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1. Introduction

Recent research on macroeconomic fluctuations in emerging economies has resulted in two
leading approaches, both of which can be seen as extensions of Mendoza’s (1991) basic dy-
namic stochastic model. The first approach, due to Aguiar and Gopinath (2007), introduces
a stochastic productivity trend, in addition to the temporary productivity shocks already
present in Mendoza’s model. This seemingly small addition, Aguiar and Gopinath argue,
goes a very long way towards addressing well known empirical failures of the model when
taken to data from emerging market economies, including the strong counter cyclical behav-
ior of the trade surplus and the higher volatility of consumption relative to output’s.

A second approach, exemplified by Neumeyer and Perri (2005) and Uribe and Yue (2006),
relies instead on the introduction of foreign interest rate shocks coupled with financial fric-
tions. This approach is motivated by the observation that the cost of foreign credit appears
to be countercyclical in emerging economies data. Accordingly, both Neumeyer and Perri
(2005) and Uribe and Yue (2006) develop models in which country risk spreads are stochastic
and interact with financial imperfections. Then they argue that those models are consistent
with the empirical regularities of emerging economies.

In this paper, we compare the two approaches empirically, taking advantage of recent de-
velopments in the theory and implementation of Bayesian methods. We build an encompass-
ing model that combines stochastic trends with interest rate shocks and financial frictions.
We then estimate the parameters of the exogenous shock processes, along with a few other
crucial parameters. The stochastic trend model and the random interest rates/financial fric-
tions model can be then regarded as restricted versions of the encompassing model. The
relative performance of these alternative models is evaluated by comparing their marginal
likelihoods as well as their ability to match a subset of selected moments of the data. We
employ the Mexican dataset of Aguiar and Gopinath (2007), thus ensuring that our results
can be compared with the findings of that paper.

We obtain several results of interest. In our benchmark estimations, the mode of the
posterior distribution of the estimated parameters of the encompassing model is characterized

by strong financial frictions, volatile shocks to the processes for interest rates and transient



technology, and modest trend shocks. The random walk component, a measure of the relative
importance of trend shocks, is less than a fifth of what Aguiar and Gopinath (2007) obtained
using a model with no financial frictions. Consequently, when we evaluate the relative
contribution of the different shocks to aggregate fluctuations, we find that, while temporary
productivity shocks are responsible for the bulk of the variance of aggregates, interest rate
shocks have a sizeable role as well, generating about six to ten percent of the variance
of output and consumption, one fourth the variance of investment, and close to half the
variance of the trade balance/output ratio. In contrast, the share of those variances due to
trend shocks is three percent or less.

In formal, likelihood based, model comparisons, the financial frictions model beats the
stochastic trends model more often than not, although the results are not decisive. This
reflects that the likelihood has several local modes, and indeed we find that assuming less
informative priors than in the benchmark implies a posterior parameter distribution with
two local modes, each favoring one of the two approaches (although the one associated with
financial frictions is the highest mode). In other words, this perspective on the data appear
not to speak very loudly about which approach is empirically better.

In other ways, however, the data are quite informative. In particular, the benchmark
model allows for two kinds of financial frictions: a working capital requirement (as in Uribe
and Yue 2006) and an endogenous spread (as in Neumeyer and Perri 2005). Our estimations
strongly indicate that it is the latter, not the former, that is crucial for a financial frictions
view to be a reasonably good approximation to the data. Notably, this confirms previous
analysis by Oviedo (2005).

Likewise, our estimations clearly imply that temporary productivity shocks cannot be
dispensed with in the models under study, even if interest rate shocks and trend shocks
are included, if these models are to match the volatility and persistence of output and other
major macroeconomic aggregates. However, we show that the role of temporary productivity
shocks is greatly enhanced by the presence of financial frictions.

We show our results to be robust to a number of departures from our benchmark as-

sumptions, such as preference specification, or the addition of data on interest rates to the



Aguiar-Gopinath dataset. Finally, we estimate the contribution of temporary productivity
shocks, trend shocks, and interest rate shocks in explaining the dynamics of the Mexican
1995 Tequila crisis. We argue that temporary productivity shocks appear to have dominated
the episode but, again, that financial frictions were crucial to amplify their effects.

Overall, our results are supportive of the view that explaining fluctuations in emerging
economies requires assuming financial imperfections that amplify conventional productivity
shocks and, perhaps less crucially, interest rate shocks. Trend shocks add relatively little,
although they become quantitatively relevant if financial frictions are assumed away.

Our study is closely related to the recent paper of Garcia-Cicco, Pancrazi, and Uribe
(forthcoming), who examined 1900-2005 data from Mexico and Argentina to probe the em-
pirical soundness of the stochastic trend hypothesis. They find that an estimated dynamic
stochastic model with trend shocks performs poorly along several dimensions, most markedly
the behavior of the trade balance to GDP ratio. For the case of Argentina, they also esti-
mated a version of the model augmented with stochastic shocks to the cost of foreign credit,
and found that version to be much more satisfactory. Also, they found that such an extension
implied that the role of trend shocks in explaining aggregate fluctuations became negligible.
Hence Garcia Cicco et al.’s work and findings clearly have similar flavor as ours. However,
there are significant differences as well. One difference is that Garcia-Cicco et al.’s findings
appear strongly driven by their use of very long run data. In contrast, we use the same
data as in Aguiar and Gopinath (2007), and are still able to argue in favor of the role of
financial frictions and against that of stochastic trends. More importantly, we study deeper
specifications of financial frictions (working capital requirements and endogenous spreads),
as opposed to the exogenously stochastic spreads that represent the main financial frictions
in Garcia Cicco et al. Finally, we complement the review of impulse responses and variance
decompositions with formal Bayesian model evaluation and comparison methods.

Our emphasis on the role of financial frictions is, of course, not new. In addition to the
papers by Neumeyer-Perri and Uribe-Yue, financial imperfections have been stressed by the
literature on balance sheet effects (Cespedes, Chang and Velasco 2004) and sudden stops

(Calvo 1998, Mendoza 2006). A main contribution of this paper is to provide a quantitative



perspective on the empirical accuracy of financial frictions models relative to their main
competitor, the stochastic trend hypothesis.

Our work is related to at least two other strands of the literature. One is the debate
of whether fluctuations in emerging economies are dominated by domestic shocks or foreign
shocks. Several years ago now, Calvo, Leiderman, and Reinhart (1993) upset the then
conventional wisdom by showing that foreign interest rate shocks were a major source of
fluctuations in Latin America. Our results are clearly complementary to theirs.

Finally, our paper belongs to a growing group of studies that apply developments in
Bayesian methods to models and questions in open economy macroeconomics. Examples
include Lubik and Schorfheide (2005), and Rabanal and Tuesta (2006).

The rest of the paper is organized as follows. Section 2 presents the models under study.
Section 3 discusses the details of our empirical approach. Section 4 presents and discusses

our baseline results. Section 5 presents several robustness exercises. Section 6 concludes.

2. Competing Models

Currently competing views on the sources of shocks to emerging countries can be regarded
as elaborations on the canonical real business cycle model of a small open economy first
developed by Mendoza (1991) and discussed by Schmitt-Grohe and Uribe (2003). As stressed
by Mendoza and others, the standard model has notable empirical shortcomings, which have
motivated several extensions and amendments. In this paper we are concerned with two
dominant extensions: one which we will call the stochastic trend model, which features
permanent shocks to technology, as advocated by Aguiar and Gopinath (2007); and another,
the financial frictions model, which introduces foreign interest rate shocks that interact
with financial imperfections, as discussed by Neumeyer and Perri (2005) and Uribe and Yue
(2006). This section discusses these alternatives and also describes an encompassing model

that embeds both stochastic trends and financial frictions.



2.1. The standard small open economy model

The standard model of a small open economy is well known. Time is discrete and indexed
by t = 0,1, 2, ... There is only one final good in each period, which can be produced with a

technology given by
Y, = atF(Kt, Ftht)

where Y; denotes output, K; capital available in period ¢, h; labor input, and F' is a neo-
classical production function. We use upper case letters to denote variables that trend in
equilibrium, and lower case letters to denote variables that do not!. Also, a; is a shock to

total factor productivity, assumed to follow the process:

loga; = p,log a1 + € (2.1)

where |p,| < 1, and &} is an i.i.d. shock with mean zero and variance o2. In the standard
model, the shock ¢ is the only source of uncertainty. Also, and importantly for our purposes,
total factor productivity is a stationary process.

Finally, I'; is a term allowing for labor augmenting productivity growth. In the standard

model, I'; is assumed to follow a deterministic path:

Ft = /l,Ft,1 (22)

Capital accumulation is given by a conventional equation:

Kt+1 - (1 - 5)Kt + It - q) (Kt+17 Kt) (23)

where [; denotes investment, § the rate of depreciation, and ® (K, 1, K;) costs of installing

capital.

!The only exceptions will be the spread, S;, and the world and domestic gross interest rates, R} and Ry,
to be defined later, which do not trend in equilibrium.



The economy is inhabited by a representative household with preferences of the form:

Ei BLU(Cy, by, Ty1) (2.4)

t=0

where [ is a discount factor between zero and one, C; denotes consumption, U(.) a period
utility function, and F(.) the expectation operator. (We include I';_; in the period utility
function U to allow for balanced growth.)

The representative agent has access to a world capital market for noncontingent debt.

Her budget constraint is, therefore,
Wtht + Uth + qt.DtJrl = Ct + It + Dt

W, denotes the wage rate and u, the rental rate of capital, so the first two terms in the LHS
are factor receipts in period t. In addition, ¢; is the price at which the household can sell a
promise to a unit of goods to be delivered at ¢+ 1, while D;; is the number of such promises
issued. The LHS describes expenditures in period ¢, given by consumption, investment, and
debt payments.

Residents of this country face an interest rate on foreign borrowing given by the inverse

of ¢;, and assumed to take the form:
/g = R* + K(Diy1/Ty) (2.5)

where R* is the world interest rate, D,; denotes the country’s aggregate debt (which is equal
to the household’s debt D;; in equilibrium) and x(.) is an increasing, convex function. We
assume that the interest rate faced by the household is sensitive to the debt to ensure that
there is a well defined nonstochastic steady state. As shown by Schmitt-Grohe and Uribe
(2003), this device is one of several that can be chosen to have negligible effects on the
business cycle properties of the model.

Note that so far we have assumed that the world interest rate is a constant. In fact,

Mendoza (1991) argued that assuming it to be stochastic makes little difference for the



business cycle properties of the standard model.
The standard model is completed by specifying that factor payments are given by mar-

ginal productivities:

uy = a (Ku Ftht>

Wt == ath(Kt,Ftht)Ft (26)

2.2. The Stochastic Trend Model

Aguiar and Gopinath (2007) have recently emphasized that the empirical failures of the
standard model can be remedied, by and large, by allowing labor augmenting growth to be

not constant but random. Formally, the assumption (2.2) is replaced by

Iy=gl'i (2-7)

where

In (ge41/p) = pyIn(ge/p) + iy (2.8)

lpy| < 1, f is an iid. process with mean zero and variance 03, and p represents the
mean value of labor productivity growth. A positive realization of £/ implies that the growth
of labor productivity is temporarily above its long run mean. Such a shock, however, is
incorporated in I'; and, hence, results in a permanent productivity improvement.

