of egual ronts, or &lternatively may be derived as an

approximation to the sclution in the unequal roots case by replacing one of

the two exgonential terms by its Tavlor's series expansion {Appendix A}

im

The parameters of thi

10

model are more eacily estimated because the model is

linear in g_., B, and B, for any provisional value of 7.

Fa

¥odel (2.1} may also be viewsd as a constant plus & Laguerre Function,

b3

which sugoessts a method fer generalizatien to higher-order models.
Lzouerre Functions consist eof & poiynomial times ap exponential decay term
and are a mathematical claz= of approximating functions: details may be

found {for svamplel in Courant and Hilbert (1983, pp. 73-97).

While hiogher order models could generate more complex shapes, it 1

w

et hard to  show that even the second order model given above has

ape flexibility and is therefore parsimoneous. Hotes that

and the limiting value of ri{m} as m getcs large is simply EO
gtting these arbitrarily at zerc and one respectively for the purpose of
studying shape and noting again that 7 is only & time scale parameter and
may be cet at one for the same purpose, we are left with a function of one

parameter anly

W



riml o= 1 o- G
gileowing this single shape parameter to vary from -& to 1& 1n egual
incrementsz oroduces the range of thapes secen 1n Flgure L. inece 1ncluge
humps, S-shaped, and wmonotonic  curves. Shapes produced by vertically
inverting these curves are also possible upder this medel, weas:ily allowing
GECreasing .

Te obtain vield s= & function of maturiiv for the second order  model
cne integrates r{*} in  {Z,1] from zero to m  and civides by M. The
resuiting function is
{2.23 Fiml = . 4+ (B, + 5.} % [il-expi{-a/7}3/{n/3) - B expi-m/7}

] 1 z Tz
which is also linear in coefficientsz, aiven T. The ligpiting value of KRim!
as @ gets large is Eﬁ and as m oets small iz (B _+8 ) which are necessarily
g ; G a8y "
the same as for the forward rate function since Rim) 1s Just an  averaging
of ri%), The range of shapes available for Rim) depends again oDn & single

parameter since for 1 = |, EO =1, and 1§, + 817 = { we have
: H Ll

F{mi = 1 - {i-a} # [l-expi{-pilim - a ¥ exgi-mi.
Allowing =& to take on values from -& to 12 in egual increments gJenarates
the shapes dieplayed in Figure 3 which include humps, S-shapes, &nd
monetonic  curves, {in the haszis o4 the range of =zhapss available fe us in

the second order model our cperating hypothesis i= that we will be able to
capture the wunderlying relationship between yield and term to rnaturity

without resorting to more complex models invelving more parameters. Wood

(1983) presents vyield curves fitted by traditional methods annually from



throuoh 1382 and all of them fail within the range of geperic  ESRapes
which can be generated by our model.

fincther wav to sse fthe shape flewibility of the second order =
to rearrange itz elementsc into long term and short ters components  as
tollows

Fimi = 3U+25}+B£} £ {lli-expi-w/v}d imiTE - * B, # expi-m
The expression in braces may be interpreted as the long teram coamponent of
the vield functicn because it gives the onply rearrangement of terms which
starts out at zero and alsoc decays at a rate much slower than exponential,

namely i/m. The second term is the shorit term component since it starts at
a wvalue of upity and has the fastest possible {(exponential) decay to zero.
This decomposition is illustrated in Figure 4. It is pasy to see how with
aopropriate choice of weights for these components we can generate curves
with humps in them and ones which are monstonic {but not necessarily a

simple exponential function.!

3. Empirical Yield Curves for
U.5. Treasury Bills

The objective of our empirical work is to as

un

ess the adeguacy of the

el

second order model for describing the relationship between yield and tern
to maturitv for U.S5., Treasuyry billes, The data ceme from Federal Reserve
Sank  ©of New York guete sheets sampled on every fourth Thursday f{excepting
holidays) 4rom January 2Z, 138! throuch October 27, 1983, thirtv-seven in
all. The guote sheets give the bid and asked discount and bond equivalent

vield for the bills in each maturity date outstanding as of the «close of

trading on the date of the guote sgheet. Number cf days to maturity is



£u

calculated $ros the delivery date, which i3 thne foliowing tHonday for

Thurzday transaction, until the maturity date. TJTypically there are thirty-
] 3 ] ! ] h

two maturities traded, which on these Thursdays werk ocut to terms of +rem

days to 178 davs in increments of seven davs, and then increments

of 28 days to 339 days. On three dates there was alsc a one  vear bill
traded. The pid and asked diszcocunts have heen calculated zs 14 there were

a 40 day year and are on a simple interest bas:is The bond egulivalant
yield is intended to present the bill yield on a basis comparable to  that

of a bond which pays a halft-vyearly coupon. The exact formula  +fer  doing
this is not, te our knowledge, available publically. Bill oprices
themselves are not displaved but are readily calculated +from the iscount
yields. We have converted the asked discount teo the corresponding price

