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 Conventional wisdom holds that one of the riskiest aspects of owning a house is the 

uncertainty surrounding its sale price, especially if one moves to another housing market.  It is 

now well appreciated that house prices can be quite volatile.  Between the end of 2005 and the 

end of 2008, real house prices fell by more than 31 percent, according to the Case-Shiller 10-city 

composite house price index.  Over the prior five years, real house prices in the same cities rose 

by almost 73 percent.  Similarly, after real house prices rose substantially during the 1980s, they 

fell by 26 percent between 1990 and 1997.   

 Historically, analysts have concluded that this volatility in house prices makes home 

owning risky.  Since the primary residence comprises about two-thirds of the median 

homeowner’s assets (2004 Survey of Consumer Finances), a gain or a loss on a house could have 

a sizeable effect on a household’s balance sheet.  In addition, nearly 45 percent of households 

move within a five-year period and one-fifth of such households leave their metropolitan area.  A 

loss on a house could impair their ability to purchase their next house.  These are some of the 

reasons Case et al. (1993) argue for using house price derivatives to help households offset house 

price volatility.  Similarly, in some cities home equity insurance products have been created, 

enabling households to guarantee (for a fee) that their house values will not fall below some 

threshold. [Caplin et al. (2003)]   

 In this paper, we show that for many households home owning is not as risky as 

conventionally assumed.  Households who expect to sell their house will still have to live 

somewhere afterwards and the cost of that subsequent housing is uncertain.  For many home 

owners, the sale price of their current house positively commoves with the purchase price of their 

next house, reducing the expected volatility in the net cost of selling one house and buying 

another.  In effect, owning a house provides a hedge against the uncertain purchase price of a 
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future house.  By contrast, a household who rents avoids the uncertainty from selling its home 

but leaves itself unhedged against the volatility of future housing costs after moving. 

 A few recent papers have recognized that it is the sale price net of the subsequent 

purchase price, rather than the sale price alone, that matters for housing risk.  [Ortalo-Magne and 

Rady (2002), Sinai and Souleles (2005), Han (2008)]  However, these papers – along with 

conventional wisdom – assume that the correlation in house prices across housing markets is 

low, which implies that owning a house provides a poor hedge against future housing costs for 

households who face some chance of moving to a different market.  The literature has instead 

emphasized that home owning can be a good hedge against buying a larger house in the same 

market.1 

 While it is correct that house prices do not covary much when one considers the U.S. as a 

whole, that unconditional average masks two important factors.  First, there is considerable 

heterogeneity across city pairs within the U.S. in how much their house prices covary, ranging 

from negative covariances to very highly positive covariances.  Second, households do not move 

to random locations; instead, they tend to move between highly covarying housing markets.  Our 

first contribution is to show that because of these two considerations, for many households the 

expected covariance in house prices – where the expectation is weighted by the household’s own 

probabilities of moving to each other location – is quite high.  For example, the simple 

unweighted median correlation in house price growth across U.S. metropolitan statistical areas 

                                                 
1 The benefit of home owning as a hedge against future house price risk in other cities is generally undeveloped in 
prior research.  Ortalo-Magne and Rady (2002) illustrate in a simple theoretical model that house prices in one 
period hedge prices in the next period if the prices covary across the periods, but provide no empirical evidence on 
the magnitude or effect of the hedge.  Sinai and Souleles (2005) show theoretically how sale price risk depends on 
the covariance between house prices in the current and future housing markets, but their primary empirical focus is 
on how home owning hedges against volatility in housing costs within a given housing market.  Han (2008) 
distinguishes within- and out-of-state moves in a structural model of housing consumption using the Panel Study of 
Income Dynamics.  However, she does not know where households move if they move out of state, so she does not 
estimate cross-state covariances.  Cocco (2000) considers hedging the cost of trading up to a larger house within the 
same housing market, by liquidity constrained households. 
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(MSAs) is 0.35.  When we account for where households are likely to move, the baseline 

effective correlation faced by the median household rises substantially, to 0.60.  The 75th 

percentile household enjoys an even higher correlation, of 0.89. 

 Because households’ effective expected covariances are quite high, owning a house can 

provide a valuable hedge against house price risk, especially for households who are likely to 

move.  This includes households who do not know exactly where they are going to move.  As 

long as they are likely to move to positively covarying markets, home owning helps hedge their 

expected purchase price risk.2  

 Our second contribution is to show that households’ tenure decisions (to rent versus own) 

appear to be sensitive to this “moving-hedge” benefit of owning. We bring three sources of 

variation to bear on this issue.  First, the typical household across different MSAs may have a 

bigger, smaller, or even negative hedging benefit of home owning depending on the variance of 

house prices in the local MSA and their covariances with prices in other MSAs.  Second, within 

an MSA, households differ in their expected covariances because they differ in their likelihoods 

of moving to each of the other MSAs.  Third, the effect of the expected house price covariance 

should be attenuated for households who, for demographic reasons, appear unlikely to move in 

the near future.  Households who do not anticipate moving have little need for a hedge against 

future house prices, and thus differences in the potential moving-hedge benefit of owning should 

have little effect on their tenure decisions. 

                                                 
2 In order to highlight how the risk of home owning is affected by the house’s moving-hedge properties, we abstract 
from the effect of housing finance on household risk.  Financing any volatile asset with high leverage creates risk, a 
topic which has been considered at length in prior research. For example, for leveraged, liquidity-constrained 
households, downturns in prices can lead to lock-in and more volatile consumption and prices.  [Chan (2001), Stein 
(1995), Genesove and Mayer (1997, 2001), Hurst and Stafford (2004), Lustig and Van Nieuwerburgh (2005), Li and 
Yao (2007)]   



 4

 We use household-level data on homeownership and moving probabilities, and MSA-

level estimates of house price variances and covariances, to identify the effect of expected house 

price covariances on homeownership decisions.  We use demographic characteristics such as 

age, marital status, and occupation to impute the probability of moving for each household.  We 

impute the odds of a household moving to specific MSAs, conditional on moving at all, by 

applying the actual geographic distribution of moves by other households in similar industry or 

age categories in the originating MSA.  This combination of MSA and household level variation 

enables us to identify the effect of expected house price covariances on homeownership 

decisions while controlling separately for MSA and household characteristics. 

 Overall, we find that for a household with an average expected length-of-stay in the 

house, the likelihood of home owning increases by 0.6 percentage points when the expected 

covariance rises by one standard deviation.  This effect is larger for households with a higher 

likelihood of moving to another MSA.  A household who is imputed to have a one-in-three 

chance of moving would have a 1 to 2 percentage point higher likelihood of home owning if 

faced with a one standard deviation increase in expected covariance.  The results are robust to 

different ways of imputing the likelihood of a household’s moving to the various MSAs, such as 

instrumenting for the actual moving patterns of households with the patterns we would predict if 

households moved based on the distribution of their industry’s employment or their occupations 

across MSAs. 

 In the next section, we present a simple theoretical framework to illustrate the moving-

hedge benefit of owning and to motivate our empirical tests.  In Section 2, we estimate 

households’ effective covariances between house price growth in their current markets and in 

their expected future markets, and explain why conventional wisdom has assumed those 
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covariances are low when they are actually quite high.  Section 3 describes the various data 

sources we use.  The empirical identification strategy and results are presented in Section 4.  

Section 5 briefly concludes. 

 

1. Theoretical framework 

 In this section, we illustrate how owning a house can hedge against the house price risk 

from future moves.  This illustration will also provide guidance for the empirical tests that 

follow.  Our exposition generally follows Sinai and Souleles (2005).  To simplify, and focus 

attention on the moving-hedge benefit of owning, we abstract from some other important issues, 

such as leverage and down payment requirements, taxes, and moving costs, which would operate 

in addition to the hedging benefit. (Such issues will be taken into account in our empirical work.)  

