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1 Introduction

This paper builds on a recently-proposed algorithm to construct cities based on geographical

features of high-quality micro data (Rozenfeld et al. 2008), rather than informative but

somewhat arbitrary legal or administrative definitions. It allows us to take a fresh look at

key quantities in urban economics, namely the population and the area of cities. We find that

Zipf’s law for population holds quite well, and well below the very upper tail of the city size

distribution, where it had been shown to hold to a good degree of approximation (Gabaix

and Ioannides 2004). We also find that the distribution of city areas follows a power law,

with an exponent close to 1, the Zipf value. These findings help constrain further theories of

cities and theories of geography. We present a baseline parsimonious model of cities, which

features endogenous city area, and is consistent with these two key stylized facts, as well as

others.

A key difficulty in studying cities is finding a practical way to define them (Zipf 1949;

Krugman 1996; Eaton and Eckstein 1997; Dobkins and Ioannides 2001; Eeckhout 2004;

Soo 2005; Batty 2006). A canonical method involves defining Metropolitan Statistical Areas

(MSAs) obtained in the USA from the US Census Bureau (U.S. Census Bureau 2009). MSAs

are defined for each major agglomeration, and attempt to capture their extent by merging

administratively defined entities, counties in the USA, based on their social or economic ties.

For instance, the MSA of Boston includes not only the administrative unit of Boston, but also

adjacent Cambridge, MA. MSAs derive their appeal from a strong economic logic, but their

construction requires qualitative analysis and is very time-consuming. Therefore, MSAs have

been constructed only for the 276 most populated cities in the USA, and the corresponding

Zipf’s law has been documented only for the upper tail of the distribution (Gabaix and

Ioannides 2004; Soo 2005).

Two main alternatives to the MSAs have been proposed in the literature. One method

is to use administrative or legal borders of cities to define the so-called “places” as done

by Eeckhout (2004) and Levy (2009). The analysis of 25,359 places in the USA has suggested

that Zipf’s law holds in the upper tail (Levy 2009) but fails in the bulk of the distribution,

as legally defined cities follow a log-normal distribution rather than a power-law (Eeckhout

2004, 2009). The advantage of this definition is that it allows the study of the distribution

of cities of all sizes. Still, it is problematic to define cities through their fairly arbitrary legal

boundaries (the places method treats Cambridge and Boston as two separate units), and

indeed, this is why researchers prefer agglomerations such as MSAs whenever such constructs

are available. A second approach is to construct cities from micro data (Holmes and Lee

2009; Duranton and Overman 2005; Mori, Nishikimi and Smith 2008; Michaels, Rauch and

Redding 2008). In particular, Holmes and Lee (2009) consider cities to be individual cells

of six-by-six miles, for which the tail of the city size distribution is much less fat-tailed than
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Zipf’s law. However, this is probably because constraining cities to areas of six-by-six miles

makes it nearly impossible to find a very large city. Hence, because of these methodological

difficulties, the shape of distribution of agglomerations beneath the few hundred largest cities

is still an open problem.

Here we build on an algorithm, the City Clustering Algorithm (CCA), that was recently

introduced in (Rozenfeld et al. 2008) and based on previous studies done by Makse, Havlin

and Stanley (1995) to build cities “from the bottom-up”. The algorithm defines a “city”

as a maximally connected cluster of populated sites defined at high resolution. Namely, a

population cluster is made of contiguous populated sites within a prescribed distance ℓ that

cannot be expanded: all sites immediately outside the cluster have a population density

below a cutoff threshold. Rather than defining a city as one cell, as done by Holmes and Lee

(2009), our method defines an agglomeration as a maximally connected cluster of potentially

many cells.

We find that Zipf’s law holds, to a good approximation, in the USA and GB, for both

populations and areas. We also find that density has only a weak correlation with population

and area. We propose that the two facts of Zipf’s law for populations and areas could serve

as tight constraints on models of cities. As we can measure area, we wish to model it. Hence,

we provide a parsimonious urban model that incorporates areas, and generates Zipf’s law

for areas and populations.

In Section 2 we present the analyzed data and explain the CCA. In Section 3 we present

our results for the population distribution of CCA clusters in the USA and GB. We also

compare the CCA clusters with US Census MSAs and places and present a formal test of

robustness of our clustering method. In Section 4 we show the results of the area distribution

of CCA clusters in the USA and GB and present a study of the correlations between densities,

areas, and populations for CCA clusters. In Section 5 we propose a model that can integrate

the findings, and we summarize our conclusions in Section 6.

