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1 Introduction.

Any economic analyses of climate change policy must include a model of damages, i.e., a

relationship that translates changes in temperature (and possibly changes in precipitation

and other climate-related variables) to economic losses. Economic losses will of course include

losses of GDP and consumption that might result from reduced agricultural productivity or

from dislocations resulting from higher sea levels, but also the dollar-equivalent costs of

possible climate-related increases in morbidity, mortality, and social disruption. Because of

the lack of data and the considerable uncertainties involved, modeling damages is probably

the most difficult aspect of analyzing climate change policy. There are uncertainties in other

aspects of climate change policy — for example, how rapidly greenhouse gases (GHGs) will

accumulate in the atmosphere absent an abatement policy, to what extent and how rapidly

temperature will increase, and the current and future costs of abatement — but damages

from climate change is the area we understand the least. It must be modeled, but it is

important to understand the uncertainties involved and their policy implications.

Most quantitative economic studies of climate change policy utilize a “damage function”

that relates temperature change directly to the levels of real GDP and consumption. Fu-

ture consumption, for example, is taken to be the product of a loss function and “but-for

consumption,” i.e., consumption in the absence of any warming. With no warming, the loss

function is equal to 1, but as the temperature increases the value of the loss function de-

creases. This approach is reasonably simple in that any projected path for temperature can

be directly translated into an equivalent path for consumption. In other words, consumption

at time t depends on temperature at time t. Given a social utility function that “values”

consumption, one can then evaluate a particular policy (assuming we know its costs and can

project its effects on GHG concentrations and temperature).

In a recent paper (Pindyck (2009)), I have argued that on both theoretical and empirical

grounds, the economic impact of warming should be modeled as a relationship between

temperature change and the growth rate of GDP as opposed to the level of GDP. This means

that warming can have a permanent impact on future GDP and consumption. It makes
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the analysis somewhat more complicated, however, because consumption at some future

date depends not simply on the temperature at that date, but instead on the entire path of

temperature, and thus the path of the growth rate of consumption, up to that date. The issue

I address in this paper is the extent to which these two different approaches to modeling

damages — temperature affecting consumption directly versus temperature affecting the

growth rate of consumption — differ in terms of their policy implications.

This issue must be addressed in the context of uncertainty, which is at the heart of climate

change policy. It is difficult to justify the immediate adoption of a stringent abatement

policy based on an economic analysis that focuses on “most likely” scenarios for increases in

temperature and economic impacts and uses consensus estimates of discount rates and other

relevant parameters.1 But one could ask whether a stringent policy might be justified by a

cost-benefit analysis that accounts for a full distribution of possible outcomes.

In Pindyck (2009), I showed how probability distributions for temperature change and

economic impact could be inferred from climate science and economic impact studies, and

incorporated in the analysis of climate change policy. The framework I used, which I use

again here, is based on a simple measure of “willingness to pay” (WTP): the fraction of

consumption w∗(τ ) that society would be willing to sacrifice, now and throughout the future,

to ensure that any increase in temperature at a specific horizon H, ∆TH, is limited to τ .

Whether the reduction in consumption corresponding to some w∗(τ ) is sufficient to limit

warming to τ is a separate question that is not addressed; in effect WTP applies to the

“demand” side of policy analysis. The advantage of this approach, however, is that there is

no need to project GHG emissions and atmospheric concentrations, or estimate abatement

costs. Instead the focus is on uncertainties over temperature change and its economic impact.

My earlier paper was based on what I called the current “state of knowledge” regarding

global warming and its impact. I used information on the distributions for temperature

change from scientific studies assembled by the IPCC (2007) and information about eco-

1The Stern Review (2007) argues for a stringent abatement policy, but as Nordhaus (2007), Weitzman
(2007), Mendelsohn (2008) and others point out, it makes assumptions about temperature change, economic
impact, abatement costs, and discount rates that are outside the consensus range.
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nomic impacts from recent “integrated assessment models” (IAMs) to fit displaced gamma

distributions for these variables. But unlike existing IAMs, I modeled economic impact as a

relationship between temperature change and the growth rate of consumption as opposed its

level. I examined whether “reasonable” values for the remaining parameters (e.g., the start-

ing growth rate and the index of risk aversion) can yield values of w∗(τ ) well above 3% for

small values of τ , which might support stringent abatement. I also used a counterfactual —

and pessimistic — scenario for temperature change: Under “business as usual” (BAU), the

atmospheric GHG concentration immediately increases to twice its pre-industrial level, which

leads to an (uncertain) increase in temperature at the horizon H, and then (from feedback

effects or further emissions) a gradual further doubling of that temperature increase.

In this paper, I use the same displaced gamma distributions for temperature change

and economic impact, but I compare two alternative damage models — a direct impact of

temperature change on consumption versus a growth rate impact. I calibrate and “match”

the two models by matching estimates of GDP/temperature change pairs from the group of

IAMs at a specific horizon. I then calculate and compare WTPs for both models based on

expected discounted utility, using a constant relative risk aversion (CRRA) utility function.

