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1. Introduction

Recent research on macroeconomic fluctuations in emerging economies has resulted in two

leading approaches, both of which can be seen as extensions of Mendoza’s (1991) basic dy-

namic stochastic model. The first approach, due to Aguiar and Gopinath (2007), introduces

a stochastic productivity trend, in addition to the temporary productivity shocks already

present in Mendoza’s model. This seemingly small addition, Aguiar and Gopinath argue,

goes a very long way towards addressing well known empirical failures of the model when

taken to data from emerging market economies, including the strong counter cyclical behav-

ior of the trade surplus and the higher volatility of consumption relative to output’s.

A second approach, exemplified by Neumeyer and Perri (2005) and Uribe and Yue (2006),

relies instead on the introduction of foreign interest rate shocks coupled with financial fric-

tions. This approach is motivated by the observation that the cost of foreign credit appears

to be countercyclical in emerging economies data. Accordingly, both Neumeyer and Perri

(2005) and Uribe and Yue (2006) develop models in which country risk spreads are stochastic

and interact with financial imperfections. Then they argue that those models are consistent

with the empirical regularities of emerging economies.

In this paper, we compare the two approaches empirically, taking advantage of recent de-

velopments in the theory and implementation of Bayesian methods. We build an encompass-

ing model that combines stochastic trends with interest rate shocks and financial frictions.

We then estimate the parameters of the exogenous shock processes, along with a few other

crucial parameters. The stochastic trend model and the random interest rates/financial fric-

tions model can be then regarded as restricted versions of the encompassing model. The

relative performance of these alternative models is evaluated by comparing their marginal

likelihoods as well as their ability to match a subset of selected moments of the data. We

employ the Mexican dataset of Aguiar and Gopinath (2007), thus ensuring that our results

can be compared with the findings of that paper.

We obtain several results of interest. In our benchmark estimations, the mode of the

posterior distribution of the estimated parameters of the encompassing model is characterized

by strong financial frictions, volatile shocks to the processes for interest rates and transient
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technology, and modest trend shocks. The random walk component, a measure of the relative

importance of trend shocks, is less than a fifth of what Aguiar and Gopinath (2007) obtained

using a model with no financial frictions. Consequently, when we evaluate the relative

contribution of the different shocks to aggregate fluctuations, we find that, while temporary

productivity shocks are responsible for the bulk of the variance of aggregates, interest rate

shocks have a sizeable role as well, generating about six to ten percent of the variance

of output and consumption, one fourth the variance of investment, and close to half the

variance of the trade balance/output ratio. In contrast, the share of those variances due to

trend shocks is three percent or less.

In formal, likelihood based, model comparisons, the financial frictions model beats the

stochastic trends model more often than not, although the results are not decisive. This

reflects that the likelihood has several local modes, and indeed we find that assuming less

informative priors than in the benchmark implies a posterior parameter distribution with

two local modes, each favoring one of the two approaches (although the one associated with

financial frictions is the highest mode). In other words, this perspective on the data appear

not to speak very loudly about which approach is empirically better.

In other ways, however, the data are quite informative. In particular, the benchmark

model allows for two kinds of financial frictions: a working capital requirement (as in Uribe

and Yue 2006) and an endogenous spread (as in Neumeyer and Perri 2005). Our estimations

strongly indicate that it is the latter, not the former, that is crucial for a financial frictions

view to be a reasonably good approximation to the data. Notably, this confirms previous

analysis by Oviedo (2005).

Likewise, our estimations clearly imply that temporary productivity shocks cannot be

dispensed with in the models under study, even if interest rate shocks and trend shocks

are included, if these models are to match the volatility and persistence of output and other

major macroeconomic aggregates. However, we show that the role of temporary productivity

shocks is greatly enhanced by the presence of financial frictions.

We show our results to be robust to a number of departures from our benchmark as-

sumptions, such as preference specification, or the addition of data on interest rates to the
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Aguiar-Gopinath dataset. Finally, we estimate the contribution of temporary productivity

shocks, trend shocks, and interest rate shocks in explaining the dynamics of the Mexican

1995 Tequila crisis. We argue that temporary productivity shocks appear to have dominated

the episode but, again, that financial frictions were crucial to amplify their effects.

Overall, our results are supportive of the view that explaining fluctuations in emerging

economies requires assuming financial imperfections that amplify conventional productivity

shocks and, perhaps less crucially, interest rate shocks. Trend shocks add relatively little,

although they become quantitatively relevant if financial frictions are assumed away.

Our study is closely related to the recent paper of García-Cicco, Pancrazi, and Uribe

(forthcoming), who examined 1900-2005 data from Mexico and Argentina to probe the em-

pirical soundness of the stochastic trend hypothesis. They find that an estimated dynamic

stochastic model with trend shocks performs poorly along several dimensions, most markedly

the behavior of the trade balance to GDP ratio. For the case of Argentina, they also esti-

mated a version of the model augmented with stochastic shocks to the cost of foreign credit,

and found that version to be much more satisfactory. Also, they found that such an extension

implied that the role of trend shocks in explaining aggregate fluctuations became negligible.

Hence Garcia Cicco et al.’s work and findings clearly have similar flavor as ours. However,

there are significant differences as well. One difference is that Garcia-Cicco et al.’s findings

appear strongly driven by their use of very long run data. In contrast, we use the same

data as in Aguiar and Gopinath (2007), and are still able to argue in favor of the role of

financial frictions and against that of stochastic trends. More importantly, we study deeper

specifications of financial frictions (working capital requirements and endogenous spreads),

as opposed to the exogenously stochastic spreads that represent the main financial frictions

in Garcia Cicco et al. Finally, we complement the review of impulse responses and variance

decompositions with formal Bayesian model evaluation and comparison methods.

Our emphasis on the role of financial frictions is, of course, not new. In addition to the

papers by Neumeyer-Perri and Uribe-Yue, financial imperfections have been stressed by the

literature on balance sheet effects (Cespedes, Chang and Velasco 2004) and sudden stops

(Calvo 1998, Mendoza 2006). A main contribution of this paper is to provide a quantitative
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perspective on the empirical accuracy of financial frictions models relative to their main

competitor, the stochastic trend hypothesis.

Our work is related to at least two other strands of the literature. One is the debate

of whether fluctuations in emerging economies are dominated by domestic shocks or foreign

shocks. Several years ago now, Calvo, Leiderman, and Reinhart (1993) upset the then

conventional wisdom by showing that foreign interest rate shocks were a major source of

fluctuations in Latin America. Our results are clearly complementary to theirs.

Finally, our paper belongs to a growing group of studies that apply developments in

Bayesian methods to models and questions in open economy macroeconomics. Examples

include Lubik and Schorfheide (2005), and Rabanal and Tuesta (2006).

The rest of the paper is organized as follows. Section 2 presents the models under study.

Section 3 discusses the details of our empirical approach. Section 4 presents and discusses

our baseline results. Section 5 presents several robustness exercises. Section 6 concludes.

2. Competing Models

Currently competing views on the sources of shocks to emerging countries can be regarded

as elaborations on the canonical real business cycle model of a small open economy first

developed by Mendoza (1991) and discussed by Schmitt-Grohe and Uribe (2003). As stressed

by Mendoza and others, the standard model has notable empirical shortcomings, which have

motivated several extensions and amendments. In this paper we are concerned with two

dominant extensions: one which we will call the stochastic trend model, which features

permanent shocks to technology, as advocated by Aguiar and Gopinath (2007); and another,

the financial frictions model, which introduces foreign interest rate shocks that interact

with financial imperfections, as discussed by Neumeyer and Perri (2005) and Uribe and Yue

(2006). This section discusses these alternatives and also describes an encompassing model

that embeds both stochastic trends and financial frictions.
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2.1. The standard small open economy model

The standard model of a small open economy is well known. Time is discrete and indexed

by  = 0 1 2  There is only one final good in each period, which can be produced with a

technology given by

 =  (Γ)

where  denotes output,  capital available in period ,  labor input, and  is a neo-

classical production function. We use upper case letters to denote variables that trend in

equilibrium, and lower case letters to denote variables that do not1. Also,  is a shock to

total factor productivity, assumed to follow the process:

log  =  log −1 +  (2.1)

where ||  1 and  is an i.i.d. shock with mean zero and variance 
2
. In the standard

model, the shock  is the only source of uncertainty. Also, and importantly for our purposes,

total factor productivity is a stationary process.

Finally, Γ is a term allowing for labor augmenting productivity growth. In the standard

model, Γ is assumed to follow a deterministic path:

Γ = Γ−1 (2.2)

Capital accumulation is given by a conventional equation:

+1 = (1− ) +  − Φ (+1 ) (2.3)

where  denotes investment,  the rate of depreciation, and Φ (+1 ) costs of installing

capital.

1The only exceptions will be the spread, , and the world and domestic gross interest rates, 
∗
 and ,

to be defined later, which do not trend in equilibrium.
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The economy is inhabited by a representative household with preferences of the form:



∞X
=0

( Γ−1) (2.4)

where  is a discount factor between zero and one,  denotes consumption, () a period

utility function, and () the expectation operator. (We include Γ−1 in the period utility

function  to allow for balanced growth.)

The representative agent has access to a world capital market for noncontingent debt.

Her budget constraint is, therefore,

 +  + +1 =  +  +

 denotes the wage rate and  the rental rate of capital, so the first two terms in the LHS

are factor receipts in period  In addition,  is the price at which the household can sell a

promise to a unit of goods to be delivered at +1 while +1 is the number of such promises

issued. The LHS describes expenditures in period , given by consumption, investment, and

debt payments.

Residents of this country face an interest rate on foreign borrowing given by the inverse

of  and assumed to take the form:

1 = ∗ + (̃+1Γ) (2.5)

where ∗ is the world interest rate, ̃+1 denotes the country’s aggregate debt (which is equal

to the household’s debt +1 in equilibrium) and () is an increasing, convex function. We

assume that the interest rate faced by the household is sensitive to the debt to ensure that

there is a well defined nonstochastic steady state. As shown by Schmitt-Grohe and Uribe

(2003), this device is one of several that can be chosen to have negligible effects on the

business cycle properties of the model.

Note that so far we have assumed that the world interest rate is a constant. In fact,

Mendoza (1991) argued that assuming it to be stochastic makes little difference for the
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business cycle properties of the standard model.

The standard model is completed by specifying that factor payments are given by mar-

ginal productivities:

 = 1(Γ)

 = 2(Γ)Γ (2.6)

2.2. The Stochastic Trend Model

Aguiar and Gopinath (2007) have recently emphasized that the empirical failures of the

standard model can be remedied, by and large, by allowing labor augmenting growth to be

not constant but random. Formally, the assumption (2.2) is replaced by

Γ = Γ−1 (2.7)

where

ln (+1) =  ln () + 

+1 (2.8)

||  1, 

 is an i.i.d. process with mean zero and variance 2, and  represents the

mean value of labor productivity growth A positive realization of 

 implies that the growth

of labor productivity is temporarily above its long run mean. Such a shock, however, is

incorporated in Γ and, hence, results in a permanent productivity improvement.