2 Data and Methods

2.1 Raw data

The data for the USA consists of the location and population of 61,224 points located

throughout the area of the USA (U.S. Census Bureau 2001). Each point corresponds to

a Federal Information Processing Standard (FIPS) census tract code (National Institute of

Standards and Technology 2008) generated by the US Census Bureau ranging in population

from 1,500 to 8,000 people, with a typical size of about 4,000 people. FIPS codes are uniquely

specified by 11 digits. The first 2 digits correspond to the state code, the next 3 to the county

within the state, and the next 6 correspond to the census tract code. For example FIPS

36061016500 corresponds to New York State (36), New York County (Manhattan, 061),
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census tract 016500 which is an area ranging from 58th Street to 60th Street and from 8th

Ave. to 9th Ave. Figure 1 shows all FIPS for Manhattan Island in New York City and

its surroundings. The location of the FIPS is not always equidistant. For instance the

shortest distance between two FIPS is about 100 m as in appears in Manhattan, while in

less populated areas like Wyoming, FIPS can be separated by about 100 km.

CCNY

Central Park

East River

Hudson

River

NYU

Harlem

Figure 1: Raw data for Manhattan. In this plot we show all FIPS codes corresponding
to Manhattan Island obtained from the raw data for the USA. Each point corresponds to a
FIPS code specified by the US Census Bureau.

The data for Great Britain (GB) is uniformly gridded at high resolution. It consists of a

grid with cell size 200 m overlaid on the area of GB for which the population in each cell is

given. The source of the GB data is the ESRC (The 1981 and 1991 population census, Crown

Copyright, ESRC purchase 2009) and is composed of 5.75 million square cells comprising a

total population of about 55 million inhabitants in 1991. Given that the GB data is more

fine-grained that of the US, it is arguably higher-quality. All datasets and results used and

presented in this work may be downloaded from our web page.

2.2 The City Clustering Algorithm (CCA)

We start this section by providing a detailed explanation of the CCA (Rozenfeld et al.

2008). In Fig. 2a we show four steps of the CCA when it is applied to the USA. To define

a CCA cluster, we first locate a populated site. Then, we recursively grow the cluster by

adding all nearest-neighbor sites (populated sites within a distance smaller than the coarse-

graining level, ℓ, from any site within the cluster) with a population density, D, larger than

a threshold D∗. The cluster stops growing when no site outside the cluster with population

density D > D∗ is at a distance smaller than ℓ from the cluster boundary. In this work, to
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minimize the number of free parameters, we set the threshold D∗ = 0, and therefore clusters

are recursively grown by merging all populated sites within a distance smaller than ℓ from

any site within the cluster.

a b

Figure 2: a, CCA applied to the USA (continuum CCA). The points in this figure denote
populated sites or FIPS. For our studies (and in this diagram) we use a density threshold
D∗ = 0. (i) We start a cluster selecting a populated site, red point, among all available
populated sites. We draw a circle of radius ℓ and add all populated sites, blue point, that
fall within the circle. (ii) We draw a circle from the new member of this cluster and add all
populated sites (denoted by the two blue points) within the circle. (iii) Recursively, we keep
drawing circles from all new cluster sites. The populated sites inside the circles (three blue
points in this case) are merged into the cluster. (iv) The red points are the members of the
cluster. Since no black point is at a distance smaller than ℓ from any red point, the cluster
does not grow anymore. We start the process again selecting another initial point that has
not been already assigned to any cluster. This process is repeated until all populated sites
are assigned to a cluster. Notice that the choice of the initial condition, the first selected
point, does not influence the outcome. b, CCA applied to GB (discrete CCA). (i) Cells are
colored in blue if they are populated, otherwise they are in white. (ii) We initialize the CCA
by selecting a random populated cell (red cell). Then, we merge all populated neighbors of
the red cell as shown in (iii). We keep growing the cluster by iteratively merging neighbors
of the red cells until all neighboring cells are unpopulated, as shown in (iv). Next, we
pick another unburned populated cell and repeat the algorithm until all populated cells are
assigned to a cluster.

Once the clusters are built, we calculate the population of a cluster as the sum of the

populations of all sites within the cluster. Figure 3a shows a map of all identified clusters in

the continental USA where colors correspond to the cluster population, and Fig. 3b shows a

detail of the clusters in the northeastern USA for different ℓ.
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Since the data of GB is already gridded, the CCA algorithm adopts a simpler form that in

the USA. To apply the CCA to the GB data we start from a populated cell and at each step

we grow the cluster by adding all populated cells neighboring the boundary of the cluster

(see Fig 2b). The cluster stops growing when all cells neighboring the cluster have a density

no greater than D∗.

As mentioned before, the data for GB differs from that of the USA, consisting of a grid

with cell size 200 m overlaid on the map of GB. For this reason, since the data is already

gridded at a very high resolution, we simply merge cells from the original data to obtain

larger levels of coarse-graining at different grid sizes ℓ. We call this version of the CCA, the

discrete CCA, while the version applied to the USA is the continuum CCA (see Fig. 2).