I find that for either damage model, the resulting estimates of w∗(τ ) are generally below

2% or 3%, even for τ around 2 or 3◦C. This is because there is limited weight in the tails

of the calibrated distributions for ∆T and its impact. Larger estimates of WTP result

for particular combinations of parameter values (e.g., an index of risk aversion close to 1

and a low initial GDP growth rate), but overall, the results are consistent with moderate

abatement. A direct impact generally yields a larger WTP than a growth rate impact, and

the sign and extent of the difference varies with changes in parameter values. Overall, there

are no substantial differences between the two models in terms of policy implications.2

The next section discusses the probability distribution and dynamic trajectory for tem-

2As with my earlier study, I ignore the implications of the opposing irreversibilities inherent in climate
change policy and the value of waiting for more information. Immediate action reduces the largely irreversible
build-up of GHGs in the atmosphere, but waiting avoids an irreversible investment in abatement capital that
might turn out to be at least partly unnecessary, and the net effect of these irreversibilities is unclear. For
a discussion of the interaction of uncertainty and irreversibility, see Pindyck (2007).
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perature change. Section 3 discusses the two alternative ways of modeling economic impact,

and the corresponding probability distributions that capture uncertainty over that impact.

Section 4 explains the calculation of willingness to pay. Numerical results are presented and

discussed in Sections 5 and 6, and Section 7 concludes.

2 Temperature.

According to the IPCC (2007), under “business as usual” (BAU), i.e., no abatement policy,

growing GHG emissions would likely lead to a doubling of the atmospheric CO2e concen-

tration relative to the pre-industrial level by the end of this century. That, in turn, would

cause an increase in global mean temperature that would “most likely” range between 1.0◦C

to 4.5◦C, with an expected value of 2.5◦C to 3.0◦C. The IPCC report indicates that this

range, derived from a “summary” of the results of 22 scientific studies the IPCC surveyed,

represents a roughly 66- to 90-percent confidence interval, i.e., there is a 5 to 17-percent

probability of a temperature increase above 4.5◦C.

The 22 studies also provide rough estimates of increases in temperature at the outer

tail of the distribution. In summarizing them, the IPCC translated the implied outcome

distributions into a standardized form that makes the studies comparable, and created graphs

showing multiple outcome distributions implied by groups of studies. Those distributions

suggest that there is a 5% probability that a doubling of the CO2e concentration relative to

the pre-industrial level would lead to a global mean temperature increase of 7◦C or more,

and a 1% probability that it would lead to a temperature increase of 10◦C or more. I fit

a three-parameter displaced gamma distribution for ∆T to these 5% and 1% points and

to a mean temperature change of 3.0◦C. This distribution conforms with the distributions

summarized by the IPCC. Finally, I assume (consistent with the IPCC’s focus on the end of

this century) that the fitted distribution for ∆T applies to a 100-year horizon H.
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2.1 Displaced Gamma Distribution.

The displaced gamma distribution is given by:

f(x; r, λ, θ) =
λr

Γ(r)
(x − θ)r−1e−λ(x−θ) , x ≥ θ , (1)

where Γ(r) =
∫

∞

0 sr−1e−sds is the Gamma function. The moment generating function for (1)

is

Mx(t) = E(etx) =

(

λ

λ − t

)r

etθ .

Thus the mean, variance and skewness (around the mean) are E(x) = r/λ + θ, V(x) = r/λ2,

and S(x) = 2r/λ3 respectively.

Fitting f(x; r, λ, θ) to a mean of 3◦C, and the 5% and 1% points at 7◦C and 10◦C re-

spectively yields r = 3.8, λ = 0.92, and θ = −1.13. The distribution is shown in Figure 1.

It has a variance and skewness around the mean of 4.49 and 9.76 respectively. Note that

this distribution implies that there is a small (2.9 percent) probability that a doubling of the

CO2e concentration will lead to a reduction in mean temperature, consistent with several

of the scientific studies. The distribution also implies that the probability of a temperature

increase of 4.5◦C or greater is 21%.

2.2 Trajectory for ∆Tt.

Recall that this fitted distribution for ∆T pertains to the 100-year horizon H. To allow for

possible feedback effects and/or further emissions, I assume that ∆Tt → 2∆TH as t gets

large. As summarized in Weitzman (2009), the simplest dynamic model relating ∆Tt to the

GHG concentration Gt is the differential equation

d∆T/dt = m1[ln(Gt/G0)/ ln 2 − m2∆Tt] . (2)

Assuming Gt initially doubles to 2G0, ∆Tt = ∆TH at t = H, and ∆Tt → 2∆TH as t → ∞,

implies that ∆Tt follows the trajectory:

∆Tt = 2∆TH[1 − (1/2)t/H ] , (3)
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Thus if ∆TH = 5◦C, ∆Tt reaches 2.93◦C after 50 years, 5◦C after 100 years, 7.5◦C after 200

years, and then gradually approaches 10◦C.

This is illustrated in Figure 2, which shows a trajectory for ∆T when it is unconstrained

(and ∆TH happens to equal 5◦C), and when it is constrained so that ∆TH ≤ τ = 3◦C. Note

that even when constrained, ∆TH is a random variable and (unless τ = 0) will be less than

τ with probability 1; in Figure 2 it happens to be 2.5◦C. If τ = 0, then ∆T = 0 for all t.

3 Impact of Warming.

Most economic studies of climate change assume that ∆T has a direct impact on GDP

(and/or consumption), modeled via a “loss function” L(∆T ), with L(0) = 1 and L′ < 0.