{that paid by an investor! and then calculated the continucusly compounded
rate of return from Selivery date to maturity date annualized to a 353.2%
day vyear. These vields are the datz we fit te the vyield curve modsel.
Observations on the first two maturities, 3 and 10 davs, are comitted

because the yields are consistently higher, opresumably due to relatively

large transaction costs over a short term to maturity. Thi

leaves thirty

vield/maturity pairs observed on each of thirty-four market dates and

thirty-one on three dates.
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Fer purposes of ting yield curves we have paramsterized the nmodel

{2.2) in the form

{3.1) Rim) = a + b % [l-expi(-m/T}1 / ips/Y) + € % exp{-@iT!.

For any provisicnal value of T we may readily calculate sample values ot

the two regressors. The best fitting values of the coefficients a, b, and
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c are then computed using linear least zouares. Fepeating this procedure

aver a range of values for 1 reveals the cverall best-fitting values of 1
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which the regressor variables decay to zerc. Flote of the data cets reveal

=

that the yield/maturity relationship becomes quite flat in the range 200 to

days {2z in Figure 1}, =suggesting that best-fitting values of T would

50 to 100. de conseguently search over a grid from 10 to

¢mall values o©f T correspond to rapid decay in the regresscrs and
therefore will be able to $it curvature at low maturities well, while being
unable to fit excessive curvature over longer maturity ranges.
Correspondingly, large values of T produce slow decay in the regressors
which can fit curvature over longer maturity ranges but will be unable to

follow extreme curvature at short maturities. This trade-off is

illustrated in Figure 3 which shows the yields observed on February 19,

198t., The yields rise guite sharply at low maturities, from 13.80 percent

at 17 days to 14.94 percent
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turity. This portion of the data

is fitted much better by a model with 71

2 than one with 1 = 100 as shown
by the two continuous curves plotted in Figure G. On the other hand, the
smaller 1T value produces a poor fit over the maturity range abecve 200 days

7

relative to that provided by the larger T value. The best overall {fit {for

It is also oguite clear from Figure 5 that no zet of values of the
parameters would fit the data perfectly, nor is it our obiective to find a
model which would do so. A more highly parameterized model which could

fcllow all the wiggles in the data is less likely to predicf well, in our

o

n



siew, than a move parsSimenEOUS MOGEl whidh smscihness in  Lhe
underlying relaticonship than one observes 1n the data. There are & number
ot reasons  wiy  we would nob oexpect the cdats o CORIOr®m Lo the 1rug
underlying relationship between vield and maturity even i+ we knew what 11t
Was. For example, there 1is hills, sc

gublicshed gquotes will reflect gifterent
points in time during the trading day. BEillz ot specific maturities may
sell at & discount or premium. We nope that by studying depariures of the
data from the fitted wmodel we can identify cysiemsiic az well as

idocsyncratic features of the data which the model 1:

11}
—+.
o
-
-
-
=
el
—t
o
m
m
£
rt
[ g
a
m

The baszic results for the second order model fitted to each of the 37

data sets are presented ip Table 1. The fir=st column gives the data

tn
m
—+

number, the second column the best fitting value of T, the third column the

standard deviation of residuals in basis points (hundreths of & percentl,

and the fourth celumn the value of R-sguared. Median values o©of these
statistice over the 37 samples are given at the end aof the table. The

first point worth noting is that the model accounts for & very {args
raction of the variaticn in bill yielde: median K-sguared 1s .%37. The

median standard deviation of residuals is 7.25 basis peints, or L0723

percentage points, or & 000725 in vield. Standard deviations range trom
about 2 basiz points te about 20, Best fitting valuez of T have a ®@median
of S0, They occurred at the lower boundary of the search range iT=10) in

two cazes and at the upper boundary (7=345) in three cases. The first date
cet, which was szeen in Figure !, 1is displayed in Figure & along with  the
fitted vyield curve. 1t is clear from the pattern of deviaticns from the

curve that residuals are not random but rather seem te exhibit some



dependence alono  the maturity ans e therefore refraan  from making

-

ctatements about the ztatistical significance of coetficient estimates
hased on cenventional stsndard errorg. e will also be interected to seoe
1§ such patterne are systematic across samples,