Since our focus is on how owning a house in one city can hedge against house price 

volatility in the next city, we will consider a representative household who initially lives in some 

city, A,and then moves to another city, B. To simplify, we assume that the household knows with 

certainty that it will live in A, and then in B, for N years each, after which it will die.  (In our 

empirical work, we will recognize that N can vary across households, with some expecting to not 

move very often and others expecting to move more frequently, and that there are multiple 

destination cities to which households could move.)  At birth, labeled year 0, the household 

chooses whether to be a homeowner in both locations or a renter in both locations.3  The 

household chooses its tenure mode to maximize its expected utility of wealth net of total housing 

costs, or equivalently to minimize its total risk-adjusted housing costs.   

                                                 
3 The desired quantity of housing services is normalized to be one unit in each location. For convenience, rental 
units and owner-occupied units, in fixed supply and together equal to the number of households, both provide one 
unit of housing services. The results below can be generalized to allow the services from an owner-occupied house 
to exceed those from renting, perhaps due to agency problems. Additional extensions are discussed in Sinai and 
Souleles (2005).   
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 The cost of obtaining a year’s worth of housing services is the rent, denoted by A
tr

~  in city 

A in year t, and B
tr

~  in city B.  The tildes denote that the rent in year t is not known at time zero, 

because rents fluctuate due to shocks to underlying housing demand and supply. To allow for 

correlation in rents (and, endogenously, in house prices) across cities, we assume that rents in the 

two locations follow correlated AR(1) processes: )(1
B
n
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n krr     and 
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BB
n krr    , where φ[0,1] measures the persistence of rents, A and B 

measure the expected level or growth rate of rents (depending on φ), and the shocks A and B 

are independently distributed IID(0,2
A) and IID(0,2

B).  parameterizes the spatial correlation in 

rents (and in house prices) across the two locations, with =0 implying independence and =1 

implying perfect correlation. To control the total magnitude of housing shocks incurred as  

varies, the scaling constant  can be set to 1/(1+2)1/2.  For simplicity in this exposition, we will 

set the persistence term φ to 0.  We find similar qualitative results with the more realistic 

assumption of φ>0. [Case and Shiller (1989)]  

 From a homeowner’s perspective, the lifetime ex post cost of owning, discounted to year 

0, is   B
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~~~   .  The AP0  term is the initial purchase price in city A, 

which is known at time 0.  In the last term, B
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~
 is the uncertain residual value of the house in B 

at the time of death.  It is discounted since death occurs 2N years in the future. Our emphasis in 

this paper is on the middle term,  A
N

B
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~~  , which is the difference between the sale price of 

the house in A at time N and the purchase price of the house in B at time N.   

 For renters, the ex post cost of renting is the present value of the annual rents paid: 
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 Sinai and Souleles (2005) derive house prices in this setting assuming they endogenously 

adjust to leave households indifferent between owning and renting. The resulting price in city A, 

AP0 , can be expressed as the expected present value of future rents, )( 0
ArPV , plus the total risk 

premium the household is willing to pay to own rather than to rent: 

N

B
O

B
R

N

N
ORAA rPVP















1

)(
   

1

)(
    )( 00 .     (1) 

In the second term, the risk premium for owning, O , measures the risk associated with the 

cost OC of owning, which in equilibrium reduces the price AP0 in equation (1), ceteris paribus. 

The risk premium for renting, R , measures the risk associated with the cost RC of renting. Since 

owning avoids this risk, R increases AP0 , ceteris paribus. P0
A also capitalizes B  )( B

O
B
R   , 

a net risk premium for renting versus owning in B that in equilibrium P0
A inherits from house 

prices in B.   

 For owners, O  measures the total house price risk from the three future housing 

transactions; i.e., the sale of the first house in A, and the purchase price and subsequent sale price 

of the second house in B:   

    2422222 )1(
2 B

N
BA

N
O sss   ,    (2) 

where )var(2
AA rs   and )var(2

BB rs  are the variance of rents in cities A and B, respectively, and 

 is household risk aversion.  Since house prices are endogenously related to rents (as in eq. (1)), 
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house price volatility follows from rent volatility.  Thus we can use 2
As  and 2

Bs  to measure the 

underlying housing market volatility.4  

In the final term in eq. (2), 2
Bs reflects the risk associated with the sale of the house in B, 

discounted by 2)2( N since it takes place in year 2N.  

The first term in eq. (2) reflects the net risk from the sell-in-A and buy-in-B transactions 

in year N, i.e. the risk associated with the difference between the purchase price and sale 

proceeds,  A
N

B
N PP

~~  . The net risk depends on the correlation  between house prices in A and B. 

The part of the first term inside the brackets can be written as  222 )( BA
N ssf  , with 

 
2

2
22

1

1
)1()(







f . If prices in the two markets are uncorrelated, with ρ=0, then 

1)( f , so the net risk from the two transactions is simply the sum of the risks of the 

individual transactions  22
BA ss  , appropriately discounted. But as the two markets become 

increasingly correlated, the net risk declines. That is, owning the house in A helps to hedge 

against the uncertainty of the purchase in B.  In the polar case when ρ=1, then )(f =0, and so 

the sale and subsequent purchase are expected to fully wash each other out. By contrast, if the 

prices in the two markets are perfectly negatively correlated, with ρ=−1, then )(f =2, and the 

net risk is twice as large as the sum of the individual risks.   

 Since )(f  is monotonically decreasing in , in our empirical work it will be useful to 

use the approximation 

                                                 
4 If >0, the variance of observed rents in a given city includes the contribution of the underlying housing market 

shocks  from the other city as well: )( 22222
BAAs   and )( 22222

ABBs   . In the symmetric case with 
222   BA , then 222  BA ss , independent of  . With =0 in eq. (2), the price risks come from the 

contemporaneous rent shocks: N
A on PN

A, N
B on PN

B, and 2N
B on P2N

B. With >0, the prices would also include 
the persistent effect of the preceding rent shocks. [See Sinai and Souleles (2005).] 
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  242 ),cov(
2 B

NN
O sBA   ,    (3) 

where ),cov( BA is the covariance of rents (and prices) in A and B. The risk premium from 

owning should decline with this covariance.  

 For renters, uncertainty comes from not having locked-in the future price of housing 

services, so the risk of renting is proportional to the discounted sum of the corresponding rent 

shocks: 
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Turning to the remaining terms in eq. (1), the net risk premium in B that is capitalized 

into AP0  analogously depends on the net risk of owning versus renting while living in B:  
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Finally, the present value of expected rents in A increases with the trend A: 













1

)( 00
AAA rrPV       (6) 

Generalizing this framework to a setting with heterogeneous households, AP0  can be 

thought of as reflecting a household’s latent demand for owning.  If the household’s willingness-

to-pay is above the market-clearing house price determined by the marginal homebuyer, the 

household would own, otherwise it would rent.  In our empirical work, we observe the own/rent 

decision but not latent demand.  We will control nonparametrically for differences across MSAs 

in the clearing prices for houses, by including MSA × year fixed effects, and will allow for 

heterogeneity across households (in particular in N and ).  This approach allows us to map our 
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empirical results on the determinants of the tenure decision to inferences about the latent demand 

for home ownership. 

This framework yields several empirical predictions.  First, as the covariance in house 

prices between cities A and B rises, a household living in A should be more likely to own its 

house.  By equation (3), the risk of owning declines with the covariance, because the house acts 

as a hedge. Thus the price AP0  and the demand for owning should increase with the covariance, 

ceteris paribus.  

Second, that hedging value should diminish as the likelihood of moving falls.  As a 

household’s expected length-of-stay, N, in city A increases, the net price risk in eq. (3) is 

expected to occur further in the future and thus is discounted more heavily.  That is, in making its 

tenure decision a household who expects to be mobile (small N) should be more sensitive to the 

moving-hedge benefit of owning, since its move will occur sooner and thus the net price risk will 

be larger in present value.  Conversely, a household who expects it will never move has no need 

to worry about future housing markets. Thus the demand for owning should decline with the 

interaction of N and cov(A,B).5 

 These cross-market implications operate in addition to the within-market implications 

already empirically established in Sinai and Souleles (2005). The key implication they tested is 

that the effect of local rent volatility 2
As  on demand generally increases with the horizon (N). 