Thus GDP at some horizon H is L(∆TH)GDPH , where GDPH is but-for GDP in the absence

of warming. This “direct impact” approach has been used in all of the integrated assessment

models that I am aware of. However, there are reasons to expect warming to affect the growth

rate of GDP as opposed to the level. At issue is how these two alternative approaches to

modeling the impact of warming — direct versus growth rate — differ in their implications

for estimates of willingness to pay to limit warming.

3.1 Direct Impact.

The most widely used loss function has been the inverse-quadratic. For example, the recent

version of the Nordhaus (2008) DICE model uses the following loss function:

L = 1/[1 + π1∆T + π2(∆T )2] .

Weitzman (2008) introduced the exponential loss function which is very similar to the inverse

quadratic for small values of ∆T , but allows for greater losses when ∆T is large:

L(∆T ) = exp[−β(∆T )2] . (4)

I will use this loss function of eqn. (4) when calculating WTP under the direct impact

assumption.
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To introduce uncertainty over the impact of warming, I will treat the parameter β as

a random variable that can be described by a 3-parameter displaced gamma distribution.

Although the IPCC does not provide standardized distributions for lost GDP corresponding

to any particular ∆T as it does for climate sensitivity, it does survey the results of several

IAMS. As discussed below, I use the information from the IPCC along with other studies to

infer means and confidence intervals for β.

3.2 Growth Rate Impact.

There are three reasons to expect warming to affect the growth rate of GDP as opposed to

the level. First, some effects of warming are likely to be permanent: for example, destruction

of ecosystems from erosion and flooding, extinction of species, and deaths from health effects

and weather extremes. If warming affected the level of GDP directly, e.g., as per eqn. (4), it

would imply that if temperatures rise but later fall, e.g., because of stringent abatement or

geo-engineering, GDP could return to its but-for path with no permanent loss. This is not

the case, however, if ∆T affects the growth rate of GDP.

Suppose, for example, that temperature increases by 0.1◦C per year for 50 years and then

decreases by 0.1◦C per year for the next 50 years. Figure 3 compares two consumption tra-

jectories: CA
t , which corresponds to the loss function of eqn. (4), and CB

t , which corresponds

to the following growth rate loss function:

gt = g0 − γ∆Tt (5)

The example assumes that without warming, consumption would grow at 0.5 percent per

year — trajectory C0
t — and both loss functions are calibrated so that at the maximum ∆T

of 5◦C, CA = CB = .95C0. Note that as ∆T falls to zero, CA
t reverts to C0

t , but CB
t remains

permanently below C0
t .

Second, resources needed to counter the impact of higher temperatures would reduce

those available for R&D and capital investment, reducing growth. Adaptation to rising

temperatures is equivalent to the cost of increasingly strict emission standards, which, as

Stokey (1998) has shown with an endogenous growth model, reduces the rate of return
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on capital and lowers the growth rate. As a simple example, suppose total capital K =

Kp + Ka(T ), with K ′

a(T ) > 0, where Kp is directly productive capital and Ka(T ) is capital

needed for adaptation to the temperature T (e.g., stronger retaining walls and pumps to

counter flooding, new infrastructure and housing to support migration, more air conditioning

and insulation, etc.). If all capital depreciates at rate δK , K̇p = K̇−K̇a = I−δKK−K ′

a(T )Ṫ ,

so that the rate of growth of Kp is reduced.

Third, there is empirical support for a growth rate effect. Using historical data on

temperatures and precipitation over the past 50 years for a panel of 136 countries, Dell,

Jones, and Olken (2008) have shown that higher temperatures reduce GDP growth rates

but not levels. The impact they estimate is large — a decrease of 1.1 percentage points of

growth for each 1◦C rise in temperature — but significant only for poorer countries.3

To calculate WTP when ∆T affects the growth rate of GDP, I assume that in the absence

of warming, real GDP and consumption would grow at a constant rate g0, but warming will

reduce this rate according to eqn. (5). This simple linear relation was estimated by Dell,

Jones, and Olken (2008), and can be viewed as at least a first approximation to a more

complex loss function. I introduce uncertainty by making the parameter γ, like β, a random

variable drawn from a displaced gamma distribution.

3.3 Distributions for β and γ.

To compare the effects of a direct versus growth rate impact on estimates of WTP, we need

to fit and “match” the distributions for β and γ. This is done as follows.

Using information from a number of IAMs, I fit the three parameters in a displaced

gamma distribution for β in the exponential-quadratic loss function of eqn. (4). I then trans-

late this into an equivalent distribution for γ using the trajectory for GDP and consumption

implied by eqn. (5) for a temperature change-impact combination projected to occur at hori-

3“Poor” means below-median PPP-adjusted per-capita GDP. Using World Bank data for 209 countries,
“poor” by this definition accounts for 26.9% of 2006 world GDP, which implies a roughly 0.3 percentage
point reduction in world GDP growth for each 1◦C rise in temperature. In a follow-on paper (2009), they
estimate a model that allows for adaptation effects, so that the long-run impact of warming is smaller than
the short-run impact. They find a long-run decrease of 0.51 percentage points of growth for each 1◦C rise in
temperature, but again only for poorer countries.
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zon H. From eqns. (3) and (5), the growth rate is gt = g0−2γ∆TH[1−(1/2)t/H]. Normalizing

initial consumption at 1, this implies:

Ct = e
∫ t

0
g(s)ds = exp

{

−
2γH∆TH

ln(1/2)
+ (g0 − 2γ∆TH)t +

2γH∆TH

ln(1/2)
(1/2)t/H

}

. (6)

Thus γ is obtained from β by equating the expressions for CH implied by eqns. (4) and (6):

exp

{

−
2γH∆TH

ln(1/2)
+ (g0 − 2γ∆TH)H +

γH∆TH

ln(1/2)

}

= exp{g0H − β(∆TH)2} , (7)

so that β and γ have the simple linear relationship:

γ = 1.79β∆TH/H . (8)

3.3.1 Distribution for β.

To fit a displaced gamma distribution for β, I utilitze the IPCC’s survey of several IAMS.