That the addition of permanent productivity shocks has the potential to eliminate the

departures between the model and the data is intuitive and explained by a permanent income

view of consumption. After a favorable realization of 

 , productivity increases permanently.

Accordingly, permanent income, and therefore consumption, can increase more than cur-

rent income; this explains why consumption may be more volatile than income in emerging

economies. The same reasoning implies that the representative household may want to issue

debt in the world market to finance consumption in excess of current income, leading to a

countercyclical current account.
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2.3. Financial frictions models

Neumeyer and Perri (2005) and Uribe and Yue (2006) have argued for a theoretical framework

where business cycles in emerging economies are driven by random world interest rates that

interact with financial frictions. An empirical motivation for this view is what Calvo (1998)

has called "sudden stops", defined by abrupt and exogenous halts to the flow of international

credit to the economy, which force a violent turnarounds in the current account.

To develop this view, one can modify the standard model along lines suggested by

Neumeyer and Perri (2005). First, the price of the household’s debt is assumed to be given

by

1 =  + (̃+1Γ) (2.9)

instead of (2.5), where  is a country specific rate,

 = 
∗
 (2.10)

∗ is the world interest rate and  a country specific spread. The world interest rate is now

assumed to be random, and fluctuates around its long run value ∗ according to the process:

ln (∗
∗) =  ln

¡
∗−1

∗¢+  (2.11)

where ||  1 and  is an i.i.d. innovation with mean zero and variance 
2


In addition, deviations of the country spread from its long-run level are assumed to

depend on expected future productivity as follows

log() = − log +1 (2.12)

Adding shocks to the world interest rate to the basic model has, in fact, been considered in

the literature, with little success (see, for instance, Mendoza 1991 and Aguiar and Gopinath

2008). But random interest rates become a more compelling addition when coupled with

financial frictions. So, for example, one can argue that country risk must depend inversely

on expected productivity, as high productivity in the future should reduce the risk of default.
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Neumeyer and Perri (2005) advocated (2.12) as a shortcut to capture this idea.

An additional friction, developed by Neumeyer and Perri (2005) and Uribe and Yue

(2006), is to assume that firms must finance a fraction of the wage bill in advance. Again,

we follow Neumeyer and Perri’s formulation, the net result of which is that equilibrium in

the labor market requires

 [1 +  (−1 − 1)] = 2(Γ)Γ (2.13)

instead of (2.6). In words, the typical firm hires workers to the point at which the marginal

product of labor (the RHS of the previous expression) equals the wage rate inclusive of

financing costs (the LHS). Firms are assumed to borrow from households and forced to pay

for a fraction  of the wage bill in advance of production.

As discussed by Oviedo (2005), the working capital assumption (2.13) and the assump-

tions of a spread linked to expected productivity (2.12) are two separate alternatives, in

spite of Neumeyer and Perri’s imposing both. Indeed, they emphasize different possibilities

for improving the performance of the basic model. With the working capital assumption,

a fall in the world interest rate reduces the cost of labor, which stimulates output. At the

same time, it stimulates demand, as the cost of borrowing for consumption and investment

falls. Hence the trade balance may in principle deteriorate at the same time as output is

expanding, which can explain an acyclical or countercyclical trade balance.

With a spread process determined by expected productivity, a favorable productivity

shock increases output and, because the shock is persistent, reduces the interest rate ap-

plicable to the representative household’s debts, thus boosting consumption and investment

even beyond the boost to output. A countercyclical trade balance may then emerge, as with

working capital, although it is due to a different mechanism.

2.4. An Encompassing Model

While the literature has naturally considered stochastic trends and financial frictions sep-

arately, it is relatively straightforward to specify a model in which both extensions of the

standard model are present. In this subsection we indeed describe our preferred version of
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such an encompassing model, which will be a focus of our empirical analysis below.

Our encompassing model follows the spirit of Aguiar and Gopinath (2008), which extend

the stochastic trend model to allow for shocks to the consumption and investment Euler equa-

tions that operate through the interest rate. But we differ from Aguiar and Gopinath (2008)

in three fundamental dimensions. First, our encompassing model includes both financial

frictions, spreads that react to fundamentals and working capital requirements, embedded in

the parameters  and , respectively. Aguiar and Gopinath (2008) considered the former but

did not allow for a working capital requirement. Second, while Aguiar and Gopinath (2008)

only allowed the spread to be affected by transient technology shocks, our encompassing

model allows for permanent shocks to also affect the spread. This is more natural, since

the logic behind an endogenous spread is often based on the idea that default risk falls with

expected productivity, regardless of whether shocks to the latter are permanent or transitory.

To implement this idea, however, we need to modify the assumption (2.12) on country risk.

So, in our encompassing model the country spread will be assumed to be given by

log() = −1 log +1 − 2 log(+1)

One particular version of this, which we will examine, assumes that the spread is given

by (2.12), except that the temporary productivity shock +1 is replaced by total factor

productivity (Solow residual):

log() = − log(+1)

where  = 

 and  =  according to the Cobb-Douglas technology specified below

Third, and perhaps most importantly, Aguiar and Gopinath (2008) considered only Cobb-

Douglass preferences, which have been shown to reduce the extent to which business cycles

can be driven by interest rate shocks (Neumeyer and Perri, 2005). We assume preferences

of the Greenwood-Hercowitz-Huffman type; later, we explore the robustness of this choice

with a more flexible specification due to Jaimovich and Rebelo (2008).

Our encompassing model is then given by the combination of one of the preceding two as-
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sumptions for the spread together with the assumptions of stochastic interest rates (2.9-2.11),

the working capital requirement (2.13), and trend shocks (2.8), in addition to temporary pro-

ductivity shocks (2.1).

With this formulation, one way to evaluate the relative merits of the hypotheses of

stochastic trends and financial frictions is to analyze the contribution to different macro

aggregates of trend shocks versus shocks to the foreign interest rate. A different but comple-

mentary perspective is to compare directly the stochastic trend model against the financial

frictions model. Clearly, each of the two can be seen as suitably restricted versions of the

encompassing model, but none is a special version of the other.

3. Empirical Approach

3.1. Bayesian Analysis, in a nutshell

We adopt a Bayesian viewpoint because of its conceptual simplicity and because it allows

for a logically coherent comparison between models that are not necessarily nested, as is

the case of the stochastic trend model and the financial frictions model. To implement that

viewpoint, we draw on recent theoretical and computational advances, usefully summarized

by DeJong and Dave (2007), Canova (2007), Geweke (2005), and others. For completeness,

this section provides a very succinct description of how we implement the Bayesian approach.

Let  denote a vector of observed data. Each one of the models reviewed in the previous

section implies a probability distribution for the data, say (|) where is an index for

each model and  is a vector of parameters, possibly model specific, that we want to learn

about. Given a particular parameter vector, say ̄

 (|̄) is a probability distribution

function whose value depends on  One the other hand, having observed a realization of

 say ̄ (̄|) can be seen as a function of the parameter vector   This function is

the likelihood, usually denoted by (
 |̄) to emphasize that it is a function of  . The

likelihood functions associated with the models in the previous sections can be computed

in a straightforward fashion: following Sargent (1989), we linearize each model around its

nonstochastic steady state, solve the resulting linear system via standard methods, and map

the solution into a state space representation from which the likelihood can be computed
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using the Kalman filter.

The Bayesian framework is concerned with the way our views about models and their

parameters are revised in light of observed data. Prior beliefs about the parameters of each

model  are given by a prior distribution, which we denote by (
) After observing

the data ̄ Bayes Theorem implies that posterior beliefs about   denoted by (
 |̄)

must respect:

(
 |̄) =

(̄|)()R
(̄|)()

=
(

 |̄)()
(̄)

where we have defined (̄) model 
0 marginal likelihood, as:

(̄) =

Z
(

 |̄)()

If one can compute the posterior distribution (
 |̄) one can also compute, at least in

principle, the posterior distribution of functions of the parameter vector   In the context of

the dynamic models we are considering, such functions include impulse response functions,

moments of different variables, and variance decompositions. In practice, the analytical

derivation of both the posterior distribution (
 |̄) and the posterior distribution of

functions of  is intractable. However, recent simulation methods allow us to obtain draws

from the posterior distribution (
 |̄). A histogram of the simulated draws (or a chosen

function of them) then provides an approximation of (
 |̄) (or the posterior distribution

of the corresponding function) with a level of accuracy that can be made arbitrarily close by

increasing the number of draws.

Additionally, it is useful for our purposes that the marginal likelihood (̄) is the

probability of observing the data ̄ associated with model  So one straightforward way

to compare alternative models is to compute their respective marginal likelihoods. This is

particularly appealing if the models to be compared are not nested, as in some of the cases

examined below.

Given this framework, we conduct two complementary exercises. First, we estimate the
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encompassing model and focus on the posterior distribution of the variance decomposition of

aggregate variables, including output, thus measuring the relative importance of temporary

productivity shocks, trend shocks, and interest rate shocks when all of them are allowed

to play a role in generating fluctuations. Second, we estimate the stochastic trend model

and the financial frictions models separately and compare their marginal likelihoods, which

amounts to a direct comparison of the two versions in terms of their predictive power.

3.2. Functional forms, and calibrated versus estimated parameters

We follow the current literature on emerging market business cycles when choosing functional

forms for preferences and technology. For the most part, we impose a utility function of the

Greenwood, Hercowitz and Huffman (1988) form:

( Γ−1) =
( − Γ−1 )

1−

1− 

As discussed by Neumeyer and Perri (2005) and others, GHH preferences help repro-

ducing some emerging economies’ business cycles facts by allowing the labor supply to be

independent of consumption levels. Note that, in contrast, Aguiar and Gopinath (2007)

focused on their results with Cobb Douglass preferences instead 2. Accordingly, one of our

robustness exercises later explores a more flexible preference specification due to Jaimovich

and Rebelo (2008), which embed both GHH and Cobb Douglass as special cases.

The production function is assumed to be Cobb Douglass:

 () = 1−
 (Γ)



where  is the labor’s share of income.

The capital adjustment cost function is assumed to be quadratic:

Φ (+1) =


2

µ
+1



− 

¶2
2Although, in the working paper version, they also estimated their model with GHH preferences and

found very little difference.
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In turn, the function  determining the interest rate elasticity to the country’s debt has

the form:

 (+1Γ) = 

∙
exp(

+1

Γ
− )− 1

¸
For each model, we estimate some parameters and calibrate the rest. The choice of which

parameters to estimate or calibrate is guided by the objectives of our investigation as existing

literature.

Since a main question is the relative importance of sources of fluctuations, in each case

we estimate the parameters of exogenous driving forces. Hence, the parameters of the tran-

sitory productivity process (2.1), namely the AR coefficient  and the standard deviation

of the innovations  are always estimated. Where shocks to the trend are allowed, we also

estimate the parameters  and  of the permanent productivity process (2.8). And if the

world interest rate is allowed to be stochastic, as in the financial frictions models and the

encompassing model, we estimate  and  in (2.11).

