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1 Introduction

Since at least Hayek (1945), economists have understood that �We must look at the price

system as... a mechanism for communicating information if we want to understand its real

function�(p. 526). Beginning in the 1970s, Grossman (1977) and Grossman and Stiglitz

(1976, 1980) developed formal models analyzing this issue. In these classic models, some

market participants make a costly investment in becoming informed about the value of an

asset; others do not, but make rational inferences from the equilibrium price. The analysis

is intricate, because the price plays two roles: informing uninformed parties about the asset�s

value, but also clearing the market. This dual role for the price requires computation of the

price function as a �xed point, and closed-form solutions are typically not available. One

special case that does admit closed-form solutions is when agents have exponential utility

functions and all random variables are jointly normally distributed.1

Many of these models of rational-expectations equilibrium seem best suited as (and are

often intended to be) models of �nancial markets, as opposed to intermediate-good markets,

in at least three senses. First, models that assume normal distributions allow prices and

quantities to be negative, which may occur through short-selling and other practices in

some �nancial markets, but seem unfamiliar in most intermediate-good markets (where free

disposal keeps prices positive and the asset being a physical good keeps quantities positive).

Second, in �nancial markets, the value of an asset today is tied to its fundamental value

later, and this value is often the same for everyone. By de�nition, however, intermediate

goods are used to produce something else and hence can have di¤erent values to producers

seeking to produce di¤erent �nal goods.

Finally, with few exceptions (e.g., Ausubel (1990)), the rational-expectations literature

has made use of a separate class of traders who buy or sell assets based on idiosyncratic

shocks. According to Black (1986: pp 4-5), the noise these traders provide �makes �nancial

1Examples include: Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), Verrecchia (1982),
Admati (1985), Wang (1993), Veldkamp (2006), Yang and Ganguli (2008).
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markets possible�and provides incentives �for people to seek out costly information which

they will trade on.� Formally, such noise traders ensure that an uninformed trader cannot

perfectly learn the value of an asset simply by observing the market-clearing price. In an

intermediate-good market, however, where di¤erent classes of producers seek to produce

di¤erent �nal goods, noise traders are no longer needed: now, an informed trade by a

producer of one �nal good amounts to a noise trade from the perspective of a producer

of another �nal good.

In this paper, we construct a rational-expectations model of information acquisition and

price formation in the market for an intermediate good that can be used to produce two �nal

goods. We assume that the values that consumers place on these �nal goods are uniformly

distributed with positive supports, which allows us to ensure that prices and quantities in

the intermediate-good market are always positive.

The main technical di¢ culty in our analysis is that, unlike in Grossman and Stiglitz

(hereafter GS), the equilibrium price function is not linear. We show, however, that the

price function is piecewise-linear over three regions of the parameter space. These three

regions emerge naturally from our assumption of uniform distributions on the values of �nal

goods, because uninformed producers�conditional belief about the value of their �nal good

given the market price takes one of three forms: an upper tail of the prior distribution of �nal-

good values, a lower tail, or the entire support of possible values. Unlike GS, therefore, we

�nd that the informativeness of the price mechanism depends on the realization of the price.

In particular, the price mechanism is more informative at higher and lower prices (converging

to perfectly informative at the maximum and minimum prices), but potentially completely

uninformative in a middle range of prices. This piece-wise linearity allows us to obtain

an explicit solution for the price function, which allows us to perform comparative-statics

exercises, including revisiting the seven conjectures from Grossman and Stiglitz (1980).

The existence of two classes of producers, each seeking to produce a di¤erent �nal good,

plays an important role in our model. All else equal, if more producers of one �nal good

3



become informed about the value of their output, then the intermediate-good price will be-

come more sensitive to (and hence more informative about) this value. Other producers of

this good will �nd prices to be a better signal about the value of their output and so will be

less inclined to become informed. There are thus positive within-group informational exter-

nalities (i.e., information acquisition has the strategic-substitutes property within groups).

However, as the intermediate-good price becomes more sensitive to the value of one �nal

good, it necessarily becomes less sensitive to (and thus less informative about) the value of

the other �nal good. Producers of this second �nal good will �nd the intermediate-good

price to be a less useful signal, so they will be more inclined to become informed. There

are thus negative cross-group informational externalities (i.e., information acquisition has

the strategic-complements property between groups). Additionally, if there is an increase

in the number of producers of both goods who become informed, the inferences that unin-

formed producers draw from prices may be unchanged, since the positive externalities and

negative externalities may cancel out. Thus, more producers trading on information does

not necessarily increase the informativeness of prices for either group.

Our interest in this model is both direct and indirect. That is, we are interested in

the model not only as a rational-expectations model of price formation in intermediate-good

markets, but also as a model to be embedded in a larger application. In particular, in a

related paper [Gibbons, Holden, and Powell (2009)] we embed a simpli�ed version of this

paper�s model of price formation in a model of �rms�integration decisions. In this sense,

building on the present paper allows us to expand the focus of the transaction-cost/property-

rights literature on the boundary of the �rm (e.g., Williamson (1971), Klein, Crawford, and

Alchian (1978), Grossman and Hart (1986)): rather than study the integration versus non-

integration decision of one dyad in isolation, in our related paper we analyze how the separate

integration decisions of a market�s worth of dyads interact through the informativeness of

the market�s pricing function.

The remainder of the paper is organized as follows. Section 2 states the problem. Section

4



3 takes the information-acquisition decisions of the producers as given and establishes the

existence of a piece-wise linear rational-expectations equilibrium price function. Section 4

analyzes the information-acquisition game, establishing the existence and uniqueness of an

equilibrium. Section 5 revisits the seven conjectures of Grossman-Stiglitz (1980). Section

6 concludes.

2 Statement of the Problem

There is a unit mass of producers, indexed by i 2 [0; 1]. An intermediate good (a �widget�)

can be used to produce one of two �nal goods. A �xed mass q are good-1 producers, and a

�xed mass 1� q are good-2 producers. Each producer is endowed with wi 2 f0; 1g widgets,

and the total aggregate endowment is �xed at x � 1. Without loss of generality, assume

wi = 1 if i � x.

At some cost ci, a good-1 producer can transform a widget into a unit of good 1, and

a good-2 producer can transform a widget into a unit of good 2. This transformation cost

is drawn from a uniform distribution on support [0; �c]. Consumers�value for the good j is

uncertain, with vj uniformly distributed on [vj; �vj]. As in Grossman-Stiglitz, producers can

pay to become informed about the consumer value that is relevant for them. More precisely,

before observing ci, producer i who produces good j can pay ki to learn vj (without error).