This information from the IPCC, along with other studies, allow me to infer means and

confidence intervals for β. These IAMs yield a rough consensus regarding possible economic

impacts: for temperature increases up to 4◦C, the “most likely” impact is from 1% to at most

5% of GDP. (Of course this consensus might arise from the use of similar ad hoc damage

functions in various IAMs.) Of interest is the outer tail of the distribution for this impact.

There is some chance that a temperature increase of 3◦C or 4◦C would have a much larger

impact, and we want to know how that affects WTP.

Based on its survey of impact estimates from four IAMs, the IPCC (2007b) concludes

that “global mean losses could be 1–5% of GDP for 4◦C of warming.”4 In addition, Dietz and

Stern (2008) provide a graphical summary of damage estimates from several IAMs, which

yield a range of 0.5% to 2% of lost GDP for ∆T = 3◦C, and 1% to 8% of lost GDP for

∆T = 5◦C. I treat these ranges as “most likely” outcomes, and use the IPCC’s definition

of “most likely” to mean a 66 to 90-percent confidence interval. Using the IPCC range

and, to be conservative, assuming it applies to a 66-percent confidence interval, I take the

mean loss for ∆T = 4◦C to be 3% of GDP, and the 17-percent and 83-percent confidence

4The IAMs surveyed by the IPCC include Hope (2006), Mendelsohn et al (1998), Nordhaus and Boyer
(2000), and Tol (2002). For a recent overview of economic impact studies, see Tol (2009).
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points to be 1% of GDP and 5% of GDP respectively. We can then use eqn. (4) to get the

mean, 17-percent, and 83-percent values for β, which I denote by β̄, β1, and β2 respectively.

For example, .97 = e−β̄(4)2, so that β̄ = .00190. Likewise, β1 = .000628 and β2 = .00321.

Fitting a displaced gamma distribution to these numbers yields r = 4.5, λ = 1528, and

θ = β̄ − r/λ = −.00105.

Figure 4 shows the fitted distribution for β. Also shown is the fitted distribution when

“most likely” is taken to mean a 90-percent confidence interval, so that β1 and β2 instead

apply to the 5- and 95-percent confidence points.

3.3.2 Distribution for γ.

The mean, 17-percent, and 83-percent values for β applied to a ∆TH = 4◦C at a horizon

H = 100 years, so from eqn. (8), γ = .0716β. Thus the mean, 17-percent, and 83-percent

values for γ are, respectively, γ̄ = .0001360, γ1 = .0000450, and γ2 = .0002298. Now,

suppose f(x; r, λ, θ) is the displaced gamma distribution for x, and we want the distribution

f(y; r1, λ1, θ1) for y = ax. We can make use of the fact that the expectation, variance,

and skewness of x and of y are related as follows: E(y) = aE(x) = ar/λ + aθ, V(y) =

a2V(x) = a2r/λ2, and S(y) = a3S(x) = 2a3r/λ3. This implies that θ1 = aθ, r1 = r, and

λ1 = λ/a. Thus the matched distribution for γ will be the same as that for β, except that

λ1 = 1528/.0716 = 21,340 and θ1 = .0716(−.00105) = −.0000752. The distribution for γ,

shown graphically in Pindyck (2009), will have exactly the same shape as the distribution

for β but a different scaling.

4 Willingness to Pay.

Given the distributions for ∆T and β or γ, I posit a CRRA social utility function:

U(Ct) = C1−η
t /(1 − η) , (9)

where η is the index of relative risk aversion (and 1/η is the elasticity of intertemporal

substitution). Social welfare is measured as the expected sum over time of discounted utility:

W = E
∫

∞

0
U(Ct)e

−δtdt , (10)
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where δ is the rate of time preference, i.e., the rate at which utility is discounted. Note

that this rate is different from the consumption discount rate, which in the Ramsey growth

context would be Rt = δ + ηgt. If ∆T affects consumption directly, then Rt = δ + ηg0,

and does not change over time. If ∆T affects the growth rate of consumption, then Rt =

δ + ηg0 − 2ηγ∆TH[1 − (1/2)t/H ], so Rt falls over time as ∆T increases.5

For both the direct and growth rate impact models, I calculate the fraction of consump-

tion — now and throughout the future — society would sacrifice to ensure that any increase

in temperature at a specific horizon H is limited to an amount τ . That fraction, w∗(τ ), is

the measure of willingness to pay.6

4.1 WTP: Direct Impact.

Using eqn. (3), if ∆TH and β were known, social welfare would be given by:

W =
∫

∞

0
U(Ct)e

−δtdt =
1

1 − η

∫

∞

0
eρ0−ρ1t−2ρ0(1/2)t/H+ρ0(1/2)2t/H

dt , (11)

where

ρ0 = 4(η − 1)β(∆TH)2 , (12)