4 =mall value of 1 will he indicated in caszes where the vields change

charply 2t low maturities then level oft guickly as in tne case of datsa
et MNp. & for Suguet &, (%81 plotted in Figure 7 along with the fitted
vield curve faor T = 1€, Slow curvature which decayvs sleowly will be +it
best by a large value of T as in the case of set MNo. 22 for September 2,
1987 plotted in Figure 8 with the fitted yield curve for T = 364&. What is

nct readily apparent in Figure 8 1

1Ll

that the pletted portion eof the curve
represents only the rising portion of a very long hump (cee Figure 9} which
ultimately decays to an asymptotic yield of -,023. Clearly the best fit ta
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not guarantee szensible extrapolation. Although the best

fitting values of T vary considerably, &as these examples indicate, rather
little precisicn of §it is leost if we impose the median value of 30 for X
for all data =ets. The resulting standard errors appear in the fifth

column of Tahle 1 and have a median value of 7.82 basis peoints, or anly .57

haszis points higher than when each da

o
ps
o
n
48]
r+

was allowed to choose its oun
7. For a few data sets this constraint makes a noticeable difterence, as
in the caze of data set No. 8, for example, a small T seems preferable.
However in the cases where 7 was 345 the constraint costs little in  terms
of precision, The overzll results suggest that little may be gained in
practice by fitting T to each data set individually.

The lowest value of R-squared recorded was 49.7 for =set No. 7 while

i

the highest was 99.4& for set Mo, 24, The characteristics of the two data



First Term Only

TABLE 1
Second Order Model
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sets  which lead to this results are evident in Figures lo  apd 1t
respectively, Data cet Mo, 7 in Figure 10 appearcs to be tuwo data sets at
different levels which a smooth curve will have little ability to account
for. This apparent discontinuity is rare in our sample and may reflect

lack of late trading in the long sector of the market that day, or perhaps

clerical errar. In contrast, data set He. 24 in Figure 11l presents & very
smocth, GS-shaped pattern which is very precisely tracked by the model
leaving residuals with a ctandard deviation of only about 3 basis points.

gt its attractive aftributes conceptually, but the question remains whether
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important empirically. An alternative more simple

[ R

model would be a simple exponential function for ferward rates obtained by

m
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equal to zero in equatien {2.1). The corresponding vyield

function then has only the first term, in which maturity appears 1in the

=

denominator, but not the second term as can be seen by setting B, = 0 in
L

eguatiaon (2.2}, Onlvy menctonic yield curves can be generated by this
restricted wmodel. The final ceolumn of Table | shows the standard

deviations of residuale resulting from imposing this constraint {(but now

allowing v to take its best fitting value). The median over the 37 data
sets is 9.00 basis pecints compared with the 7.25 reported for the
unconstrained model. In come caces the standard deviation rises sharply.

For example, it 1is no surprise that a monotonic curve does not fit the
first dats set well: the standard deviation rises from 16.09 to 456.71 basis
paints, In some cases the standard deviation is reduced slightly because
the constrained model fits about as well and uses one less parameter. The

ability to fit humps eeems to have been quite important until the twenty-
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{from January 1981 until October 1982) after which point



the shape of the yield curve seess to have become slspler  and  monolonic.
Thus there appears tc be a percictence of shape over tlme. Hote that this
change inm shape also  seems to be iated with lesz  dispersicn  1In

t

residuals. Did the Fesderal Reserve start to stabpilize interest ratez agoain

in late 19827 & casual inspection of the behavi ot the federal funds
rate over tnis pericd certainly suggests that 1t 2id
4. Analysis of Residuals: Maturity and Issue Effects

Plotz of Fitted vield curves against the data have suggested some

dependence of residuals zlong the maturity axis. We would like to try to
determine whether this 1is due toc a systematic influence of maturity on
yield which our model is unable to capture. If such an effect npersists
through time then we should be able to detect it in the average of the

thirty-seve
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a vertical stack of residual plots fer the thirtv-seven data sets with the

sveraged residual at the bottons. The individual resi
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separated by intervals of 200 basis points and the scale for the averaged
residuals is magnified by ten. The last data set appears at the tap of the
stack. Note that the first averaged residual, corresponding to 17 dayvs

saturity, iz rositive, the second negative, followed by 2 riszing pattern to
I H ) h =

just under nipety days, a
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therm a rising pattern again to just
under iBO days and another sharp drop. This is sesn more ciearly 1n Filgure