Households with longer expected horizons are exposed to a larger number of rent shocks (in R ), 

                                                 
5 These results generalize to the case when >0. First, AP0 still increases with , ∂P0 

A /∂ρ >0. This is because ∂0/∂ρ 

remains negative, and )( B
O

B
R   is independent of  given Bs2 . When >0, R is no longer independent of , but 

∂R/∂ρ is positive. That is, a higher covariance also increases the amount of rent risk, which reinforces (though for 
realistic parameters is quantitatively smaller than) the effect of the reduced price risk due to ∂0/∂ρ<0. Second, ∂P0 

A 
/∂ρ generally declines with N (i.e., the interaction term ∂2P0 

A /∂ρ∂N <0) for realistic parameters and N not too small 
(N>3).  
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whereas the expected sale price risk (in O ) comes further in the future and hence is discounted 

more heavily. Thus the demand for owning should increase with the interaction of N and 2
As  – an 

implication that Sinai and Souleles confirm empirically.  Here we focus instead on the cross-

market implications described above. 

 

2. The covariance of house prices across MSAs 

 The previous section established that the value of owning a house as a hedge against 

future moving depends on how much house prices covary across housing markets.  Most analysts 

have concluded that there is little covariance in prices across markets because the national 

average covariance (equally weighting MSAs) is fairly low.  However, that simple average 

masks three important factors that together often cause the effective covariance faced by 

households to be quite high.  First, there is considerable heterogeneity across housing markets in 

their covariances with other housing markets.  The national average covariance obscures this 

heterogeneity.  Second, households do not move at random.  Instead, they are more likely to 

move among more highly covarying housing markets.  The framework in Section 1 assumed that 

households knew with certainty that they would move from city A to city B.  In practice, there 

are a number of cities to which a given household might move with some probability.  For that 

household, the value of the moving hedge depends upon its expected covariance, the probability-

weighted average of the covariances of house prices in its current market with house prices in 

each of its other possible subsequent housing markets.  Because of the systematic moving, the 

average household’s expected covariance is higher than the average covariance across MSAs 

(equally- or population-weighted). 
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 Third, the distribution of the expected covariances is skewed, with a longer lower tail.  

Because of this, the median household’s expected covariance is even higher than that of the 

average household.  That is, while many households have high expected covariances, a minority 

has very low expected covariances, which lowers the average. 

 The heterogeneity across and within housing markets can be seen in Figure 1, which 

graphs each MSA’s distribution of house price correlations, for a subsample of the largest 

MSAs.6  We compute the correlations in real annual growth in the OFHEO constant-quality 

MSA-level house price index over the 1980 to 2005 time period.  The OFHEO index is 

computed using repeat sales of single-family houses with conforming mortgages.  While the 

index is widely believed to understate effective house price volatility because it fails to take into 

account differences in liquidity between housing booms and busts, it is available for a long 

period for many different MSAs, making it the best data set available for our purposes. 

 In Figure 1, each vertical grey/black bar represents a metropolitan area.  The bottom of 

each bar is set at the fifth percentile of the MSA’s house price correlations with each of the other 

MSAs, where each MSA is equally weighted and the correlation of an MSA with itself (which 

would equal one) is excluded. Moving up a bar, the bar turns from grey to black at the 25th 

percentile, then from black to grey at the 75th percentile, and the grey portion ends at the 95th 

percentile.  Thus the black part of the bar covers the interquartile range of correlations across 

MSAs, and the entire grey/black bar covers the 5th percentile to the 95th percentile.    

 The first thing to note in Figure 1 is that there is substantial heterogeneity across MSAs in 

their house price correlations with the rest of the country, since the bars for some MSAs start and 

end higher than the others.  For example, consider the distribution of correlations {ATL,j} 

                                                 
6 The figure uses the correlation rather than the covariance because the former is easier to interpret visually.  The 
conclusions are the same using the covariance. 
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between house prices in Atlanta (the first city in the figure) and each of the other cities j. The 5th 

percentile correlation is −0.05, and the 95th percentile correlation is 0.73.  By contrast, for Austin 

the corresponding percentiles are lower, −0.40 and 0.54.  San Antonio has the lowest 5th and 95th 

percentiles, ranging from −0.50 to 0.47.  The highest among the 5th percentiles of correlations is 

in Miami (0.13), and the highest of the 95th percentiles is in New York (0.94). 

 While the 5th through the 95th percentile correlations always overlap across cities, some 

of the interquartile ranges (the black bars) do not overlap.  In Atlanta, the interquartile range of 

the correlations runs from 0.27 to 0.50, which does not overlap at all with the interquartile range 

in Austin, which runs from −0.22 to 0.17.   

 The second interesting fact apparent in Figure 1 is that the within-MSA heterogeneity in 

correlations (with other MSAs) also varies considerably across MSAs.  This can be seen by the 

length of the grey and black bars.  MSAs whose bars are stretched out relative to the other MSAs 

have more heterogeneity in their correlations, being relatively uncorrelated with some other 

MSAs and relatively highly correlated with others.  For example, New York has a -0.22 

correlation with its 5th percentile correlation city, but a 0.94 correlation with its 95th percentile 

city.  There is relatively less heterogeneity within Minneapolis, where the corresponding 

correlations range from 0.12 (5th percentile) to 0.68 (95th percentile).  There is also significant 

heterogeneity in the sizes of the interquartile ranges.  The widest interquartile range is in Salt 

Lake City, which spans from -0.18 to 0.33.  The narrowest range is in Minneapolis.  However, 

the cities with the widest 5th to 95th percentile ranges are not necessarily the same ones with the 

widest interquartile ranges.  For example, New York’s interquartile range runs from 0.12 to 0.53, 

about the same as Nashville, even though Nashville’s 5th to 95th range is much tighter.  San 
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Jose’s interquartile range is fairly tight at 0.15 to 0.38, even though the 5th to 95th percentile 

range is middle-of-the-road. 

 In Figure 2, we take into account where households are likely to move, by weighting the 

correlations by the probability of moving.  In this figure, we use data from the U.S. Department 

of the Treasury’s County-to-County Migration Patterns to impute a household’s likelihood of 

moving from a given MSA to each other MSA.  The Treasury data uses the addresses listed on 

tax returns to determine whether a household moved.  It aggregates the gross flows across 

counties and reports, for each county pair, the number of tax returns annually in which the 

taxpayers moved from the origination county to the destination county.  We aggregated the 

counties into MSAs, and for each MSA computed the fraction of its taxpaying households who 

move to each of the other MSAs. We use the resulting fractions to measure the probabilities of 

any household in the MSA making the corresponding transition.  These moving-shares are the 

weights for computing the distributions in Figure 2.  Note that the figure considers only out-of-

MSA moves. 

 When we weight by where households typically move, it becomes clear that most 

households face much higher effective correlations than indicated in the first figure, because 

households are more likely to move to more highly correlated MSAs.  In Figure 2, the 

distributions of correlations shift upwards in nearly every MSA.7  In many MSAs the top of the 

black bar shifts up near the top of the grey bar. This implies that the entire top quartile of 

correlations for these MSAs is close to one.  (It is impossible to obtain a correlation of exactly 

                                                 
7 The exceptions are minor and tend to occur in cities where there are relatively few high-correlation destinations.  
Every reported percentile cutoff increases once we weight by the moving probabilities, except: Chicago’s 75th and 
95th percentiles decline from 0.70 to 0.67 and 0.81 to 0.75, respectively; Indianapolis’ 95 percentile declines from 
0.80 to 0.79; Phoenix’s 75th percentile declines from 0.49 to 0.47; and Salt Lake City’s 95th percentile declines from 
0.55 to 0.51.  Even in those cities, the rest of the distribution shifts upward considerably.  For example, Chicago’s 
median correlation rises from 0.55 to 0.63; Indianapolis’ 75th percentile rises from 0.49 to 0.59; Phoenix’s median 
rises from 0.37 to 0.42; and Salt Lake City’s 75th percentile rises from 0.33 to 0.51. 
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one in our data since we exclude within-MSA moves and no MSAs are perfectly correlated with 

each other.)   

 For example, in New York, the 75th percentile correlation shifts up to 0.95 from 0.53 in 

Figure 1, and the 25th percentile shifts to 0.50 from 0.12.  In Miami and Detroit, the correlation is 

expected to be at least 0.66 three-quarters of the time.  In most cities, even the 5th percentile 

correlation rises considerably.  In New York, it increases to 0.31 from −0.22.  Similarly large 

shifts of the entire probability distribution occur in San Francisco, Dallas, and Philadelphia, 

among others. 