ρ1 = (η − 1)g0 + δ . (13)

Suppose society sacrifices a fraction w(τ ) of present and future consumption to keep

∆TH ≤ τ . With uncertainty over ∆TH and β, social welfare at t = 0 is:

W1 =
[1 − w(τ )]1−η

1 − η
E0,τ

∫

∞

0
eρ̃0−ρ̃1t−2ρ̃0(1/2)t/H+ρ̃0(1/2)2t/H

dt , (14)

where E0,τ denotes the expectation at t = 0 over the distributions of ∆TH and β conditional

on ∆TH ≤ τ . (Tildes are used to denote that ρ0 and ρ1 are functions of two random

variables.) If no action is taken to limit warming, social welfare would be:

W2 =
1

1 − η
E0

∫

∞

0
eρ̃0−ρ̃1t−2ρ̃0(1/2)t/H+ρ̃0(1/2)2t/H

dt , (15)

5If 2ηγ∆TH > δ + ηg0, Rt becomes negative as ∆T grows. This is entirely consistent with the Ramsey
growth model, as pointed out by Dasgupta et al (1999).

6The use of WTP as a welfare measure goes back at least to Debreu (1954), was used by Lucas (1987) to
estimate the welfare cost of business cycles, and was used in the context of climate change (with τ = 0) by
Heal and Kriström (2002) and Weitzman (2008).
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where E0 again denotes the expectation over ∆TH and β, but now with ∆TH unconstrained.

Willingness to pay to ensure that ∆TH ≤ τ is the value w∗(τ ) that equates W1(τ ) and W2.
7

Given the distributions f(∆T ) and g(β) for ∆TH and β respectively, denote by Mτ(t)

and M∞(t) the time-t expectations

Mτ (t) =
1

F (τ )

∫ τ

θT

∫

∞

θβ

eρ̃0−ρ̃1t−2ρ̃0(1/2)t/H+ρ̃0(1/2)2t/H

f(∆T )g(β)d∆Tdβ (16)

and

M∞(t) =
∫

∞

θT

∫

∞

θβ

eρ̃0−ρ̃1t−2ρ̃0(1/2)t/H+ρ̃0(1/2)2t/H

f(∆T )g(γ)d∆Tdγ , (17)

where ρ̃0 and ρ̃1 are given by eqns. (12) and (13), θT and θβ are the lower limits on the

distributions for ∆T and β, and F (τ ) =
∫ τ
θT

f(∆T )d∆T . Thus W1(τ ) and W2 are:

W1(τ ) =
[1 − w(τ )]1−η

1 − η

∫

∞

0
Mτ(t)dt ≡

[1 − w(τ )]1−η

1 − η
Gτ (18)

and

W2 =
1

1 − η

∫

∞

0
M∞(t)dt ≡

1

1 − η
G∞ . (19)

Setting W1(τ ) equal to W2, WTP is given by:

w∗(τ ) = 1 − [G∞/Gτ ]
1

1−η . (20)

The solution for w∗(τ ) depends on the distributions for ∆T and γ, the horizon H =

100 years, and the parameters η, g0, and δ (values for which are discussed below). We will

examine how w∗ varies with τ ; the cost of abatement should be a decreasing function of τ ,

so given estimates of that cost, one could use these results to determine abatement targets.

4.2 WTP: Growth Rate Impact.

If ∆TH instead affects the growth rate of consumption as in eqn. (5), and if ∆TH and γ were

known, social welfare would be:

W =
∫

∞

0
U(Ct)e

−δtdt =
1

1 − η

∫

∞

0
eω0−ω1t−ω0(1/2)t/H

dt , (21)

7I calculate WTP using a finite horizon of 500 years. After some 200 years the world will likely exhaust
the economically recoverable stocks of fossil fuels, so that GHG concentrations will fall. In addition, so many
other economic and social changes are likely that the relevance of applying CRRA expected utility over more
than a few hundred years is questionable.
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where

ω0 = 2(η − 1)γH∆TH/ ln(1/2) . (22)

ω1 = (η − 1)(g0 − 2γ∆TH) + δ , (23)

If society sacrifices a fraction w(τ ) of present and future consumption to keep ∆TH ≤ τ

and there is uncertainty over ∆TH and γ, social welfare at t = 0 is:

W1(τ ) =
[1 − w(τ )]1−η

1 − η
E0,τ

∫

∞

0
eω̃0−ω̃1t−ω̃0(1/2)t/H

dt . (24)

If no action is taken to limit warming, social welfare would be:

W2 =
1

1 − η
E0

∫

∞

0
eω̃0−ω̃1t−ω̃0(1/2)t/H

dt . (25)

Once again, WTP is the value w∗(τ ) that equates W1(τ ) and W2. Defining Mτ (t) and M∞(t)

as before, but with g(γ) instead of g(β), eqns. (18), (19), and (20) again apply.