We assume ki to be uniformly distributed on
�
0; �k
�
.

Producers not endowed with a widget may purchase one in the intermediate-good market,

and endowed producers may sell into the market. All the random variables in the model

(v1; v2; ci; ki) are independent of each other. Denote the market price for a widget as p.

Producers not directly informed about the relevant vj (because they chose not to pay the

cost ki) make rational inferences about vj from the equilibrium price.

Equilibrium in the market for widgets is determined by the price that equates supply

(from both informed and uninformed good-j producers whose production costs are su¢ ciently
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high) and demand (from both informed and uninformed good-j producers whose production

costs are su¢ ciently low). If this price perfectly revealed vj, there would be no incentive for

any good-j producer to pay the cost ki of learning vj, but then prices would be uninformative

about vj. To avoid this result, there must not be a one-to-one mapping between prices at vj,

but this is no problem, since from the perspective of good-j producers, the random demand

of widgets by good-i producers is essentially noise.

2.1 Timing

To be more precise about the timing and assumptions, suppose there are �ve time periods.

At the beginning of the �rst period (�information acquisition�), nature draws the value of

good 1, v1, from U [v1; �v1], and the value of good 2, v2, from U [v2; �v2], both of which are

unobserved by all producers. Producers, who know whether they are good-1 producers or

good-2 producers, observe their private cost of becoming informed ki � U
�
0; �k
�
and decide

whether or not to become informed. In the second period (�endowment�), producers learn

their index i and all players with i � y are endowed with wi = 1 widgets.

In the third period (�price formation and trading�), producer i observes ci � U [0; �c] and

'i 2 f;; vjg, a signal about the value vj of the �nal good they can produce. Let 'i = ;

denote the uninformative signal that obtains if ki is not incurred in the �rst period and

'i = v
j the perfectly informative signal that a good-j producer obtains if ki is incurred. Let

si = (ci; 'i) be the vector of i�s signals, which are her private information.

In the fourth period (�production�), if producer i has a widget and is a good-j producer,

she can transform the widget into qji = 1 units of good-j at cost ci. If producer i does not

have a widget, then qji = 0.

In the �fth period (�sales and production�), good 1 sells at price v1 and good 2 sells at
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price v2. Gross payo¤s of a good-j producer are determined as follows

�ji (v; si; p) =

8><>: vj � ci � p+ pwi

pwi

if transform widget into good-j

if not

so we can write �ji (v; si; p) = (v
j � ci � p) qi + pwi.

3 Rational-Expectations Equilibrium

In this section, we take �1 and �2 ; respectively the fraction of good-1 and good-2 producers

who are informed, as given. We solve for the price function p� (�; �) that both clears the

market and communicates information to uninformed producers. Informed good-j producers

are willing to purchase (or keep) a widget and transform it into a �nal good
�
qji = 1

�
if and

only if p+ ci � vj, so the largest value of ci at which an informed good-j producer is willing

to buy a widget is cjI (v; p) = v
j � p. Analogously, uninformed good-j producers are willing

to purchase (or keep) and transform a widget if and only if p + ci � E [vjj p� (�; �) = p], so

we have cjU (p) = E [v
jj p� (�; �) = p]� p. Total demand for each group is then given by

D1 (v; p) = q�1
c1I (v; p)

�c
+ q (1� �1)

c1U (p)

�c

D2 (v; p) = (1� q)�2
c2I (v; p)

�c
+ (1� q) (1� �2)

c2U (p)

�c
:

Market-clearing requires that in each state of the world (v1; v2),

x = D1 (v; p) +D2 (v; p) (1)

It is important to note that 0 � vj�p
�c

� 1 and 0 � E[vjjp]�p
�c

� 1 must hold for all

(v1; v2) and p (v1; v2). These conditions ensure, respectively, that demands for the groups

of informed and uninformed parties are never negative or greater than unity, which must
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hold since they are probabilities. Intuitively, this will depend on the di¤erences between

the relative sizes of the �nal-good markets, q, and the di¤erence between the supports of

the distribution of values �v1 � �v2 and v1 � v2 in a way that will be made precise later.

If �v2 >> �v1, v2 >> v1 and q is relatively small, then prices will always be high, because

the intermediate good is very valuable for good-2 producers who are relatively large in the

market. This will in turn price out the good-1 producers from the market. Throughout the

derivation of prices, we will assume these conditions hold, and at the end, we will provide

conditions under which they in fact do.

As in GS, computing the conditional expectations E [vjj p� (�; �) = p] requires knowing

the price function p� (�; �), not merely the realized price p.

De�nition 1 Assume a fraction �1 and �2 of good-1 and good-2 producers, respectively, are

informed. A rational-expectations equilibrium (REE) is a price function p� (�; �) and

a production allocation
�
qj�i
	
i2[0;1] such that

1. qj�i 2 argmaxqji2f0;1gEv1;v2
�
�ji (v

1; v2; p)
�� p� (�; �) = p; si� for all i, for j = 1; 2.

2. (1) holds for all v1; v2.

We now establish the existence of an REE by construction. The price function is a

mapping p : [v1; �v1]� [v2; �v2]! R. Solving (1) for p gives us

p = q�1v
1 + (1� q)�2v2 + q (1� �1)E

�
v1
�� p�+ (1� q) (1� �2)E �v2�� p�� �cx:

The slope of the isoprice line is given by dv2

dv1
= �

�
dp
dv1
= dp
dv2

�
= � q

1�q
�1
�2
. Corresponding to
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the following diagrams, there are two situations.