3 Population Distribution

3.1 Basic Results

We analyze the population data in the USA and GB to obtain the distribution, P (S),

measuring the probability density that a cluster has a population between S and S + dS.

Figure 4 shows the results of P (S) for the USA for ℓ = 2 km, ℓ = 3 km, and ℓ = 4 km

for which we obtain 30,201, 23,499, and 19,912 clusters, respectively. We find that the

population distribution follows a power-law of the form:

P (S) ∼ S−ζ−1, (1)

with an exponent of ζ ≈ 1, in approximate accordance with the value of Zipf’s law. For

example, when we estimate the exponent for ℓ = 3 km and for clusters with S > S∗ = 12, 000

inhabitants (comprising 63% of the country’s population) we find ζ = 0.97 ± 0.03 using an

OLS estimator (the notation ± means that the standard deviation is 0.03). Figure 5 shows

the Zipf exponent ζ for the USA for several value of ℓ. We observe that the exponent ζ

remains approximately within 5% of the Zipf value in the range ℓ ∈ [2.5, 3.5] km.

Figure 6 displays the population distribution of the CCA clusters in GB for ℓ = 0.2 km,

ℓ = 0.6 km, ℓ = 1 km, ℓ = 1.8 km, ℓ = 2 km, and ℓ = 2.6 km. For clusters with a population

above a cutoff S∗ = 5, 000 inhabitants, the GB population follows a power-law to a good

degree of approximation. Using an OLS regression, we estimate for ℓ = 1 km (1,008 clusters

with 83% of the country’s population) a Zipf exponent ζ = 1.07 ± 0.03. As in the case of

the USA, the exponent is similar for different choices of grid size ℓ.

To formally study the validity of our power-law fits, we employ the test proposed by Gabaix

and Ibragimov (2010) and Gabaix (2009), offering a simple quantification of possible devi-

ations from a pure power-law. The test for quadratic deviations is used to determine if a

power-law is adequate to describe the city size distribution. The method is as follows. Sort
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a b

Figure 3: CCA clusters in the USA. a, CCA clusters applied to the entire USA. The map
shows the different clusters obtained by the algorithm. The color indicates the population of
each urban cluster (in logarithmic scale). b, Results of the CCA applied to the major clusters
of the northeastern USA at different length scales. The top left panel shows the CCA clusters
for ℓ = 1 km separating the cities of Washington D.C., Baltimore, Philadelphia, Newark,
Jersey City, New York, and Boston. The top right panel shows the results of the algorithm
when the data is coarse-grained to ℓ = 2 km. Here, for example, the cities of New York,
Newark and Jersey City become part of the same cluster. The lower left panel shows the
results for ℓ = 4 km, where the main clusters are Washington D.C.-Baltimore; Philadelphia;
New York-Newark-Jersey City-Long Island; and Boston-Cambridge. The lower right panel
for ℓ = 8 km shows a giant cluster comprising all major cities in the northeastern USA. The
gray points are also identified as part of other clusters but for clarity we do not specify them
with individual colors in this figure.
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Figure 4: Probability distribution of cluster populations P (S) for the USA at different coarse-
graining scales ℓ. The black solid line denotes a power-law function with exponent -2, i.e.
Zipf’s Law.

Figure 5: Zipf exponent ζ obtained for the USA clusters at different ℓ. The error bars
correspond to ±1 standard deviation.
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Figure 6: Probability distribution P (S) for GB clusters at different coarse-graining scales ℓ.

the cities according to their rank i (i = 1 being the largest city) and run the OLS regression

ln(i − 1/2) = constant − ζ lnSi + q (lnSi − γ)2 (2)

where ζ (the power law exponent) and q (the quadratic deviation from a power law) are

the parameters to estimate and γ ≡ (cov((lnSj)
2, lnSj)) / (2var(lnSj)). The recentering term

γ ensures that the exponent ζ is the same whether the quadratic term is included or not,

and therefore ζ may be estimated beforehand using a simple linear OLS. The quadratic

test formalizes the intuition that a pure power law has q = 0 in the asymptotic limit, so a

high value of |q| indicates deviations from power-law behavior. Under the null of a power

law, for large samples
√

2NqN/ζ2 converges to a standard normal distribution (where N is

the number of data-points). With probability 0.99, a standard normal is less than 2.57 in

absolute value. Hence, let qc ≡ 2.57ζ2/
√

2N , be the critical value for the absolute value

of the quadratic term q at the 1% confidence level. If |q| > qc we reject the hypothesis

that the data is well described by a power-law since the quadratic term becomes significant.