While the addition of the permanent productivity process is the only departure of the

stochastic trend model from the standard, Mendoza-type model, allowing for financial fric-

tions models introduces two other parameters: the elasticity of the spread with respect to

expected productivity () and the working capital requirement parameter  Accordingly, we

estimate those parameters in models that allow for financial frictions. Finally, in all cases

we estimate the parameter  governing the capital adjustment function.

We calibrate the remaining parameters of each model. A period is taken to be a quarter

in our calibration. The calibrated parameters are given in Table 1 and take conventional

values: the coefficient of relative risk aversion is set at 2, and  and  are set so as to imply,

respectively, a labor supply elasticity of 166 and a third of time spent working in the long

run. The labor’s share of income, , is set to be 68%3. We calibrate the debt-to-GDP ratio

to 01, the value used in Aguiar and Gopinath (2007).

In the models with financial frictions, we set the long-run levels of the annualized foreign

and country specific gross real interest rates to 106 and 101, respectively. These values were

3Note that in the models with financial frictions,  is not exactly equal to labor share in but it is rather

calibrated as  =  ∗ [1 + (− 1) ]. Thus, it will have an entire distribution determined by the
posterior distribution of .
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calibrated according to the data provided by Uribe and Yue (2006) on Mexican interest rates

and are consistent with a five hundred basis points spread observed in Mexican sovereign

bonds, and with the long-run mean of the real risk-free rate measured by the 3-month gross

Treasury bill rate. In the stochastic trend model we set the spread to zero and use the value

reported by Aguiar and Gopinath (2007) as the mean long run foreign interest rate.

The quarterly depreciation rate is assumed to be 5 percent. As common in the literature

on small open economy models, we set the parameter  determining the interest rate elas-

ticity to debt, to a minimum value that guarantees the equilibrium solution to be stationary

(Schmitt-Grohe and Uribe, 2003). Lastly, we calibrate the long-run productivity growth, ,

equal to 1006 following the point estimate reported by Aguiar and Gopinath (2004) and

consistent with a yearly growth rate of 24 percent.

3.3. Data and Implementation

For comparability, we used the Mexican data from Aguiar and Gopinath (2007) as our

observed data, . We retrieved their series for aggregate consumption (), investment (),

output ( ), and the trade balance to output ratio ( ). The data are quarterly for the

period 1980:I to 2003:II.

Our empirical implementation requires at least three other decisions: how to deal with

trends; whether and how to include measurement error; and how to draw samples from

the posterior distribution. Our choices are best explained in the context of the state space

formulation of each model.

Once each model is linearized around its nonstochastic steady state, the system of equa-

tions that characterize its solution can be written in the form of a transition equation:

 = −1 + (3.1)

where  is a vector with the model variables,  the vector of structural shocks, and 

and  system matrices that may depend on the model parameters. The Kalman filter then
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requires specifying a measurement equation,

 =  + +  (3.2)

mapping the elements in  to a vector of observed data  by the conformable matrices

[], while  are exogenous i.i.d. measurement errors.

Given that the data is expressed in levels, and that the solution to our models is cast in

terms of log-deviations from steady states, there is a straightforward way to map a trans-

formation of the data to the elements in the models. For illustrative purposes, consider how

to deal with data on aggregate output in levels, . In this case, the observed data can be

directly linked to its theoretical stationary counterpart, , as follows:

|{z}


=  Γ−1| {z }


Furthermore, since the solution of the model is given in terms of log-deviations from

steady state, an additional transformation is needed. If there are shocks to the trend, the

measurement equation for output is

∆ ln ()| {z }


= ln+ (b − b−1) + b−1| {z }


; (3.3)

where ∆ denotes the first difference and a hat "b" denotes log-deviations from steady state

values (i.e. b = ln ()). Similarly, if there are no trend shocks, the measurement

equation for output is

∆ ln ()| {z }


= ln+ (b − b−1)| {z }


; (3.4)

Similar observations apply for the measurement equations of aggregate consumption and

investment. The absence of a trend in the trade balance share makes the mapping from

the observed data to the model based data independent of which case we are considering.

Moreover, because we take a linear approximation (rather than log-linear) to the model-based
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measure of trade balance share, , the mapping in terms of first differences is

∆ ( )| {z }


= c − c−1| {z }


;

We choose a mapping in first differences of  , instead of levels, because typically

small open economy models counterfactually deliver a quasi-random walk process in the

trade balance level, inherited by the nature of the endowment process (see Garcia-Cicco,

et.al., forthcoming).

The second issue is the treatment of the measurement errors  First, note that neither

the encompassing model nor any of its restrictions exhibit more structural shocks than

the number of time series we observe. To overcome the resulting stochastic singularity

two options are available: either basing estimation on as many observed variables as there

are shocks; or adding measurement error shocks, completing the probability space of each

model so as to render the theoretical covariance matrix of the variables in  no longer

singular4. Within the context of our investigation each alternative offers advantages and

disadvantages. While the addition of measurement errors may be warranted, given the well-

known measurement issues surrounding macroeconomic data from emerging economies, it is

still an arbitrary decision which variables will have errors and which ones will not. On the

other hand, given that one of our central goals is to compare the performance of restricted

versions of the encompassing model, we also want to know how this comparison looks like

when each version is directly mapped to the data, without the addition of artificial statistical

errors. Of course, under the latter alternative the tougher question arises of which of the four

available time series to use5. In light of this trade-off we choose to combine both methods.

We estimate both the encompassing model and its two restricted versions using all four time

series vectors and adding measurement errors to all four. In addition, for comparing the

stochastic trend and financial frictions models, we also report results when no measurement

4A third option, known in the literature as the multiple-shock approach, is to include additional structural

shocks. This option, however, would take us further away from the scope of this paper so we discard it. See

Fernandez (forthcoming) for an expanded version of the encompassing model with more structural shocks.
5This choice is indeed not a trivial one. Guerron (2009) has shown that, in the estimation of DSGE models

by Bayesian methods, posterior distributions may significantly vary according to which set of observables is

used.
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errors are added. In the latter case we explore the implications of using different pairs of

observable vector time series.

The third issue is how to sample from the posterior distribution. We follow, for the most

part, the RandomWalk Metropolis algorithm presented in An and Schorfheide (2007) to gen-

erate draws from the posterior distribution (
 |). The algorithm constructs a Gaussian

approximation around the posterior mode, which we find via a numerical optimization of

ln(
 |) + ln (), and uses a scaled version of the inverse of the Hessian computed

at the posterior mode to efficiently explore the posterior distribution in the neighborhood of

the mode. We found it useful to repeat the maximization algorithm using random starting

values for the parameters drawn from their prior support in order to gauge the possible

presence of multiple modes in the posterior distribution6. Once this step was completed,

we used the algorithm to make 150 000 draws from the posterior distribution in each case.

The initial 50 000 draws were burned. To overcome the high serial correlation of the draws,

we used every 100 draw and posterior distributions were generated with the resulting 1000

draws. Finally, convergence of the Markov chains was assessed by recursively computing

means from multiple chains as illustrated in An and Schorfheide (2007).

4. Results

This section presents our baseline results. We first summarize our prior beliefs and present

the parameters’ posterior distributions and the distribution of other key moments. We esti-

mate the encompassing model as well as the two restricted versions of interest, the stochastic

trend model and the financial frictions model. For the most part we report results obtained

with and without measurement errors. We conclude the section with an assessment of the

relative fit of the two competing approaches to business cycles in emerging economies.

6The MATLAB codes that solve all the model’s extensions as well as the ones that carry out the estimation

are available upon request.
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4.1. Priors

Our prior beliefs over the estimated parameters are described in Table 2 and were based, to

the extent possible, on earlier studies on emerging market business cycles.

Key parameters are those governing the temporary and permanent technology processes:

   . Unfortunately, existing evidence on the relative importance of each of these

parameters is ambiguous. While Aguiar and Gopinath (2004)7 estimated a ratio  =

041109 = 04 for Mexico, Garcia-Cicco et.al. (forthcoming) found the much higher ratio

 = 33071 = 46 for Argentina. Given this, we chose our prior to be a Gamma

function with parameters (206 00036). This prior has a mean of 074 for both  and

, which lies between the two point estimates found by Aguiar and Gopinath (2004) and

Garcia-Cicco et.al. (forthcoming).

Our prior for , the autoregressive coefficient of the temporary productivity shock, was a

Beta function with parameters (356 19), implying a mean of 095 and a standard deviation

of 11 percent. The mean is close to the point estimate found by Aguiar and Gopinath

(2004), and equals the value calibrated by Neumeyer and Perri (2005). Our prior for the

autoregressive coefficient of permanent productivity shocks,  was also a Beta function

with parameters (285 111), yielding a mean of 072, and a standard deviation of 23 percent.

This follows the point estimate found by Aguiar and Gopinath (2004).

Similarly, we based our priors over parameters governing the world interest rate process

and the degrees of financial frictions (   ) upon earlier studies. Our prior for , was

a Beta function with parameters (443 906), consistent with beliefs that the mean value

was 083, the point estimate found by Uribe and Yue (2006), and a standard deviation of

51 percent. For  we specified as prior a Gamma function with parameters (56 00013),

which is centered at 072 percent, the value reported by Uribe and Yue, and has a standard

deviation of 031 percent.

7The reader should note that we use the working paper version of Aguiar and Gopinath’s work (Aguiar

and Gopinath, 2004) when forming our priors, instead of the published version (Aguiar and Gopinath, 2007).

This is because only in the working paper version the estimation is done using the same GHH preferences we

use in our work whereas in the published version the authors use Cobb-Douglas preferences instead. While

they show that the business cycles implications of using the two preferences are similar, the point estimates

of the key parameters they estimate do differ substantially. In the next sections we explore the robustness

of our results to other set of preferences.
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Previous studies provide little statistical information on the size of the elasticity of the

spread to the country’s fundamentals, , and the fraction of the wage bill held as working

capital, . We use a prior with mean of 10 and a standard deviation of 10 percent for , close

to the value calibrated by Neumeyer and Perri (2005) to match the volatility of the interest

rate faced by Argentina’s residents in international capital markets. As for  we decided to

specify a fairly diffuse prior, with the only restriction that it must lie between zero and one.

For this purpose we used a Beta(2 2) function with mean 05 and a considerable standard

deviation of 224 percent reflecting the little information we have   on this parameter.

Our prior on  was a Gamma function with parameters (3 2). This is a considerably

diffuse prior, as given by the large 90 percent confidence interval, reflecting that previous

studies have found different values for this parameter when trying to mimic the investment

volatility.

Lastly, for the standard errors of the four measurement errors we chose a Gamma prior

centered at 20 and a 90 percent confidence interval ranging between 067 and 386. This

relatively diffuse prior reflected our lack of information about the size of measurement errors,

and also our belief that measurement issues may potentially be large in emerging economies.