 Not every metro area experiences such a sizeable shift in their correlation distributions 

after weighting.  Atlanta and Phoenix, for example, change relatively little.  Also, in many MSAs 

the 5th percentile correlation remains fairly low or negative.  While those MSAs still exhibit an 

overall upwards shift in their distributions, the top three quartiles of the distributions shift by 

more than the bottom quartiles, as in Austin or Seattle. 

 To illustrate how high the effective expected correlations in real annual house price 

growth can be, Table 1 presents the distributions of the correlations across MSA-pairs.  To 

convert the raw correlations to expected correlations, we weight each MSA-pair observation by 

the imputed probability of a household moving between those two MSAs.  For comparison, the 

first column of Table 1 assumes that households have an equal probability of moving across any 

MSA-pair. This column corresponds to Figure 1 with all MSAs pooled together.  In the equally-

weighted case, the average pairwise correlation is just 0.34.8   However, 25 percent of the MSA-

pairs have correlations of at least 0.54.  Column (2) uses population-weighted correlations, where 

the odds of a household moving to an MSA, conditional on moving at all, is proportional to that 

MSA’s share of the total population in all MSAs.  This assumption makes little difference 
                                                 
8 We use equal weights for consistency with prior research. See, for example, Glaeser and Gyourko (2006). 
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relative to column (1): The median correlation rises from 0.35 to 0.39 and the 95th percentile 

correlation rises from 0.82 to 0.86. 

 The expected correlation in house price growth rises considerably across the distribution 

when we recognize that households tend to move between highly covarying MSAs.  In column 

(3), we weight the MSA-pair correlations by the actual rate at which households moved between 

them, computed using the Treasury’s county-to-county migration data described above.  This 

column corresponds to Figure 2.  Using such migration weights, the average correlation rises to 

0.57 from 0.34 in column (1), and the median correlation rises to 0.60 from 0.35.  An even more 

striking finding is that the 75th percentile correlation rises from 0.54 to 0.89 – i.e., 25 percent of 

household moves are between MSAs that have correlations in annual house price growth of 0.89 

or above.  Even the lower end of the distribution has remarkably high correlations.  The 25th 

percentile correlation in column (3), 0.34, is about the same as the median correlation in column 

(1).   

 Overall, accounting for where households actually move when constructing expected 

correlations shifts the entire distribution of expected correlations to the right.  This conclusion is 

confirmed by the bottom panel of Table 1 which reports various summary statistics for the 

(within-MSA) distribution of correlations.  When MSA-pairs are weighted by migration flows, 

the difference between the 95th and 75th percentile correlations within each MSA shrinks 

dramatically, from 0.26 in column (1) to 0.08 in column (3), because the distribution is capped at 

1.0 as it shifts to the right.  Thus, the 75th percentile value rises considerably, but the 95th 

percentile cannot rise by as much.  However, neither the interquartile range nor the difference 

between the 25th and 5th percentiles changes much between columns (1) and (3), indicating that 

the other points in the distribution increase in near-lockstep. 
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 The next three columns of Table 1 show that the propensity to move between highly-

covarying MSAs is not driven by relative house price changes in those markets.  In the fourth 

column, we adjust the cross-MSA mobility rates by regressing the moving rate between a MSA-

pair in a given year on the difference between the two MSAs in annual house price growth over 

the prior year, that difference squared, and a constant term.  We then use the residuals from that 

regression, plus the constant term, as the moving weights.9  The basic pattern of results is little 

changed from the one using the unadjusted moving rates, in the third column.  The median 

expected covariance is 0.58 and the 95th percentile is 0.96.  Although the 75th percentile 

covariance drops from 0.89 to 0.79, it is still considerably larger than for the unweighted or 

population-weighted moves in the first two columns. 

 In the fifth and sixth columns, we check whether the moving patterns are different in 

periods of house price growth or decline.  They do not appear to be.  The fifth column restricts 

the sample to MSAs in years where they had experienced positive nominal house price growth 

(“booms”).  The sixth column restricts the sample to MSAs in years where they did not (“busts”).  

In both cases, the basic pattern of results is little changed from column (3). 

 Finally, we also compute correlations in five-year house price growth rates, rather than 

annual growth rates, to try to more closely match the average household’s holding period.  As in 

column (3), we use raw household mobility patterns as the weights in forming expected 

correlations.  The distribution of expected correlations, reported in the last column, rises across 

the board since using the longer-difference growth rates reduces the effect of high-frequency 

fluctuations or noise in house prices.  75 percent of households have house price correlations of 

                                                 
9 This is akin to setting the price differences between the two MSAs to zero.  Negative predicted moving rates are 
truncated at zero.  While the estimated coefficients on the price difference terms are statistically significant and of an 
intuitive sign – households are less likely to move to an MSA whose price growth was higher than their own, and 
that effect accelerates as the price growth gap gets bigger – the magnitude is economically small and the R-squared 
is just 0.0013. 
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at least 0.44, 50 percent have correlations of at least 0.74, and 25 percent of households have 

correlations of 0.94 or more.   Our ability to compute growth rates over even longer horizons is 

limited because of the length of the sample.  However, the distribution using 10-year growth 

rates in house prices looks very similar to that reported in the last column of Table 1. 

 The reason that the expected correlation in house price growth rises when we account for 

households’ moving tendencies is that the relation between household moves and house price 

correlation is skewed.  The set of city pairs with high gross migration flows includes mostly city 

pairs with high price correlations, whereas the city pairs with low gross migration flows include 

both low and high correlation pairs.  This pattern can be seen in Figure 3, which graphs the 

kernel density of the correlations in annual house price growth among various subsets of the 

18,090 pairs of the 135 cities.  The solid black line restricts the sample to the 4,812 city pairs 

that, according to the Treasury data, experienced no (gross) migration.  A few of these pairs had 

correlations below −0.5, some had correlations of nearly 1, and the peak of the distribution is 

around 0.3.  The dashed line shows the kernel density of the correlations for the remaining city 

pairs that experience positive gross migration.  This distribution is slightly to the right of the 

distribution for city pairs with no migration, so on average households who move migrate 

between more highly correlated housing markets, but the overall difference is small.  By 

contrast, the dotted line considers only those city pairs (A,B) where, of the households who 

moved out of city A, at least 1 percent moved to city B.  One percent of moving households is a 

high moving rate, since most city pairs have few moves.  The distribution of correlations shifts 

considerably to the right.  That rightward shift is even more pronounced for the dash-dot line, 

which restricts the set of city pairs to those where the rate of moving out of A to B was at least 
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2.5 percent.  These last two kernel densities indicate that the rate of moving is high mainly 

between high-correlation city pairs. 

 The patterns in Figure 3 explain the differences between Figures 1 and 2.  When city 

pairs are equally weighted, the distribution of correlations looks like the solid and dashed lines.  

But when city pairs are weighted by the probability of a household moving between the two 

cities, the pairs represented by the solid line get no weight, while the pairs represented by the 

dotted and dash-dot distributions get significant weight.  This reweighting shifts the mass of the 

correlation distribution (in most cities) to the right. 

 Investigating why MSAs have correlated house price growth rates – or why households 

tend to move between MSAs with correlated housing markets – is beyond the scope of this 

paper.  Indeed, the value, to an individual household, of owning a house as a hedge against 

moving risk is separable from the reasons for the correlation or the potential move.  For example, 

one possible reason for moving is that the shocks that induce the correlation in prices also induce 

labor market flows.  That is, cities that are similar enough for households to want to move 

between are also likely to share the same economic fundamentals, leading to a correlation in their 

housing markets.  Another possible reason is that cities with correlated house prices are demand 

substitutes. [McDuff 2008]  In either case, for an individual household, owning a house still 

helps hedge the purchase price risk in the city that is moved to.  Nonetheless, in our empirical 

section, below, we will confirm this conclusion by using exogenous predictors of cross-MSA 

mobility to form expected correlations and covariances.   