Otherwise, if |q| < qc, the quadratic term is insignificant and we do not reject the power-law

hypothesis.

For the USA, when we consider the distribution of city sizes for cities larger than S∗ =

12, 000 for ℓ = 3 km, we obtain |q| = 0.0291 and qc = 0.0413. Since |q| < qc, we conclude that

we can disregard the quadratic correction to the OLS fit and consider that the power-law

describes the empirical distribution of city sizes. In the case of GB, we consider S∗ = 5, 000

and ℓ = 1 km, for which |q| = 0.0521 and qc = 0.0522. Although |q| and qc are very close, the

fact that |q| < qc indicates that we cannot reject the hypothesis that the power-law describes

the city size distribution for GB. We conclude that Zipf’s law is a good description of city
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sizes with population above S∗ = 12, 000 inhabitants in the USA and S∗ = 5, 000 inhabitants

in GB. This comprises 1, 947 clusters (for ℓ = 3 km) and a population of 171.3 million out

of a total population of 271.1 million in the USA, and 1,007 clusters (for ℓ = 1 km) and a

population of 45.3 milllion out of a total population of 54.5 million in GB, in contrast to

previous samples (Soo 2005) typically having a few hundred cities.

So far, we have only focused on the part of the distribution where a power law fit could

not be statistically rejected. Now, somewhat more loosely, we turn to a visual inspection of

Fig. 4 and Fig. 6. We see that the distribution is arguably well-approximated by a power

law, in a region covering cities above 3,000 inhabitants in the USA, and cities above 300

inhabitants in GB. The deviations from the power law, while statistically significant, are not

very large economically. Hence, we also submit that, for the modelling a cities, the domain

of an approximate power law is quite large. This domain comprises 17609 clusters and a

population of 259.3 million (96% of the total population) in the USA, and 9214 clusters and

a population of 53.1 million (96% of the total population) in GB.

3.2 Comparison between CCA clusters, MSAs, and Places

Although the CCA allows one to choose the observation level of population clusters, ℓ, it

may be desirable to have an objective way to choose ℓ. For this purpose, we perform a

comparison with the MSAs in the USA which may be considered a benchmark for plausibly

well-constructed cities. MSAs are defined starting from a highly populated central county

with population larger than 50,000 and adding its surrounding counties if they have social

or economic ties such as large commuting patterns between the regions. Figures 7a and 7b

show a comparison between the MSAs of the northeastern USA and the clusters obtained

using CCA.

In order to find the value of ℓ that best matches the MSAs we match each MSA with the

most populated overlapping CCA cluster. For this purpose, from the US Census Bureau, we

obtain the counties (and corresponding FIPS) that belong to each MSA. An overlap between

an MSA and a CCA cluster exists if they share at least one FIPS code. This overlapping

procedure leads to several CCA clusters corresponding to one particular MSA. To obtain a

one-to-one correspondence, among all overlapping CCA clusters we select the one with the

largest population. We compare the size of the obtained CCA cluster with the corresponding

MSA by computing the correlation, ρ(ℓ), between the logarithm of the cluster population,

SCCA
i (ℓ), and the logarithm of the population of the MSA, SMSA

i . Figure 8a shows the cross-

plot of log SMSA
i versus log SCCA

i (ℓ) for ℓ = 3 km displaying an approximately linear behavior.

Figure 8b shows the correlation analysis between CCA clusters and MSAs by plotting ρ(ℓ)

for other values of ℓ. We quantify the regression, log SCCA
i (ℓ) = a(ℓ) + b(ℓ) log SMSA

i (ℓ),

by measuring the value of the linear regression slope b(ℓ) as a function of ℓ. We find that

b(ℓ) ≈ 1.2 for ℓ > 2 km. Correlation in log sizes is very good for values of ℓ between 2 km
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a

MSA

b

Figure 7: Comparison between the MSAs and the CCA clusters. a, MSAs for the
northeastern USA. For example, New York county (Manhattan) with a population larger
than 50,000 is a center of a MSA. Jersey City belongs to the same MSA since a large number
of its population commute to Manhattan, setting economic and social ties between the two
regions. b, CCA clusters for the northeastern USA for ℓ = 5 km. Each cluster or MSA is
plotted with a different color. For instance, the MSA centered in New York City (in green in
a) is composed of several clusters. The largest overlapping cluster found with the CCA is in
green in b. The white concentric circles correspond to the location of the state capitals in the
considered region. The star denotes Washington D.C. and the white full circle corresponds
to New York City.
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a b

b( )

ρ( )

c

Figure 8: a, Population of the CCA cluster in the USA for ℓ = 3km vs its corresponding
MSAs, using the one-to-one correspondence explained in the text. b, Correlation analysis
between CCA clusters and MSAs by plotting ρ(ℓ) for different values of ℓ. We quantify
the regression, ln SCCA

i (ℓ) = a(ℓ) + b(ℓ) ln SMSA
i (ℓ), by measuring the value of the linear

regression slope b(ℓ) as a function of ℓ. c, Euclidean distance between MSAs and CCA
clusters.

and 6 km; the correlation, displayed in Fig. 8b, is very high for this range of ℓ. We find that

ρ(ℓ) exhibits a maximum value of ρ ≈ 0.91 for ℓ ∈ [2.5, 3.5] km, so that we consider ℓ = 3

km as the optimal value.