4.2. Posteriors

We estimated various scenarios. We estimated the encompassing model as well as the two

restricted versions of it - the stochastic trend version and the financial frictions version- under

a flexible framework allowing for measurement errors in the four time series observed. We

also estimated the stochastic trend and financial frictions models without any measurement

errors using several alternative pairs of observable time series.

Estimated posterior distributions, allowing for measurement errors, are summarized in

Table 3. The third and fourth columns report posterior modes and means of the parameters

of the encompassing model, while the next two columns report posterior modes for the two

restricted models. As a benchmark, the last column reports the GMM estimates of Aguiar

and Gopinath (2004). In addition, Table 4 reports variance decompositions and Figure 1

plots priors and posterior distributions for the encompassing model.
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Several results deserve attention:

• The data are fairly informative, in particular with respect to the volatilities of the
shocks, in the sense that the estimated posteriors appear much more precise than the

priors, as measured by the size of the 90 percent highest posterior density intervals.

• Interestingly, in the encompassing model, the role of permanent shocks does not appear
to be as dominant as suggested by our prior beliefs. The estimated posterior mode

ratio of volatilities is  = 066012 = 55, which is clearly at odds with Aguiar and

Gopinath’s (2007) finding that volatility of innovations appears to be much stronger in

the permanent technology process than in the transient one. While this ratio suggests

a minor role of trend shocks in the Mexican business cycle, an overall assessment can

be based on the random walk component of the Solow residual which, following Aguiar

and Gopinath (2007), is defined as follows:

 =
22

¡
1− 

¢2£
2 (1 + )

2
¤
2 +

£
22

¡
1− 2

¢¤
The mode and mean of the posterior distribution of the RWC for the encompassing

model is given at the bottom of Table 3. It is immediate to see that, given that the

posterior of the ratio  is left pretty much unchanged relative to the prior, while

the ratio  increases significantly, the posterior of the random walk component is

largely reduced relative to the prior. Indeed, we obtain a RWC whose posterior mode

is only 020, far below the 53 value recovered by Aguiar and Gopinath. Therefore,

a full-information method does not assign such a relevant role to trend shocks as a

method that only looks at a selected subset of moments.

• To a large extent, the minor role of trend shocks is explained by the relevance of interest
rate shocks and the financial frictions amplifying them. We find that the posterior

distributions of the parameters  and  governing the degree of financial frictions are

far away from zero. The posterior mode for  is 069 signaling that a little less than

three quarters of the wage bill is kept as working-capital needs. This value is in line
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with those calibrated for other emerging economies8. The tight posterior mode for ,

with its mean centered around 073 reveals a significant elasticity of the spread to

expected movements in the country fundamentals, embedded in the Solow residual.

While this is lower than our prior beliefs, which were centered around the value of

10 calibrated by Neumeyer and Perri (2005), it is still remarkable to obtain a high

value given that Neumeyer and Perri’s calibration was based on the observed process

of the country interest rate, which we do not observe here. Notably also, the relative

importance of trend shocks increases when the stochastic trend model is estimated and

we shut down both interest rate shocks and financial frictions (fifth column).

• To assess the relative role of each structural shock in explaining macroeconomic fluctu-
ations, we computed the posterior distribution of the variance decompositions implied

by the encompassing model. The results over a time horizon of 40 quarters are reported

in the top panel of Table 4. The most remarkable result is the small role played by

trend shocks when accounting for the variance of the observed macroeconomic aggre-

gates. The largest share of permanent shocks is only 3%, when explaining the variance

of consumption, and it shrinks further when looking at the other three variables. On

the other hand, world interest rate shocks play a nontrivial role, particularly when

explaining the variance in the trade balance-to-GDP ratio (43%), investment (24%),

and to a lesser extent in consumption (11%). Their role accounting for the variance

of output (6%) falls within the estimates from other studies. For example, Neumeyer

and Perri (2005) find that the percentage standard deviation of Argentina’s GDP in a

model with financial frictions but no shocks to international rates is 3% smaller than

the one in a model with interest rate shocks; and Uribe and Yue (2006) find that US

interest rate shocks explain about 20% of movements in aggregate activity in a pool of

emerging market economies. The largest share of the variance in all four aggregates is

however largely explained by transient shocks to the technology process. This will be

further analyzed below.

8Using data on net aggregate interest payments to GDP in Korea, Benjamin and Meza (2009) calibrate

working capital requirements in a multi sector model between 050 and 082.
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• Following An and Schorfheide (2007), we checked for convergence of the MCMC algo-
rithm by recursively computing means from multiple chains. For this purpose we chose

six vectors of initial parameters by drawing randomly from their prior support, and

then used each vector to run independent Markov chains. The results are reported in

Figure 2 for the estimation of the encompassing model. Despite different initializations,

the parameters’ means converge in the long-run.

• The lower panel in Table 4 presents the counterfactual experiment of shutting off the
limk between technology shocks and spreads,  = 0. The results suggest that the large

role of transient technology shocks in accounting for fluctuations in investment and

the trade balance, and to a lesser extent in consumption, is driven by their impact

on spreads. This is better illustrated by looking at the impulse response functions in

Figures 3 and 4. The responses of the main macroeconomic aggregates to a transitory

technology shock depend strongly on whether the financial friction embedded in 

is included or not. With   0 transitory technology shocks are greatly amplified,

which explains the large share of interest rate shocks when this channel is turned off

in the lower panel of Table 4 and in the impulse responses plotted in Figure 4. Still,

surprisingly, output’s variability continues to be explained by "pure" technology shocks

even if  = 0.

• Another result in Table 3 is that measurement errors appear to exhibit large standard
deviations similar to those in the structural shocks. This is robust across the three cases

in Table 3. While this signals that still a non trivial fraction of the volatility in the main

macro aggregates, particularly consumption and investment, is left unexplained by the

model, the role of measurement errors in the dynamics of these aggregates should not

be compared to that of the structural shocks given that, by construction, these shocks

are serially uncorrelated. Indeed, over the time horizon of the forecast error variance

decompositions in Table 4 (40 quarters) their role in accounting for the variance of the

variables considered is virtually negligible.

• Nonetheless, one could ask how the posterior results would differ for the two restricted
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models if we estimated them without any measurement error. The results of this

experiment, using three separate pairs of observables, are given in Table 5. What we

observe across the three pairs of results is that the size of the shocks increases in order

to account for the volatility that was soaked up before by the measurement errors. In all

three cases considered for the stochastic trend model, the RWC increases with respect

to the benchmark case with measurement errors. In the case of the financial frictions

model, however, most of the volatility is now soaked up by increasing the size of the

parameter governing the capital adjustment cost. This may signal a complementary

explanation as to why our results differ from Aguiar and Gopinath (2007), given that

they did not consider the possibility of measurement errors. Overall these results

are also consistent with Guerron (2009)’s findings that posterior distributions may

significantly vary according to which set of observables is used.

4.3. Model Comparison

4.3.1. Marginal Data Densities

We turn next to formal comparisons of the models considered above. Table 6 reports values

of the likelihood and posterior (in logs) computed at the posterior mode, (log(
 |)

and log (
 |) in terms of our previous discussion) and the values of the marginal data

density ( log ()) for each model.

Overall, the results reported in Table 6 tend to mildly favor the financial frictions model.

All values for the log-likelihood evaluated at each model’s posterior mode are highest for the

financial frictions model. When judging by the log-marginal likelihood, the results are a little

bit more ambiguous. Allowing for measurement errors implies superiority for the stochastic

trend model, yet this is probably because the likelihood of the financial frictions model peaks

at a value that is at odds with the information used to construct the prior distribution (An

and Schorfheide, 2007).

With no measurement errors, in two of the three cases the financial frictions model attains

a better relative fit than the stochastic trend model, both in terms of a higher log-likelihood

and, more markedly, in terms of marginal data densities and hence predictive performance.
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Indeed, the posterior odds of the financial frictions model against the stochastic trend model

(the ratios of their respective marginal likelihoods) are in the order of 1 : exp(10) or higher,

well above the thresholds considered as "decisive evidence" in favor of the financial frictions

model (see e.g. DeJong and Dave, 2007). In the third case, when only consumption and

output are observed, the log-marginal likelihood favors the stochastic trend model, but only

with a posterior odds in the order of 1 : 2 which constitutes only "very slight evidence" in

favor of that model.

Note that the two restricted models, the stochastic trend and financial frictions models,

can attain higher likelihood and marginal likelihood levels than the encompassing model.

This result can be explained by the different priors used implicitly when estimating the two

restricted models. As an illustration, consider the case of , the AR(1) parameter in the 
∗

process. When estimating the encompassing model, the 90 percent prior distribution over

this parameter lies in the interval [074 091], so that values close to zero are highly penalized

by the prior. Yet, when estimating the stochastic trend model as a restricted version of the

encompassing model,  is set to zero, or, more precisely, a unit mass prior is defined over

zero. A similar case occurs with all the other parameters that are set equal to zero in the

restricted models, {  } for the case of the stochastic trend model and { } for the

case of the financial frictions model. These differences in the priors imply that areas of the

posterior distribution that were not explored before in the estimation of the encompassing

model are now explored in the two restricted models. This makes it essential to explore

further the role of the priors, as we do in the next section.

For comparison purposes, we report in Table 6 the log-likelihood value for the stochastic

trend model evaluated at the point GMM estimates of the parameters reported by Aguiar

and Gopinath (2004)9. The log-likelihood value implied by the GMM-estimated parameters

is far below the levels we obtain. This gives further quantitative evidence that, within the

context of the models analyzed here, a full-information method can deviate substantially

from an estimation method that, like GMM, only looks at a selected subset of moments.

And from the evidence just discussed, we learn that this deviation takes mainly the form of

9The parameters are reported in Table 3. When computing the log-likelihood value at this vector, we use

the posterior mode of the four measurement errors.
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a significantly higher variance of the transient technology shock.

4.3.2. Selected Moments

It could be argued that, for macroeconomists, predictive performance may not be the only

relevant metric to evaluate the relative merits of alternative models. As mentioned above,

the literature on emerging market business cycle has emphasized some key moments in model

evaluation. Two moments have drawn much attention: the marked countercyclicality of the

trade balance and the high volatility of consumption and investment relative to output. This

section compares the models under study along a particular subset of moments, including

the two just mentioned. In doing so we are implicitly conducting a more stringent test of

each model, as the estimation was not designed to match this particular set of moments.

The results are gathered in Tables 7.1 and 7.2, where the filtered sample moments of the

data, in terms of standard deviations, correlations with output and the trade balance, and

serial correlations, are compared to the theoretical moments from the encompassing model

as well as the two restricted models. Consistent with the measurement equations used in

the above section, we filter the data using simple log-differences for income, consumption

and investment, and first differences for the trade balance share. Model-based moments are

computed at posterior mode estimates10. For comparison purposes, the moments associated

with Aguiar and Gopinath (2004)’s GMM estimation are reported in the last column of Table

7.111.