That the addition of permanent productivity shocks has the potential to eliminate the
departures between the model and the data is intuitive and explained by a permanent income
view of consumption. After a favorable realization of £/, productivity increases permanently.
Accordingly, permanent income, and therefore consumption, can increase more than cur-
rent income; this explains why consumption may be more volatile than income in emerging
economies. The same reasoning implies that the representative household may want to issue
debt in the world market to finance consumption in excess of current income, leading to a

countercyclical current account.



2.3. Financial frictions models

Neumeyer and Perri (2005) and Uribe and Yue (2006) have argued for a theoretical framework
where business cycles in emerging economies are driven by random world interest rates that
interact with financial frictions. An empirical motivation for this view is what Calvo (1998)
has called "sudden stops", defined by abrupt and exogenous halts to the flow of international
credit to the economy, which force a violent turnarounds in the current account.

To develop this view, one can modify the standard model along lines suggested by
Neumeyer and Perri (2005). First, the price of the household’s debt is assumed to be given
by

1/q = Ry + £(Dys1/Ty) (2.9)

instead of (2.5), where R; is a country specific rate,

R, = S,R; (2.10)

Ry is the world interest rate and S; a country specific spread. The world interest rate is now

assumed to be random, and fluctuates around its long run value R* according to the process:
In(R;/R*) = ppln (R;_,/R*) +¢&/* (2.11)

where |pp| < 1 and €l is an i.i.d. innovation with mean zero and variance o%.
In addition, deviations of the country spread from its long-run level are assumed to

depend on expected future productivity as follows
log(S¢/S) = —nE;log aiyq (2.12)

Adding shocks to the world interest rate to the basic model has, in fact, been considered in
the literature, with little success (see, for instance, Mendoza 1991 and Aguiar and Gopinath
2008). But random interest rates become a more compelling addition when coupled with
financial frictions. So, for example, one can argue that country risk must depend inversely

on expected productivity, as high productivity in the future should reduce the risk of default.



Neumeyer and Perri (2005) advocated (2.12) as a shortcut to capture this idea.

An additional friction, developed by Neumeyer and Perri (2005) and Uribe and Yue
(2006), is to assume that firms must finance a fraction of the wage bill in advance. Again,
we follow Neumeyer and Perri’s formulation, the net result of which is that equilibrium in

the labor market requires

Wt [1 + 9 (Rtfl — 1)] = ath(Kt, Ftht)rt (213)

instead of (2.6). In words, the typical firm hires workers to the point at which the marginal
product of labor (the RHS of the previous expression) equals the wage rate inclusive of
financing costs (the LHS). Firms are assumed to borrow from households and forced to pay
for a fraction 6 of the wage bill in advance of production.

As discussed by Oviedo (2005), the working capital assumption (2.13) and the assump-
tions of a spread linked to expected productivity (2.12) are two separate alternatives, in
spite of Neumeyer and Perri’s imposing both. Indeed, they emphasize different possibilities
for improving the performance of the basic model. With the working capital assumption,
a fall in the world interest rate reduces the cost of labor, which stimulates output. At the
same time, it stimulates demand, as the cost of borrowing for consumption and investment
falls. Hence the trade balance may in principle deteriorate at the same time as output is
expanding, which can explain an acyclical or countercyclical trade balance.

With a spread process determined by expected productivity, a favorable productivity
shock increases output and, because the shock is persistent, reduces the interest rate ap-
plicable to the representative household’s debts, thus boosting consumption and investment
even beyond the boost to output. A countercyclical trade balance may then emerge, as with

working capital, although it is due to a different mechanism.

2.4. An Encompassing Model

While the literature has naturally considered stochastic trends and financial frictions sep-
arately, it is relatively straightforward to specify a model in which both extensions of the

standard model are present. In this subsection we indeed describe our preferred version of
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such an encompassing model, which will be a focus of our empirical analysis below.

Our encompassing model follows the spirit of Aguiar and Gopinath (2008), which extend
the stochastic trend model to allow for shocks to the consumption and investment Euler equa-
tions that operate through the interest rate. But we differ from Aguiar and Gopinath (2008)
in three fundamental dimensions. First, our encompassing model includes both financial
frictions, spreads that react to fundamentals and working capital requirements, embedded in
the parameters 1 and 6, respectively. Aguiar and Gopinath (2008) considered the former but
did not allow for a working capital requirement. Second, while Aguiar and Gopinath (2008)
only allowed the spread to be affected by transient technology shocks, our encompassing
model allows for permanent shocks to also affect the spread. This is more natural, since
the logic behind an endogenous spread is often based on the idea that default risk falls with
expected productivity, regardless of whether shocks to the latter are permanent or transitory.
To implement this idea, however, we need to modify the assumption (2.12) on country risk.

So, in our encompassing model the country spread will be assumed to be given by

log(S:/S) = —nyEilog a1 — ny By log(gre/ 1)

One particular version of this, which we will examine, assumes that the spread is given
by (2.12), except that the temporary productivity shock a;;; is replaced by total factor

productivity (Solow residual):

log(S:/S) = —nEilog(SR;11/SR)

where SR; = a;g and SR = u® according to the Cobb-Douglas technology specified below.

Third, and perhaps most importantly, Aguiar and Gopinath (2008) considered only Cobb-
Douglass preferences, which have been shown to reduce the extent to which business cycles
can be driven by interest rate shocks (Neumeyer and Perri, 2005). We assume preferences
of the Greenwood-Hercowitz-Huffman type; later, we explore the robustness of this choice
with a more flexible specification due to Jaimovich and Rebelo (2008).

Our encompassing model is then given by the combination of one of the preceding two as-

11



sumptions for the spread together with the assumptions of stochastic interest rates (2.9-2.11),
the working capital requirement (2.13), and trend shocks (2.8), in addition to temporary pro-
ductivity shocks (2.1).

With this formulation, one way to evaluate the relative merits of the hypotheses of
stochastic trends and financial frictions is to analyze the contribution to different macro
aggregates of trend shocks versus shocks to the foreign interest rate. A different but comple-
mentary perspective is to compare directly the stochastic trend model against the financial
frictions model. Clearly, each of the two can be seen as suitably restricted versions of the

encompassing model, but none is a special version of the other.

3. Empirical Approach

3.1. Bayesian Analysis, in a nutshell

We adopt a Bayesian viewpoint because of its conceptual simplicity and because it allows
for a logically coherent comparison between models that are not necessarily nested, as is
the case of the stochastic trend model and the financial frictions model. To implement that
viewpoint, we draw on recent theoretical and computational advances, usefully summarized
by DeJong and Dave (2007), Canova (2007), Geweke (2005), and others. For completeness,
this section provides a very succinct description of how we implement the Bayesian approach.

Let X denote a vector of observed data. Each one of the models reviewed in the previous
section implies a probability distribution for the data, say py;(X[6*), where M is an index for
each model and 0 is a vector of parameters, possibly model specific, that we want to learn
about. Given a particular parameter vector, say o, pM(.|9M) is a probability distribution
function whose value depends on X. One the other hand, having observed a realization of
X, say X, pa(X].) can be seen as a function of the parameter vector . This function is
the likelihood, usually denoted by Ly (6*|X) to emphasize that it is a function of #*. The
likelihood functions associated with the models in the previous sections can be computed
in a straightforward fashion: following Sargent (1989), we linearize each model around its
nonstochastic steady state, solve the resulting linear system via standard methods, and map

the solution into a state space representation from which the likelihood can be computed
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using the Kalman filter.

The Bayesian framework is concerned with the way our views about models and their
parameters are revised in light of observed data. Prior beliefs about the parameters of each
model M are given by a prior distribution, which we denote by pys(#*). After observing
the data X, Bayes Theorem implies that posterior beliefs about 6, denoted by pas (0™ |X),

must respect:

Pt (X107 )par (0™)
S e (X0 )par (™) do™
Lag (0™ X)par (0™)

pu(X)

pu(0M|X) =

where we have defined py,(X), model M's marginal likelihood, as:

par(0) = [ L0 a0 )"

If one can compute the posterior distribution p M(HM | X) one can also compute, at least in
principle, the posterior distribution of functions of the parameter vector #*. In the context of
the dynamic models we are considering, such functions include impulse response functions,
moments of different variables, and variance decompositions. In practice, the analytical
derivation of both the posterior distribution py;(6*|X) and the posterior distribution of
functions of 0 is intractable. However, recent simulation methods allow us to obtain draws
from the posterior distribution pys(0*|X). A histogram of the simulated draws (or a chosen
function of them) then provides an approximation of py;(6*|X) (or the posterior distribution
of the corresponding function) with a level of accuracy that can be made arbitrarily close by
increasing the number of draws.

Additionally, it is useful for our purposes that the marginal likelihood pj(X) is the
probability of observing the data X associated with model M. So one straightforward way
to compare alternative models is to compute their respective marginal likelihoods. This is
particularly appealing if the models to be compared are not nested, as in some of the cases
examined below.

Given this framework, we conduct two complementary exercises. First, we estimate the

13



encompassing model and focus on the posterior distribution of the variance decomposition of
aggregate variables, including output, thus measuring the relative importance of temporary
productivity shocks, trend shocks, and interest rate shocks when all of them are allowed
to play a role in generating fluctuations. Second, we estimate the stochastic trend model
and the financial frictions models separately and compare their marginal likelihoods, which

amounts to a direct comparison of the two versions in terms of their predictive power.

3.2. Functional forms, and calibrated versus estimated parameters

We follow the current literature on emerging market business cycles when choosing functional
forms for preferences and technology. For the most part, we impose a utility function of the
Greenwood, Hercowitz and Huffman (1988) form:

(Ct — TFt,lhf)l_"

l1—0

U(Cb ht7 thl) =

As discussed by Neumeyer and Perri (2005) and others, GHH preferences help repro-
ducing some emerging economies’ business cycles facts by allowing the labor supply to be
independent of consumption levels. Note that, in contrast, Aguiar and Gopinath (2007)
focused on their results with Cobb Douglass preferences instead 2. Accordingly, one of our
robustness exercises later explores a more flexible preference specification due to Jaimovich
and Rebelo (2008), which embed both GHH and Cobb Douglass as special cases.

The production function is assumed to be Cobb Douglass:

F(Ky, Xihy) = K} 7*(Tihy)®

where « is the labor’s share of income.

The capital adjustment cost function is assumed to be quadratic:

K 2
@ (Ko, K0) = 2 ( - u)

2 Although, in the working paper version, they also estimated their model with GHH preferences and
found very little difference.
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In turn, the function xk determining the interest rate elasticity to the country’s debt has

the form:

D
ot (Dt+1/Ft) = eXp( lijl —d)—1

For each model, we estimate some parameters and calibrate the rest. The choice of which
parameters to estimate or calibrate is guided by the objectives of our investigation as existing
literature.

Since a main question is the relative importance of sources of fluctuations, in each case
we estimate the parameters of exogenous driving forces. Hence, the parameters of the tran-
sitory productivity process (2.1), namely the AR coefficient p, and the standard deviation
of the innovations o,, are always estimated. Where shocks to the trend are allowed, we also
estimate the parameters p, and o, of the permanent productivity process (2.8). And if the
world interest rate is allowed to be stochastic, as in the financial frictions models and the
encompassing model, we estimate pp and og in (2.11).