We present another plausible measure of similarity between MSAs and CCA clusters,

based on the Euclidean distance. We define the distance, d(ℓ), between MSAs and CCA as

d(ℓ) ≡
√

∑

i

[ln(SMSA
i ) − ln(SCCA

i (ℓ))]2, (3)

where the sum is over all the MSAs and their corresponding CCA clusters. In Fig. 8c we

show the distance between overlapped MSAs and CCA clusters as a function of ℓ. We find

that when ℓ = 5 km the distance (in population) is minimized, and that it is very low

between 2.5 km ≤ ℓ ≤ 6 km in approximate agreement with the log correlation analysis of

Fig. 8a,b.
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In addition to the MSAs, we compare the CCA clusters with US Census Bureau “places”

previously analyzed in Eeckhout (2004) where a log-normal distribution of city sizes was

found. We first find a one-to-one correspondence between CCA clusters and places, in

analogy to the previous match between MSAs and CCA clusters. In contrast to MSAs, US

Census places take into account all towns, villages, and cities and are based only on their

administrative or political boundaries (Eeckhout 2004; Holmes and Lee 2009). The smallest

and largest places are Lost Spring, Wyoming, with exactly one resident, and the political

entity of New York City (Manhattan, Brooklyn, Queens, Bronx, and Staten Island) with

population 8.0 million.

From the US Census Bureau we obtain the geographical location of each US Census

place. Then, we identify each place with a unique FIPS code. Accordingly, each place is

associated with a unique CCA cluster. This association leads to many places corresponding

to a single CCA. To obtain the one-to-one correspondence, among all overlapping places we

consider the one with the largest population.

In Fig. 9a we show that, the smallest cities found with the CCA do not correspond well

to US Census places; however, for cities above population S = 10, 000 CCA and Census

places do exhibit a correlation coefficient of ρ = 0.79. A detailed comparison between CCA

clusters and places shows that the number of small CCA clusters is smaller than that for

places because the CCA tends to group small places that are geographically connected into a

larger cluster. Therefore, the construction based on places overestimates the number of small

cities and underestimates the number of large cities in comparison with CCA, resulting in

the size distribution of places to being less fat tailed than the distribution for CCA clusters.

This discrepancy, which may find its root in the fact that places are purely based on legal

boundaries of locations (Holmes and Lee 2009), may explain the finding of a log-normal

distribution of places (Eeckhout 2004), whose full elucidation is beyond the scope of this

paper. Here, we show results for ℓ = 3 km as representative, but other values of ℓ lead to

the same conclusions.

We also perform a comparison between MSAs and places. In Fig. 9b we observe a

good congruence in the whole range for which MSAs are defined. Notice that MSAs by

definition have a minimum population of 50,000. Therefore, when looking for the one-to-one

correspondence, only large places are considered, leading to a good congruence, as found

between large CCA cluster and large places, with correlation ρ = 0.87.

3.3 Robustness Checks

In this section we test whether the results shown in Section 3.1 could be forced by the

CCA, or in other words, whether they could be an artifact of the CCA. Starting with the

actual location of the FIPS in the USA we randomize the data by placing all 61,224 FIPS

at random positions in a rectangle of the same area as the USA. Then we apply the CCA to
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Figure 9: a, Log of population of US Census places vs. the log of population of their
corresponding CCA clusters for ℓ = 3km. The straight line corresponds to a least square
fit with slope b = 0.90 ± 0.02 and y-intercept a = 0.25 ± 0.09, from where the correlation
coefficient ρ = 0.79 is obtained for cities with population larger than 10,000. b, Log of
population of US Census places vs. the log of population of their corresponding MSA. The
straight line corresponds to a least square fit with slope b = 0.84 ± 0.03 and y-intercept
a = 0.37 ± 0.14, from where the correlation coefficient ρ = 0.87 is obtained.

obtain the corresponding clusters. This randomization procedure preserves the population

of each FIPS. In Fig. 10 we show the population distribution for the shuffled data and for

the original data. These results show that the shuffled data does not exhibit Zipf’s law. The

largest cluster for the shuffled data contains 196,112 inhabitants: the reshuffling prevents

the emergence of very large clusters. This suggests that the CCA is not forcing the data to

present a power-law for the population distribution, and that Zipf’s law arises purely from

the data.