 

3. Data 
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 We use household level data from the 1980, 1990, and 2000 waves of the Integrated 

Public Use Microsample of the U.S. Census (IPUMS) as our base data set.  The IPUMS is a 

representative cross-section sample of U.S. residents drawn from the decennial Census.  It is 

well-suited for our purpose because it has many observations (in the 5 percent sample that we 

use, there are nearly 38 million person-level observations total in the three waves), contains 

MSA identifiers, reports whether households own their homes, and contains a host of household-

level income and demographic characteristics that we use as controls.  We construct two 

subsamples using this data, using the procedure outlined in Appendix Table C.  Both subsamples 

are restricted to household heads age 25 and over, among other conditions.  One sample, which 

we call the ‘migration’ subsample, excludes the households from the 1980 Census that due to the 

design of that year’s Census were not asked about prior residences.  After these restrictions, 10.3 

million household-level observations remain.  The other sample, which we call the ‘regression’ 

sample, excludes households who either do not live in an MSA or live in MSAs that are not 

covered in our other data sets (as well as other, relatively minor, sample restrictions), for a net 

total of 4.2 million household-level observations. 

 The main variables of interest – the expected covariances (cov), rent risks (s2
r), and 

expected lengths-of-stay (N) – need to be imputed into the IPUMS.  The expected covariance for 

a household living in MSA k is comprised of two parts: the vector of house price covariances 

between MSA k and the other MSAs, and the probability weights that a given household living 

in MSA k would apply to the likelihood of moving to each of the other MSAs: 

  
l

lkglkgkBA PPwPPE ),cov(),cov( ,,, .  The house price covariance vector, ),cov( lk PP , is 

constructed by computing the covariance of real annual house price growth over the 1980 – 2002 

period based on the OFHEO index described earlier. 
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 We use several different approaches to estimate the moving weights, glkw ,, .  The IPUMS 

reports households’ current MSA of residence and their MSA of residence five years earlier.  

Using the migration sample, we construct the average annual rate of moving from each MSA to 

each of the other MSAs conditional on moving out of the origin MSA, weighting the 

observations by the IPUMS household weights.  We also repeat the exercise allowing the MSA-

to-MSA moving matrix to differ by group, g.  As groups, we use the Census’s 381 detailed 

industries (1990 definition) as well as the Census’s 243 detailed occupations (1990 definition).  

When we allow the weights to vary by MSA and group,   gkBA PPE ,),cov(  varies both across and 

within MSAs. 

 We construct expected horizon and rent volatility in the same manner as Sinai and 

Souleles (2005).  We proxy for the expected horizon with the probability of not moving, imputed 

using exogenous demographic characteristics. The IPUMS reports whether a household has 

moved in the last year.  To generate the expected probability of moving, we take the average rate 

of moving over the last year in the age (in 10-year bins) × marital status × occupation cell that 

matches the household in question (excluding the household from the cell).  We subtract that 

average from one to obtain the probability of staying, P(stay). This is our inverse proxy for the 

expected horizon N.  In the regression analysis, we will control separately for age, marital status, 

and occupation in the vector of demographic controls, so the probability of staying will be 

identified from households having a different mobility profile over their lifetimes depending on 

their marital status and occupation. 

 To estimate rent volatility, we use data from REIS, a commercial real estate data provider 

that has surveyed ‘Class A’ apartment buildings in 44 major markets between 1980 and the 

present.  We use their measure of average effective rents by MSA, deflated using the CPI less 
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shelter.  To estimate the volatility, we de-trend the log annual average real rent in each MSA and 

compute the standard deviation of the deviations from the trend between 1980 and 2002.  By 

using logs, the standard deviation is calculated as a percent of the rent and so the measured rent 

risk is not affected by the level or average growth rate of rents.   

  

4. Estimation strategy and results 

 We wish to estimate the following regression, for household i in MSA k at time t: 
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   (5) 

where ‘OWN’ is an indicator variable for home ownership, rs  is the measure of the local rent 

volatility, N is the imputed probability of not moving (P(stay)), and  2
1

),cov( BA PPE  is the square 

root of the household’s expected covariance.  The remaining variables are controls: X is a vector 

of household-level characteristics, Z controls for time-varying MSA-level characteristics, and ζ is 

a vector of year dummies.  We will estimate equation (5) using OLS and linear IV. 

 The main predictions from the framework in Section 1 are that 03  , 04  , and 

05  .  The tests of 04   and 05   are novel to this paper, while 03   was tested in Sinai 

and Souleles (2005) using a different data set.  The framework in Section 1 also shows that the 

probability of owning should increase with the horizon N, which implies that β2>0. In practice 

the coefficient on the uninteracted horizon term can also pick up the effects of other factors 

affecting the probability of owning, such as fixed costs being amortized over longer stays, and so 

we will not emphasize β2. Also, we will include MSA × year dummies, which will subsume the 

effect of β1, the coefficient on the uninteracted rent volatility.   
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 Most of our empirical focus will be on identifying the estimates of 4  and 5 .  One way 

to identify 4 , the effect of the expected covariance on the decision to own, is to make use of the 

fact that different types of households within each MSA can have different weights applied to the 

MSA × MSA house price covariance matrix, reflecting their different probabilities of moving to 

different MSAs.  This yields variation in expected covariances within and across MSA.  Since 

we allow the moving weights to differ by industry or occupation groups, the resulting variation is 

at the industry × MSA or the occupation × MSA level.  Thus we can include MSA × year 

dummies and a complete set of industry or occupation dummies, and still identify 4 .  If we 

assume instead that all households within an MSA have the same probabilities of moving to the 

other MSAs, 4  cannot be separately identified from the MSA × year fixed effects. 

 To illustrate, we could compare the homeownership rates of electricians and lawyers in 

Philadelphia since those two industry groups, despite living in the same MSA, are likely to move 

to different cities and thus have different expected covariances.  We can then compare the 

difference in the two groups’ homeownership rates to the difference in homeownership rates in 

the same two industry groups in another city, such as Seattle, who themselves have different 

expected covariances.  The fact that households may be on average more likely to own their 

houses in Seattle or Philadelphia is absorbed with MSA × year dummies.  Any capitalization of 

the value of the moving hedge into house prices is also captured by these fixed effects.  Average 

differences in homeownership rates across industries can be controlled for with industry 

dummies.  Thus our estimate of 4  would be identified by industry × MSA variation.  Our 

identification strategy generalizes this example to all MSAs and all industries.  We also try a 

similar strategy using occupation groups rather than industries.  We allow for general non-
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independence of the standard errors within industry × MSA × year (or occupation × MSA × 

year) groups by clustering the standard errors. 

 We can identify 5  separately from 4 , since 5 is the coefficient on the interaction 

between the probability of staying (N) and the  2
1

)P,Pcov(E BA  term.  Whether or not the 

expected covariance term alone is distinguishable from unobserved MSA heterogeneity, the 

probability of staying varies across households i based on their demographic characteristics, so 

  ik,iBA )N(g)P,Pcov(E 2
1

 varies by household within MSA.  The same logic applies to the 

identification of 3 , the coefficient on ikr Ngsf )()(  , since the interaction of the MSA level 

rent variance and the group-level probability of staying provides MSA × group variation. 

 In addition to the variables of interest, in all regressions we control for standard 

household-level covariates: The (uninteracted) imputed P(stay), log real family income, age 

dummies (in 10-year bins), indicator variables for marital status (single, married, widowed, and 

divorced), education dummies (less than high school, high school, some college, and completed 

college), 381 occupation dummies, and the probability of moving within the MSA conditional on 

moving.  We add 243 industry dummies when we use industry for the group g in forming the 

moving weights.  MSA-level covariates and aggregate time series effects are subsumed by the 

MSA × year fixed effects, which we include in all specifications.   