The main findings are as follows:

• The encompassing model delivers a reasonably close match to the facts emphasized in
the literature: it delivers a more volatile path for consumption and investment with

respect to output and reproduces the strong countercyclicality of the trade balance

share observed in the data. Recall that this is obtained without resorting to significant

trend shocks. This is further confirmed by the moments of the financial frictions model

10Standard errors are omitted for brevity but are available upon request.
11To be precise, Aguiar and Gopinath (2004) conduct the GMM estimation based upon 11 moments of

which only two, the standard deviation and serial correlations of  , are reported in Table 7.1. The other

9 moments used in that work refer to Hodrick-Prescott filtered moments which we don’t present here given

that we don’t use this filtering technique.
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which are quite similar to those of the encompassing model, indicating that financial

frictions can amplify interest rate and transient technology shocks to the point of

causing a response of consumption that exceeds the response in output leading to

countercyclical net exports, a result obtained previously by Neumeyer and Perri (2005)

for Argentina.

• A salient failure of the stochastic trend model is its inability to reproduce a significantly
more volatile consumption with respect to output. This failure occurs consistently both

with and without measurement errors. In addition, when measurement errors are not

included, the model’s implied variance of the main macro aggregates is excessively

high, notably for  and .

• A comparison between the moments implied by the the estimated stochastic trend

model and the ones derived from the GMM point estimates suggests why our full-

information estimation differs from the GMM results. While the GMM approach,

by construction, assigns more weight to the standard deviations, the full-information

method assigns weights also the correlations among the four observed variables and

thus attains a better match in that dimension. Obviously, other dimensions, different

than the ones presented in Tables 7.1 and 7.2, will be also better matched in a full-

information approach.

5. Robustness Checks

In this section we assess the robustness of our baseline results along five dimensions. First, we

gauge the robustness of the results when using less informative priors. Second, we investigate

the separate role of the two financial frictions under consideration. Third, we examined the

role of GHH preferences. Fourth, we assess whether our results change if we estimate the

rate of long-run productivity growth. Finally, we include the country specific and foreign

interest rates into the vector of observables and use the reestimated model and smoothed

shocks to simulate the macro dynamics during the Tequila Crisis.
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5.1. Less Informative Priors

The first six columns of Table 8 examine the implications of less informative priors. To do

this, for almost all parameters we choose flat priors given by uniform distributions. The

exceptions are the AR(1) coefficients of the driving forces’ processes, for which we choose a

quasi flat priors given a Beta function with parameters (2,2), implying a mean of 05 and a

large standard deviation of 224 percent.

The first result of interest is the presence of two local modes in the posterior distribution.

Each mode favors one of the two approaches to business cycles in emerging economies. The

higher mode, with a likelihood and posterior values of 10046 and 10146 respectively, is

characterized by the virtual disappearance of trend shocks -the posterior mode for  is

002 percent-, while the transitory technology shocks exhibit values larger than the ones

obtained under the initial priors. The parameters estimated for the interest rate process

characterize a lower volatility but a higher persistence relative to the benchmark case. As

a consequence of this, the value of the random walk component is negligible. On the other

hand, a lower posterior mode, with a likelihood and posterior values of 9978 and 1009

respectively, is characterized by the predominance of trend shocks: its technology shocks

ratio is / = 046/112, and the parameters governing the the elasticity of the spread, ,

is virtually zero.

A challenge for the Bayesian estimation is, therefore, to fine tune the Metropolis-Hasting

algorithm so as to properly sample from the regions surrounding each of the two modes.

For the results reported in the sixth column of Table 8, we were able to make the Markov

chain cross over the two modes with enough regularity. The Markov chain explored more the

posterior around the high mode, and hence the mean values are closer to those of the high

posterior mode. Interestingly, the mean posteriors are not too far from the mode reported

for the encompassing model under the initial priors. This explains why the results from

the variance decomposition exercise under the less informative priors, reported in the upper

panel of Table 9, are quantitatively similar to the ones presented before in Table 4. Indeed,

we observe a much smaller role played by trend shocks as opposed to transitory technology

shocks when accounting for the variance of the observed macroeconomic aggregates. We view
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these results as evidence that our baseline results are robust to assuming less informative

priors.

5.2. One Financial Friction at a Time

The results presented thus far favor the view that financial frictions amplify shifts in mar-

ket fundamentals through spreads that react to fundamentals and, through the presence of

working-capital needs, have supply side effects following exogenous interest rate perturba-

tions. It is therefore of interest to investigate the extent to which each of the two financial

frictions is responsible for these results. We address this question by shutting down one of

the two frictions at a time.

We start by estimating the encompassing model without the assumption of working

capital needs,  = 0, but still allowing for the spread to be affected by expected changes in

the Solow residual and estimating the parameter  governing the elasticity of the spread.

Next, we run the estimation by considering the opposite: we shut down the endogenous

spread,  = 0, while we allow for the possibility of working capital needs, estimating the

parameter . Last, we consider the case where none of the two financial frictions is present,

 =  = 0.

The results of these experiments, in terms of the new posterior distributions, are reported

in Table 10, and the results in terms of variance decompositions and selected second moments

are presented in Tables 11 and 12. Two results are worth mentioning. First, relative to

the benchmark case in Table 3, the results are virtually unaltered when the working-capital

assumption is dropped,  = 0. Indeed, the posterior mode continues to be characterized, as in

the encompassing model, by a strong elasticity of the spread to fundamentals, volatile shocks

in interest rates and transient technology, and modest trend shocks. A sharply different

outcome is obtained when  = 0. In this case the exploration of the posterior favors the

mode where stochastic trend shocks are the leading driving forces. This is further emphasized

by the variance decompositions in Table 11. The results in the upper panel, where  = 0

are virtually unchanged relative to the benchmark case in Table 4. However the variance

decompositions change drastically when  = 0. In this case, the lion’s share of the variance of
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most of the macro variables is explained by growth shocks. Second, the moments presented

in Table 12 show that, if working capital needs are the only financial friction in place, the

model fails to generate a consumption process more volatile than the output process, and this

in turn prevents the model from generating a strong countercyclical trade balance-to-GDP

ratio.

These results are in line with Oviedo (2005), who argues that the presence of an en-

dogenous spread is a necessary ingredient when building models that aim at replicating

emerging market business cycles and that the presence of working capital requirements is

not a necessary requirement in getting business cycles models closer to emerging economies’

macroeconomic data.

5.3. Jaimovich-Rebelo preferences

Our baseline parameterization for preferences has been of the kind first suggested by Green-

wood, Hercowitz and Huffman (1988). This is because GHH preferences improve the ability

of business cycles models to reproduce some stylized facts both in advanced open economies

(Mendoza (1991), Correia et.al. (1995)) and developing market economies (Neumeyer and

Perri (2005), Garcia-Cicco et.al. (forthcoming)).

A well documented reason for the empirical success of GHH preferences is the fact that

they allow for labor supply to be independent of consumption levels. This leads to high

substitutability between leisure and consumption, low income effect on labor supply, and

large responses of consumption and labor to productivity shocks. In contrast, in the case of

Cobb-Douglas preferences, the income effect mitigates the response of labor to productivity

shocks because labor supply is no longer independent of consumption levels. Compared to

the case of GHH preferences, leisure and consumption are not easily substitutable because

the income effect is strong. As a consequence, there is an incentive to smooth consumption

excessively over the business cycle by saving, in response to a positive shock. Aguiar and

Gopinath (2004), however, suggested that the role of preferences was minor, and in particular

that their main result concerning the relative importance of trend shocks was robust to these

alternative assumptions on preferences.
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To investigate this issue, and more generally to test the robustness of our results to

our specification of preferences, we repeated our estimations with preferences of the form

introduced by Jaimovich and Rebelo (2008), which embed both GHH and Cobb Douglass as

special cases:

( ) =
( −  )

1−

1− 

where the representative household internalizes in her maximization problem the dynamics

of  given by:

 = 

 

1−
−1 , 0 ≤  ≤ 1

The presence of  makes preferences non-time-separable in consumption and hours

worked. As shown in Jaimovich and Rebelo (2008), these preferences nest as special cases

the two classes of utility functions mentioned above. When  = 1 we obtain preferences of

the Cobb-Douglas type. Conversely, when  = 0 we obtain GHH preferences. Therefore,

lower values of  will render the income effect of technology and interest rate shocks milder,

producing short-run responses to shocks that are similar to those obtained under GHH

preferences. Conversely, higher values of  will have the opposite effect, as shifts in the labor

supply will likely offset changes in labor demand. In the latter case, and according to the

findings in Aguiar and Gopinath (2004), it is more likely that business cycles will be driven

by trend shocks, and interest rate shocks coupled with financial frictions will play a minor

role.

A key parameter to be estimated is . Our approach was agnostic in not imposing

strong prior beliefs on the distribution of this parameter. To this end we used a uniform

distribution over the support  ∈ (0 1]. Note that, by excluding the case  = 0, hours

worked were stationary so we did not need to introduce the trend in the utility function.

The results are reported in the second-to-last column in Table 8. It is immediate to see

that the estimation strongly favors very low levels of  as the posterior is tightly concen-

trated toward zero with a mean of 005. Moreover, the role of permanent shocks is even

less important relative to our baseline results: before, the estimated posterior mode ratio of

volatilities was  = 066012 = 55; now, it increases to  = 102006 = 17 and
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the posterior mean for the random walk component falls from 028 to 004. In addition, re-

computing variance decompositions implies that trend shocks are now negligible, accounting

for at most 2 percent of the overall variance (upper-middle panel in Table 9).

Taken together, these results are indicative that our baseline results, favoring a model

with financial frictions and interest rate shocks do not hinge on the assumption of GHH

preferences. To our knowledge Schmitt-Grohe and Uribe (2009) is the only work that has

previously estimated  within a fully-fledged DSGE model, for open developed economies,

finding even lower posterior means for . Our results clearly extend theirs to developing

economies.

5.4. Estimating Long-Run Growth

A key parameter in the hypothesis that business cycles in emerging economies are driven by

stochastic productivity shocks is long-run productivity growth, , because it is around this

value that the random shocks drive the productivity process. In the baseline encompassing

model we calibrated the value of this parameter to match a yearly net growth rate of 24

percent, or  = 1006, using the GMM-point estimate reported by Aguiar and Gopinath

(2004). However, it is clear from the evidence presented so far that GMM estimates may

differ from the values obtained by full-information methods.

To check the significance of this issue, we reestimated the encompassing model including

net yearly growth,  as one of the estimated parameters. We specified a diffuse prior over

that parameter, with a Gamma function with parameters (25 01) in accordance with our

beliefs that long-run yearly net growth has a mean equal to 25 percent but allowing for

substantial uncertainty, a standard deviation of 50 percent 12. The results are reported in

the last column of Table 8 and indicate a slightly higher posterior mean of 251 percent,

and the uncertainty is somewhat reduced relative to the prior beliefs. Importantly, the

baseline results from the encompassing model appear to be robust. Notably, the posterior

ratio among volatilities, , and the random walk component posterior mean are both

quite close to the baseline results. Likewise, the variance decomposition presented in the

lower-middle panel of Table 9 continues to assign a minor role of trend shocks.