4 Investigation of the Geography of Cities: Areas and

Densities

4.1 Areas

The CCA presents a unique feature in that it allows the definition of the area of cities not

based on administrative boundaries. Such a feature in not present in agglomerations defined

by Places or MSAs. Thus, the spatial analysis of the CCA allows us to examine a possible

feature of the origin of the Zipf’s law: highly populated cities may have a large geographic

area. Therefore, it is of interest to study the distribution of areas (Makse, Havlin and Stanley

1995), P (A), defined by the CCA.

As explained above, the data of GB consists of a high resolution grid with cell size 200m.

Therefore, after applying the CCA, we calculate the area of a cluster in GB as the number

of cells in the cluster multiplied by the area of a cell, ℓ2.
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Figure 10: Population distribution for shuffled data. The black lines correspond to the
real data studied in Section 3.1. The red lines correspond to the shuffled data, showing a
change in the population distribution and suggesting that the results of Section 3.1 are not
an artifact of the CCA.

The case of the USA is more complicated. The data consists of 61,224 populated points

on the map. Each point corresponds to a different FIPS code, defined by the US Census

Bureau. USA FIPS are simply a partition of the map of the USA, so that any point in

the map belongs to one FIPS code, and each FIPS has an associated area which is given

by the US Census Bureau in the dataset. In the USA, FIPS codes are not homogeneously

distributed. In the New York City area, there is high resolution, which means that there

are many FIPS covering a small area, but in the state of Wyoming or Utah the resolution

is quite low, so that there are FIPS with a large area. For instance, FIPS in Manhattan

typically cover an area of about 0.20 km2 while in the state of Utah FIPS 49003960100 covers

a large area of 15,962 km2. Therefore, when ℓ is of the order of a few kilometers, a FIPS in

the Wyoming area will remain isolated in its own cluster, but still its area will be extremely

large, typically a couple of orders of magnitude larger than ℓ2. Therefore, since the area of

isolated points is very large, these points will appear at the tail and in the middle of the

distribution P (A), overestimating the outcome for middle and large areas. Accordingly, in

order to compute the P (A), we do not take into account clusters containing only 1 or 2

FIPS since they overestimate the amount of land they cover. Moreover, the population of

those isolated points is typically small and rarely exceeds S = 10, 000. In fact, we find that

removing all clusters with only 1 or 2 FIPS is practically the same as removing all clusters

with population smaller than 10,000: only 7% of clusters with 1 or 2 FIPS have a population

larger than 10,000.
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a b

Figure 11: a, Probability distribution of the areas, P (A), for the USA for different ℓ. b,
Probability distribution P (A) of the areas of the clusters in GB at different coarse-graining
scales ℓ. The distribution of city areas for GB is also consistent with Zipf’s law. We find
ζA = 0.97 ± 0.04, for ℓ = 1 km. The black solid lines denote Zipf’s law, i.e. a power-law
function with exponent -2.

In Fig. 11a we report the results of P (A) for the USA. We find a power-law distribution

of the form

P (A) ∼ A−ζA−1, (4)

with a Zipf exponent ζA = 1.07±0.04, for ℓ = 3 km. In Fig. 11b we show the results of P (A)

for GB. As for the USA, we find that the area distribution for GB follows a power-law with

exponent ζA = 0.97± 0.04, for ℓ = 1 km. This extends the results obtained in (Makse et al.

1998) for areas distributions surrounding a city like London and Berlin (Makse, Havlin and

Stanley 1995) and in UK (Makse et al. 1998). The result of the Zipf’s law for areas in the

US appears to be new.

This result may be an important update for calibrated models of cities where transport

costs of goods or people play an important role (Brakman, Garretsen and van Marrewijk

2009; Fujita, Krugman and Venables 2001). The Zipf’s law for areas implies that some cities

have very large areas, and those cities’ viability may mean that transport costs cannot be

too large, or are mitigated in economically interesting ways. We come back to this topic in

Section 5.

In Fig. 12a we study the correlations between areas and populations for the USA and

GB. We find that the linear OLS regression lnA = a + b lnS leads to the results shown in

Table 1, indicating a strong correlation between areas and population in log sizes. Indeed,

the finding of b ≃ 1 indicates that population is, to a good degree of approximation, simply

proportional to area. This finding motivates us to study city density in more detail.
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Figure 12: Logarithm of the population, S versus the logarithm of the area, A, for a, the
USA with ℓ = 3 km and b, GB for ℓ = 1 km. The black lines denote the OLS regression
(see Table 1.)