While the addition of the permanent productivity process is the only departure of the
stochastic trend model from the standard, Mendoza-type model, allowing for financial fric-
tions models introduces two other parameters: the elasticity of the spread with respect to
expected productivity (1) and the working capital requirement parameter 6. Accordingly, we
estimate those parameters in models that allow for financial frictions. Finally, in all cases
we estimate the parameter ¢ governing the capital adjustment function.

We calibrate the remaining parameters of each model. A period is taken to be a quarter
in our calibration. The calibrated parameters are given in Table 1 and take conventional
values: the coefficient of relative risk aversion is set at 2, and w and 7 are set so as to imply,
respectively, a labor supply elasticity of 1.66 and a third of time spent working in the long
run. The labor’s share of income, «, is set to be 68%?. We calibrate the debt-to-GDP ratio
to 0.1, the value used in Aguiar and Gopinath (2007).

In the models with financial frictions, we set the long-run levels of the annualized foreign

and country specific gross real interest rates to 1.06 and 1.01, respectively. These values were

3Note that in the models with financial frictions, a is not exactly equal to labor share in but it is rather
calibrated as oo = LaborShare = [1 + (R — 1) §]. Thus, it will have an entire distribution determined by the
posterior distribution of 6.
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calibrated according to the data provided by Uribe and Yue (2006) on Mexican interest rates
and are consistent with a five hundred basis points spread observed in Mexican sovereign
bonds, and with the long-run mean of the real risk-free rate measured by the 3-month gross
Treasury bill rate. In the stochastic trend model we set the spread to zero and use the value
reported by Aguiar and Gopinath (2007) as the mean long run foreign interest rate.

The quarterly depreciation rate is assumed to be 5 percent. As common in the literature
on small open economy models, we set the parameter v, determining the interest rate elas-
ticity to debt, to a minimum value that guarantees the equilibrium solution to be stationary
(Schmitt-Grohe and Uribe, 2003). Lastly, we calibrate the long-run productivity growth, p,
equal to 1.006 following the point estimate reported by Aguiar and Gopinath (2004) and

consistent with a yearly growth rate of 2.4 percent.

3.3. Data and Implementation

For comparability, we used the Mexican data from Aguiar and Gopinath (2007) as our
observed data, X. We retrieved their series for aggregate consumption (C), investment (1),
output (Y'), and the trade balance to output ratio (T'B/Y’). The data are quarterly for the
period 1980:1 to 2003:11.

Our empirical implementation requires at least three other decisions: how to deal with
trends; whether and how to include measurement error; and how to draw samples from
the posterior distribution. Our choices are best explained in the context of the state space
formulation of each model.

Once each model is linearized around its nonstochastic steady state, the system of equa-

tions that characterize its solution can be written in the form of a transition equation:

Zt = PZt,I + QVt (31)

where Z; is a vector with the model variables, v; the vector of structural shocks, and P

and () system matrices that may depend on the model parameters. The Kalman filter then
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requires specifying a measurement equation,
Xt =F+ GZt + € (32)

mapping the elements in Z; to a vector of observed data X; by the conformable matrices
[F, G], while ¢; are exogenous i.i.d. measurement errors.

Given that the data is expressed in levels, and that the solution to our models is cast in
terms of log-deviations from steady states, there is a straightforward way to map a trans-
formation of the data to the elements in the models. For illustrative purposes, consider how
to deal with data on aggregate output in levels, Y;. In this case, the observed data can be

directly linked to its theoretical stationary counterpart, v, as follows:

Yo = wulia
~~ N——
Data Model
Furthermore, since the solution of the model is given in terms of log-deviations from
steady state, an additional transformation is needed. If there are shocks to the trend, the

measurement, equation for output is

Aln(Y;) = Inp+ (U — Ye-1) + Gi—1; (3.3)
\Hf—/ \ ~ 2
Data Model

where A denotes the first difference and a hat ™ denotes log-deviations from steady state
values (i.e. 7 = In(y:/yss)). Similarly, if there are no trend shocks, the measurement

equation for output is

Aln(Y) = It (G —Gis) (3.4)
N—— A ~~ -~
Data Model

Similar observations apply for the measurement equations of aggregate consumption and
investment. The absence of a trend in the trade balance share makes the mapping from
the observed data to the model based data independent of which case we are considering.

Moreover, because we take a linear approximation (rather than log-linear) to the model-based
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measure of trade balance share, tby, the mapping in terms of first differences is

A(TB/Y), = thy, —thy, y;
Data Model

We choose a mapping in first differences of TB/Y, instead of levels, because typically
small open economy models counterfactually deliver a quasi-random walk process in the
trade balance level, inherited by the nature of the endowment process (see Garcia-Cicco,
et.al., forthcoming).

The second issue is the treatment of the measurement errors ¢;. First, note that neither
the encompassing model nor any of its restrictions exhibit more structural shocks than
the number of time series we observe. To overcome the resulting stochastic singularity
two options are available: either basing estimation on as many observed variables as there
are shocks; or adding measurement error shocks, completing the probability space of each
model so as to render the theoretical covariance matrix of the variables in X; no longer
singular!. Within the context of our investigation each alternative offers advantages and
disadvantages. While the addition of measurement errors may be warranted, given the well-
known measurement issues surrounding macroeconomic data from emerging economies, it is
still an arbitrary decision which variables will have errors and which ones will not. On the
other hand, given that one of our central goals is to compare the performance of restricted
versions of the encompassing model, we also want to know how this comparison looks like
when each version is directly mapped to the data, without the addition of artificial statistical
errors. Of course, under the latter alternative the tougher question arises of which of the four
available time series to use’. In light of this trade-off we choose to combine both methods.
We estimate both the encompassing model and its two restricted versions using all four time
series vectors and adding measurement errors to all four. In addition, for comparing the

stochastic trend and financial frictions models, we also report results when no measurement

4 A third option, known in the literature as the multiple-shock approach, is to include additional structural
shocks. This option, however, would take us further away from the scope of this paper so we discard it. See
Fernandez (forthcoming) for an expanded version of the encompassing model with more structural shocks.

®This choice is indeed not a trivial one. Guerron (2009) has shown that, in the estimation of DSGE models
by Bayesian methods, posterior distributions may significantly vary according to which set of observables is
used.
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errors are added. In the latter case we explore the implications of using different pairs of
observable vector time series.

The third issue is how to sample from the posterior distribution. We follow, for the most
part, the Random Walk Metropolis algorithm presented in An and Schorfheide (2007) to gen-
erate draws from the posterior distribution py;(6*]X). The algorithm constructs a Gaussian
approximation around the posterior mode, which we find via a numerical optimization of
In Ly (0M]X) 4 In par (0™), and uses a scaled version of the inverse of the Hessian computed
at the posterior mode to efficiently explore the posterior distribution in the neighborhood of
the mode. We found it useful to repeat the maximization algorithm using random starting
values for the parameters drawn from their prior support in order to gauge the possible
presence of multiple modes in the posterior distribution®. Once this step was completed,
we used the algorithm to make 150,000 draws from the posterior distribution in each case.
The initial 50,000 draws were burned. To overcome the high serial correlation of the draws,
we used every 100" draw and posterior distributions were generated with the resulting 1000
draws. Finally, convergence of the Markov chains was assessed by recursively computing

means from multiple chains as illustrated in An and Schorfheide (2007).

4. Results

This section presents our baseline results. We first summarize our prior beliefs and present
the parameters’ posterior distributions and the distribution of other key moments. We esti-
mate the encompassing model as well as the two restricted versions of interest, the stochastic
trend model and the financial frictions model. For the most part we report results obtained
with and without measurement errors. We conclude the section with an assessment of the

relative fit of the two competing approaches to business cycles in emerging economies.

6The MATLAB codes that solve all the model’s extensions as well as the ones that carry out the estimation
are available upon request.
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4.1. Priors

Our prior beliefs over the estimated parameters are described in Table 2 and were based, to
the extent possible, on earlier studies on emerging market business cycles.

Key parameters are those governing the temporary and permanent technology processes:
Oay Ogs Pas Pg- Unfortunately, existing evidence on the relative importance of each of these
parameters is ambiguous. While Aguiar and Gopinath (2004)" estimated a ratio o,/0, =
0.41/1.09 = 0.4 for Mexico, Garcia-Cicco et.al. (forthcoming) found the much higher ratio
o./0, = 3.3/0.71 = 4.6 for Argentina. Given this, we chose our prior to be a Gamma
function with parameters (2.06, 0.0036). This prior has a mean of 0.74 for both o, and
0,4, which lies between the two point estimates found by Aguiar and Gopinath (2004) and
Garcia-Cicco et.al. (forthcoming).

Our prior for p,, the autoregressive coefficient of the temporary productivity shock, was a
Beta function with parameters (356, 19), implying a mean of 0.95 and a standard deviation
of 1.1 percent. The mean is close to the point estimate found by Aguiar and Gopinath
(2004), and equals the value calibrated by Neumeyer and Perri (2005). Our prior for the
autoregressive coefficient of permanent productivity shocks, p,, was also a Beta function
with parameters (285, 111), yielding a mean of 0.72, and a standard deviation of 2.3 percent.
This follows the point estimate found by Aguiar and Gopinath (2004).

Similarly, we based our priors over parameters governing the world interest rate process
and the degrees of financial frictions (pg, o g, 7, d) upon earlier studies. Our prior for pj, was
a Beta function with parameters (44.3, 9.06), consistent with beliefs that the mean value
was 0.83, the point estimate found by Uribe and Yue (2006), and a standard deviation of
5.1 percent. For op we specified as prior a Gamma function with parameters (5.6, 0.0013),
which is centered at 0.72 percent, the value reported by Uribe and Yue, and has a standard

deviation of 0.31 percent.

"The reader should note that we use the working paper version of Aguiar and Gopinath’s work (Aguiar
and Gopinath, 2004) when forming our priors, instead of the published version (Aguiar and Gopinath, 2007).
This is because only in the working paper version the estimation is done using the same GHH preferences we
use in our work whereas in the published version the authors use Cobb-Douglas preferences instead. While
they show that the business cycles implications of using the two preferences are similar, the point estimates
of the key parameters they estimate do differ substantially. In the next sections we explore the robustness
of our results to other set of preferences.
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Previous studies provide little statistical information on the size of the elasticity of the
spread to the country’s fundamentals, 7, and the fraction of the wage bill held as working
capital, #. We use a prior with mean of 1.0 and a standard deviation of 10 percent for 7, close
to the value calibrated by Neumeyer and Perri (2005) to match the volatility of the interest
rate faced by Argentina’s residents in international capital markets. As for 6, we decided to
specify a fairly diffuse prior, with the only restriction that it must lie between zero and one.
For this purpose we used a Beta(2,2) function with mean 0.5, and a considerable standard
deviation of 22.4 percent reflecting the little information we have a priori on this parameter.

Our prior on ¢ was a Gamma function with parameters (3, 2). This is a considerably
diffuse prior, as given by the large 90 percent confidence interval, reflecting that previous
studies have found different values for this parameter when trying to mimic the investment
volatility.

Lastly, for the standard errors of the four measurement errors we chose a Gamma prior
centered at 2.0 and a 90 percent confidence interval ranging between 0.67 and 3.86. This
relatively diffuse prior reflected our lack of information about the size of measurement errors,

and also our belief that measurement issues may potentially be large in emerging economies.

4.2. Posteriors

We estimated various scenarios. We estimated the encompassing model as well as the two
restricted versions of it - the stochastic trend version and the financial frictions version- under
a flexible framework allowing for measurement errors in the four time series observed. We
also estimated the stochastic trend and financial frictions models without any measurement
errors using several alternative pairs of observable time series.