Case A Case B

If the slope is greater than the slope of the diagonal (in absolute value), then we are in case

A:
q

1� q
�1
�2
� �v2 � v2
�v1 � v1 :

If the slope is less than the slope of the diagonal in absolute value, then we are in case B:

q

1� q
�1
�2
� �v2 � v2
�v1 � v1 :

In case A, prices are always more informative for good-1 producers than for good-2

producers. Indeed, in the middle region, prices are informative for good-1 producers and

completely uninformative for good-2 producers. In case B, the opposite is true. We now

turn to deriving the actual price function that obtains under Case A. The price function

under Case B is stated in Proposition 1 and derived in the appendix. There are three
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regions:

R1� =
��
v1; v2

�
: p � p�

�
v1; v2

�
� p�

�
v1; �v2

�	
R2� =

��
v1; v2

�
: p�

�
v1; �v2

�
� p�

�
v1; v2

�
� p�

�
�v1; v2

�	
R3� =

��
v1; v2

�
: p�

�
�v1; v2

�
� p�

�
v1; v2

�
� �p

	
:

We conjecture that there is a piecewise-linear price function

p�
�
v1; v2

�
= 1f(x;v)2R1�g

�
�10 + �

1
1v
1 + �12v

2
�
+ 1f(x;v)2R2�g

�
�20 + �

2
1v
1 + �22v

2
�

+1f(x;v)2R3�g
�
�30 + �

3
1v
1 + �32v

2
�

= 1f(x;v)2R1�gp
1
�

�
v1; v2

�
+ 1f(x;v)2R2�gp

2
�

�
v1; v2

�
+ 1f(x;v)2R3�gp

3
�

�
v1; v2

�
;

which is a �xed point of (1), rearranged in a more mathematically convenient way

q (1� �1)E
�
v1
�� p� (�; �) = p� �v1; v2�� (2)

+(1� q) (1� �2)E
�
v2
�� p� (�; �) = p� �v1; v2��

= p+ �cx� q�1v1 � (1� q)�2v2;

and we seek to solve for the parameter vectors �1; �2, and �3. To solve for �1, assume

p � p� (v1; �v2). Then individuals believe that

v1
�� p� (�; �) = p � U

�
v1 (p) ; �v1 (p)

�
v2
�� p� (�; �) = p � U

�
v2 (p) ; �v2 (p)

�
,

where vj (p) and �vj (p) are, respectively, the lowest and highest values of vj consistent

with the realized price level. vj (p) = vj and �v1 (p) solves p1� (�v
1 (p) ; v2) = p or

�v1 (p) =
1

�11

�
p� �10 � �12v2

�
:
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Given a price p � p� (v1; �v2), the conditional expectation of v1 is then

E
�
v1
�� p� = v1 (p) + �v1 (p)

2
=
v1 +

�
p� �10 � �12v2

�
=�11

2
:

Similarly, �v2 (p) solves p2� (v
1; �v2 (p)) = p or

�v2 (p) =
1

�12

�
p� �10 � �11v1

�
:

The conditional expectation of v2 is then

E
�
v2
�� p� = v2 (p) + �v2 (p)

2
=
v2 +

�
1=�12

� �
p� �10 � �11v1

�
2

:

Market clearing in (2) then requires

q (1� �1)
v1 +

��
�10 + �

1
1v
1 + �12v

2
�
� �10 � �12v2

�
=�11

2

+ (1� q) (1� �2)
v2 +

��
�10 + �

1
1v
1 + �12v

2
�
� �10 � �11v1

�
=�12

2

�
�
�10 + �

1
1v
1 + �12v

2
�
+ �cx� q�1v1 � (1� q)�2v2;

where the equivalence relation reminds us that this holds as an identity in (v1; v2). Re-

arranging and using equality of coe¢ cients, we get

�10 =
q

2

�
�2 � �1
�2

�
v1 +

(1� q)
2

�
�1 � �2
�1

�
v2 � �cx

�11 =
q

2

�1 + �2
�2

�12 =
1� q
2

�1 + �2
�1

Similar calculations can be carried out for regions 2 and 3, in which p� (v1; �v2) < p �
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p� (�v
1; v2) and p > p� (�v1; v2), respectively, in which case we get

p1�
�
v1; v2

�
=

q

2

�
�2 � �1
�2

�
v1 +

1� q
2

�
�1 � �2
�1

�
v2 � �cx+ q

2

�1 + �2
�2

v1 +
1� q
2

�1 + �2
�1

v2

p2�
�
v1; v2

�
= (1� q)

�
�1 � �2
�1

�
v2 + �v2

2
� �cx+ qv1 + (1� q) �2

�1
v2 (3)

p3�
�
v1; v2

�
=

q

2

�
�2 � �1
�2

�
�v1 +

(1� q)
2

�
�1 � �2
�1

�
�v2 � �cx+ q

2

�1 + �2
�2

v1 +
1� q
2

�1 + �2
�1

v2:

Case B is handled symmetrically, and the calculations are carried out in the appendix. By

construction, our price function is a �xed point of the market-clearing equation (2). It is

reassuring to note that the price function is continuous across the boundaries.

Now, recall that we had originally assumed that 0 � vj�p
�c
� 1 and 0 � E[vjjp]�p

�c
� 1 must

hold for all (v1; v2) and p (v1; v2). We can ensure that these restrictions hold by making

restrictions on exogenous parameters. For now, I will provide su¢ cient conditions that entail

fairly restrictive assumptions on exogenous parameters. We can relax these assumptions

later. First, note that vj � p (vi; vj) for all vi; vj if vj � p (�vi; �vj), which holds if

�cx � q
�
�v1 � v1

�
+ (1� q)

�
�v2 � v1

�
(4)

�cx � q
�
�v1 � v2

�
+ (1� q)

�
�v2 � v2

�
Next, note that E [vjj p] � vj, so that if the previous conditions are satis�ed, then

E [vjj p] � p (vi; vj) must hold for all (vi; vj). Next, note that vj � �c + p (vi; vj) holds for

all (vi; vj) if �vj � �c+ p (vi; vj), or

�c (1� x) � q
�
�v1 � v1

�
+ (1� q)

�
�v1 � v2

�
(5)

�c (1� x) � q
�
�v2 � v1

�
+ (1� q)

�
�v2 � v2

�
Since E [vjj p] � �vj, if these conditions are satis�ed, then E [vjj p] � �c + p (vi; vj) must

hold for all (vi; vj). All of these conditions can be ensured if �c is su¢ ciently large. However,
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prices are everywhere positive only if qv1 + (1� q) v2 � �cx holds. This provides an upper

bound and a set of lower bounds on �c. For the special case in which vj = v and �vj = �v,

these restrictions become
v

x
� �c � �v � v

x

if x � 1
2
and

v

x
� �c � �v � v

1� x

if x � 1
2
: The following theorem summarizes these results.

Theorem 1 Given �1; �2 > 0, suppose (4) and (5) are satis�ed. There exists an REE

characterized by a piecewise-linear price function

p�
�
v1; v2

�
= 1f(x;v)2R1�gp

1
�

�
v1; v2

�
+ 1f(x;v)2R2�gp

2
�

�
v1; v2

�
+ 1f(x;v)2R3�gp

3
�

�
v1; v2

�
:

When q
1�q

�1
�2
� �v2�v2

�v1�v1 , the price function is given by (3) ; and when
q
1�q

�1
�2
� �v2�v2

�v1�v1 , the

price function is given by (6). Additionally, p� (v1; v2) is continuous in �1; �2; v1; and v2 for

�1; �2 > 0. When qv1 + (1� q) v2 � �cx, prices are everywhere positive.