5 Results.

WTP is essentially a measure of the “demand” side of policy — the maximum amount society

would be willing to sacrifice to obtain the benefits of limited warming. The case for an actual

GHG abatement policy will depend on the cost of that policy as well as the benefits. The

framework I use does not involve estimates of abatement costs — I only estimate WTP as

a function of τ , the abatement-induced limit on any increase in temperature at the horizon

H. Clearly the amount and cost of abatement needed will decrease as τ is made larger, so I

consider a stringent abatement policy to be one for which τ is “low,” which I take to be at or

below the expected value of ∆T under a business-as-usual (BAU) scenario, i.e., about 3◦C,

and w∗(τ ) is “high,” i.e., at least 3 percent. At issue in this paper is the extent to which

estimates of WTP depend on whether ∆T is assumed to affect the level of consumption

directly versus the growth rate of consumption.

In addition to the distributions for ∆T and the impact parameters β or γ, WTP depends

on the values for the index of relative risk aversion η, the rate of time discount δ, and the

base level real growth rate g0. To explore the case for a stringent abatement policy, I make
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conservative assumptions about η, δ, and g0, in the sense of choosing numbers that would

lead to a higher WTP.

The finance and macroeconomics literature has estimates of η ranging from 1.5 to 6,

and estimates of δ ranging from .01 to .04. The historical real growth rate g ranges from

.02 to .025. It has been argued, however, that for intergenerational comparisons δ should

be close to zero, on the grounds that society not should value the well-being of our great-

grandchildren less than our own. Likewise, while values of η well above 2 may be consistent

with the (relatively short-horizon) behavior of investors, we might use lower values for inter-

generational welfare comparisons. Because I want to determine whether current assessments

of uncertainty over temperature change and its impact generate a high enough WTP to

justify stringent abatement, I will stack the deck in favor of our great-grandchildren and use

relatively low values of η and δ: around 2 for η and 0 for δ. Also, WTP is a decreasing

function of the base growth rate g0, so I will set g0 = .02, the low end of the historical range.

5.1 No Uncertainty.

It is useful to begin by considering a deterministic world in which the trajectory for ∆T and

the impact of that trajectory are known with certainty. Then eqns. (18) and (19) for the

direct impact case would simplify to:

W1 =
[1 − w(τ )]1−η

1 − η

∫

∞

0
eρ0−ρ1t−2ρ0(1/2)t/H+ρ0(1/2)2t/H

dt , (26)

W2 =
1

1 − η

∫

∞

0
eρ0−ρ1t−2ρ0(1/2)t/H+ρ0(1/2)2t/H

dt , (27)

where now β̄, the mean of β, replaces β in eqn. (12) for ρ0. (I will use the means of β and γ

as their certainty-equivalent values.) Likewise, eqns. (24) and (25) for the case of a growth

rate impact would simplify to:

W1(τ ) =
[1 − w(τ )]1−η

1 − η

∫

∞

0
eω0−ω1t−ω0(1/2)t/H

dt , (28)

W2 =
1

1 − η

∫

∞

0
eω0−ω1t−ω0(1/2)t/H

dt , (29)

where now the mean γ̄ replaces γ in eqns. (22) and (23) for ω0 and ω1.
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For both impact models, I calculate the WTP to keep ∆T zero for all time, i.e., w∗(0),

over a range of values for ∆T at the horizon H = 100. For this exercise, I set η = 2, δ = 0,

and g0 = .020. The results are shown in Figure 5, where w∗

c (0) applies to the case where ∆T

affects C directly, and w∗

g(0) applies to the case where ∆T affects the growth rate of C .

The graph says that if, for example, ∆TH = 6◦C, w∗

c (0) is about .03, and w∗

g(0) is about

.022. Thus if ∆T affects consumption directly, society should be willing to give about 3%

of current and future consumption to keep ∆T at zero instead of 6◦C. But if ∆T affects the

growth rate of consumption, the willingness to pay is only about 2.2%. (Remember that the

“known ∆T ” applies to time t = H. ∆Tt follows the trajectory given by eqn. (3).)

Note that both w∗

c (0) and w∗

g(0) become much larger as the known ∆TH becomes larger

than 8◦C; such temperature outcomes, however, have low probability. In addition, these

curves have different shapes: w∗

c (0) is a convex function of ∆TH, while w∗

g(0) is a (nearly)

linear function of ∆TH.8 This means that for small changes in temperature, a growth rate

impact model will yield a slightly higher WTP, but for very large changes in temperature,

the direct impact model yields much larger WTPs. Whether this difference matters for

estimates of WTP under uncertainty depends on the probability distributions for ∆TH and

β and γ. With sufficient probability mass in the right-hand tails of the distributions, the

two impact models should yield different numbers for WTP. We explore this below.

5.2 Uncertainty Over Temperature and Economic Impact.

I now allow for uncertainty over both ∆T and the relevant impact parameter (either β or γ),

using the calibrated distributions for each. WTP is given by eqns. (16) to (20) for the direct

impact model, and eqns. (24) and (25) for the growth rate impact. The calculated values of

8To see that w∗

c (0) is a convex function of ∆TH , note that if τ = 0, eqns. (26) and (27) imply that

w∗

c (0) = 1 −

[

ρ

∫

∞

0

e−ρt−4(1−η)β̄∆T 2

Hψ(t)dt

]
1

1−η

where ψ(t) = [1 − (1/2)t/H ]2. Just differentiate to see that dw∗

c/d∆TH > 0 for all values of ∆TH and
β̄, and and d2w∗

c/d∆T
2
H > 0 for sufficiently small values of ∆TH and β̄ (in our case, as long as ∆TH <

15.8 ◦C). Similarly, we can show that dw∗

g/d∆TH > 0 and d2w∗

c/d∆T
2
H is a small negative number (in our

case -.000063), a curvature small enough so that in Figure 5, w∗

g(0) appears linear.
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WTP as are shown as functions of τ in Figure 6 for δ = 0, g0 = .020, and η = 2 and 1.5.