12The link between the gross quarterly growth rate, , and  is thus:  = 100 ∗ ¡4 − 1¢ 
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5.5. Observing interest rate processes and simulating the Tequila Crisis

Our estimations have been based on the dataset of Aguiar and Gopinath (2007) and, ac-

cordingly, have not exploited observable data on interest rates. We proceeded in that way

in order to maximize comparability with Aguiar and Gopinath’s work, but also because of

data availability. Data series of interest rates for emerging economies are not easy to obtain,

and most times they are constructed from data on sovereign spreads, like the J.P. Morgan

EMBI, which starts only after 1994. In contrast, Aguiar and Gopinath’s data set starts in

1980.

In spite of these considerations, it may be of interest to check how our results change if

we add interest rate data. Hence we estimated the encompassing model adding measures

of the domestic and foreign interest rates,  and ∗, respectively, in the set of observable

time series for estimation. As the country specific risky interest rate we used Uribe and

Yue (2006)’s Mexican interest rate in international capital markets, computed as the sum of

the J.P. Morgan’s EMBI+ stripped spread for Mexico and the US real interest rate. As the

foreign interest rate we used the sum the US real interest rate and a global index of eight

emerging market economies13. This definition of ∗ may be somewhat unusual, but is the

appropriate one if we are to regard the spread between  and ∗ as a country specific one,

which is the only view consistent with the theoretical model (and, in particular, with the

assumption that the spread may depend on expected domestic productivity).

As noted already, data on sovereign spreads is available only since 1994. The twomeasures

of interest rates are plotted in Figure 5. The plot also presents the implied spread, computed

as the ratio of the Mexican and foreign interest rates. The two interest rates exhibit a high

but not perfect correlation, (equal to 0.78) and present two particular peaks around the

Mexican Tequila Crisis in the mid 1990s and the Russian and Asian financial crises of the

late 1990s.

We added the interest rate series to the four observables in the Aguiar-Gopinath dataset,

and reestimated the encompassing model (for the subsample after 1994). The results of are

13For the period 1998 onward the EMBI+Emerging Market index was used. For the period 1994 to 1997,

the index was interpolated using countries for which data on sovereign yields spreads was available. These

countries (and the first year for which data on spreads was available) are: Argentina (1994), Brazil (1994),

Ecuador (1995), Mexico (1994), Peru (1997), Korea (1994), Thailand (1997) and South Africa (1995).
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presented in the bottom of Table 914. Shocks to the transitory component of the technology

process continue to account for most of the variability in the Mexican macro variables.

Notably, however, the significance of growth shocks in explaining the variability of output

and consumption increases relative to our previous cases. In contrast, interest rate shocks

become less relevant. In this sense, the inclusion of interest rate data appears to favor the

stochastic trends hypothesis.

One should realize, however, that these results do not mean that financial frictions are

unimportant, since financial frictions may be amplifying the impact of any of the exogenous

shocks. To examine this, and also to have an alternative view of model performance, we

attempted to quantify the accuracy of the encompassing model in reproducing the Mexican

dynamics during the 1994-5 Tequila Crisis.

We computed a historical decomposition of the structural shocks, exploiting the smooth-

ing properties of the Kalman filter, following Hamilton (1994) and DeJong and Dave (2007).

From the state space representation (3.1) and the measurement equation (3.2) we backed out

the state variables and innovations, using the information contained in the entire sample:

{1|  |}=2003:4=1994:1

Next, we independently used each of the three structural shocks to simulate the evolu-

tion of the four Mexican macroeconomic aggregates during the 1995 Tequila Crisis and its

aftermath.

Figure 6 shows the results. Each row tracks the observed and model-based simulated

time series of the Mexican macro aggregates between 1994 and 1997. The model based

simulations were obtained using only the smoothed shocks to the technology growth (first

row), the foreign interest rate (second row), and the transitory technology processes (third

row). It is immediate to see that neither growth shocks nor shocks to the foreign interest

rate can reproduce the observed dynamics. The only shock that comes close to reproducing

the deep fall in economic activity and the sharp reversal of the trade balance during the

14For the sake of brevity, the posterior estimates are omitted but the tabulated results are available upon

request.
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crisis is the one that transiently affects total factor productivity.

Here, again, we have to remember that these perturbations may also be largely amplified

by the financial frictions embedded in the model. To evaluate this possibility, Figure 7

reproduces the simulation of the Tequila Crisis using only transitory technology shocks but

varying the severity of the two financial frictions embedded in the parameters  and . The

first row reports the simulation shutting down both financial frictions by setting  =  = 0.

The second and third rows set, separately,  = 0 and  = 0 respectively, while leaving the

other one equal to its estimated value. It is quite clear after looking at these plots that

the success of transitory technology shocks in reproducing the Tequila crisis comes, by and

large, from the presence of financial frictions, particularly embedded in , the parameter

that governs the elasticity of the spread to expectations of future productivity. 15

6. Concluding Remarks

One could ask, in particular, how our results can be reconciled with those of Aguiar and

Gopinath (2007), who reported strong support for the stochastic trend model. The short

answer, in our view, is that Aguiar and Gopinath’s GMM procedure targeted only a few

moments of the joint process of the aggregates observed, while our Bayesian procedure

considers all moments of the process. One could, then, argue that Aguiar and Gopinath’s

estimates of the importance of the random walk component would be superior in terms of

criterion functions that emphasize those moments targeted by their GMM procedure. But

then one would also have to justify why those moments and not many others are the only

ones that we may care about.

While our emphasis has been on the financial frictions/stochastic trend dichotomy, there

is plenty of associated research to be done. One could, for example, compare the performance

of the financial frictions model against atheoretical VARs. While the predictive performance

of the latter is likely to be superior, recent work suggests that refined versions of stochastic

dynamic models can be built that compete with VARs in terms of predictive power.

15A similar experiment was conducted by Fernandez (forthcoming) using data for other developing coun-

tries and a wider spectrum of shocks. His results point also to the need for financial frictions in closing the

gap between observed and simulated dynamics.
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In terms of policy, our results lend support to the idea that attempts to ameliorate

financial imperfections may result in less aggregate volatility. They are likely too to lead to

increases in welfare, although this is a question about which our estimation exercises have

nothing to say.
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TABLES AND FIGURES 
 

Table 1. Calibrated Parameters 

 
Models 

Parameter Description 
Encompassing  

Stochastic 
Trend 

Financial 
Frictions  

  
Intertemporal 
Elasticity of 

Substitution 1 /    
2.000 2.000 2.000 

  
Labor Supply 

Elasticity 
1

1
 
  

 
1.600 1.600 1.600 

  Labor Share of 
Income 0.6868 0.6800 0.6867 

*R  
Gross Foreign 
Interest Rate 1.0025 1.0323 1.0025 

  Long-run 
Productivity Growth 1.006 1.006 1.006 

  
Labor Parameter so 

that 1 /3SSh   1.7168 1.5662 1.7169 

  Debt Elastic Interest 
Rate Parameter 0.001 0.001 0.001 

  Discount Factor 0.9976 0.9804 0.9976 

S  
Long-run Gross 
Country Interest 
Rate Premium 

1.0120 1.0000 1.0120 

  
Depreciation Rate of 

Capital 0.050 0.050 0.050 

d  
Debt-to-GDP Ratio 

(D/Y) 0.100 0.100 0.100 

R  
Gross Country-
specific Interest 

Rate 
1.0145 1.0323 1.0145 

 
Note: A period is taken to be a quarter in the calibration. Note that in the encompassing and 
financial friction models  is not exactly equal to labor share ( -h Share ) but it is rather 

 - * 1 1h Share R      . In the Table, values are computed using the posterior mode of  . 

 



 
Table 2. Prior Distributions 

 
Parameter Range Density Mean S.D (%) 90% Conf. Interval 

Parameters Common to Both Models 

a  
AR(1) Coeff. Transitory 

Tech. Process. [0,1) Beta      [ 356.2 ; 18.753] 0.95 1.12 [ 0.92 ; 0.97] 

a  
S.D. of Transitory Tech. 

Shock (%) R+ Gamma [ 2.060 ; 0.0036] 0,74 0.56 [ 0.12 ; 1.67] 

  
Capital Adjustment Cost 

Fct. Parameter R+ Gamma [ 3.000 ; 2.0000] 6.00 346 [ 1.62 ; 12.6] 

X  
S.D. (%) of Measurement 
Error in X = Y,C,I,TB/Y R+ Gamma [ 4.000 ; 0.0050] 2.00 1.00 [ 0.67 ; 3.86] 

Parameters Specific to the Stochastic Trend Model 

g  
AR(1) Coeff. Permanent 

Tech. Process. [0,1) Beta      [ 285.1 ; 110.88] 0.72 2.25 [ 0.68 ; 0.76] 

g  
S.D. of Permanent Tech. 

Shock (%) R+ Gamma [ 2.060 ; 0.0036] 0,74 0.56 [ 0.12 ; 1.67] 

Parameters Specific to the Financial Frictions Model 

R  
AR(1) Coeff. Foreign 
Interest Rate Process. [0,1) Beta      [ 44.26 ; 9.0655] 0.83 5.10 [ 0.74 ; 0.91] 

R  
S.D. of Foreign Interest 

Rate Shock (%) R+ Gamma [ 5.552 ; 0.0013] 0,72 0.31 [ 0.30 ; 1.29] 

  Working Capital Parameter [0,1] Beta      [ 2.000 ; 2.0000] 0.50 22.4 [ 0.13 ; 0.87] 

  Spread Elasticity  R+ Gamma [ 99.22 ; 0.0101] 1.00 10.1 [ 0.84 ; 1.17] 

 
 



 
Table 3. Posterior Distributions. Encompassing and Separate Models 

 
Encompassing Model 

Separate Models: Posterior 
Modes 

Parameter Prior 
Mode 

Mean & 
90% C.I 

Stochastic 
Trend M. 