13 where the magnified scale snows
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these maturity effects are in the
range -5 to +3 basis points which is large relative to a rough standard
deviatien of 1.2 bacsis points. We surmicze that the positive vield effect

at 17 days is due to higher transaction coste per unit time for shorter



Term ballcs, 1= pulled wpward by this data point, lsaving
the next peoint below the curve. e also curmize thet the peak at 87 days
maturity and gron following ig due to the fact that 70 days 1z the
meturity of a substantial porticn of the bills issued by the Jreasury  and
will theresfore buly large in the inventory on dealers shelwves. Similarly,
the 1 rv oissusgs 180 ziils ang 3 day bi1lls and we observe
the averazged residual rising teo & peak st each af these maturities. To our

would they be apparent if our models did not impose guite a hit  of
smoothness on the yield curve, & purchazer of bille may ar mav nct find

these maturity opremiums sufficiently attractive to influence maturity

choice, bui at least they are now visible.
Issue effects are distinguished from maturity effects in  that they

pertain toc the bills which mature on a particular date rather than te bills

with & particular term to maturity. The issug of bills wmaturinp on
December 21, 1981 were 5ills on our first guete shest {January 22,

1981), became 3ii-day bills on our second guote sheet (February 19, 1981)

Lo =]

2 days : =c¢ on through the menths until they appear as 2%9-day
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bills on the November 27, 1981 guote sheet. This gives us twelve residuals

fer this particular icssue ot bills. Other issues will appear initially
with only 178-days to maturity which gives us six residuals until the issue
matures and cicappears. The plots of residuals are lined up in Figure 14
=g that each issug may be folicwed through time. fiverages are plotted at

the bottom with the scale enlarged by a factor of threey; these averages are
shown on a larger scale in Figure 135. There iz same evidence in these

plots that issue e
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cshow some tendency to persisi from one guote sheet  tuo  the pext. For
example, the issues due January 7, 1982 and Jdanuary 14, 1982 enhibited
large negative residuals in the ninth datas set iSeptember 3, 19B1) and did
again & month later in the tenth date set (Dctober 1. 198t;, howaver no

abnormal deviation was evident thereafter. Similarly, the 1lcssue due
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after which it came to maturity. Evidence fcor iszue effects 1s 1
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compelling than that for maturity effects but would ceen
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rrant further
investigation.

5. Prediction Qut-of-Sample:
Pricing a2 Long Term Bond

One of our criteria for a satisfactory vield curve model is that it be
able to predict yields beyond the maturity range of the sample used to it
it. An unreasonably exacting test would be to ask it to predict the yield
or price of a long term government bond, but this is what we have fried to

.y 2

do. The particular bond chosen is the 1Z2-3/4 percent coupon .8, Treasury

bond maturing in 2010 (callable in Z005) since this was the longest bond

n

1

appearing on all our quote sheets. £ bond can of course he vie

x
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g &5 a

bundle of bille with maturities spaced at six menth intervals until the

r+

maturity date of the bond. fach component bill pays an amoun egual to
the semi-annual coupon except the last which also paye the face value of
the bond. VYalues read off a yie;d curve can be used to discount =esach
component bill in the stream and the resulting total value can be compared

with the guoted price of the bond, adjusting first for accrued interest

from the last coupon date which the buyer must pav to the celler.
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The opradicted bGond price wil: of course depens  primarily  on the

portion of the vield curve which lies beyond the range ot the sample bill
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only so0 semi-annual C

oupcn pavments can  be
due within the one vear maturity limit of U.8. Treasury hills. For our
vield curve model with values nf 7 around S0 the fitted curve flattens out
coneiderably {for maturities bevond a year. The +irst expeonential term 1in

the model goes from unity at zero maturity to L1389 at 3463 days maturity,
and the second term goes from unity to 0007 in the same 1nterval, The
pricing cf the bond is therefore determined largely by the asymptotic level
of the curve given by the intercept in the model, BU' Eguivalently, the
value of the intercept must be close to the yield to maturity on the bond

if the model iz to price the bond accurately. Figure 16 ic a plot of the

actual price of the bond chroncleogically for the thirty-seven dates in our

zample {light line} and the corresponding predicted prices {dark line)
produced by the model when we allow T tc take its best fitting value. Two
predictions are drastically awry, the twelsth ($138.063 against an actual

price of %10%.34} and the twenty-second (§404.58 against an actual price of

L103,359). These were both models which had large values of T {see Table
2. In both cases the bill yield data was fitted as the rising portion of

a long hump with eventual decay tc a much lower level which was .079 for

the twelfth model and, as the readsr may recall, negative .025 for the

twenty-second. The resulting discount rates are therefore too low and the
predicted bond price correspondingly too high. Constraining T to a value

gf S0 in both cases costs little in standard deviation of fit f(see Table 1)
but improves the predictions of bond prices dramatically, to $105.77 and