4 Full Equilibrium

We now turn to endogenizing information acquisition. Recall that, prior to observing the

production cost (ci) or the price (p), each producer, at cost ki, can learn the value of their

�nal good vj. Given �1 and �2, gross of information-acquisition costs, an informed good-j
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producer receives expected payo¤

�jI (�1; �2) = Ev2;v1;ci
�
�ji
�
v1; v2; p

��� p� (�; �) = p� �v1; v2� ; ci; 'i = vj�
=

Z
v2

264Z
v1

264 Rci (vj � p� (v1; v2)� ci)
�1fci<vj�p�(v1;v2)gdFc (ci)

375 dFv1 �v1�
375 dFv2 �v2�

=
1

�v2 � v2
1

�v1 � v1
1

2�c

Z
v2

�Z
v1

�
vj � p�

�
v1; v2

��2
dv1
�
dv2

and an uninformed good-j producer receives expected payo¤

�jU (�1; �2) = Ev2;v1;ci
�
�ji
�
v1; v2; p

��� p� (�; �) = p� �v1; v2� ; ci; 'i = ;�
=

Z
v2

264Z
v1

264 R
ci
(vj � p� (v1; v2)� ci)

�1fci<E[vj jp]�p�(v1;v2)gdFc (ci)

375 dFv1 �v1�
375 dFv2 �v2�

=
1

�v2 � v2
1

�v1 � v1
1

2�c

Z
v2

266664
Z
v1

0BBBB@
2vjE [vjj p]� (E [vjj p])2

�2vjp� (v1; v2)

+ (p� (v
1; v2))

2

1CCCCA dv1
377775 dv2

Depending on whether or not q
1�q

�1
�2
� �v2�v2

�v1�v1 , the expressions for E [v
jj p] and p� (v1; v2)

are determined based on the pricing function from case A or case B. A good-j producer will

become informed if the expected bene�ts of doing so exceed the private costs, or

�j (�1; �2) = �
j
I (�1; �2)� �

j
U (�1; �2) � ki.

In words, in period one, each producer will consider all possible states of the world

(v1; v2; ci) that may arise, the price of the widget that arises in each state, her expectations of

the relevant vj (if uninformed) given that particular price, and the cost of the decision-making

error that arises from producing (or not) a �nal good without using all the information. The

expected cost of such decision-making errors is then compared to the private cost of becoming

informed.
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A full equilibrium is de�ned as follows.

De�nition 2 A full equilibrium is a pair of fractions ��1; �
�
2, a price function p� (�; �), and

a production allocation
�
qj�i
	
i2[0;1] such that

1. A fraction ��j of good-j producers optimally choose to become informed for j = 1; 2.

2. qj�i 2 argmaxqji2f0;1gEv1;v2
�
�ji (v

1; v2; p)
�� p� (�; �) = p; si� for all i, for j = 1; 2.

3. (2) holds for all v1; v2.

The remaining task is to compute the di¤erence in expected utility �j (�1; �2) for j = 1; 2

for both case A and case B.

�j (�1; �2) =
1

�v2 � v2
1

�v1 � v1
1

2�c

Z
v2

�Z
v1

�
vj � E

�
vj
�� p��2 dv1� dv2 = Ev1v2

h
�2vj jp

i
2�c

The actual computations are somewhat laborious, and they are carried out in the appen-

dix. The results are given by

�1 (�1; �2) =

8><>:
�

1
K(�1;�2)

�2 �2
v1

2�c

�
1� 1

2
1

K(�1;�2)

�
if K (�1; �2) � 1

�2
v1

2�c

�
1� 1

2
K (�1; �2)

�
if K (�1; �2) � 1

�2 (�1; �2) =

8><>:
�2
v2

2�c

�
1� 1

2
1

K(�1;�2)

�
if K (�1; �2) � 1

(K (�1; �2))
2 �

2
v2

2�c

�
1� 1

2
(K (�1; �2))

�
if K (�1; �2) � 1

where K (�1; �2) =
q
1�q

�1
�2

�v1
�v2
: Note that when K (�1; �2) � 1, we are in case A, and

prices are more informative for group 1. When K (�1; �2) � 1, we are in case B, and prices

are more informative for group 2. When K (�1; �2) = 1, we are in the knife�s edge case

where prices are equally informative for both groups.
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4.1 Information Acquisition

Since pro�ts are separable in the costs of becoming informed, any full equilibrium with

interior values of �1; �2 must involve cuto¤ values k�1 (�2) and k
�
2 (�1) such that a good-1

producer chooses to become informed if and only if ki � k�1 (�2) and a good-2 producer

chooses to become informed if and only if ki � k�2 (�1). Given the assumption that ki �

U
�
0; �k
�
,2 the fraction of parties that is informed is then ��1 (�2) =

k�1(�2)
�k

and ��2 (�1) =
k�2(�1)
�k
.

The values k�1 (�2) and k
�
2 (�1) solve, respectively,

�1 (��1 (�2) ; �2) = k�1 (�2) = �
�
1 (�2)

�k

�2 (�1; �
�
2 (�1)) = k�2 (�1) = �

�
2 (�1)

�k:

It is helpful to �x �j and plot �i (�i; �j)� �k�i, which is done in the following graph.

We see that for a �xed �j; �i (�i; �j) � �k�i is strictly decreasing in �i. It is linear to the

left of the case boundary for which K (�1; �2) = 1 and nonlinear to the right. An increase

in �j will shift this entire curve upward. An interior equilibrium will then be a �xed point

of the equations

�1 (��1; �
�
2) = ��1

�k

�2 (��1; �
�
2) = ��2

�k

2Heterogeneous information costs simplify the analysis but are not necessary for the qualitative results,
since the returns to information acquisition are endogenous.
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De�ne ��i (�j) to be the group best-response of good-i producers when a fraction �j of

good-j producers is informed. The following graph plots the group best-response functions.

The intersection of the two group best-response functions gives us ��1; �
�
2, which in turn gives

us k�1 and k
�
2. Good-1 producers will become informed if and only if ki � k�1 and good-2

producers will become informed if and only if ki � k�2.
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0
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1
2

From this plot, we see several facts about this model, which turn out to be quite general.

First, the group best-response functions appear to intersect at the origin. This turns out

not to be the case, because neither group best-response function is well-de�ned at the origin,

since the bene�ts to becoming informed depend on the ratio �i
�j
. Thus, there is no equilibrium

in which ��1 = �
�
2 = 0. Secondly, the good-j group best-response function is increasing in �i.