  As a baseline, the first column of Table 2 uses the average MSA-to-MSA mobility rates 

by occupation to construct the moving probabilities, so  2
1

)P,Pcov(E BA  varies both across and 

within MSAs.  The predictions of the framework from Section 1 are supported by the data.  In 

column (1), the first row reports the effect of the expected price covariance on the likelihood of 

owning and the second row reports how the effect differs as the probability of staying increases.  
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Because the specification includes an interaction term with P(stay), the coefficient in the first 

row can be interpreted as the effect of the covariance for the polar case household who expects to 

move right away.  We find that such a household is more likely to own when the covariance is 

greater, as predicted. The estimated coefficient 4 of 2.042 (0.252 standard error) implies that a 

one standard deviation increase in the square root of the expected covariance (0.015 on a base of 

0.041) would yield a 3.1 percent increase in the probability of home ownership (2.04 × 0.015). 

This represents a sizeable increase in the ownership rate (the average is 65.4 percent), though a 

small fraction of the cross-sectional standard deviation in the likelihood of owning (the standard 

deviation is 47.6 percent).  However, this extrapolation to an expected horizon of zero years is 

well outside of the variation in the sample. 

To assess the effect for households with a longer expected horizon, we need to turn to the 

interaction term, P(stay) x   2
1

)P,Pcov(E BA , in the second row.  The negative coefficient 5 of 

−2.039 (0.283) implies that the effect of the price covariance on the probability of owning 

attenuates as a household’s expected horizon increases and the value of the moving-hedge falls, 

again as predicted.  Since the estimated coefficient on the interaction term is of similar 

magnitude but opposite sign to the coefficient on  2
1

)P,Pcov(E BA , the net effect of higher 

covariance declines to effectively zero for the polar case household who is imputed to never 

move, i.e. whose P(stay)=1.  This result, too, is consistent with the framework in Section 1, since 

non-movers have no need for a moving hedge.  To be precise, the estimates show that 

households with short expected durations and high expected covariances are more likely to own 

their houses than otherwise equivalent households with short expected durations and low 

expected covariances in the same MSA and year.  As the expected duration increases, the gap in 

the probability of ownership declines to zero.   
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We can combine the estimates for these two polar cases to estimate the effect of a one 

standard deviation higher expected covariance on the probability of owning for households with 

an intermediate expected duration.  For a household with the lowest expected horizon in the 

sample, two years (imputed P(stay)=0.5), a one standard deviation higher expected covariance 

raises the probability of owning by 1.6 percentage points (0.2 percentage points standard error), 

which is a large and significant effect.  Households with a longer, five-year expected horizon 

(with P(stay)=0.8, approximately the sample average), are 0.63 percentage points (0.15) more 

likely to own a house when the expected covariance rises by one standard deviation.  By the time 

households have a one-in-ten chance of moving in any given year (P(stay)=0.9), the effect on the 

probability of owning approaches zero (0.32 percentage points) and is barely statistically 

significant (a standard error of 0.16). 

 In the third row of Table 2, the effect of rent volatility in the current MSA on the 

likelihood of owning becomes more positive as the horizon increases, since the coefficient on the 

interaction term, P(stay) × rs , is positive.  This interaction effect was one of the main empirical 

results in Sinai and Souleles (2005), and it is robust throughout all the specifications in this 

paper. 

We include P(stay) separately to control for expected horizon and related factors like the 

fixed costs of buying or selling a house.  The estimated coefficient is positive as expected: 

households with longer expected lengths of stay on average are more likely to own.   

 The second column of Table 2 reports the estimated coefficients when we impute the 

pattern of where households expect to move based on industry groups and MSA.  The results are 

very similar to those using occupation groups. 
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 In the third column, we eliminate the within-MSA group-based variation by imputing 

mobility based on where other households in the same MSA move.  Because the weighting 

matrix in this specification varies only by MSA, the estimated coefficients on the uninteracted 

expected covariance (and rent volatility) term cannot be identified separately from the 

unobserved MSA-level heterogeneity that is absorbed by MSA × year effects.  In this case, only 

the interaction terms with expected horizon (P(stay)) can be identified, since they vary by MSA 

× household.  Despite the difference in the source of variation, the estimated coefficients on the 

interaction terms are very close to those in columns (1) and (2). 

 The last two columns of Table 2, by leaving out the interaction term P(stay) × 

 2
1

)P,Pcov(E BA , provides the average effect of the expected covariance on home owning, across 

households of all expected durations.  These estimates are identified solely from the within-MSA 

variation (by occupation or industry) and are not dependent on the P(stay) imputation.  Because 

 2
1

)P,Pcov(E BA  in this specification is not interacted with P(stay), the estimated elasticity 

corresponds to the household with the average expected length-of-stay in the sample, which is 

about five years (P(stay)=0.80).  The estimated coefficient in the top row of column (4) is 0.367 

(0.99), which suggests that if the expected covariance were to rise by one standard deviation, the 

probability of home owning would go up by 0.367 × 0.015, or almost 0.6 percentage points.  

Similar results are found using industry groups in column (5). 

 One potential complication is that if households are constrained to move primarily to 

where they can afford to move, they might have to move to markets that have correlated house 

price changes.  If this effect happens to be stronger when the homeownership rate is higher, it 

could potentially spuriously link the probability of owning with the expected covariance, since 

our measure of expected covariance is constructed using actual moves. However, there is little 
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reason to think that this effect would be stronger within MSAs for the industries or occupations 

that have a higher homeownership rate, and so it should not affect our analysis.10  

To confirm that this mechanism isn’t driving the results, we instrument for our measure 

of expected covariance with a covariance constructed using mobility weights intended to proxy 

for where a household would like to move if it were unconstrained.  For this robustness check, 

we assume that, conditional on moving, households would like to move to those cities where 

other households in their current occupation or industry tend to locate.  In particular, we impute 

household i’s (currently living in MSA k) probability of moving to MSA l as simply the share of 

household i’s occupation (or industry) in MSA l relative to all other MSAs excluding k.  (E.g., 

the instrument is constructed such that, if a large fraction of the nation’s lawyers live in 

Philadelphia, then lawyers in other cities have a proportionally higher probability of moving to 

Philadelphia.) This set of probabilities differs by occupation (industry) within an MSA, but most 

of the variation in this instrument is across occupations (industries), not across MSAs.  However, 

when those moving probabilities are used to weight the MSA covariance vectors, which differ 

across MSAs, the resulting expected covariance instrument varies both within and across MSAs.  

(The first stages of the IV regressions are reported in Appendix Table B.) 

 The results of this IV strategy are reported in Table 3.  The specification in column (1) 

corresponds to the first column of Table 2, except now we instrument for the expected 

covariance using the weighted covariance described above that assumes that households move 

according to the distribution of their occupation shares, which varies by occupation × MSA.  To 

instrument for P(stay) ×  2
1

)P,Pcov(E BA , we interact P(stay) with the expected covariance 

                                                 
10 The theoretical argument of this paper does not require that a household’s moving between markets be 
unconstrained.  If a household knows in advance that, when it moves, it would need to move to a housing market 
where house prices had covaried positively, it should take that into account when making its initial house purchase 
decision.  This is why we address just the empirical implications of this potential mechanism. 
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instrument.  Since P(stay) is imputed using exogenous household demographics, we do not need 

an instrument for it. 

 The IV-estimated coefficients on  2
1

)P,Pcov(E BA  and its interaction with P(stay) nearly 

double relative to the OLS estimates in Table 2, to 4.209 (1.271) for the expected covariance and 

−3.813 (0.387) for the interaction term.  Despite the larger standard errors, the IV coefficients 

remain statistically significant. Since the estimates continue to be close in magnitude with 

opposite signs, at every expected length-of-stay the estimated effect of higher expected 

covariance on the probability of homeownership is about twice what was found in Table 2.  As 

expected, those households who we impute would never move still have no differential response 

to changes in expected covariance.  For households with P(stay)=0.5, a one standard deviation 

greater expected covariance leads to a nearly 4 percentage point increase in the probability of 

home owning.  At the sample average P(stay), 0.8, the same increase in expected covariance 

would raise the probability of owning by just under 2 percentage points.  Despite the statistical 

significance of the individual reported coefficients, for levels of P(stay) observed in the data, the 

combined effect of  2
1

)P,Pcov(E BA and  2
1

)P,Pcov(E BA × P(stay) becomes statistically 

indistinguishable from zero when instrumenting.  