$102.52 resgectively. The improvement is evident in Figure {7 where the
H H




predicted bond prices have peen generated from modelsz fittes under  the
constraint that T is S0 i{the median value af T across the samples).
The relation between actual and predicted bond price alse iz depicted

ac a scatter plot in Figure 12, It is obvious that the corrslation between
actual and predicted price i1s high, numerically it is .96%, but also that
the py overcshoot the actualsz. The wmagnitude of overshooting 1S
much larger than could be accounted for by favorable tax tregatment for  the
bond when it is seiling at a discount from facz value. This suggests that
aur fitted curves may flatten out too rapidly. When vields generally were

high =and the yield curve downward sloping the models overestimated longer

ters discount rates and th

3¢]

refore underestimated the price of the bond, and

the reverse was true when vields were relatively low and the vield curve

was upward sloping. Correcting the price predictions for these systematic
biases by simple linear regression, we obtain a standard deviation for the

adjusted bond price prediction of only §2.63. Evidently, the value of 7 is
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q 23 r than by selecting the wvalue

fgr esach individual data set.

What correspondence is there betweep the ability of a model to fit the

bill vield data well and its accuracy in esxtrapolating beyond the sample to
predict the yield on & bond? The short anzwer 1&: none necessarily. a
function may have the flewibility to fit data cver & specific interval but
have very poor properties when extrapolated outside that interval., & cubic

polynamial has the same number of parameters as doss our model and irdeed
fits the bill yield data slightly better. The median standard deviation of
reciduals is only 7.1 basis points over the thirty-seven data cets.

However we know that a cubic polynomial in maturity will head off to either



olug infiniiy or minue 1nfinity as maturity the sign depending
on the sign of the cubic term. It is clear then that it we use a cubic
solynomial yield curve to price ocut a hond 1t will azssign =ither very great
present wvalue or very little present value to distantly future payments.
For our data set the result is predicted bond prices which bunch in  the
intervals €17 tgo $38% to The correlation aetween actual and
predicted bond price is -0, , =0 the polvnomial meodel has no predictive
value although 1t fits the sample data very well.
5. Summary and Conclusions

The solution function of a second order differential eguation provides

1

the basis 4or 2 parsimoneous model capable of representing the range of

shapes opreviecusly asscciated with the yield/term to maturity relationship
or vyield curve. It has a number of preoperties which are appealing 3
riori: smoothnress; ability to assume monctonic, humped and S-shapes; anc
asymptotic damping. The model is able to account for abeut %6 percent of

the wvariatiocn in U.5. Treasu

=

-
Ky
s
st

lis across maturities during the 1981-83

sample peried with & standard deviation of residual ervors of 7.3E% basis

points. fnalysis of residuals reveals maturity effects which seem to be
related to the specific maturities issued by the Treasury. Extrapolation
pf the fitted curvesz to price & long term Treasury bond suggests that the

chosen on the basic of average experience across dats sete rather than
individually for each yield curve. @Given an appropriate value for the time
constant the three remaining parameters are fitted by simple least squares,
making the procedure aperational in real time. A palynomiaf tits the bill

yield data a3z well but predicts poarly out-of-sample.



AFPPENDIX A: THE PROPOSED MODEL AS AN APPROXIMATION
IN THE UNEQUAL RDDTS CASE

The proposed model (2.11 isg
{A. 11} rimi = B+ Bl expi-m/T) + B Dim/ti # expi-m/1)1.

Our purpose is to show that this soluticn in the case of two equal roots of
the characteristic equation is in fact an approximation to the unegual root
splution when those roots are not very different.

Suppose the two roots give rise to decay rates T and 1. and hence to

the model

rim} = Yo t Yl expi—miTl) + Y, expi-a/T,1.
If we write 1/7, = 1/11 + (177, - 1/7.) and expand part of the second
“

1

3

exponential term to first order in this difference, we find

rim)

!
-<’

9 + Yi Exp(—mifl) + Yz[expi—m/T}}3(1—m(11—T2)fT1T2}
=y, + (¥, + ¥, expi-n/1,]
i R Vo1 expi-m/ i)

?2[(11~TE)ETB]IT2)[(m/Ti) ¥ exp(—m/?l)]

which we recognize as being in the form of ocur proposed model (A.11 with a

suitable reparametrization.

gy
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