This is consistent with the idea that cross-group information acquisition exhibits strategic

complementarities. Intuitively, as more good-1 producers become informed, prices become

more informative for good-1 producers and hence less informative for good-2 producers,

which in turn increases k�2 and hence �
�
2. Third, for �1 > 0 very small, �

�
2 (�1) > �

��1
1 (�1).

That is, the group 2 best-response function lies above the group 1 best-response function for

�1 arbitrarily small. Fourth, the good-j group best-response function is globally concave.

As more good-i producers become informed, the bene�t for a good-j producer increases,

but at a decreasing rate. The informativeness of prices for good-i depends on �i
�j
. This

is decreasing in �j, but at a decreasing rate. The following lemmas establish that these

17



characteristics are in fact true.

Lemma 1 lim�j#0 �
�
i (�j) = 0.

Lemma 2 ��i (�j) is increasing in �j.

Lemma 3 lim�j#0
��i (�j)
�j

= +1

Lemma 4 ��i (�j) is globally concave in �j:

We know that for arbitrarily small �1, �
�
2 (�1) > �

��1
1 (�1). There are two cases �

�
2 (1) �

���11 (1) or ��2 (1) < ���11 (1). In the former case, there is an equilibrium at ��1 = ��2 = 1.

In the latter case, there must be some 0 < ��1 < 1 such that ��2 (�
�
1) = ���11 (��1). Since

��2 (�1) � ���11 (�1) is concave, there can be at most one such point. Putting these facts

together gives us the following proposition.

Theorem 2 There exists a unique full equilibrium in which ��1; �
�
2 > 0. Consistent with the

Grossman-Stiglitz paradox, there does not exist an equilibrium in which ��1 = �
�
2 = 0.

We next establish some properties of the equilibrium.

Proposition 1 ��i and �
�
j are increasing in �vi, �

�
i is decreasing in �k. Finally, ��1 is

decreasing in q, and ��2 is increasing in q.

Proof. �i (�i; �j)� �k�i is increasing in �vi and decreasing in �k. For a �xed �j, this implies

that �i is increasing in �vi and decreasing in �k. Cross-group strategic complementarities

implies that both ��i and �
�
j increase in �vi and decrease in �k. Fixing �1 and �2, �

1 (�1; �2)

is decreasing in q and �2 (�1; �2) is increasing in q. This implies that �
�
1 (�2) is decreasing

in q and ��2 (�1) is increasing in q, which in turn implies that �
�
1 is decreasing in q and �

�
2 is

increasing in q.
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5 GS Conjectures

Grossman and Stiglitz (1980) begin their paper by making seven conjectures, saying that

they may or may not be true in general, and then develop their CARA-Normal model in

which all seven are indeed true. We now discuss these seven conjectures in the context of

our model.

Conjecture 1 (GS 1) The more players who are informed, the more informative is the

price mechanism.

GS use the Blackwell criterion to order information systems. That criterion is not

applicable here, as it does not order uniform distributions with di¤erent supports. One

simple way to proceed is to de�ne the informativeness of the price mechanism for vj as the

expected reduction in the variance of vj that results from observing p. De�ne Ij (�) =

Ev1;v2
h
�2vj � �2vj jp

i
, where � = (�1; �2). We then have that

I1 (�) =

8><>:
�2v1

�
1�

�
1

K(�1;�2)

�2
+ 1

2

�
1

K(�1;�2)

�3�
if K (�1; �2) � 1

�2v1
1
2
K (�1; �2) if K (�1; �2) � 1

I2 (�) =

8><>: �2v2
1
2

1
K(�1;�2)

if K (�1; �2) � 1

�2v2
�
1� (K (�1; �2))2 + 1

2
(K (�1; �2))

3� if K (�1; �2) � 1

Evaluating this claim in the context of our model highlights the need to consider (a) who

is becoming more informed and (b) what the price mechanism is becoming more informative

about. If more good-1 producers are informed, then prices will become more informative for

good-1 producers, all else equal, and less informative for good-2 producers. Further, note

that Ij (�) depends on (�1; �2) only inasmuch as it depends on K (�1; �2) =
q
1�q

�1
�2

�v1
�v2
, which

depends only on the ratio of �1 to �2. For a given (�1; �2) pair, if both increase proportionally

by the same amount (i.e. (�1; �2) 7! ((1 + �)�1; (1 + �)�2) for 0 < � � minj

n
1
�j
� 1
o
),

then the informativeness of the price system does not change for either group. That is,

19



Ij ((1 + �)�) = Ij (�) :

Conjecture 2 (GS 2) The more players who are informed, the lower the ratio of the ex-

pected utility of the informed to the uninformed.

For GS, the ratio of expected utility of the informed to the uninformed plays an integral

role in computing the fraction of parties who are informed, and this conjecture provides

the monotonicity required to ensure the existence and uniqueness of a solution. In our

paper, the di¤erence (rather than the ratio) in the expected utilities of the informed and

the uninformed plays the analogous role. Focusing on good-1 producers, this di¤erence,

�1 (�1; �2) is decreasing in �1, which is consistent with their conjecture. Within-group

information acquisition is a strategic substitute. �1 (�1; �2) is increasing in �2, however,

which is inconsistent with their conjecture. Cross-group information acquisition is a strategic

complement in our model. A literature has developed around establishing the existence of

strategic complementarities in information acquisition3. Our model does so in what we feel

is a very natural way. Strategic complementarities often yield multiple equilibria, but not

in our particular model, due to the discontinuity in the group best-response functions at the

origin.

Conjecture 3 (GS 3) The higher the cost of information, the smaller is the number of

players who are informed in equilibrium.

Our model features heterogeneous costs of acquiring information, so we need to de�ne

what it means for the cost of information to increase. If we de�ne an increase in the cost

of information acquisition as a �rst-order stochastic dominant shift in the distribution of

information costs, then for our model, this corresponds to increasing �k. We know that

�j (�i; �j) � �k�j is decreasing in �k, so it is clearly the case that �
�
j is decreasing in �k.

Somewhat interestingly, suppose good-1 producers have ki � U
�
0; �k1

�
and good-2 producers

have ki � U
�
0; �k2

�
. As we just argued, it will clearly be the case that ��j is decreasing in �k

j.

3Barlevy, Veronesi (2000, 2008), Chamley (2007, 2008)
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However, it turns out that ��j is also decreasing in �k
i. This is true, because ��i decreases in �k

i.