Estimated posterior distributions, allowing for measurement errors, are summarized in
Table 3. The third and fourth columns report posterior modes and means of the parameters
of the encompassing model, while the next two columns report posterior modes for the two
restricted models. As a benchmark, the last column reports the GMM estimates of Aguiar
and Gopinath (2004). In addition, Table 4 reports variance decompositions and Figure 1

plots priors and posterior distributions for the encompassing model.
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Several results deserve attention:

e The data are fairly informative, in particular with respect to the volatilities of the
shocks, in the sense that the estimated posteriors appear much more precise than the

priors, as measured by the size of the 90 percent highest posterior density intervals.

e Interestingly, in the encompassing model, the role of permanent shocks does not appear
to be as dominant as suggested by our prior beliefs. The estimated posterior mode
ratio of volatilities is 0, /0, = 0.66/0.12 = 5.5, which is clearly at odds with Aguiar and
Gopinath’s (2007) finding that volatility of innovations appears to be much stronger in
the permanent technology process than in the transient one. While this ratio suggests
a minor role of trend shocks in the Mexican business cycle, an overall assessment can
be based on the random walk component of the Solow residual which, following Aguiar

and Gopinath (2007), is defined as follows:

o3/ (1= p,)’
[2/ (14 p.)"] o2 + 0203/ (1= 43)]

RWC =

The mode and mean of the posterior distribution of the RWC for the encompassing
model is given at the bottom of Table 3. It is immediate to see that, given that the
posterior of the ratio p,/p, is left pretty much unchanged relative to the prior, while
the ratio 0,/0, increases significantly, the posterior of the random walk component is
largely reduced relative to the prior. Indeed, we obtain a RWC whose posterior mode
is only 0.20, far below the 5.3 value recovered by Aguiar and Gopinath. Therefore,
a full-information method does not assign such a relevant role to trend shocks as a

method that only looks at a selected subset of moments.

e To a large extent, the minor role of trend shocks is explained by the relevance of interest
rate shocks and the financial frictions amplifying them. We find that the posterior
distributions of the parameters # and 7 governing the degree of financial frictions are
far away from zero. The posterior mode for 6 is 0.69, signaling that a little less than

three quarters of the wage bill is kept as working-capital needs. This value is in line
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with those calibrated for other emerging economies®. The tight posterior mode for 7,
with its mean centered around 0.73, reveals a significant elasticity of the spread to
expected movements in the country fundamentals, embedded in the Solow residual.
While this is lower than our prior beliefs, which were centered around the value of
1.0 calibrated by Neumeyer and Perri (2005), it is still remarkable to obtain a high
value given that Neumeyer and Perri’s calibration was based on the observed process
of the country interest rate, which we do not observe here. Notably also, the relative
importance of trend shocks increases when the stochastic trend model is estimated and

we shut down both interest rate shocks and financial frictions (fifth column).

e To assess the relative role of each structural shock in explaining macroeconomic fluctu-
ations, we computed the posterior distribution of the variance decompositions implied
by the encompassing model. The results over a time horizon of 40 quarters are reported
in the top panel of Table 4. The most remarkable result is the small role played by
trend shocks when accounting for the variance of the observed macroeconomic aggre-
gates. The largest share of permanent shocks is only 3%, when explaining the variance
of consumption, and it shrinks further when looking at the other three variables. On
the other hand, world interest rate shocks play a nontrivial role, particularly when
explaining the variance in the trade balance-to-GDP ratio (43%), investment (24%),
and to a lesser extent in consumption (11%). Their role accounting for the variance
of output (6%) falls within the estimates from other studies. For example, Neumeyer
and Perri (2005) find that the percentage standard deviation of Argentina’s GDP in a
model with financial frictions but no shocks to international rates is 3% smaller than
the one in a model with interest rate shocks; and Uribe and Yue (2006) find that US
interest rate shocks explain about 20% of movements in aggregate activity in a pool of
emerging market economies. The largest share of the variance in all four aggregates is
however largely explained by transient shocks to the technology process. This will be

further analyzed below.

8Using data on net aggregate interest payments to GDP in Korea, Benjamin and Meza (2009) calibrate
working capital requirements in a multi sector model between 0.50 and 0.82.
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e Following An and Schorfheide (2007), we checked for convergence of the MCMC algo-
rithm by recursively computing means from multiple chains. For this purpose we chose
six vectors of initial parameters by drawing randomly from their prior support, and
then used each vector to run independent Markov chains. The results are reported in
Figure 2 for the estimation of the encompassing model. Despite different initializations,

the parameters’ means converge in the long-run.

e The lower panel in Table 4 presents the counterfactual experiment of shutting off the
limk between technology shocks and spreads, 7 = 0. The results suggest that the large
role of transient technology shocks in accounting for fluctuations in investment and
the trade balance, and to a lesser extent in consumption, is driven by their impact
on spreads. This is better illustrated by looking at the impulse response functions in
Figures 3 and 4. The responses of the main macroeconomic aggregates to a transitory
technology shock depend strongly on whether the financial friction embedded in 7
is included or not. With 1 > 0 transitory technology shocks are greatly amplified,
which explains the large share of interest rate shocks when this channel is turned off
in the lower panel of Table 4 and in the impulse responses plotted in Figure 4. Still,
surprisingly, output’s variability continues to be explained by "pure" technology shocks

even if n = 0.

e Another result in Table 3 is that measurement errors appear to exhibit large standard
deviations similar to those in the structural shocks. This is robust across the three cases
in Table 3. While this signals that still a non trivial fraction of the volatility in the main
macro aggregates, particularly consumption and investment, is left unexplained by the
model, the role of measurement errors in the dynamics of these aggregates should not
be compared to that of the structural shocks given that, by construction, these shocks
are serially uncorrelated. Indeed, over the time horizon of the forecast error variance
decompositions in Table 4 (40 quarters) their role in accounting for the variance of the

variables considered is virtually negligible.

e Nonetheless, one could ask how the posterior results would differ for the two restricted
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models if we estimated them without any measurement error. The results of this
experiment, using three separate pairs of observables, are given in Table 5. What we
observe across the three pairs of results is that the size of the shocks increases in order
to account for the volatility that was soaked up before by the measurement errors. In all
three cases considered for the stochastic trend model, the RWC increases with respect
to the benchmark case with measurement errors. In the case of the financial frictions
model, however, most of the volatility is now soaked up by increasing the size of the
parameter governing the capital adjustment cost. This may signal a complementary
explanation as to why our results differ from Aguiar and Gopinath (2007), given that
they did not consider the possibility of measurement errors. Overall these results
are also consistent with Guerron (2009)’s findings that posterior distributions may

significantly vary according to which set of observables is used.

4.3. Model Comparison
4.3.1. Marginal Data Densities

We turn next to formal comparisons of the models considered above. Table 6 reports values
of the likelihood and posterior (in logs) computed at the posterior mode, (log Ly (6™]X)
and log pas(6™]X) in terms of our previous discussion) and the values of the marginal data
density ( logpas(X)) for each model.

Overall, the results reported in Table 6 tend to mildly favor the financial frictions model.
All values for the log-likelihood evaluated at each model’s posterior mode are highest for the
financial frictions model. When judging by the log-marginal likelihood, the results are a little
bit more ambiguous. Allowing for measurement errors implies superiority for the stochastic
trend model, yet this is probably because the likelihood of the financial frictions model peaks
at a value that is at odds with the information used to construct the prior distribution (An
and Schorfheide, 2007).

With no measurement errors, in two of the three cases the financial frictions model attains
a better relative fit than the stochastic trend model, both in terms of a higher log-likelihood

and, more markedly, in terms of marginal data densities and hence predictive performance.
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Indeed, the posterior odds of the financial frictions model against the stochastic trend model
(the ratios of their respective marginal likelihoods) are in the order of 1 : exp(10) or higher,
well above the thresholds considered as "decisive evidence" in favor of the financial frictions
model (see e.g. DeJong and Dave, 2007). In the third case, when only consumption and
output are observed, the log-marginal likelihood favors the stochastic trend model, but only
with a posterior odds in the order of 1 : 2, which constitutes only "very slight evidence" in
favor of that model.

Note that the two restricted models, the stochastic trend and financial frictions models,
can attain higher likelihood and marginal likelihood levels than the encompassing model.
This result can be explained by the different priors used implicitly when estimating the two
restricted models. As an illustration, consider the case of pj, the AR(1) parameter in the R*
process. When estimating the encompassing model, the 90 percent prior distribution over
this parameter lies in the interval [0.74,0.91], so that values close to zero are highly penalized
by the prior. Yet, when estimating the stochastic trend model as a restricted version of the
encompassing model, pp is set to zero, or, more precisely, a unit mass prior is defined over
zero. A similar case occurs with all the other parameters that are set equal to zero in the
restricted models, {or, 0,71} for the case of the stochastic trend model and {p,, .} for the
case of the financial frictions model. These differences in the priors imply that areas of the
posterior distribution that were not explored before in the estimation of the encompassing
model are now explored in the two restricted models. This makes it essential to explore
further the role of the priors, as we do in the next section.

For comparison purposes, we report in Table 6 the log-likelihood value for the stochastic
trend model evaluated at the point GMM estimates of the parameters reported by Aguiar
and Gopinath (2004)°. The log-likelihood value implied by the GMM-estimated parameters
is far below the levels we obtain. This gives further quantitative evidence that, within the
context of the models analyzed here, a full-information method can deviate substantially
from an estimation method that, like GMM, only looks at a selected subset of moments.

And from the evidence just discussed, we learn that this deviation takes mainly the form of

9The parameters are reported in Table 3. When computing the log-likelihood value at this vector, we use
the posterior mode of the four measurement errors.
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a significantly higher variance of the transient technology shock.

4.3.2. Selected Moments

It could be argued that, for macroeconomists, predictive performance may not be the only
relevant metric to evaluate the relative merits of alternative models. As mentioned above,
the literature on emerging market business cycle has emphasized some key moments in model
evaluation. Two moments have drawn much attention: the marked countercyclicality of the
trade balance and the high volatility of consumption and investment relative to output. This
section compares the models under study along a particular subset of moments, including
the two just mentioned. In doing so we are implicitly conducting a more stringent test of
each model, as the estimation was not designed to match this particular set of moments.

The results are gathered in Tables 7.1 and 7.2, where the filtered sample moments of the
data, in terms of standard deviations, correlations with output and the trade balance, and
serial correlations, are compared to the theoretical moments from the encompassing model
as well as the two restricted models. Consistent with the measurement equations used in
the above section, we filter the data using simple log-differences for income, consumption
and investment, and first differences for the trade balance share. Model-based moments are
computed at posterior mode estimates'®. For comparison purposes, the moments associated
with Aguiar and Gopinath (2004)’s GMM estimation are reported in the last column of Table
7.4,

The main findings are as follows:

e The encompassing model delivers a reasonably close match to the facts emphasized in
the literature: it delivers a more volatile path for consumption and investment with
respect to output and reproduces the strong countercyclicality of the trade balance
share observed in the data. Recall that this is obtained without resorting to significant

trend shocks. This is further confirmed by the moments of the financial frictions model

10Standard errors are omitted for brevity but are available upon request.