Table 1: Results of the OLS regression analysis of lnS = a + b lnA, where A is the area
and S the population. We report results for S∗ = 12, 000 and ℓ = 3 km for the USA, and
S∗ = 5, 000 and ℓ = 1 km for GB. Standard errors are reported in parentheses.

USA GB
lnA 0.958 1.065

(0.020) (0.007)
Constant 6.567 8.166

(0.085) (0.010)
Observations 1064 1007

R2 0.686 0.921

4.2 Densities

In this section we study the population density, D = S/A. 1 We study the behavior of D

versus S and A by performing the linear regressions lnD = a + b lnA, and lnD = a + b lnS.

Table 2 shows the results of the OLS regression estimates with S∗ = 12, 000 and ℓ = 3

km for the USA, and S∗ = 5, 000 and ℓ = 1 km for GB (other choices of ℓ lead to the

same conclusions). We find that population density has very little relation to the area: the

coefficients are very close to 0. It has a slightly higher link with population. Of course,

measurement error in the variables may bias the measurement.

Still, the link between density and area is perhaps surprisingly weak. Some urban systems,

like New York City, are quite dense, but even then, the effects are moderate: the density

of New York City is only 3.7 times the national median even though its population is 485

1See Bryan, Minton and Sarte (2007) for an alternative analysis of density. They find that density has
fallen in the US over the past seven decades.
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Table 2: Results of the OLS regression analysis of lnD = a + b lnA and lnD = a + b lnS,
where D = S/A is the density, A the area, and S the population. We report results for
S∗ = 12, 000 and ℓ = 3 km for the USA, and S∗ = 5, 000 and ℓ = 1 km for GB. Standard
errors are reported in parentheses.

lnD = a + b lnA lnD = a + b lnS
USA GB USA GB

lnA -0.042 0.065 lnS 0.284 0.099
(0.020) (0.007) (0.015) (0.006)

Constant 6.567 8.166 Constant 3.357 7.299
(0.086) (0.010) (0.159) (0.057)

Observations 1064 1007 Observations 1064 1007
R2 0.004 0.007 R2 0.256 0.050

times the national median. Of course, we obviate here a consideration of the interesting

heterogeneity within cities; but for the purposes of this paper such a study may be deferred

to later work. We find that density has a very small dispersion: the standard deviation of

its natural logarithm is 0.28 for the USA and 0.09 for GB. In contrast, the corresponding

quantity for areas and population is about 1. Hence, we conclude that city area covaries

greatly with population, and little with density. We next propose a model that is consistent

with this finding, as well as the power law scaling of city sizes.

5 Model

Recent economic theories that are compatible with Zipf’s law generally rely on the existence

of random growth (Champernowne 1953; Simon 1955; Krugman 1996; Levy and Solomon

1996; Gabaix 1999a; Dobkins and Ioannides 2001; Davis and Weinstein 2002; Gabaix and

Ioannides 2004; Eeckhout 2004; Duranton 2006, 2007; Rossi-Hansberg and Wright 2007;

Córdoba 2008): cities follow a proportional growth process where the distribution of the

percentage growth rate is the same for small and large cities. Small cities, however, grow

faster (Glaeser et al. 1992; Glaeser, Scheinkman and Shleifer 1995; Rozenfeld et al. 2008),

which prevents the distribution from becoming degenerate. Some theories obtain Zipf’s law

only approximately, and do not obtain it over the range that we find in the present work.

Accordingly, we present a parsimonious model that generates an approximate Zipf’s law for

population and area.

We first describe the model at a given point in time. Cities are indexed by i ∈ [0, 1].

City i employs Si workers, and has a competitive sector producing good i, which it produces

in quantity yi = biSi, where bi is the productivity. The aggregate good is a Dixit-Stiglitz
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aggregator with elasticity of substitution η > 1:

Y =

(
∫

y
(η−1)/η
i di

)η/(η−1)

(5)

There is a potentially unbounded quantity of land, but making usable an area a of land

necessitates an investment pa, for some unit cost p. This reflects e.g. maintenance cost,

roads and other infrastructure to occupy a land area a (the cost is in the consumption good,

but it could equivalently be in units of labor). Hence, as in Rossi-Hansberg and Wright

(2007), land use is endogenous. As a result, if A is total land use, and C total consumption,

the resource constraint is C + pA ≤ Y .