 Column (2) of Table 3 uses industry groups rather than occupation to construct the 

instrument.  The estimated coefficients on  2
1

)P,Pcov(E BA  and  2
1

)P,Pcov(E BA × P(stay) are 

slightly smaller in absolute value than in column (1), yet still statistically significant.  Their 

combined effects are also statistically different from zero as long as P(stay) is lower than 0.65.  

At P(stay)=0.5, a one standard deviation greater expected covariance leads to a 3 percentage 

point increase in the probability of owning.   
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 Column (3) uses just the MSA-level variation to construct the expected covariance, and 

for the instrument uses the occupation distribution of the MSA to construct where the MSA 

residents on average would move to.  As in Table 1, the level effect of expected covariance 

cannot be identified in this particular specification.  However, the interaction term has the same 

estimated magnitude as in columns (1) and (2), with about a 50 percent smaller standard error.  

In sum, the interaction term remains consistently significantly and economically negative, even 

across all the IV specifications.  Thus we can reject the null hypothesis of no attenuation (with 

expected horizon) of the effect of the moving hedge on the probability of owning on average 

over the sample. 

   

5. Conclusion 

 This paper established two novel results.  First, because households tend to move among 

correlated housing markets, the effective covariance of house prices across housing markets is 

much higher than analysts have previously assumed.  We find that half of households’ moves in 

the U.S., excluding within-MSA moving, are between MSAs with correlations in annual real 

house price growth rates of 0.60 or greater, and 25 percent are between MSAs with more than a 

0.89 correlation.  When five-year house price growth rates are used, the median correlation rises 

to 0.74. 

 Second, households’ tenure decisions appear to be sensitive to the moving-hedge benefit 

of home owning.  Households with higher expected covariances between house prices in their 

current market and their possible future markets are more likely to own.  This effect attenuates 

with a household’s expected length of stay in the house: less mobile households place less 

weight on future housing markets than do more mobile households.  For a household who is 
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likely to move in the next two years, having a one standard deviation higher expected covariance 

leads to a 2 to 4 percentage point higher homeownership rate.  That relationship diminishes with 

the expected length of stay in the house and is indistinguishable from zero for households who 

appear unlikely to move.  The results are robust to instrumenting for the expected covariances by 

assuming households move proportionally to their industry shares. 

 The analysis in this paper suggests that the natural hedge provided by owning a house 

may be quite valuable, and for many households home owning (absent leverage) may actually 

reduce the risk of the total lifetime cost of obtaining housing services.  As noted in Sinai and 

Souleles (2005), home owners who expect never to move are in effect hedged against housing 

cost risk, since they locked in their housing costs with their initial house purchase.  In this paper, 

we find that even home owners who expect to sell their house and move to another market may 

be partially hedged, because the volatility in their current house price often undoes the volatility 

in the price of their next house, reducing their lifetime risk on net.  By contrast, renters are 

exposed to volatility in housing costs in both their current market and any future markets they 

might move to. 

 The argument that households should manage the uncertainty of their total lifetime 

housing costs, not the volatility of their current house price, has important implications for 

evaluating the efficacy of various methods of controlling households’ housing risk, including 

house price derivatives.  For most households, the positive expected covariance between house 

prices in their current city and prices in possible future cities provides at least a partial hedge 

against house price risk when they move.  Because of that, households who use housing 

derivatives to lock in the sale price of their current house may actually unhedge themselves by 

reducing the covariance to zero.  Instead, households would need to obtain a more complex 
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portfolio of derivatives that would hedge their total housing costs, including their future housing 

costs in different markets.  This important distinction is neglected in analyses that implicitly 

assume that the covariances between the current and potential future housing markets are low 

(e.g., Case et al. (1993), Geltner et al. (1995), Shiller (2008), Voicu (2007)).11   

 This analysis may help explain why the house price futures market has failed to take off. 

[Shiller (2008)]  It may simply be less expensive, easier, and nearly as effective to hedge by 

owning a home.  While the natural hedge provided by owning a house is, in most cases, a partial 

one, providing a supplemental financial hedge against total housing risk might be complex.  This 

analysis may also help explain why there are so few long-term leases in the U.S. [Genesove 

(1999)]  A long-term lease avoids rent risk and leaves the sale price risk with the landlord.  But 

for many mobile households there is a potential benefit of retaining exposure to the sale price, as 

a hedge against the uncertainty of the cost of future housing services. 

 Lastly, the results in this paper suggest that, for many households, the marginal 

propensity to consume out of changes in house prices could be small.  To illustrate, if an increase 

in house prices reflects the fact that a household’s implicit short position in future housing costs 

has become commensurately more expensive, then the household’s real wealth is effectively 

unchanged by the housing capital gains. Unless the capital gains alleviate liquidity/collateral 

constraints, the consumption response should accordingly be small. Prior research emphasized 

this argument for home owners with long expected stays in their current housing markets.  [Sinai 

and Souleles (2005), Campbell and Cocco (2007)]  In this paper, the high expected house price 

covariances that we find imply that even home owners with short expected stays in their current 

housing markets can face similarly small real wealth effects as home owners with long horizons. 

                                                 
11 de Jong et al. (2007) point out another reason that housing derivatives might provide a poor hedge is that MSA-
level house price indices do not explain much of the variation in individual house prices. This point applies to 
within-MSA moves as well.  
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That is, the high covariances effectively lengthen the horizon of households that are likely 

movers, and so the wealth effect from a change in house prices will often be largely offset by 

changes in housing costs in both current and expected future housing markets.  These results can 

help explain the small marginal propensities to consume out of housing wealth found by 

Calomiris et al (2009), Attanasio et al (2009), and by Campbell and Cocco (2007) for young 

homeowners, and suggest that the main channels for housing wealth effects on non-housing 

consumption would have to be through affecting collateral or liquidity constraints.  [Lustig and 

Van Nieuweburgh (2005), Ortalo-Magné and Rady (2006)] 
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Table 1: Distributions of correlations in house price growth across MSAs 

 

Correlation: One-year growth rates of real house prices 
Five-year 

growth rates 

Migration weighted 

Weighting scheme: Unweighted 
Population 
weighted 

Average 
migration 

rates 

Conditional 
on house 

price growth 
differences 

During 
booms During busts 

Average 
migration 

rates  

Average 0.34 0.37 0.57 0.55 0.59 0.56 0.64 

5th percentile -0.17 -0.16 -0.02 -0.004 0.04 -0.05 -0.06 

25th percentile 0.15 0.18 0.34 0.36 0.44 0.32 0.44 

50th percentile 0.35 0.39 0.60 0.58 0.64 0.60 0.74 

75th percentile 0.54 0.58 0.89 0.79 0.80 0.84 0.94 

95th percentile 0.82 0.86 0.97 0.96 0.96 0.97 0.99 

        

Average difference: 
95th−75th percentile 

0.26 0.23 0.08 0.14 0.12 0.15 0.07 

Average interquartile 
range 

0.37 0.35 0.37 0.20 0.16 0.15 0.41 

Average difference: 
25th−5th percentile 

0.27 0.27 0.33 0.39 0.31 0.33 0.45 

Notes: This table reports the distribution of weighted average house price growth correlations across MSAs.  MSA k’s weighted 
average correlation is between its real house price growth and that in all other MSAs, with weights varied as listed in the table.  
Correlations are constant over time within MSA pairs, but the weights can vary over time. A ‘boom’ is an MSA x year when nominal 
house price growth in MSA k was positive; a ‘bust’ is an MSA x year when nominal house price growth was negative or zero.
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Table 2: The relationship between expected house price covariance  
and the probability of owning (OLS) 

 

 (1) (2) (3) (4) (5) 

E[cov(PA,PB)]½ 
2.042 

(0.252) 
1.950 

(0.265) 
 

0.367 
(0.099) 

0.298 
(0.115) 

P(stay)i × 
E[cov(PA,PB)]½ 

-2.039 
(0.283) 

-2.016 
(0.292) 

-2.135 
(0.151) 

  

P(stay)i × sr 
2.430 

(0.140) 
2.468 

(0.152) 
2.464 

(0.081) 
1.856 

(0.130) 
1.902 

(0.143) 

P(stay)i 
0.887 

(0.019) 
0.870 

(0.019) 
0.889 

(0.010) 
0.838 

(0.017) 
0.821 

(0.016) 

Probability weights 
for E[cov(PA,PB)]: 

MSA x 
occupation

MSA x 
Industry 

MSA 
MSA x 

occupation 
MSA x 
Industry 

MSA × year 
dummies? 