"To be precise, Aguiar and Gopinath (2004) conduct the GMM estimation based upon 11 moments of
which only two, the standard deviation and serial correlations of gY', are reported in Table 7.1. The other
9 moments used in that work refer to Hodrick-Prescott filtered moments which we don’t present here given
that we don’t use this filtering technique.
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which are quite similar to those of the encompassing model, indicating that financial
frictions can amplify interest rate and transient technology shocks to the point of
causing a response of consumption that exceeds the response in output leading to
countercyclical net exports, a result obtained previously by Neumeyer and Perri (2005)

for Argentina.

A salient failure of the stochastic trend model is its inability to reproduce a significantly
more volatile consumption with respect to output. This failure occurs consistently both
with and without measurement errors. In addition, when measurement errors are not
included, the model’s implied variance of the main macro aggregates is excessively

high, notably for gY" and ¢C.

A comparison between the moments implied by the the estimated stochastic trend
model and the ones derived from the GMM point estimates suggests why our full-
information estimation differs from the GMM results. While the GMM approach,
by construction, assigns more weight to the standard deviations, the full-information
method assigns weights also the correlations among the four observed variables and
thus attains a better match in that dimension. Obviously, other dimensions, different
than the ones presented in Tables 7.1 and 7.2, will be also better matched in a full-

information approach.

5. Robustness Checks

In this section we assess the robustness of our baseline results along five dimensions. First, we

gauge the robustness of the results when using less informative priors. Second, we investigate

the separate role of the two financial frictions under consideration. Third, we examined the

role of GHH preferences. Fourth, we assess whether our results change if we estimate the

rate of long-run productivity growth. Finally, we include the country specific and foreign

interest rates into the vector of observables and use the reestimated model and smoothed

shocks to simulate the macro dynamics during the Tequila Crisis.
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5.1. Less Informative Priors

The first six columns of Table 8 examine the implications of less informative priors. To do
this, for almost all parameters we choose flat priors given by uniform distributions. The
exceptions are the AR(1) coefficients of the driving forces’ processes, for which we choose a
quasi flat priors given a Beta function with parameters (2,2), implying a mean of 0.5 and a
large standard deviation of 22.4 percent.

The first result of interest is the presence of two local modes in the posterior distribution.
Each mode favors one of the two approaches to business cycles in emerging economies. The
higher mode, with a likelihood and posterior values of 1004.6 and 1014.6 respectively, is
characterized by the virtual disappearance of trend shocks -the posterior mode for o, is
0.02 percent-, while the transitory technology shocks exhibit values larger than the ones
obtained under the initial priors. The parameters estimated for the interest rate process
characterize a lower volatility but a higher persistence relative to the benchmark case. As
a consequence of this, the value of the random walk component is negligible. On the other
hand, a lower posterior mode, with a likelihood and posterior values of 997.8 and 1009
respectively, is characterized by the predominance of trend shocks: its technology shocks
ratio is 0,/0, = 0.46/1.12, and the parameters governing the the elasticity of the spread, 7,
is virtually zero.

A challenge for the Bayesian estimation is, therefore, to fine tune the Metropolis-Hasting
algorithm so as to properly sample from the regions surrounding each of the two modes.
For the results reported in the sixth column of Table 8, we were able to make the Markov
chain cross over the two modes with enough regularity. The Markov chain explored more the
posterior around the high mode, and hence the mean values are closer to those of the high
posterior mode. Interestingly, the mean posteriors are not too far from the mode reported
for the encompassing model under the initial priors. This explains why the results from
the variance decomposition exercise under the less informative priors, reported in the upper
panel of Table 9, are quantitatively similar to the ones presented before in Table 4. Indeed,
we observe a much smaller role played by trend shocks as opposed to transitory technology

shocks when accounting for the variance of the observed macroeconomic aggregates. We view
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these results as evidence that our baseline results are robust to assuming less informative

priors.

5.2. One Financial Friction at a Time

The results presented thus far favor the view that financial frictions amplify shifts in mar-
ket fundamentals through spreads that react to fundamentals and, through the presence of
working-capital needs, have supply side effects following exogenous interest rate perturba-
tions. It is therefore of interest to investigate the extent to which each of the two financial
frictions is responsible for these results. We address this question by shutting down one of
the two frictions at a time.

We start by estimating the encompassing model without the assumption of working
capital needs, # = 0, but still allowing for the spread to be affected by expected changes in
the Solow residual and estimating the parameter n governing the elasticity of the spread.
Next, we run the estimation by considering the opposite: we shut down the endogenous
spread, n = 0, while we allow for the possibility of working capital needs, estimating the
parameter 6. Last, we consider the case where none of the two financial frictions is present,
0=n=0.

The results of these experiments, in terms of the new posterior distributions, are reported
in Table 10, and the results in terms of variance decompositions and selected second moments
are presented in Tables 11 and 12. Two results are worth mentioning. First, relative to
the benchmark case in Table 3, the results are virtually unaltered when the working-capital
assumption is dropped, § = 0. Indeed, the posterior mode continues to be characterized, as in
the encompassing model, by a strong elasticity of the spread to fundamentals, volatile shocks
in interest rates and transient technology, and modest trend shocks. A sharply different
outcome is obtained when n = 0. In this case the exploration of the posterior favors the
mode where stochastic trend shocks are the leading driving forces. This is further emphasized
by the variance decompositions in Table 11. The results in the upper panel, where 6§ = 0,
are virtually unchanged relative to the benchmark case in Table 4. However the variance

decompositions change drastically when 1 = 0. In this case, the lion’s share of the variance of
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most of the macro variables is explained by growth shocks. Second, the moments presented
in Table 12 show that, if working capital needs are the only financial friction in place, the
model fails to generate a consumption process more volatile than the output process, and this
in turn prevents the model from generating a strong countercyclical trade balance-to-GDP
ratio.

These results are in line with Oviedo (2005), who argues that the presence of an en-
dogenous spread is a necessary ingredient when building models that aim at replicating
emerging market business cycles and that the presence of working capital requirements is
not a necessary requirement in getting business cycles models closer to emerging economies’

macroeconomic data.

5.3. Jaimovich-Rebelo preferences

Our baseline parameterization for preferences has been of the kind first suggested by Green-
wood, Hercowitz and Huffman (1988). This is because GHH preferences improve the ability
of business cycles models to reproduce some stylized facts both in advanced open economies
(Mendoza (1991), Correia et.al. (1995)) and developing market economies (Neumeyer and
Perri (2005), Garcia-Cicco et.al. (forthcoming)).

A well documented reason for the empirical success of GHH preferences is the fact that
they allow for labor supply to be independent of consumption levels. This leads to high
substitutability between leisure and consumption, low income effect on labor supply, and
large responses of consumption and labor to productivity shocks. In contrast, in the case of
Cobb-Douglas preferences, the income effect mitigates the response of labor to productivity
shocks because labor supply is no longer independent of consumption levels. Compared to
the case of GHH preferences, leisure and consumption are not easily substitutable because
the income effect is strong. As a consequence, there is an incentive to smooth consumption
excessively over the business cycle by saving, in response to a positive shock. Aguiar and
Gopinath (2004), however, suggested that the role of preferences was minor, and in particular
that their main result concerning the relative importance of trend shocks was robust to these

alternative assumptions on preferences.
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To investigate this issue, and more generally to test the robustness of our results to
our specification of preferences, we repeated our estimations with preferences of the form
introduced by Jaimovich and Rebelo (2008), which embed both GHH and Cobb Douglass as

special cases:
(Ct - Th;}Xt)l_U

l1—0

U(C’t, ht) =

where the representative household internalizes in her maximization problem the dynamics
of X; given by:
Xe=C)X\], 0<y<1

The presence of X; makes preferences non-time-separable in consumption and hours
worked. As shown in Jaimovich and Rebelo (2008), these preferences nest as special cases
the two classes of utility functions mentioned above. When v = 1 we obtain preferences of
the Cobb-Douglas type. Conversely, when v = 0 we obtain GHH preferences. Therefore,
lower values of v will render the income effect of technology and interest rate shocks milder,
producing short-run responses to shocks that are similar to those obtained under GHH
preferences. Conversely, higher values of v will have the opposite effect, as shifts in the labor
supply will likely offset changes in labor demand. In the latter case, and according to the
findings in Aguiar and Gopinath (2004), it is more likely that business cycles will be driven
by trend shocks, and interest rate shocks coupled with financial frictions will play a minor
role.

A key parameter to be estimated is 7. Our approach was agnostic in not imposing
strong prior beliefs on the distribution of this parameter. To this end we used a uniform
distribution over the support v € (0,1]. Note that, by excluding the case v = 0, hours
worked were stationary so we did not need to introduce the trend in the utility function.

The results are reported in the second-to-last column in Table 8. It is immediate to see
that the estimation strongly favors very low levels of v, as the posterior is tightly concen-
trated toward zero with a mean of 0.05. Moreover, the role of permanent shocks is even
less important relative to our baseline results: before, the estimated posterior mode ratio of

volatilities was o,/0, = 0.66/0.12 = 5.5; now, it increases to o,/0, = 1.02/0.06 = 17, and
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the posterior mean for the random walk component falls from 0.28 to 0.04. In addition, re-
computing variance decompositions implies that trend shocks are now negligible, accounting
for at most 2 percent of the overall variance (upper-middle panel in Table 9).

Taken together, these results are indicative that our baseline results, favoring a model
with financial frictions and interest rate shocks do not hinge on the assumption of GHH
preferences. To our knowledge Schmitt-Grohe and Uribe (2009) is the only work that has
previously estimated v within a fully-fledged DSGE model, for open developed economies,
finding even lower posterior means for . Our results clearly extend theirs to developing

economies.

5.4. Estimating Long-Run Growth

A key parameter in the hypothesis that business cycles in emerging economies are driven by
stochastic productivity shocks is long-run productivity growth, p, because it is around this
value that the random shocks drive the productivity process. In the baseline encompassing
model we calibrated the value of this parameter to match a yearly net growth rate of 2.4
percent, or ;4 = 1.006, using the GMM-point estimate reported by Aguiar and Gopinath
(2004). However, it is clear from the evidence presented so far that GMM estimates may
differ from the values obtained by full-information methods.

To check the significance of this issue, we reestimated the encompassing model including
net yearly growth, (, as one of the estimated parameters. We specified a diffuse prior over
that parameter, with a Gamma function with parameters (25,0.1) in accordance with our
beliefs that long-run yearly net growth has a mean equal to 2.5 percent but allowing for
substantial uncertainty, a standard deviation of 50 percent '2. The results are reported in
the last column of Table 8 and indicate a slightly higher posterior mean of 2.51 percent,
and the uncertainty is somewhat reduced relative to the prior beliefs. Importantly, the
baseline results from the encompassing model appear to be robust. Notably, the posterior
ratio among volatilities, 0,/0,, and the random walk component posterior mean are both
quite close to the baseline results. Likewise, the variance decomposition presented in the

lower-middle panel of Table 9 continues to assign a minor role of trend shocks.

12The link between the gross quarterly growth rate, p, and ¢ is thus: ¢ = 100 * (,u4 — 1) .
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5.5. Observing interest rate processes and simulating the Tequila Crisis

Our estimations have been based on the dataset of Aguiar and Gopinath (2007) and, ac-
cordingly, have not exploited observable data on interest rates. We proceeded in that way
in order to maximize comparability with Aguiar and Gopinath’s work, but also because of
data availability. Data series of interest rates for emerging economies are not easy to obtain,
and most times they are constructed from data on sovereign spreads, like the J.P. Morgan
EMBI, which starts only after 1994. In contrast, Aguiar and Gopinath’s data set starts in
1980.