Since information acquisition exhibits cross-group strategic complementarities, a decrease in

��i will then lead to a decrease in �
�
j .

Conjecture 4 (GS 4) If the quality of information of the informed players increases then

the price system becomes more informative, but the equilibrium number of informed

traders may increase or decrease.

In our model, if a producer pays ki; she becomes perfectly informed with probability one.

We have analyzed an extension in which, instead, she becomes informed with probability r

and remains uninformed with probability 1 � r. An increase in the quality of information

of the informed can be thought of as an increase in r. In this extension, a good-j producer

becomes informed if and only if

�j (�i; �j) �
ki
r
.

The condition for an (interior) equilibrium is then that
�
��i ; �

�
j

�
satisfy

�1 (��1; �
�
2) = ��1

�k

r

�2 (��1; �
�
2) = ��2

�k

r

The quality of information plays the opposite role as �k, the upper bound on the cost of

acquiring information. In particular, we know that as r increases, a larger fraction of parties

will become informed in equilibrium. In this model, this yields ambiguous e¤ects about the

overall informativeness of prices, so in some sense, this conjecture is reversed.

Conjecture 5 (GS 5) When there is more noise, more players become informed in equi-

librium.

There is no noise in our model, but it is true that if �vj increases, both �
�
i and �

�
j will

increase. An increase in the uncertainty in the model increases the fraction of producers

who become informed.
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Conjecture 6 (GS 6) �In the limit, when there is no noise, prices convey all information,

and there is no incentive to purchase information. Hence, the only possible equilibrium

is one with no information. But if everyone is uninformed, it clearly pays some

individual to become informed. Thus, there does not exist a competitive equilibrium.�

It has been shown elsewhere in the literature4 that if market participants are information-

ally large, in the sense that they recognize that their decision of whether or not to acquire

information a¤ects the overall informativeness of the price system, this conjecture is no

longer true. In our model, producers are in fact informationally small, and this classic GS

non-existence result manifests itself as a discontinuity in the group best-response functions

at the origin.

Conjecture 7 (GS 7) Markets are thinner when �� is close to zero or one.

Market thickness in Grossman-Stiglitz is de�ned as the per-capita quantity of trades

occurring on the basis of di¤erences in information. Di¢ culties arise in GS, because as

� ! 0, the trade of informed parties could potentially explode at a fast enough rate to

prevent per-capita trades from tending to zero. In our model, the fact that no producer has

any use for more than a single widget prevents this from occurring.

6 Conclusion

This paper constructs a rational-expectations model of information acquisition and price

formation in an intermediate-good market in which prices and net supply are always posi-

tive and no producer trades on noise. The intermediate good has two potential uses with

independent values.

We emphasize several di¤erences from the classic Grossman-Stiglitz model. For example,

the price mechanism is more informative at high and low prices and potentially uninforma-

tive at middle prices. Also, an informed trade by a producer of one �nal good amounts
4Krebs (2007), Muendler (2007)
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to a noise trade from the perspective of a producer of another �nal good, so (a) as the

price mechanism becomes more informative for producers of one �nal good, it becomes less

informative for producers of others, who therefore have a stronger incentive to acquire infor-

mation, so information acquisition has the strategic-complements property between groups,

and (b) having more producers (in multiple groups) become informed need not increase the

informativeness of the price mechanism.

The idea that there are con�icting forces determining the information content of prices

may apply in �nancial markets where di¤erent traders trade for di¤erent reasons (e.g., liq-

uidity, hedging, or value). From one trader�s perspective, if other traders are trading for

reasons she is not concerned about, then the fact that they are more informed about their

reasons for trading may merely increase the noise she faces.

In Gibbons et. al. (2009), we simplify this model of price formation and then embed it in

a richer setting, where the single player in this model is replaced by a dyad of upstream and

downstream parties. In a given dyad, the parties may or may not be integrated, and they

may or may not acquire information before participating in the intermediate-good market

(where upstream parties may sell the intermediate good and downstream may buy). This

model allows us to combine the single-dyad analysis of the integration decision that is typical

of the transaction-cost and property-rights literatures with the present paper�s analysis of

the price mechanism in intermediate-good markets.
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Appendix

Case B Price Function

There are three regions:

R1� =
��
v1; v2

�
: p � p�

�
v1; v2

�
� p�

�
�v1; v2

�	
R2� =

��
v1; v2

�
: p�

�
�v1; v2

�
� p�

�
v1; v2

�
� p�

�
v1; �v2

�	
R3� =

��
v1; v2

�
: p�

�
v1; �v2

�
� p�

�
v1; v2

�
� �p

	
We conjecture that there is a piecewise-linear price function

p�
�
v1; v2

�
= 1f(x;v)2R1�g

�
�10 + �

1
1v
1 + �12v

2
�
+ 1f(x;v)2R2�g

�
�20 + �

2
1v
1 + �22v

2
�

+1f(x;v)2R3�g
�
�30 + �

3
1v
1 + �32v

2
�

= 1f(x;v)2R1�gp
1
�

�
v1; v2

�
+ 1f(x;v)2R2�gp

2
�

�
v1; v2

�
+ 1f(x;v)2R3�gp

3
�

�
v1; v2

�
;

which is a �xed point of the equation

q (1� �1)E
�
v1
�� p� (�; �) = p� �v1; v2�� (1)

+(1� q) (1� �2)E
�
v2
�� p� (�; �) = p� �v1; v2��

= p+ �cx� q�1v1 � (1� q)�2v2;

and we seek to solve for the parameter vectors �1; �2, and �3. To solve for �1, assume

p � p� (v1; �v2). Then individuals believe that

v1
�� p� (�; �) = p � U

�
v1 (p) ; �v1 (p)

�
v2
�� p� (�; �) = p � U

�
v2 (p) ; �v2 (p)

�
,
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where vj (p) and �vj (p) are, respectively, the lowest and highest values of vj consistent

with the realized price level. It can be shown that vj (p) = vj and �v1 (p) solves

p�
�
�v1 (p) ; v2

�
= p

or

�v1 (p) =
1

�11

�
p� �10 � �12v2

�
:

Given a price p � p� (�v1; v2), the conditional expectation of v1 is then

E
�
v1
�� p� = v1 (p) + �v1 (p)

2
=
v1 + 1

�11

�
p� �10 � �12v2

�
2

:

Similarly, �v2 (p) solves

p2�
�
v1; �v2 (p)

�
= p

or

�v2 (p) =
1

�12

�
p� �10 � �11v1

�
:

The conditional expectation of v2 is then

E
�
v2
�� p� = v2 (p) + �v2 (p)

2
=
v2 +

�
1=�12

� �
p� �10 � �11v1

�
2

:

Market clearing in (1) then requires

q (1� �1)
v1 +

�
1=�11

� ��
�10 + �

1
1v
1 + �12v

2
�
� �10 � �12v2

�
2

+ (1� q) (1� �2)
v2 +

�
1=�12

� ��
�10 + �

1
1v
1 + �12v

2
�
� �10 � �11v1

�
2

�
�
�10 + �

1
1v
1 + �12v

2
�
+ �cx� q�1v1 � (1� q)�2v2;

where the equivalence relation reminds us that this holds as an identity in (v1; v2). Thus,
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we must have that

q (1 + �1) = �11

�
2� (1� q) (1� �2)

1

�12

�
(1� q) (1 + �2) = �12

�
2� q (1� �1)

1

�11

�

�10 = q (1� �1)
v1 � �12

�11
v2

2
+ (1� q) (1� �2)

v2 � �11
�12
v1

2
+ �cx

or if we rearrange,

�10 =
q

2

�
�2 � �1
�2

�
v1 +

(1� q)
2

�
�1 � �2
�1

�
v2 � �cx

�11 =
q

2

�1 + �2
�2

�12 =
1� q
2

�1 + �2
�1

Similar calculations can be carried out for regions 2 and 3, in which p� (v1; �v2) < p �

p� (�v
1; v2) and p > p� (�v1; v2), respectively, in which case we get

p1�
�
v1; v2

�
=

q

2

�
�2 � �1
�2

�
v1 +

1� q
2

�
�1 � �2
�1

�
v2 � �cx+ q

2

�1 + �2
�2

v1 +
1� q
2

�1 + �2
�1

v2

p2�
�
v1; v2

�
= q

�
�2 � �1
�2

�
v1 + �v1

2
� �cx+ q�1

�2
v1 + (1� q) v2 (6)

p3�
�
v1; v2

�
=

q

2

�
�2 � �1
�2

�
�v1 +

(1� q)
2

�
�1 � �2
�1

�
�v2 � �cx+ q

2

�1 + �2
�2

v1 +
1� q
2

�1 + �2
�1

v2

Explicit Computations

Case A

For now, let us assume that
q

1� q
�1
�2
� �v2 � v2
�v1 � v1

so that we are in case A. We can then compute these integrals using the price functions
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we derived in the previous section. First note that

�1v1p = �2v1p �
v1 � v1
2

+
1� q
q

�2
�1

�v2 � v2
2

(7)

�2v1p = v1 +
1� q
q

�2
�1

�
v2 � v

2 + �v2

2

�
(8)

�3v1p = �2v1p +
�v1 � v1
2

� 1� q
q

�2
�1

v2 � v2
2

(9)

�1v2p = �2v2p �
�v2 � v2
2

+
q

1� q
�1
�2

v1 � v1
2

(10)

�2v2p =
v2 + �v2

2
(11)

�3v2p = �2v2p +
v2 � v2
2

� q

1� q
�1
�2

�v1 � v1
2

; (12)

and de�ne

R1�
�
v2
�
=

�
v1 :

�
v1; v2

�
2 R1�

	
=

�
v1; v1 +

1� q
q

�2
�1

�
�v2 � v2

��
R2�
�
v2
�
=

�
v1 :

�
v1; v2

�
2 R2�

	
=

�
v1 +

1� q
q

�2
�1

�
�v2 � v2

�
; �v1 � 1� q

q

�2
�1

�
v2 � v2

��
R3�
�
v2
�
=

�
v1 :

�
v1; v2

�
2 R3�

	
=

�
�v1 � 1� q

q

�2
�1

�
v2 � v2

�
; �v1
�
:

We can then write

�j (�1; �2) =
1

�v2 � v2
1

�v1 � v1
1

2�c

Z
v2

"
3X
k=1

Z
Rk�(v

2)

�
vj � E

�
vj
�� p��2 dv1# dv2
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Good-1 Producers

We can write �1 (�1; �2) as

�1 (�1; �2) =
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z v1+ 1�q
q

�2
�1
(�v2�v2)

v1

�
v1 � E

�
v1
�� p��2 dv1# dv2

+
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1� 1�q
q

�2
�1
(v2�v2)

v1+ 1�q
q

�2
�1
(�v2�v2)

�
v1 � E

�
v1
�� p��2 dv1# dv2

+
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1

�v1� 1�q
q

�2
�1
(v2�v2)

�
v1 � E

�
v1
�� p��2 dv1# dv2

Plugging in (7), (8), and (9), the right-hand side becomes

1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1

v1

�
1� q
q

�2
�1

�
v2 � v

2 + �v2

2

��2
dv1

#
dv2

+
1

2�c

Z �v2

v2

266664
Z v1+ 1�q

q
�2
�1
(�v2�v2)

v1

0BBBB@
�2
�
1�q
q
�2
�1

�
v2 � v2+�v2

2

��
�
�
v1�v1
2
+ 1�q

q
�2
�1
�v2�v2
2

�
+
�
v1�v1
2
+ 1�q

q
�2
�1
�v2�v2
2

�2
1CCCCA dFv1 �v1�

377775 dFv2 �v2�

+
1

2�c

Z �v2

v2

266664
Z �v1

�v1� 1�q
q

�2
�1
(v2�v2)

0BBBB@
2
�
1�q
q
�2
�1

�
v2 � v2+�v2

2

��
�
�
�v1�v1
2
� 1�q

q
�2
�1

v2�v2
2

�
+
�
�v1�v1
2
� 1�q

q
�2
�1

v2�v2
2

�2
1CCCCA dFv1 �v1�

377775 dFv2 �v2�

If we substitute u (v1) = v1 � v1 and w (v2) = �v2 � v2 into the second expression and

u (v1) = �v1 � v1 and w (v2) = v2 � v2 into the third expression, this becomes

�1 (�1; �2) =

�
�v2

�v1

1� q
q

�2
�1

�2 �2v1
2�c

�
1� 1

2

�v2

�v1

1� q
q

�2
�1

�
=

�
1

K (�1; �2)

�2 �2v1
2�c

�
1� 1

2

1

K (�1; �2)

�
.
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Good-2 Producers

We can write �2 (�1; �2) as

�2 (�1; �2) =
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z v1+ 1�q
q

�2
�1
(�v2�v2)

v1

�
v2 � E

�
v2
�� p��2 dv1# dv2

+
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1� 1�q
q

�2
�1
(v2�v2)

v1+ 1�q
q

�2
�1
(�v2�v2)