Note that if η = 2, WTP is always less than 1.5%, even for τ = 0. To obtain a WTP above

2% requires a lower value of η. As Figure 6 shows, if η = 1.5, w∗(τ ) reaches about 3% for τ

around 0 or 1◦C, but only when the impact of warming occurs through the growth rate of

consumption. When the impact is direct, w∗ is always below 2.5%.

Because relatively large values of WTP can only be obtained for small values of η, the

top two lines in Figure 6 have the greatest policy relevance. But note that when η = 1.5,

the difference between w∗

g(τ ) and w∗

c (τ ) is only significant for τ below 2◦C. It seems unlikely

that a politically and economically feasible policy would be adopted that would prevent any

warming, or limit it to 1 or even 2◦C. If we belive that a “feasible” policy is one that limits

∆T to its expected value of around 3◦C, then as Figure 6 shows, the direct and growth rate

impact models give similar values for WTP.

On the other hand, what if we take the view that the “correct” value of η is less than

1.5? Figure 7 shows the dependence of WTP on the index of risk aversion, η. It plots w∗(3),

i.e., the WTP to ensure ∆TH ≤ 3◦C at H = 100 years, for g0 = .02, as a function of η.

Although w∗(3) is below 2% for values of η above 1.5, it approaches 5% as η is reduced to

1 (the value used in Stern (2007)). The reason is that while future utility is not discounted

(because δ = 0), future consumption is implicitly discounted at the initial rate ηg0. If η is

made smaller, potential losses of future consumption have a larger impact on WTP. Also, as

discussed further below, w∗

c (3) > (<)w∗

g(3) when η > (<) 1.3.

These estimates of WTP are based on zero discounting of future uility. While there may

be an ethical argument for zero discounting, δ = 0 is outside the range of estimates of the

rate of time preference obtained from consumer and investor behavior. However, estimates

of WTP above 3% depend critically on this assumption of a δ = 0. Figure 8 again plots

w∗

c (3) and w∗

g(3), but this time with δ = .01. Note that for either impact model, discounting

future utility, even at a very low rate, will considerably reduce WTP. With δ = .01, w∗(3) is

again below 2% for all values of η, and for either impact model.

The results so far indicate that for either impact model, large values of WTP require fairly

extreme combinations of parameter values. However, these results are based on distributions

16



for ∆TH, β and γ that were calibrated to studies in the IPCC’s 2007 report and concurrent

economic studies, and those studies were done several years prior to 2007. More recent

studies suggest that “most likely” values for ∆T in 2100 might be higher than the 1.0◦C

to 4.5◦C range given by the IPCC. For example, a recent report by Sokolov et al (2009)

suggests an expected value for ∆T in 2100 of around 4 to 5◦C, as opposed to the 3.0◦C

expected value that I used. Thus I recalculate WTP for both impact models, for both δ =

0 and .01, but this time shifting the distribution for ∆TH to the right, so that it has a mean

of 5◦C, corresponding to the upper end of the 4 to 5◦C range in Sokolov et al (2009). (The

other moments of the distribution remain unchanged, and H is again 100 years).

The results are shown in Figures 9 and 10. Now if δ = 0 and η is below 1.5, w∗(3) is

above 3% when the impact of ∆T occurs through the growth rate, and above 4% when the

impact is direct, and reaches around 10% if η = 1. Even if δ = .01, w∗

c (3) exceeds 4% when

η = 1 (although w∗

g(3) only reaches 2..5%). Thus there are parameter values and plausible

distributions for ∆T that yield a large WTP. Those parameter values and distributions are

outside the current consensus range, but that may change as new studies of warming and its

impact become available.

As Figures 7 to 10 show, for either value of δ, w∗

c (3) is usually higher than w∗

g(3), and when

δ = .01 it is considerable higher. In the Ramsey growth context, the consumption discount

rate is δ + ηgt, so even if δ = 0, future consumption (although not utility) is discounted (less

so for small values of η). When ∆T affects consumption directly, the loss of consumption

is greater at shorter horizons (but smaller at long horizons), making w∗

c (3) > w∗

g(3). (In

Figure 7, w∗

c (3) < w∗

g(3) when η < 1.3 because with a low consumption discount rate, the

larger long-run reduction in consumption from a growth rate impact overwhelms the smaller

short-run impact, even in expected value terms.)

6 Modeling and Policy Implications.

The integrated assessment models that I am aware of all relate temperature change to the

level of real GDP and consumption. As we have seen, this will often yield a higher WTP
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— and thus yield higher estimates of optimal GHG abatement — than will a model that

relates temperature change to the growth rate of GDP and consumption. How important is

the difference, and what do these results tell us about modeling?

In Pindyck (2009), using a model that related temperature change to the growth rate of

consumption, I found that for temperature and impact distributions based on the IPCC and

“conservative” parameter values (e.g., δ = 0, η = 2, and g0 = .02), WTP to prevent even a

small increase in temperature is around 2% or less, which is inconsistent with the immediate

adoption of a stringent GHG abatement policy. To what extent do those results change when

temperature change directly affects the level of consumption? And more broadly, what are

the policy implications of the results in this paper?