In spite of these considerations, it may be of interest to check how our results change if
we add interest rate data. Hence we estimated the encompassing model adding measures
of the domestic and foreign interest rates, R and R*, respectively, in the set of observable
time series for estimation. As the country specific risky interest rate we used Uribe and
Yue (2006)’s Mexican interest rate in international capital markets, computed as the sum of
the J.P. Morgan’s EMBI+ stripped spread for Mexico and the US real interest rate. As the
foreign interest rate we used the sum the US real interest rate and a global index of eight
emerging market economies'®. This definition of R* may be somewhat unusual, but is the
appropriate one if we are to regard the spread between R and R* as a country specific one,
which is the only view consistent with the theoretical model (and, in particular, with the
assumption that the spread may depend on expected domestic productivity).

As noted already, data on sovereign spreads is available only since 1994. The two measures
of interest rates are plotted in Figure 5. The plot also presents the implied spread, computed
as the ratio of the Mexican and foreign interest rates. The two interest rates exhibit a high
but not perfect correlation, (equal to 0.78) and present two particular peaks around the
Mexican Tequila Crisis in the mid 1990s and the Russian and Asian financial crises of the
late 1990s.

We added the interest rate series to the four observables in the Aguiar-Gopinath dataset,

and reestimated the encompassing model (for the subsample after 1994). The results of are

13For the period 1998 onward the EMBI4Emerging Market index was used. For the period 1994 to 1997,
the index was interpolated using countries for which data on sovereign yields spreads was available. These
countries (and the first year for which data on spreads was available) are: Argentina (1994), Brazil (1994),
Ecuador (1995), Mexico (1994), Peru (1997), Korea (1994), Thailand (1997) and South Africa (1995).
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presented in the bottom of Table 9!, Shocks to the transitory component of the technology
process continue to account for most of the variability in the Mexican macro variables.
Notably, however, the significance of growth shocks in explaining the variability of output
and consumption increases relative to our previous cases. In contrast, interest rate shocks
become less relevant. In this sense, the inclusion of interest rate data appears to favor the
stochastic trends hypothesis.

One should realize, however, that these results do not mean that financial frictions are
unimportant, since financial frictions may be amplifying the impact of any of the exogenous
shocks. To examine this, and also to have an alternative view of model performance, we
attempted to quantify the accuracy of the encompassing model in reproducing the Mexican
dynamics during the 1994-5 Tequila Crisis.

We computed a historical decomposition of the structural shocks, exploiting the smooth-
ing properties of the Kalman filter, following Hamilton (1994) and DeJong and Dave (2007).
From the state space representation (3.1) and the measurement equation (3.2) we backed out

the state variables and innovations, using the information contained in the entire sample:

T=2003:4
{th|T7 Vt|T}t:1994:1

Next, we independently used each of the three structural shocks to simulate the evolu-
tion of the four Mexican macroeconomic aggregates during the 1995 Tequila Crisis and its
aftermath.

Figure 6 shows the results. Each row tracks the observed and model-based simulated
time series of the Mexican macro aggregates between 1994 and 1997. The model based
simulations were obtained using only the smoothed shocks to the technology growth (first
row), the foreign interest rate (second row), and the transitory technology processes (third
row). It is immediate to see that neither growth shocks nor shocks to the foreign interest
rate can reproduce the observed dynamics. The only shock that comes close to reproducing

the deep fall in economic activity and the sharp reversal of the trade balance during the

1 For the sake of brevity, the posterior estimates are omitted but the tabulated results are available upon
request.
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crisis is the one that transiently affects total factor productivity.

Here, again, we have to remember that these perturbations may also be largely amplified
by the financial frictions embedded in the model. To evaluate this possibility, Figure 7
reproduces the simulation of the Tequila Crisis using only transitory technology shocks but
varying the severity of the two financial frictions embedded in the parameters 1 and 6. The
first row reports the simulation shutting down both financial frictions by setting n = 6 = 0.
The second and third rows set, separately, # = 0 and 1 = 0 respectively, while leaving the
other one equal to its estimated value. It is quite clear after looking at these plots that
the success of transitory technology shocks in reproducing the Tequila crisis comes, by and
large, from the presence of financial frictions, particularly embedded in 7, the parameter

that governs the elasticity of the spread to expectations of future productivity.

6. Concluding Remarks

One could ask, in particular, how our results can be reconciled with those of Aguiar and
Gopinath (2007), who reported strong support for the stochastic trend model. The short
answer, in our view, is that Aguiar and Gopinath’s GMM procedure targeted only a few
moments of the joint process of the aggregates observed, while our Bayesian procedure
considers all moments of the process. One could, then, argue that Aguiar and Gopinath’s
estimates of the importance of the random walk component would be superior in terms of
criterion functions that emphasize those moments targeted by their GMM procedure. But
then one would also have to justify why those moments and not many others are the only
ones that we may care about.

While our emphasis has been on the financial frictions/stochastic trend dichotomy, there
is plenty of associated research to be done. One could, for example, compare the performance
of the financial frictions model against atheoretical VARs. While the predictive performance
of the latter is likely to be superior, recent work suggests that refined versions of stochastic

dynamic models can be built that compete with VARs in terms of predictive power.

15 A similar experiment was conducted by Fernandez (forthcoming) using data for other developing coun-
tries and a wider spectrum of shocks. His results point also to the need for financial frictions in closing the
gap between observed and simulated dynamics.
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In terms of policy, our results lend support to the idea that attempts to ameliorate
financial imperfections may result in less aggregate volatility. They are likely too to lead to
increases in welfare, although this is a question about which our estimation exercises have

nothing to say.

References

[1] Aguiar, M., and G. Gopinath, “Emerging Market Business Cycles: The Cycle is the
Trend,” NBER WP # 10734 (2004).

[2] Aguiar, M., and G. Gopinath, “The Role of Interest Rates and Productivity Shocks
in Emerging Market Fluctuations” (2008), manuscript prepared for the Tenth Annual

Conference on the Central Bank of Chile, “Current Account and External Financing”.

[3] Aguiar, M., and G. Gopinath, “Emerging Market Business Cycles: The Cycle is the
Trend,” Journal of Political Economy 115 (2007), 69-102

[4] An, S. and F. Schorfheide (2007) Bayesian Analysis of DSGE Models. Econometric
Reviews, 26(2-4), pp.113-172.

[5] Benjamin, D. and F. Meza, "Total factor productivity and labor reallocation: The case

of the Korean 1997 crisis. The B. E. Journal of Macroeconomics, Vol 9 (1) 2009.

[6] Calvo, G. “Capital Flows and Capital Market Crises: The Simple Analytics of Sudden
Stops.” Journal of Applied Economics 1 (1998), 35-54

[7] Calvo, G., L. Leiderman, and C. Reinhart, "Capital Inflows and Real Exchange Rate
Appreciation in Latin America: The Role of External Factors". IMF Staff Papers (1993)
40(1): 108-51.

[8] Canova, F., Methods for Applied Macroeconomic Research, Princeton, 2007.

[9] Cespedes, L. F., R. Chang, and A. Velasco, "Balance Sheets and Exchange Rate Policy",
The American Economic Review, Vol 94 No.4 (Sep. 2004)

37



[10]

[11]

[12]

[13]

[17]

[18]

[19]

[20]

[21]

Correia, 1., J. Neves and S. Rebelo, "Business cycles in a small open economy", European

Economic Review, Vol. 39 (1995).

DeJong D. and C. Dave, Structural Macroeconometrics, Princeton University Press,

2007.

Fernandez, A.""Tropical’ Real Business Cycles? A Bayesian Exploration". Ensayos So-

bre Politica Economica. Banco de la Republica, Colombia (forthcoming).

Garcia-Cicco, J., Pancrazi, R, and M. Uribe, “Real Business Cycles in Emerging Coun-

tries?”, The American Economic Review (forthcoming).
Geweke, J. (2005), Contemporary Bayesian Econometrics and Statistics, Wiley.

Guerron-Quintana, P. A., "What you match does matter. The effects of data on DSGE

estimation", Journal of Applied Econometrics, May (2009).

Greenwood, J., Z. Hercowitz, and G. W. Huffman, "Investment Capacity Utilization,
and the Real Business Cycle", The American Economic Review 78 No. 3. (Jun., 1988)

402-17.
Hamilton, J. D. Time Series Analysis, Princeton University Press, 1994.

Jaimovich, N., and S. Rebelo (2008), "Can News About the Future Drive the Business

Cycle?". Manuscript.

Lubik, T. and F. Schorfheide, "A Bayesian Look at the New Open Economy Macroeco-

nomics," in NBER Macroeconomics Annual 2005.

Mendoza, E. “Real Business Cycles in a Small Open Economy,” The American Economic

Review, Vol. 81 (1991), 797-818.

Mendoza, E. (2006), “Endogenous sudden stops in a business cycle model with collateral

constraints,” NBER WP 12564.

Neumeyer, A. and F. Perri, “Business Cycles in Emerging Economies: the Role of

Interest Rates,” Journal of Monetary Economics 52 (2005), 345-80.

38



[23]

[24]

Oviedo, M., "World Interest rates, Business Cycles, and Financial Intermediation in

Small Open Economies," (2005) unpublished, Towa State University.

Rabanal, P. and V. Tuesta (2006), "Euro Dollar "Euro-Dollar Real Exchange Rate
Dynamics in an Estimated Two-Country Model: What is Important and What is Not,"
CEPR Discussion paper 5957.

Sargent, T. (1989), "Two Models of Measurements and the Investment Accelerator,"

Journal of Political Economy 97, 251-87.

Schmitt-Grohe, S. and M. Uribe, "Closing Small Open Economy Models", Journal In-

ternational Economics 61 (2003) pp 163-185.

Schmitt-Grohe, S. and M. Uribe, (2009) "What’s News in Business Cycles", Manuscript,

Columbia University.

Uribe, M. and V. Yue, “Country Spreads and Emerging Countries: Who Drives

Whom?”, Journal of International Economics 69 (2006), 6-36.

39



TABLES AND FIGURES

Table 1. Calibrated Parameters

Models
Parameter Description Encompassin Stochastic Financial
P g Trend Frictions
Intertgmporal
o Elasticity of 2.000 2.000 2.000
Substitution [1/ 0 |
Labor Supply
O | {L} 1.600 1.600 1.600
asticity o1
Labor Share of
o ol 0.6868 0.6800 0.6867
R o oo 1.0025 1.0323 1.0025
Long-
,U Produc?i?/?tyﬂgromnh 1.006 1.006 1.006
Labor Parameter so
T hat £%° 1,3 1.7168 1.5662 1.7169
bt Elasti
V| | 0001 0001 | 0001
IB Discount Factor 0.9976 0.9804 0.9976
Long-run Gross
S Country Interest 1.0120 1.0000 1.0120
Rate Premium
Depreciation Rate of
o) Capita 0.050 0.050 0.050
a | "oy 0.100 0.100 0.100
Gross Country-
R specific Interest 1.0145 1.0323 1.0145

Rate

Note: A period is taken to be a quarter in the calibration. Note that in the encompassing and
financial friction models «is not exactly equal to labor share (A-Share) but it is rather

a = h-Share *[1+(R -1)0] . In the Table, values are computed using the posterior mode of 6.