Fin. Frictions M 

AG-GMM 
Estimates 

a  
0.95    

[0.92, 0.97] 0.89 0.89    
[0.87, 0.92] 0.94 0.89 0.94 

100 a  
0.74    

[0.12, 1.67] 0.66 0.66    
[0.51, 0.82] 0.69 0.66 0.41 

  
6.00    

[1.62, 12.6] 14.78 14.86    
[11.99, 18.81] 3.69 14.77 3.79 

100 Y  
2.00    

[0.67, 3.86] 0.64 0.62    
[0.32, 0.88] 0.48 0.64  

100 C  
2.00    

[0.67, 3.86] 1.13 1.16    
[0.99, 1.35] 1.15 1.14  

100 I  
2.00    

[0.67, 3.86] 3.04 3.09    
[2.58, 3.66] 3.08 3.03  

/100 TB Y
 

2.00    
[0.67, 3.86] 0.78 0.78    

[0.54, 0.99] 0.92 0.78  

g  
0.72    

[0.68, 0.76] 0.72 0.72    
[0.68, 0.75] 0.73  0.72 

100 g  
0.74    

[0.12, 1.67] 0.12 0.11    
[0.01, 0.29] 0.73  1.09 

R  
0.83    

[0.74, 0.91] 0.81 0.81    
[0.70, 0.88]  0.81  

100 R  
0.72    

[0.30, 1.29] 0.42 0.41    
[0.26, 0.57]  0.42  

  
0.50    

[0.13, 0.87] 0.69 0.69    
[0.25, 0.98]  0.69  

  
1.00    

[0.84, 1.17] 0.73 0.73    
[0.61, 0.85]  0.73  

RWC 3.15    
[0.18, 6.37] 0.20 0.28    

[0.00, 1.14] 3.25 0.00 5.33 
Note: Estimates obtained using four observables, {gY, gC, gI, dTB/Y} from the Mexican Data, 1980.1-2003.2. All estimations were done 
using measurement errors in all four variables. AG-GMM Estimates refer to the generalized method of moment estimates reported by 
Aguiar and Gopinath (2004) which we present here as benchmark. RWC refers to the random walk component, see text for details. 

 
 
 
 



Table 4. Forecast Error Variance Decompositions, Encompassing Model 
 

Structural 
Shock 

gY gC gI dTB/Y 

a  91.52 86.36 74.95 55.22 

g  2.38 3.12 1.32 1.78 

*R  6.10 10.52 23.72 43.01 

Counterfactual, No Endogenous Spread: 0   

a  93.04 66.84 5.95 17.38 

g  1.53 5.08 1.47 0.82 

*R  5.43 28.08 92.59 81.81 

Note: gX denotes log-differences, dX denotes first differences. Variance decompositions computed from the estimation using 
four observables and measurement errors in all variables. Numbers reported using posterior means estimates. Standard 
Errors are omitted for brevity but are available upon request. In the variance decomposition computations only the role of the 
structural shocks was taken into account. In the counterfactual exercise, all parameters are set equal to their posterior mode 
levels except  for 0  . A time horizon of 40 quarters was used when computing the variance decomposition. 

 

Table 5. Posteriors Without Measurement Errors 
 

Observables:{gY,dTB/Y} Observables:{gY,gI} Observables:{gY,gC} 
Parameter Stochastic 

Trend M. 
Financial 

Frictions M.
Stochastic 
Trend M. 

Financial 
Frictions M.

Stochastic 
Trend M. 

Financial 
Frictions M.

a  0.93 0.90 0.91 0.93 0.93 0.89 

100 a  0.87 0.76 1.21 0.84 1.03 0.87 

  5.66 31.45 3.59 27.81 10.87 18.37 

g  0.76  0.77  0.78  

100 g  1.04  1.15  1.09  

R   0.88  0.92  0.91 

100 R   0.58  0.72  0.63 

   0.77  0.24  0.59 

   0.79  0.88  0.75 

RWC 4.46 0.00 3.92 0.00 4.67 0.00 
Note: Estimates obtained using pairs of observables, from the Mexican Data, 1980.1-2003.2 and no measurement errors. Numbers 
reported are posterior modes, which are very similar to the posterior means. Standard errors are omitted for brevity but are available 
upon request.  



Table 6. Model Comparison 
 

Models Likelihood Posterior Marginal Likelihood 
Observables: {gY, gC, gI, dTB/Y}; Measurement Errors in all Variables 

Encompassing Model 991.5 1010.1 956.2 
Stochastic Trend Model 989.7 1015.0 973.8 

Financial Frictions Model 991.9 1003.4 960.4 
AG - GMM 975.2   

Observables: {gY. dTB/Y}; No Measurement Errors 
Stochastic Trend Model 516.1 525.0 506.8 

Financial Frictions Model 540.1 535.7 514.9 
Observables: {gY, gI}; No Measurement Errors 

Stochastic Trend Model 387.0 391.7 372.9 
Financial Frictions Model 430.1 432.6 408.0 

Observables: {gY, gC}; No Measurement Errors 
Stochastic Trend Model 512.7 517.0 499.9 

Financial Frictions Model 524.4 519.5 499.3 
Note: Results are in logs. Log-Likelihood levels computed in the posterior mode. Results on marginal data densities are approximated 
by Geweke's harmonic mean estimator with truncation parameter 0.5. Except for the cases with no measurement errors and 
measurement errors in all 4 variables, results are computed observing the time series for output, consumption, investment and the 
trade balance-to-GDP ratio, and i.i.d. measurement errors were added to the observation of all variables. AG-GMM stands for the log-
likelihood value evaluated using the estimated parameters in Aguiar and Gopinath (2004) and the measurement errors from the 
posterior mode. 

 

Table 7.1. Second Moments. Encompassing and Separate Models 
 

Variable 
Mexican 

Data 
Encompassing 

Stochastic 
Trend 

Financial 
Frictions 

Aguiar-
Gopinath 

Standard Deviations (%) 
gY 1.53 1.23 1.54 1.22 1.58 
gC 1.94 1.68 1.62 1.65 1.71 
gI 5.66 4.63 4.47 4.60 5.52 

dTB/Y 1.38 1.46 0.98 1.44 1.12 
S.D. (X) / S.D. (gY) 

gC 1.27 1.36 1.05 1.36 1.08 
gI 3.71 3.76 2.90 3.77 3.49 

dTB/Y 0.91 1.18 0.64 1.18 0.71 
Correlation with gY 

gC 0.76 0.95 0.95 0.95 0.98 
gI 0.75 0.79 0.90 0.79 0.88 

dTB/Y -0.44 -0.65 -0.54 -0.64 -0.71 
Correlation with dTB/Y 

gC -0.50 -0.83 -0.78 -0.83 -0.82 
gI -0.67 -0.97 -0.85 -0.97 -0.95 

Serial Correlation 
gY 0.27 0.19 0.15 0.19 0.27 
gC 0.20 0.18 0.08 0.18 0.19 
gI 0.44 -0.06 -0.02 -0.06 -0.01 

dTB/Y 0.33 -0.08 -0.05 -0.08 -0.02 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using observables {gY, gC, gI, dTB/Y} from the 
Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. Standard Errors are omitted for brevity but are 
available upon request. All estimations were done using measurement errors in all four variables. Aguiar and Gopinath (2004) conduct 
the GMM estimation based upon 11 moments of which only two, the standard deviation and serial correlations of gY, are reported in 
Table 7.1, the other 9 moments refer to Hodrick-Prescott filtered moments which we don't present here given that we don't use this 
filtering technique. 



 
Table 7.2. Second Moments. Estimations Without Measurement Errors 

 

Observables:{gY, dTB/Y} Observables:{gY, gI} Observables:{gY, gC} 

Variable 
Mexican 

Data Stochastic 
Trend 

Financial 
Frictions 

Stochastic 
Trend 

Financial 
Frictions 

Stochastic 
Trend 

Financial 
Frictions 

Standard Deviations (%) 
gY 1.53 2.06 1.43 2.66 1.52 2.32 1.63 
gC 1.94 2.33 2.25 2.78 3.17 2.63 2.43 
gI 5.66 5.07 3.57 7.71 6.08 3.94 6.39 

dTB/Y 1.38 1.37 1.58 1.93 2.89 1.33 2.56 
S.D. (X) / S.D. (gY) 

gC 1.27 1.13 1.57 1.05 2.08 1.13 1.49 
gI 3.71 2.46 2.50 2.90 4.00 1.69 3.93 

dTB/Y 0.91 0.67 1.10 0.72 1.90 0.57 1.57 
Correlation with gY 

gC 0.76 0.92 0.90 0.91 0.84 0.91 0.82 
gI 0.75 0.86 0.70 0.84 0.73 0.84 0.59 

dTB/Y -0.44 -0.41 -0.45 -0.38 -0.57 -0.20 -0.34 
Correlation with dTB/Y 

gC -0.50 -0.73 -0.80 -0.72 -0.92 -0.59 -0.81 
gI -0.67 -0.82 -0.95 -0.82 -0.98 -0.71 -0.96 

Serial Correlation 
gY 0.27 0.17 0.19 0.16 0.15 0.14 0.17 
gC 0.20 0.08 0.21 0.09 0.05 0.07 0.17 
gI 0.44 -0.29 -0.04 -0.02 -0.03 0.02 -0.04 

dTB/Y 0.33 -0.05 -0.06 -0.05 -0.04 -0.05 -0.05 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and 
no measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. 
Standard Errors are omitted for brevity but are available upon request.  

 



Table 8. Posterior Distributions. Robustness Analysis: Less Informative 
Priors; Other Preferences; and Estimation of Long-Run Growth 

 
Less Informative Priors 

Jaimovich-Rebelo Preferences and 
Estimating Long-Run Growth 

Parameter 
Prior 

Distribution 
Prior 
Mean 

High 
Posterior 

Mode 

Low 
Posterior 

Mode 

Posterior 
Mean 

Prior 
Distribution 

Jaimovich-
Rebelo 

Preferences 

Estimating 
Long-Run 

Growth 

a  Beta (2,2) 0.50 0.89 0.67 0.91    
[0.83, 0.98] 

0.95      
[0.92, 0.97] 

0.88      
[0.87, 0.90] 

0.89        
[0.87, 0.92] 

100 a  
Uniform 
(0.01,10) 5.00 0.82 0.46 0.84    

[0.74, 0.96] 
0.74      

[0.12, 1.67] 
1.02      

[0.82, 1.25] 
0.66        

[0.50, 0.83] 

  
Uniform 
(0.0,40) 20.0 8.75 2.30 7.92    

[4.02, 11.95] 
6.00      

[1.62, 12.6] 
16.40      

[12.40, 20.79] 
14.87        

[11.92, 18.01] 

100 Y  
Uniform 
(0.01,10) 5.00 0.01 0.01 0.09    

[0.01, 0.31] 
2.00      

[0.67, 3.86] 
0.43      

[0.16, 0.68] 
0.59        

[0.20, 0.90] 

100 C  
Uniform 
(0.01,10) 5.00 1.19 1.19 1.20    

[1.05, 1.37] 
2.00      

[0.67, 3.86] 
1.19      

[1.04, 1.36] 
1.18        

[1.00, 1.38] 

100 I  
Uniform 
(0.01,10) 5.00 2.89 2.82 3.02    

[2.47, 3.54] 
2.00      

[0.67, 3.86] 
2.96      

[2.44, 3.47] 
3.08        

[2.57, 3.66] 

/100 TB Y
 

Uniform 
(0.01,10) 5.00 0.64 0.81 0.48    

[0.03, 0.84] 
2.00      

[0.67, 3.86] 
0.65      

[0.37, 0.90] 
0.71        

[0.18, 0.97] 

g  Beta (2,2) 0.50 0.50 0.50 0.52    
[0.06, 0.96] 

0.72      
[0.68, 0.76] 

0.72      
[0.68, 0.75] 

0.72        
[0.68, 0.76] 