Yes Yes Yes  Yes Yes 

Adjusted 
R-squared 

0.2965 0.2993 0.2964 0.2965 0.2993 

Clustering of standard 
errors 

MSA x 
year x 

occupation

MSA x 
year x 

industry 
None 

MSA x 
year x 

occupation 

MSA x 
year x 

industry 
 
Notes: N =  3,326,113.  Sample period covers the 1980, 1990, and 2000 Censuses.  The 
dependent variable is an indicator variable that takes the value of one if the respondent owns its 
home and zero if the respondent rents.  The probability of staying (not moving), P(stay), is 
imputed using occupation × marital status × age category cells.  The square root of the expected 
covariance of house prices, E[cov(PA,PB)]½, is a moving-probability weighted average of the 
covariances between the MSA of residence and possible future MSAs. The standard deviation of 
detrended log rent, sr, is a MSA (k) characteristic and is subsumed by the MSA x year dummies.  
The standard deviations and covariances are not time-varying.  All regressions include as 
covariates: MSA × year dummies, age dummies, occupation dummies, marital status dummies, 
education dummies, log real family income, and the share of moving households who remain in 
the MSA.  Columns (2) and (5) add a detailed set of industry dummies.   
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Table 3: The relationship between expected house price covariance  
and the probability of owning (IV) 

 

 (1) (2) (3) 

E[cov(PA,PB)]½ 
4.209 

(1.271) 
3.757 

(0.743) 
 

P(stay)i × 
E[cov(PA,PB)]½ 

-3.813 
(0.387) 

-3.741 
(0.377) 

-3.718 
(0.162) 

P(stay)i × sr 
2.911 

(0.155) 
2.946 

(0.171) 
2.908 

(0.083) 

P(stay)i 
0.930 

(0.021) 
0.912 

(0.021) 
0.927 

(0.010) 

Probability weights 
for E[cov(PA,PB)]: 

MSA x 
Occupation 

MSA x 
Industry 

MSA 

MSA × year 
dummies? 

Yes Yes Yes 

Instrument? 
MSA x 

Occupation 
instrument 

MSA x 
Industry 

instrument 

MSA x 
Occupation 
instrument 

Adjusted 
R-squared 

0.2965 0.2993 0.2964 

Clustering of 
standard errors 

MSA x year x 
Occupation 

MSA x year x 
industry 

none 

 
Notes: N =  3,326,113.  Sample period covers the 1980, 1990, and 2000 Censuses.  The 
dependent variable is an indicator variable that takes the value of one if the respondent owns its 
home and zero if the respondent rents.  The probability of staying, P(stay), is imputed using 
occupation × marital status × age category cells.  The square root of the expected covariance of 
house prices, E[cov(PA,PB)]½, is a moving-probability weighted average of the covariances 
between the MSA of residence and possible future MSAs. The standard deviation of detrended 
log rent, sr, is a MSA (k) characteristic and is subsumed by the MSA x year dummies.  The 
standard deviations and covariances are not time-varying.  The instrument replaces the actual 
moving rates between MSAs with each destination MSA’s share of the occupation (industry).  
All regressions include as covariates: MSA × year dummies, age dummies, occupation dummies, 
marital status dummies, education dummies, log real family income, and the share of moving 
households who remain in the MSA.  Column (2) adds a detailed set of industry dummies.   
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Figure 3: The distributions of house price growth correlations across housing markets, 
by probability of moving 
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Appendix Table A: Summary Statistics 
 

Variable Mean Standard Deviation 

Own 0.654 0.476 

Probability of staying 0.810 0.113 

SD(real rent growth) 0.068 0.028 
SQRT(IPUMS MSA × industry-weighted 
average price covariance) – actual 

0.041 0.015 

SQRT(IPUMS MSA × industry-weighted 
average price covariance) – imputed 

0.038 0.011 

Average annual rent ($2000) 10,290 3,738 

Average house price ($2000) 170,235 87,066 

Rent growth rate (real) 0.011 0.008 

Price growth rate (real) 0.017 0.013 

Age 44.0 11.1 

Family income ($2000) 64,534 58,857 

Fraction married 0.64 0.48 

Fraction widowed 0.05 0.21 

Fraction divorced 0.19 0.39 

Fraction with less than high school ed. 0.16 0.37 

Fraction with high school diploma 0.28 0.45 

Fraction who attended some college 0.26 0.44 

Fraction with college diploma 0.30 0.46 

Share of moves that are within-MSA 0.75 0.04 
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Appendix Table B: First stages of the IV regressions (Table 3) 
 

Column of Table 3: (1)  (2) (3) 

Original covariate 
P(stay)i × 

E[cov(PA,PB)]½ 
E[cov(PA,PB)]½ 

P(stay)i × 
E[cov(PA,PB)]½ 

E[cov(PA,PB)]½ 
P(stay)i × 

E[cov(PA,PB)]½ 

Constructed 
E[cov(PA,PB)]½ 

-0.950 
(0.0003) 

0.324 
(0.002) 

-0.681 
(0.002) 

0.393 
(0.002) 

-0.614 
(0.001) 

P(stay)i × 
constructed 
E[cov(PA,PB)]½ 

1.173 
(0.0002) 

0.067 
(0.002) 

1.217 
(0.001) 

0.027 
(0.001) 

1.166 
(0.001) 

Adjusted 
R-squared 

0.9984 0.9520 0.9558 0.9628 0.9651 

Probability weights 
for E[cov(PA,PB)]: 

 
MSA x Occupation 

 
MSA x Industry 

MSA x 
Occupation 

Instrument? MSA x Occupation MSA x Industry 
MSA x 

Occupation 

Clustering of 
standard errors 

MSA x year x occupation MSA x year x industry none 

 
Notes: N =  3,326,113.  Sample period covers the 1980, 1990, and 2000 Censuses.  The covariance of house prices is a probability-
weighted average of the covariances between the MSA of residence and possible future MSAs.  The dependent variable is the 
expected covariance weighted by the actual probability of staying (not moving).  The instrument replaces the actual moving rates with 
each destination MSA’s share of the industry or occupation group.  The probability of staying is imputed using occupation × marital 
status × age category cells. The standard deviations and covariance are not time-varying.  All regressions include MSA × year 
dummies, P(stay), the standard deviation of real rents, age dummies, occupation dummies, marital status dummies, education 
dummies,  log real family income, the share of moving households who remain in the MSA, and a detailed set of industry dummies.   
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Appendix Table C: IPUMS Data Construction 
 

 
Observations 

deleted 
Observations 

left 

Starting observations  37,925,632 

Exclude age<25 14,159,970 23,765,662 

Keep only heads of household 10,670,270 13,095,392 

Keep only single-family households 877,100 12,218,292 

Drop if were military households 5 years prior 61,092 12,157,200 

Drop if were in college 5 years prior 192,144 11,965,056 

   

Migration sample:   

   Starting observations  11,965,056 

   Not asked about prior residence in 1980 
   Census 

1,626,943 10,338,113 

   

Regression sample:   

   Starting observations  11,965,056 

   Cannot match MSA to REIS or HPI data1 6,765,722 5,199,334 

   Exclude MSAs with incomplete HPI data2 41,261 5,158,073 

   Missing log(family income) 64,204 5,093,869 

   Unable to impute P(stay) 494 5,093,375 

   Missing sd(rent) 764,579 4,328,796 

   Cannot impute out-of-town moves 22,830 4,281,924 

   Cannot impute expected moves based on 
occupation or industry shares 

32,019 4,249,905 

   Drop if P(stay)<=0.5 21,292 4,228,613 

   Final sample:  4,228,613 

   Sample with age<=65:  3,326,113 

 
1Reasons for a lack of a match are either that the household did not live in an MSA that was 
identified in the IPUMS data or the identified MSA could not be matched to the MSAs contained 
both in the REIS and HPI data.  2MSAs with incomplete HPI data are Greenville, SC and New 
Haven, CT. 