6.1 Implications for Modeling.

The difference in WTPs for a direct versus a growth rate impact is largest for large tem-

perature changes and for higher consumption discount rates. As we saw in Figure 5 for

the case of no uncertainty, w∗

c (0) is a convex function of ∆T and thus becomes increasingly

greater than w∗

g(0) as ∆T gets larger. Likewise, when there is uncertainty but the expected

temperature change is increased from 3◦C to 5◦C, the difference between w∗

c (3) and w∗

g(3)

becomes larger. And note from Figures 9 and 10 that the difference between w∗

c (3) and w∗

g(3)

is proportionally larger when the consumption discount rate (δ + ηg0) is larger, i.e., when η

is larger and/or when δ is .01 rather than 0.

If the consumption discount rate is large (i.e., if η is large and/or δ > 0), almost any

model will yield estimates of WTP and optimal abatement levels that are small. This is

simply the result of discounting over long horizons (greater than 50 years). That is why

model-based analyses that call for stringent abatement policies assume δ = 0 and relatively

low values for η. (Stern (2007, 2008), for example, uses δ = 0 and η = 1.) Thus if we limit

our analyses to the low end of the consensus range for η (around 1.5), even with δ = 0, the

choice of impact model will matter if evolving climate science studies yield increasingly large

estimates of expected temperature change.

Which impact model — direct versus growth rate — should one use for modeling? A
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direct impact model is simpler, easier to understand, and perhaps easier to estimate or

calibrate. But as I have argued at the beginning of this paper, there are strong theoretical

and empirical arguments that favor the growth rate impact. Until new studies demonstrate

otherwise, it seems to me that it is difficult to make the case for a direct impact.

6.2 Implications for Policy.

The results in this paper supplement those in Pindyck (2009) in terms of implications for

policy. We can summarize those implications as follows.

First, although the direct impact model often yields higher estimates of WTP, it is still

the case that using temperature and impact distributions based on the IPCC (2007) and

concurrent economic studies, for most parameter values our WTP estimates are still too low

to support a stringent GHG abatement policy. Of course these estimates do not suggest

that no abatement is optimal. For example, a WTP of 2% of GDP is in the range of cost

estimates for compliance with the Kyoto Protocol.9

In addition to the effects of discounting discussed above, our low estimates of WTP are

due to the limited weight in the tails of the distributions for ∆T and the impact parameter

β or γ. The probability of a realization in which ∆T ≥ 4.5◦C in 100 years and the impact

parameter is one standard deviation above its mean is less than 5 percent. An even more

extreme outcome in which ∆T = 7◦C (and the impact parameter is one standard deviation

above its mean) would imply about a 9 percent loss of GDP in 100 years for a growth rate

impact, but the probability of an outcome this bad or worse is less than 1 percent. And this

low-probability loss of GDP in 100 years would involve much smaller losses in earlier years.

Second, although these estimates of WTP are consistent with the current consensus

regarding future warming and its impact as summarized in IPCC (2007), that consensus may

be wrong, especially with respect to the tails of the distributions. Indeed, based on recent

studies, that consensus may already be shifting towards more dire estimates of warming and

its impact. As we saw from Figures 9 and 10, shifting the temperature distribution to the

9See the survey of cost studies by the Energy Information Administration (1998), and the more recent
country cost studies surveyed in IPCC (2007c).
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right so that E(∆TH) is 5◦C instead of 3◦C results in substantially higher estimates of WTP.

7 Conclusions.

If we are to use economic models to evaluate GHG abatement policies, how should we treat

the impact of possible future increases in temperature? One could argue that we simply do

not (and cannot) know much about that impact because we have had no experience with

substantial amounts of warming, and there are no models or data that can tell us much

about the impact of warming on production, migration, disease prevalence, and a variety of

other relevant factors. Instead, I have taken existing IAMs and related models of economic

impact at face value and treated them analogously to the climate science models that are

used to predict temperature change or its probability distribution. In this way I obtained a

(displaced gamma) distribution for an impact parameter that relates temperature change to

consumption, or to the growth rate of consumption.

We have seen that in most cases, a direct impact yields a higher WTP than a growth rate

impact. The reason is that when ∆T affects consumption directly, the loss of consumption

is greater at short horizons (but smaller at long horizons). Consumption discounting can

give these short-horizon effects more weight. Even if future utility is not discounted (δ = 0),

the consumption discount rate (δ + ηg0) is still positive, and can be large if η is large.

Overall, I would argue that the choice of a direct versus growth rate impact should be

based on the underlying economics, and the growth rate specification has both theoretical

and empirical support. But even with a direct impact model, using temperature and impact

distributions based on the IPCC (2007) and concurrent economic studies, for most parameter

values our WTP estimates are still too low to support a stringent GHG abatement policy.

Of course there are parameter values and plausible distributions for ∆T that yield a large

WTP. Those distributions and parameter value are outside the current consensus range, but

that range may change as new studies of warming and its impact are done.
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Figure 9: WTP Versus η for τ = 3. E(∆TH) = 5◦C, g0 = .020, δ = 0
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Figure 10: WTP Versus η for τ = 3. E(∆TH) = 5◦C, g0 = .020, δ = .01
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