100 g  
Uniform 
(0.01,10) 5.00 0.02 1.12 0.03    

[0.01, 0.08] 
0.74      

[0.12, 1.67] 
0.06      

[0.00, 0.16] 
0.11        

[0.01, 0.30] 

R  Beta (2,2) 0.50 0.93 0.87 0.94    
[0.86, 0.99] 

0.83      
[0.74, 0.91] 

0.82      
[0.72, 0.89] 

0.82        
[0.72, 0.90] 

100 R  
Uniform 
(0.01,10) 5.00 0.17 0.04 0.16    

[0.07, 0.30] 
0.72      

[0.30, 1.29] 
0.36      

[0.25, 0.49] 
0.41        

[0.26, 0.57] 

  Beta (2,2) 0.50 0.65 0.76 0.62    
[0.13, 0.96] 

0.50      
[0.13, 0.87] 

0.56      
[0.18, 0.88] 

0.69        
[0.26, 0.96] 

  
Uniform 
(0.0,5.0) 2.50 0.32 0.00 0.25    

[0.01, 0.52] 
1.00      

[0.84, 1.17] 
0.67      

[0.56, 0.79] 
0.73        

[0.60, 0.87] 

  
Uniform 

(0.001,1.0)     0.50      
[0.05, 0.95] 

0.05      
[0.00, 0.13]  

  
Gamma 
(25,0.1)     2.50      

[1.72, 3.35]  2.51        
[1.97, 3.06] 

RWC  1.01 0.00 2.48 0.33    
[0.00, 0.40]  0.04      

[0.00, 0.16] 
0.28        

[0.00, 1.18] 

Log-Posterior at Mode  1014.6 1009.0   1011.3 1009.9 

Log-Likelihood at Posterior 
Mode  1004.6 997.8   1000.5 991.6 

Note: All robustness cases were estimated using observables {gY, gC, gI, dTB/Y} from the Mexican Data, 1980.1-2003.2 using measurement errors in all four 
variables. Results for Jaimovich-Rebelo Preferences and Estimating Long-Run Growth are posterior means and 90 percent confidence intervals for posterior 
distributions. 



 
Table 9. Forecast Error Variance Decompositions. Robustness Analysis: 
Less Informative Priors; Other Preferences; and Estimation of Log-Run 

Growth 
 

 
Structural 

Shock 
gY gC gI dTB/Y 

Less Informative Priors 

a  97.56 87.37 64.59 22.11 

g  0.16 0.68 0.17 0.78 

*R  2.28 11.95 35.24 77.11 

Jaimovich-Rebelo Preferences 

a  87.57 94.91 85.64 58.68 

g  1.09 1.82 0.66 2.05 

*R  11.34 3.27 13.71 39.27 

Estimating Long-Run Growth 

a  91.38 85.74 73.72 53.37 

g  2.46 3.19 1.34 1.76 

*R  6.16 11.07 24.94 44.87 

Observing Interest Rates {R*,R} 

a  61.72 53.16 76.70 67.45 

g  37.96 46.20 17.98 16.01 

*R  0.32 0.65 5.32 16.55 

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and no 
measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior means. Standard Errors are 
omitted for brevity but are available upon request.  

 



  

Table 10. Posterior Distributions. Robustness Analysis: One Financial 
Friction at a Time. 

 
No Working Capital 

0   
No Endogenous 
Spread 0   

No Financial 
Frictions 0    

Parameter Prior 
Posterior 

Mode 
Mean 

Posterior 
Mode 

Mean 
Posterior 

Mode 
Mean 

a  
0.95    

[0.92, 0.97] 0.89 0.89    
[0.87, 0.91] 0.96 0.96    

[0.94, 0.97] 0.96 0.96    
[0.94, 0.97] 

100 a  
0.74    

[0.12, 1.67] 0.78 0.78    
[0.64, 0.91] 0.71 0.73    

[0.58, 0.85] 0.73 0.74    
[0.61, 0.89] 

  
6.00    

[1.62, 12.6] 15.14 15.41    
[12.43, 18.8] 4.11 4.28    

[2.90, 5.92] 4.02 4.13    
[2.94, 5.51] 

100 Y  
2.00    

[0.67, 3.86] 0.53 0.54    
[0.26, 0.80] 0.35 0.34    

[0.15, 0.58] 0.35 0.31    
[0.11, 0.54] 

100 C  
2.00    

[0.67, 3.86] 1.17 1.18    
[1.00, 1.39] 1.12 1.14    

[0.98, 1.32] 1.13 1.15    
[1.01, 1.33] 

100 I  
2.00    

[0.67, 3.86] 2.87 2.99    
[2.51, 3.54] 2.65 2.68    

[2.15, 3.21] 2.66 2.70    
[2.16, 3.22] 

/100 TB Y  
2.00    

[0.67, 3.86] 0.79 0.80    
[0.56, 1.03] 0.73 0.74    

[0.54, 0.94] 0.72 0.73    
[0.52, 0.94] 

g  
0.72    

[0.68, 0.76] 0.72 0.72    
[0.68, 0.75] 0.71 0.71    

[0.67, 0.75] 0.71 0.71    
[0.68, 0.75] 

100 g  
0.74    

[0.12, 1.67] 0.12 0.10    
[0.01, 0.26] 0.62 0.57    

[0.27, 0.81] 0.62 0.59    
[0.29, 0.84] 

R  
0.83    

[0.74, 0.91] 0.84 0.84    
[0.75, 0.91] 0.86 0.85    

[0.77, 0.92] 0.86 0.86    
[0.78, 0.93] 

100 R  
0.72    

[0.30, 1.29] 0.37 0.37    
[0.22, 0.53] 0.14 0.15    

[0.09, 0.22] 0.14 0.14    
[0.09, 0.20] 

  
0.50    

[0.13, 0.87]   0.65 0.61    
[0.10, 0.96]   

  
1.00    

[0.84, 1.17] 0.71 0.71    
[0.60, 0.83]     

RWC 3.15    
[0.18, 6.37] 0.13 0.14    

[0.00, 0.57] 2.62 2.31    
[0.69, 3.60] 2.38 2.20    

[0.61, 3.49] 

 



Table 11. Forecast Error Variance Decompositions. Robustness 
Analysis: One Financial Friction at a Time 

 

Structural Shock gY gC gI dTB/Y 

No Working Capital Needs: 0   

a  97.97 91.62 78.79 56.52 

g  1.38 2.09 0.88 1.34 

R  0.65 6.29 20.33 42.14 

No Endogenous Spread: 0   
a  72.67 47.53 32.11 3.50 

g  25.84 49.65 30.55 39.22 

R  1.50 2.82 37.34 57.28 

No Financial Frictions: 0    

a  73.23 47.78 33.99 4.16 

g  25.98 50.41 31.66 41.57 

R  0.79 1.81 34.35 54.28 

 See Note in Table 9. 
 

Table 12. Second Moments. Robustness Analysis: One Financial 
Friction at a Time 

 

Variable Mexican Data No Working Capital 0   
No Endogenous 
Spread 0   

No Financial 
Frictions 

0    
Standard Deviations (%) 

gY 1,53 1,38 1,49 1,51 
gC 1,94 1,79 1,50 1,51 
gI 5,66 4,76 4,58 4,64 

dTB/Y 1,38 1,44 1.24 1.26 
S.D. (X) / S.D. (gY) 

gC 1,27 1,30 1,00 1,00 
gI 3,71 3.45 3,07 3,07 

dTB/Y 0,91 1.04 0,83 0,83 
Correlation with gY 

gC 0,76 0,96 0,94 0,94 
gI 0,75 0,87 0,72 0,73 

dTB/Y -0,44 -0,70 -0,35 -0,36 
Correlation with dTB/Y 

gC -0,50 -0,88 -0,60 -0,61 
gI -0,67 -0,96 -0,88 -0,88 

Serial Correlation 
gY 0,27 0,00 0,11 0,11 
gC 0,20 -0,04 0,08 0,07 
gI 0,44 -0,06 -0,04 -0,04 

dTB/Y 0,33 -0,07 -0,07 -0,07 



Figure 1. Priors and Posteriors:  Encompassing Model 
 

0.8 0.9 1
0

10

20

30

40


a

0.7 0.8
0

5

10

15

20


g

0 0.5 1
0

0.5

1

1.5

2


0.6 0.8 1
0

2

4

6

8

10


R

0 0.01 0.02
0

100

200

300

400


a

0 0.01 0.02
0

100

200

300

400

500


g

0 0.01 0.02
0

100

200

300

400

500


R

0.5 1 1.5
0

1

2

3

4

5


0 10 20
0

0.05

0.1

0.15

0.2


0 0.05
0

50

100

150

200

250


Y

0 0.05
0

100

200

300

400


C

0 0.05
0

50

100

150


I

0 0.05
0

100

200

300


NX

0 5 10
0

1

2

3

4
Rand. Walk Comp.

posterior

prior

 



Figure 2. Convergence 
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Note: Each line corresponds to recursive means for the 13 parameters as a function of the number of draws, computed from 6 independent 
MCMC chains using random starting values. 



Figure 3 Impulse Response Functions, Encompassing Model 
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Note: Each column tracks the response of output (Y); consumption (C); investment (I), and employment (h) as deviations 
from steady states, after an estimated 1 S.D.  shock to the transitory technology process (Column 1); the foreign interest rate 
process (Column 2); and the growth process (Column 3). Dashed lines depict 90% confidence interval based upon the 
posterior distribution.  



Figure 4. Impulse Response Functions after a transitory technology 
Shock: A Counterfactual Experiment 
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Note: The green dotted line depicts the mean posterior distribution of the same impulse response 
function following an estimated 1 S.D.  shock to the transitory technology process except that we 
counterfactually assume the parameter  to be zero. 

 

Figure 5. Time Series for Domestic and Foreign Interest Rates 
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Note: R* is the risky world interest rate measured as the safe interest rate (taken from the TBills rate) plus the EMBI+  
for a pool of developing emerging market economies; R is the Mexican interest rate measured as the safe interest rate 
plus the EMBI+ Mexico; S is the implied spread between the two interest rates. Sources: Uribe and Yue (2006) and 
Global Financial Data. 



Figure 6. Simulating The Tequila Crisis 
 
 

Using only smoothed growth shocks 
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Using only smoothed foreign interest rate shocks 
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Using only smoothed transitory technology shocks 
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Note: Each row tracks the observed (solid line) and model-based simulated (dashed line) time series of log-output (Y); log-consumption (C); log-investment (I), 
and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state shocks. Simulations do not include measurement 
errors. 
 



Figure 7. Simulating The Tequila Crisis Using Only Transitory Technology Shocks and Various Degrees of 
Financial Frictions 

Using only smoothed transitory technology shocks and no financial frictions 
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Using only smoothed transitory technology shocks and no working capital needs 
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Using only smoothed transitory technology shocks and no spread 
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Note: Each row tracks the observed (solid line) and model-based simulated (dashed and starred lines) time series of log-output (Y); log-consumption (C); log-
investment (I), and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state transitory technology shocks. 