Table 2. Prior Distributions

Parameter | Range | Density | Mean | S.D(%) | 90% Conf. Interval
Parameters Common to Both Models
p, | ARWCoeT Transioy | o1y | Beta [356.2;18.753] |  0.95 1.12 [0.92:0.97]
S.D. of Transitory Tech. + . .
o, Shock (%) R Gamma [ 2.060 ; 0.0036] 0,74 0.56 [0.12; 1.67]
@ | Cotel AdustmentCost | g+ | Gamma[3.000;2.0000] |  6.00 346 [1.62:12.6]
S.D. (%) of Measurement + . )
O, Error in X = Y,C.1 TBIY R Gamma [ 4.000 ; 0.0050] 2.00 1.00 [0.67 ; 3.86]
Parameters Specific to the Stochastic Trend Model
p, | ARWCoen Pemanent | 10.1) | Beta [285.1;110.88] | 0.72 2.25 [ 0.68 ; 0.76]
S.D. of Permanent Tech. + . )
Gg Shock (%) R Gamma [ 2.060 ; 0.0036] 0,74 0.56 [0.12; 1.67]
Parameters Specific to the Financial Frictions Model
Po | AR CoeMForelon | 1) | Beta [44.26;9.0655] |  0.83 5.10 [0.74 ;0.91]
Or | “Prreamioy ™ | R | camma[5552;0.0013] | 072 0.31 [0.30 ; 1.29]
@ | Working Capital Parameter | [0,1] | Beta [ 2.000 ; 2.0000] 0.50 22.4 [0.13;0.87]
n Spread Elasticity R* Gamma [ 99.22 ; 0.0101] 1.00 10.1 [0.84;1.17]




Table 3. Posterior Distributions. Encompassing and Separate Models

Encompassing Model Separate Models: Posterior
Parameter Prior Mode Mean & Stochastic MO(:?Z Erictions M é?tlnﬁxgg
90% C.1 Trend M. '
Pr | oo | 089 | o8, 0.94 0.89 0.94
1000& [0.?2.,71‘.1:37] 0.66 [0.81.’60.682] 0.69 0.66 0.41
¢ [1.22',012.6] 14.78 [11:.L9§,.?5?81] 3.69 14.77 3.79
100, [0.57',03(.)86] 0.64 [0.(3)2',60.288] 0.48 0.64
1(DO-C [0.57.2%6] 1.13 [0.&5,116.335] 115 1.14
1(DO-/ [0.57.2%6] 3.04 [2.:538.%.966] 3.08 3.03
1000, 020 | o | 078 0.92 0.78
Py [o.gé,7c>.276] 0.72 [0,85,70,275] 0.73 0.72
1000, | %%, | 012 | b 0.73 1.09
Pr [0.94,80:.);1] 0.81 [0.96%].58] 0.81
lCDGR [0.26,71.229] 0.42 [o.gé,AE).lsn 0.42
0 [0.??:,50(237] 0.69 [0.9&';,60%8] 0.69
7 [0.814,01(.)17] 0.73 [0.81',70?:35] 0.73
RWC [O.?E;,]éiﬂ 0.20 [0.80',215.314] 3.25 0.00 5.33

Note: Estimates obtained using four observables, {gY, gC, gl, dTB/Y} from the Mexican Data, 1980.1-2003.2. All estimations were done
using measurement errors in all four variables. AG-GMM Estimates refer to the generalized method of moment estimates reported by
Aguiar and Gopinath (2004) which we present here as benchmark. RWC refers to the random walk component, see text for details.



Table 4. Forecast Error Variance Decompositions, Encompassing Model

Stg‘;}‘;té’; al gy gC gl dTBIY
el 91.52 86.36 74.95 55.22
g9 2.38 3.12 1.32 1.78
s 6.10 10.52 23.72 43.01

Counterfactual, No Endogenous Spread: 7 =0

el 93.04 66.84 5.95 17.38
g9 1.53 5.08 1.47 0.82
g/?* 5.43 28.08 92.59 81.81

Note: gX denotes log-differences, dX denotes first differences. Variance decompositions computed from the estimation using
four observables and measurement errors in all variables. Numbers reported using posterior means estimates. Standard
Errors are omitted for brevity but are available upon request. In the variance decomposition computations only the role of the
structural shocks was taken into account. In the counterfactual exercise, all parameters are set equal to their posterior mode
levels except for = 0 . A time horizon of 40 quarters was used when computing the variance decomposition.

Table 5. Posteriors Without Measurement Errors

Observables:{gY,dTB/Y} Observables:{gY,gl} Observables:{gY,gC}
Parameter | Stochastic Financial Stochastic Financial Stochastic Financial
Trend M. Frictions M. Trend M. Frictions M. Trend M. Frictions M.
yon 0.93 0.90 0.91 0.93 0.93 0.89
1000, 0.87 0.76 1.21 0.84 1.03 0.87
¢ 5.66 31.45 3.59 27.81 10.87 18.37
,Og 0.76 0.77 0.78
1000'g 1.04 1.15 1.09
Pr 0.88 0.92 0.91
1000, 0.58 0.72 0.63
6 0.77 0.24 0.59
n 0.79 0.88 0.75
RWC 4.46 0.00 3.92 0.00 4.67 0.00

Note: Estimates obtained using pairs of observables, from the Mexican Data, 1980.1-2003.2 and no measurement errors. Numbers
reported are posterior modes, which are very similar to the posterior means. Standard errors are omitted for brevity but are available
upon request.



Table 6. Model Comparison

Models | Likelihood | Posterior | Marginal Likelihood
Observables: {gY, gC, gl, dTB/Y}; Measurement Errors in all Variables

Encompassing Model 991.5 1010.1 956.2

Stochastic Trend Model 989.7 1015.0 973.8

Financial Frictions Model 991.9 1003.4 960.4

AG - GMM 975.2
Observables: {gY. dTB/Y}; No Measurement Errors

Stochastic Trend Model 516.1 525.0 506.8

Financial Frictions Model 540.1 535.7 514.9
Observables: {gY, gl}; No Measurement Errors

Stochastic Trend Model 387.0 391.7 372.9

Financial Frictions Model 430.1 432.6 408.0
Observables: {gY, gC}; No Measurement Errors

Stochastic Trend Model 512.7 517.0 499.9

Financial Frictions Model 524.4 519.5 499.3

Note: Results are in logs. Log-Likelihood levels computed in the posterior mode. Results on marginal data densities are approximated
by Geweke's harmonic mean estimator with truncation parameter 0.5. Except for the cases with no measurement errors and
measurement errors in all 4 variables, results are computed observing the time series for output, consumption, investment and the
trade balance-to-GDP ratio, and i.i.d. measurement errors were added to the observation of all variables. AG-GMM stands for the log-
likelihood value evaluated using the estimated parameters in Aguiar and Gopinath (2004) and the measurement errors from the
posterior mode.

Table 7.1. Second Moments. Encompassing and Separate Models

Variable Mexican Encompassing Stochastic Fir}ar}cial Aggiar-
Data Trend Frictions Gopinath
Standard Deviations (%)
gY 1.53 1.23 1.54 1.22 1.58
gC 1.94 1.68 1.62 1.65 1.71
gl 5.66 4.63 4.47 4.60 5.52
dTB/Y 1.38 1.46 0.98 1.44 1.12
S.D. (X)/S.D. (gY)
gC 1.27 1.36 1.05 1.36 1.08
gl 3.71 3.76 2.90 3.77 3.49
dTB/Y 0.91 1.18 0.64 1.18 0.71
Correlation with gY
gC 0.76 0.95 0.95 0.95 0.98
gl 0.75 0.79 0.90 0.79 0.88
dTB/Y -0.44 -0.65 -0.54 -0.64 -0.71
Correlation with dTB/Y
gC -0.50 -0.83 -0.78 -0.83 -0.82
gl -0.67 -0.97 -0.85 -0.97 -0.95
Serial Correlation
gY 0.27 0.19 0.15 0.19 0.27
gC 0.20 0.18 0.08 0.18 0.19
gl 0.44 -0.06 -0.02 -0.06 -0.01
dTB/Y 0.33 -0.08 -0.05 -0.08 -0.02

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using observables {gY, gC, gl, dTB/Y} from the
Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates. Standard Errors are omitted for brevity but are
available upon request. All estimations were done using measurement errors in all four variables. Aguiar and Gopinath (2004) conduct
the GMM estimation based upon 11 moments of which only two, the standard deviation and serial correlations of gY, are reported in
Table 7.1, the other 9 moments refer to Hodrick-Prescott filtered moments which we don't present here given that we don't use this
filtering technique.



Table 7.2. Second Moments. Estimations Without Measurement Errors

Observables:{gY, dTB/Y}

Observables:{gY, gl}

Observables:{gY, gC}

Variable Mexican . . . . . . . . .
Data Stochastic | Financial | Stochastic | Financial | Stochastic | Financial
Trend Frictions Trend Frictions Trend Frictions
Standard Deviations (%)
gy 1.53 2.06 1.43 2.66 1.52 2.32 1.63
gC 1.94 2.33 2.25 2.78 3.17 2.63 2.43
gl 5.66 5.07 3.57 7.71 6.08 3.94 6.39
dTB/Y 1.38 1.37 1.58 1.93 2.89 1.33 2.56
S.D. (X)/S.D. (gY)
gC 1.27 1.13 1.57 1.05 2.08 1.13 1.49
gl 3.71 2.46 2.50 2.90 4.00 1.69 3.93
dTB/Y 0.91 0.67 1.10 0.72 1.90 0.57 1.57
Correlation with gY
gC 0.76 0.92 0.90 0.91 0.84 0.91 0.82
gl 0.75 0.86 0.70 0.84 0.73 0.84 0.59
dTB/Y -0.44 -0.41 -0.45 -0.38 -0.57 -0.20 -0.34
Correlation with dTB/Y
gC -0.50 -0.73 -0.80 -0.72 -0.92 -0.59 -0.81
gl -0.67 -0.82 -0.95 -0.82 -0.98 -0.71 -0.96
Serial Correlation

gY 0.27 0.17 0.19 0.16 0.15 0.14 0.17
gC 0.20 0.08 0.21 0.09 0.05 0.07 0.17
gl 0.44 -0.29 -0.04 -0.02 -0.03 0.02 -0.04
dTB/Y 0.33 -0.05 -0.06 -0.05 -0.04 -0.05 -0.05

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and
no measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior mode estimates.
Standard Errors are omitted for brevity but are available upon request.