�
v2 � E

�
v2
�� p��2 dv1# dv2

+
1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1

�v1� 1�q
q

�2
�1
(v2�v2)

�
v2 � E

�
v2
�� p��2 dv1# dv2

Plugging in (10) ; (11), and (12) ; the right-hand side becomes

1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2

v2

"Z �v1

v1

�
v2 � v

2 + �v2

2

�2
dv1

#
dv2

+
1

2�c

Z �v2

v2

266664
Z v1+ 1�q

q
�2
�1
(�v2�v2)

v1

0BBBB@
2
�
v2 � v2+�v2

2

�
�
�
�v2�v2
2
� q

1�q
�1
�2

v1�v1
2

�
+
�
�v2�v2
2
� q

1�q
�1
�2

v1�v1
2

�2
1CCCCA dFv1 �v1�

377775 dFv2 �v2�

+
1

2�c

Z �v2

v2

266664
Z �v1

�v1� 1�q
q

�2
�1
(v2�v2)

0BBBB@
�2
�
v2 � v2+�v2

2

�
�
�
v2�v2
2
� q

1�q
�1
�2
�v1�v1
2

�
+
�
v2�v2
2
� q

1�q
�1
�2
�v1�v1
2

�2
1CCCCA dFv1 �v1�

377775 dFv2 �v2�

If we substitute u (v1) = v1 � v1 and w (v2) = �v2 � v2 into the second expression and

u (v1) = �v1 � v1 and w (v2) = v2 � v2 into the third expression, this becomes
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�2 (�1; �2) =
�2v2

2�c
+ 2

1

�v2 � v2
1

�v1 � v1
1

2�c

Z �v2�v2

0

266664
Z 1�q

q
�2
�1
w

0

0BBBB@
�
�w + �v2�v2

2

�
�
�
w � q

1�q
�1
�2
u
�

+
�
w
2
� q

1�q
�1
�2
u
2

�2
1CCCCA du

377775 dw
=

�2v2

2�c

�
1� 1

2

�v2

�v1

1� q
q

�2
�1

�
=

�2v2

2�c

�
1� 1

2

1

K (�1; �2)

�

6.0.1 Case B

The derivations of �1 (�1; �2) and �2 (�1; �2) for the case where case B obtains are similar

to case A.

6.1 Proofs of Lemmas

Proof of Lemma 1. Note that for a �xed �1 > 0; as �2 ! 0, K (�1; �2)! +1. Fix �1.

Then for �2 � q
1�q�1

�v1
�v2
, we have that K (�1; �2) � 1, so that

�1 (�1; �2) =

�
1� q
q

�2
�1

�v2

�v1

�2 �2v1
2�c

�
1� 1

2

1� q
q

�2
�1

�v2

�v1

�
;

and thus �1 (�1; 0) = 0 for �1 > 0, so �1 (�1; 0) � �k�1 < 0 for all �1 > 0. Therefore,

lim�2#0 �
�
1 (�2) = 0. A similar argument establishes that lim�1#0 �

�
2 (�1) = 0.

Proof of Lemma 2. This follows directly from the fact that �1 (�1; �2) is increasing in

�2.

Proof of Lemma 3. Suppose that �n2 ! 0; and assume �n2 � q
1�q�

�
1 (�

n
2 )

�v1
�v2

for all n:

Note that ��1 (�
n
2 ) solves

�
1� q
q

�2
��1 (�

n
2 )

�v2

�v1

�2 �2v1
2�c

�
1� 1

2

1� q
q

�2
��1 (�

n
2 )

�v2

�v1

�
= �k��1 (�

n
2 )
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Assume �n2
��1(�

n
2 )
! +1. We have that in the limit, the left-hand side is in�nite and the

right-hand side is 0, which is a contradiction, so ��1 (�
n
2 ) cannot converge to zero at a faster

rate than �n2 . Next, suppose
�n2

��1(�
n
2 )
! � � q

1�q
�v1
�v2
. Then, in the limit, this becomes

�
1� q
q
�
�v2

�v1

�2 �2v1
2�c

�
1� 1

2

1� q
q
�
�v2

�v1

�
= 0;

which holds only if � = 2 q
1�q

�v1
�v2
, which contradicts � � q

1�q
�v1
�v2
. Suppose �n2

��1(�
n
2 )
! � >

q
1�q

�v1
�v2
. Then, in the limit, this becomes

�2v1

2�c

�
1� 1

2

q

1� q
1

�

�v1

�v2

�
= 0;

which holds only if � = 1
2

q
1�q

�v1
�v2
. Thus, it must be the case that �n2

��1(�
n
2 )
= 0, which

establishes that lim�2!0
��1(�2)
�2

= +1, so that the slope of the group best-response function

is in�nite at the origin. A similar argument establishes that lim�1!0
��2(�1)
�1

= +1.

Proof of Lemma 4. For K (�1; �2) � 1, ��1 (�2) implicitly solves

�
1� q
q

�2
��1 (�2)

�v2

�v1

�2 �2v1
2�c

�
1� 1

2

1� q
q

�2
��1 (�2)

�v2

�v1

�
= �k��1 (�2)

��1 (�2) is concave in �2 if
��1(�2)
�2

is decreasing in �2. or if �2
��1(�2)

is increasing in �2.

Implicitly di¤erentiating with respect to �2 gives us

d

d�2

�
�2

��1 (�2)

�
=

�k
�

�2
��1(�2)

�
3
2

�
1�q
q

�v2
�v1

�2 �
�2

��1(�2)

�3 �2
v1

2�c

�
4
3
� 1

K(�1;�2)

�
+ �k�2

which is positive, since K (�1; �2) � 1. Thus, ��1 (�2) is concave in this region. For

K (�1; �2) < 1, �
�
1 (�2) is given by

��1 (�2) =

�2
v1

2�c

�k +
�2
v1

2�c
1
2

q
1�q

1
�2

�v1
�v2

;
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so that
d

d�2

�
�2

��1 (�2)

�
=

�k
�2
v1

2�c

;

which is also positive. Thus, in this region, ��1 (�2) is concave. Finally, it is algebraically

intensive, but easy to show that �2
��1(�2)

is increasing across the K (�1; �2) = 1 boundary.

Since ��1 (�2) is continuous in �2 for all �2 > 0, we have that �
�
1 (�2) is globally concave on

(0; 1]: A similar argument establishes that ��2 (�1) is globally concave on (0; 1] as well.
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