Table 8. Posterior Distributions. Robustness Analysis: Less Informative

Priors; Other Preferences; and Estimation of Long-Run Growth

Less Informative Priors Jaimovich-Rebelo Preferences and
Estimating Long-Run Growth
Parameter . . High Low . . Jaimovich- Estimating
Mode Mode Preferences Growth
0.91 0.95 0.88 0.89
Pa Beta (2,2) 0.50 0.89 0.67 [0.83,0.98] [0.92,0.97] [0.87,0.90] [0.87,0.92]
Uniform 0.84 0.74 1.02 0.66
1000—& (0.01,10) 5.00 0.82 0.46 [0.74, 0.96] [0.12, 1.67] [0.82, 1.25] [0.50, 0.83]
Uniform 7.92 6.00 16.40 14.87
¢ (0.0,40) 20.0 8.75 2.30 [4.02,11.95] [1.62,12.6] [12.40, 20.79] [11.92, 18.01]
Uniform 0.09 2.00 0.43 0.59
1(DO-Y (0.01,10) 5.00 0.01 0.01 [0.01,0.31] [0.67, 3.86] [0.16, 0.68] [0.20, 0.90]
Uniform 1.20 2.00 1.19 1.18
1(DO-C (0.01,10) 5.00 1.19 1.19 [1.05, 1.37] [0.67, 3.86] [1.04, 1.36] [1.00, 1.38]
Uniform 3.02 2.00 2.96 3.08
1CDO-I (0.01,10) 5.00 2.89 2.82 [2.47, 3.54] [0.67, 3.86] [2.44, 3.47] [2.57, 3.66]
100c; Uniform 0.48 2.00 0.65 0.71
1BlY (0.01,10) 5.00 0.64 0.81 [0.03, 0.84] [0.67, 3.86] [0.37, 0.90] [0.18,0.97]
0.52 0.72 0.72 0.72
'0 g Beta (2.2) 0.50 0.50 0.50 [0.06, 0.96] [0.68, 0.76] [0.68, 0.75] [0.68, 0.76]
Uniform 0.03 0.74 0.06 0.11
l(DO'g (0.01,10) 5.00 0.02 112 [0.01, 0.08] [0.12,1.67] [0.00, 0.16] [0.01, 0.30]
0.94 0.83 0.82 0.82
Pr Beta (2,2) 0.50 0.93 0.87 [0.86, 0.99] [0.74, 0.91] [0.72, 0.89] [0.72, 0.90]
Uniform 0.16 0.72 0.36 0.41
1%:‘? (0.01,10) 5.00 0.17 0.04 [0.07, 0.30] [0.30, 1.29] [0.25, 0.49] [0.26, 0.57]
0.62 0.50 0.56 0.69
0 Beta (2,2) 0.50 0.65 0.76 [0.13, 0.96] [0.13, 0.87] [0.18, 0.88] [0.26, 0.96]
Uniform 0.25 1.00 0.67 0.73
n (0.0,5.0) 2.50 0.32 0.00 [0.01,0.52] [0.84,1.17] [0.56, 0.79] [0.60, 0.87]
4 Uniform 0.50 0.05
(0.001,1.0) [0.05, 0.95] [0.00, 0.13]
§ Gamma 2.50 2.51
(25,0.1) [1.72, 3.35] [1.97, 3.06]
0.33 0.04 0.28
RWC 1.01 0.00 2.48 [0.00, 0.40] [0.00, 0.16] [0.00, 1.18]
Log-Posterior at Mode 1014.6 1009.0 1011.3 1009.9
Log-Likelihood at Posterior 10046 | 997.8 1000.5 991.6

Note: All robustness cases were estimated using observables {gY, gC, gl, dTB/Y} from the Mexican Data, 1980.1-2003.2 using measurement errors in all four
variables. Results for Jaimovich-Rebelo Preferences and Estimating Long-Run Growth are posterior means and 90 percent confidence intervals for posterior

distributions.




Table 9. Forecast Error VVariance Decompositions. Robustness Analysis:
Less Informative Priors; Other Preferences; and Estimation of Log-Run

Growth
Structural v C I dTBIY
Shock g g g
Less Informative Priors
ga 97.56 87.37 64.59 22.11
59 0.16 0.68 0.17 0.78
gR* 2.28 11.95 35.24 77.11
Jaimovich-Rebelo Preferences
ga 87.57 94.91 85.64 58.68
59 1.09 1.82 0.66 2.05
gR* 11.34 3.27 13.71 39.27
Estimating Long-Run Growth
ga 91.38 85.74 73.72 53.37
gg 2.46 3.19 1.34 1.76
s 6.16 11.07 24.94 44.87
Observing Interest Rates {R*,R}
ga 61.72 53.16 76.70 67.45
gg 37.96 46.20 17.98 16.01
g"'\’* 0.32 0.65 5.32 16.55

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and no
measurement errors from the Mexican Data, 1980.1-2003.2. Moments are computed using posterior means. Standard Errors are
omitted for brevity but are available upon request.



Table 10. Posterior Distributions. Robustness Analysis: One Financial
Friction at a Time.

No Working Capital No Endogenous No Financial
Parameter Prior . 0=0 Sp.read n=0 Frict.ions 0=n=0
Pa | pmom | O% | pmow | 0% | poivin | %% | oo
1000a [o.(l)z',71£.ts7] 0.78 [0.84,70%1] 0.71 [0.85,7&5] 0.73 [0.21',7;.1;9]
¢ [ .22.,012.6] 15.14 [1%453',%.8] 411 [2.;10',25%;2] 4.02 [2;14,15?’51]
1(1)0-)/ [0.57.,03.086] 0.53 [o.(zjé,5ol.1:30] 0.35 [O.?é?:)iB] 0.35 [0.(1)1',?:1154]
1CDO-C [0.57.2(.236] 117 [1.016,11.839] 1.12 [o.gé,lliz] 1.13 [1.oli,:L1.5?,3]
1000, | oo | 287 | poiosa | 265 | phom | 208 | pit
1%73/ Y [0.57.2(.236] 0.79 [o.gé,81%3] 0.73 [0.84,7014] 0.72 [0.82',70.394]
P g9 [0.82;,70.276] 0.72 [o.gé,7o.275] 0.71 [0.27',70.175] 0.71 [0.28',70:.L75]
1mo-g [O.?2.,71£.‘(.37] 0.12 [o.gi,:L(J(.)za] 0.62 [0.(2)7l,50.781] 0.62 [0.9{5,50%4]
Pr [0.94%%1] 0.84 [0.95',801.191] 0.86 [0.97',80.592] 0.86 [0.(7)3'%23]
1%/? [0.26,71.229] 0.37 [o.gé%.?ss] 0.14 [0.25,10.522] 0.14 [0.85,10‘.120]
0 [o.(l)e:,so%ﬂ 0.65 [0.90.,60:.]:%]
n [0.23-4;,0127] 0.71 [0.26,70%33]
RWC | piion| 018 | oonen | 262 | paraee | 238 | poiam




Table 11. Forecast Error Variance Decompositions. Robustness

Analysis: One Financial Friction at a Time

Structural Shock gY gC gl dTB/Y
No Working Capital Needs: ¢ =0
&2 97.97 91.62 78.79 56.52
c? 1.38 2.09 0.88 1.34
e 0.65 6.29 20.33 42.14
No Endogenous Spread: =0
& 72.67 47.53 32.11 3.50
&9 25.84 49.65 30.55 39.22
el 1.50 2.82 37.34 57.28
No Financial Frictions: 6 =7 =0
&2 73.23 47.78 33.99 4.16
c? 25.98 50.41 31.66 41.57
e 0.79 1.81 34.35 54.28

See Note in Table 9.

Table 12. Second Moments. Robustness Analysis: One Financial

Friction at a Time

. . . . No Endogenous No F_mgnmal
Variable Mexican Data | No Working Capital ¢ =0 S doe Frictions
pread n =0 0=n=0
Standard Deviations (%)
gy 1,53 1,38 1,49 1,51
gC 1,94 1,79 1,50 1,51
gl 5,66 4,76 4,58 4,64
dTB/Y 1,38 1,44 1.24 1.26
S.D. (X)/S.D. (gY)
gC 1,27 1,30 1,00 1,00
gl 3,71 3.45 3,07 3,07
dTB/Y 0,91 1.04 0,83 0,83
Correlation with gY
gC 0,76 0,96 0,94 0,94
gl 0,75 0,87 0,72 0,73
dTB/Y -0,44 -0,70 -0,35 -0,36
Correlation with dTB/Y
gC -0,50 -0,88 -0,60 -0,61
gl -0,67 -0,96 -0,88 -0,88
Serial Correlation
gy 0,27 0,00 0,11 0,11
gC 0,20 -0,04 0,08 0,07
gl 0,44 -0,06 -0,04 -0,04
dTB/Y 0,33 -0,07 -0,07 -0,07




Figure 1. Priors and Posteriors: Encompassing Model
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Figure 2. Convergence

c o o
P, P g P 0 a g r
1 0.8 1 1 0.02 0.025 0.02
T~ - | .
- - 08
0.8 0.6 0857 0.015 0.02 0.015
0.6 0.6 0.015
0.6 0.4 0.01 0.01
0.4 0.4 0.01
0.4 0.2 0.005 - 0.005 |~
0.2 0.2 0.005 S
0.2 0 0 0 0 0 0
0 5 0 5 0 5 0 5 0 5 0 5 0 5
x 10" x 10" x 10" x 10" x 10" X 10° X 10°
| ) o o o oNX
4 50 Y C ' 0.025
0.02 0.02 0.05 '
40 0.02
3 0.015 0.04
0.015
0.03 0.015
2 0.01}
N T 0.02 0.01
0.01 @.ﬂ —
o — 0.005 0.01 0.005
0 0 0 0.005 0 0
0 5 0 5 0 5 0 5 0 5 0 5
x10' x 10° x 10' x 10' x 10° x 10°

Note: Each line corresponds to recursive means for the 13 parameters as a function of the number of draws, computed from 6 independent
MCMC chains using random starting values.



Figure 3 Impulse Response Functions, Encompassing Model
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Note: Each column tracks the response of output (Y); consumption (C); investment (I), and employment (h) as deviations
from steady states, after an estimated 1 S.D. shock to the transitory technology process (Column 1); the foreign interest rate
process (Column 2); and the growth process (Column 3). Dashed lines depict 90% confidence interval based upon the

posterior distribution.



Figure 4. Impulse Response Functions after a transitory technoloqgy
Shock: A Counterfactual Experiment

Y C | h
18 25 5 14
lGﬂ 1 | \
A =0 | \‘ 12\
14 \ 1 3‘\\ |\
\ \ 1\ N\
1'2‘» \ | \ \\\
AN\ | o8 \
| \ \ A \\ \‘ \\ \\
\ N | b\
0.8 \\ 1 . \ 0.6 . \\
05 \ \ \\ \ \ \
| \ N o 5 NN
0.4 N 05 N N N
< . ~ ~
02 | - 0.2 ~
0 : 0 : 0 :
0 20 40 0 20 40 0 20 40

Note: The green dotted line depicts the mean posterior distribution of the same impulse response
function following an estimated 1 S.D. shock to the transitory technology process except that we
counterfactually assume the parameter 7 to be zero.

Figure 5. Time Series for Domestic and Foreign Interest Rates
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Note: R* is the risky world interest rate measured as the safe interest rate (taken from the TBills rate) plus the EMBI+
for a pool of developing emerging market economies; R is the Mexican interest rate measured as the safe interest rate
plus the EMBI+ Mexico; S is the implied spread between the two interest rates. Sources: Uribe and Yue (2006) and
Global Financial Data.



Figure 6. Simulating The Tequila Crisis

Using only smoothed growth shocks
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Note: Each row tracks the observed (solid line) and model-based simulated (dashed line) time series of log-output (Y); log-consumption (C); log-investment (1),
and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state shocks. Simulations do not include measurement
errors.



Figure 7. Simulating The Tequila Crisis Using Only Transitory Technology Shocks and Various Degrees of

Financial Frictions

Using only smoothed transitory technology shocks and no financial frictions
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Note: Each row tracks the observed (solid line) and model-based simulated (dashed and starred lines) time series of log-output (Y); log-consumption (C); log-
investment (1), and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state transitory technology shocks.