Consumers’ utility is u (c, a) = c1−βaβ with 0 < β < 1, where c is the consumption of

the good, and a the consumption of land. Workers are free to choose their cities, so that

utilities are the same across cities. Hence, the competitive equilibrium is also the solution

to the planner’s problem that equalizes utility across agents, and allocates population Si

in each city i (subject to
∫

Sidi = S, the total population), and allocates their per capita

consumption of good ci and land area ai, to maximize total utility subject to the resource

constraint:

max
Si,ci,ai

∫

u (ci, ai) Sidi subject to

∫

(ci + pai) Sidi ≤
(

∫

(biSi)
(η−1)/η di

)η/(η−1)

∀i, j, u (ci, ai) = u (cj, aj)
∫

Sidi = S

The solution method is standard. The labor allocated to producing good i, i.e., the

population living in city i is:

Si =
Bi

B
S (6)

where Bi ≡ bη−1
i and B ≡

∫

Bidi. GDP is Y = B
1/(η−1)

S. A fraction 1 − β of income is

devoted to consumption of the good, and a fraction β to land use. Each consumer purchases

a quantity of land ν ≡ βB
1/(η−1)

/p. So, the total quantity of land in city i, Ai, is ν times

the number of inhabitants of city i:

Ai = νSi (7)

Hence city area and city population are proportional.

Next, we wish to see why Zipf’s law might arise. We consider a dynamic version of the

above static description. Consumers have utility E
[∫

e−δtu(ct, at)dt
]

with some discount rate

δ, which is assumed to be sufficiently large for utility to be finite. As there are no adjustment

costs, for given productivities, the dynamic model yields the same allocation of workers and
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land across cities as in the static model. We take a model that merges the random growth

models of cities and the model of random growth of firms developed by Luttmer (2007). We

postulate that (elasticity-adjusted) productivity Bi of city i evolves as a geometric Brownian

motion:
dBit

Bit

= gdt + σdzit (8)

where g is the mean of the growth rate of productivity of an existing city, σ the volatility

of that growth rate, and zit are independent Brownian motions. However, if a city is too

unproductive, it can “refresh” its productivity as a fraction of the average productivity:

Bit ≥ πBt (9)

where π ∈ (0, 1) is a constant. Here, we simply postulate that it can reset its productivity for

free, by simply imitating the average productivity, but only imperfectly: its reset productivity

is only a fraction π of the average productivity. Luttmer (2007) presents a much more

elaborate microfoundation for this idea, including the π, but the above model is useful for

its simplicity. All in all, Bit follows a geometric Brownian motion, reflected at πBt.

The following Proposition characterizes the behavior of this economy.

Proposition (i) The steady state distribution of city population and city area is a power-law

with exponent ζ:

ζ =
1

1 − π
(10)

Indeed, Sit/St, Ait/At and Bit/Bt are all equal and follow the Pareto distribution P (X ≥ x) =

(x/π)−ζ for x ≥ π. The exponent ζ tends to 1 (the Zipf’s law value) when the friction π

coming from the reflecting barrier tends to 0.

(ii) City population S is proportional to city area A, and density D = S/A is independent

of city size.

(iii) The fraction of income spent on housing is independent of city size.

Proof The proof method is as in Gabaix (1999a) (see also Gabaix (2009) and the references

therein). Denote by g the growth rate Bt on the balanced growth path. The relative share

of city i, sit ≡ Bit/Bt follows a geometric Brownian motion, with dsit/sit = (g−g)dt+σdzit,

with a reflecting barrier, sit ≥ π. Calling µ = g − g, the steady state density p (s) follows

the Forward Kolmogorov equation:

0 = − (µsp (s))′ +
1

2

(

σ2s2p (s)
)

′′

Integration of this equation yields p (s) = ks−ζ−1 for ζ = 1 − 2µ/σ2 and some constant k.

By construction E [s] = 1. Given
∫

∞

π
p (s) ds = 1, we have

1 =

∫

∞

π
p (s) sds

∫

∞

π
p (s) ds

=

∫

∞

π
ks−ζ−1sds

∫

∞

π
ks−ζ−1sds

= π
ζ

ζ − 1
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which yields ζ = 1/ (1 − π). The steady state distribution can be written P (sit ≥ x) =

(x/π)−ζ . Finally, by (6) and (7), the distribution of populations and areas is a Pareto with

the same exponent ζ .

We also note that ζ = 1 − 2(g − g)/σ2. This yields the value of the growth rate of

productivity: g = g + σ2 (ζ − 1) /2. The (endogenous) growth rate of average productivity

is higher than the (exogenous) growth rate of a city above the reflecting barrier, because

this reflecting barrier makes small cities grow faster. In the Zipf limit where π → 0, hence

ζ → 1, the difference between the two growth rates, g − g, goes to 0. �

This economy reflects our main empirical findings, (i) and (ii). Point (iii) reflects the

findings of Davis and Ortalo-Magné (2008), who find that the fraction of income spent on

housing is roughly constant over time and across city sizes.

We note that here, following Rossi-Hansberg and Wright (2007) and Van Nieuwerburgh

and Weill (2009), land is not exogenous but instead it is acquired. This is a legitimate mod-

elling idealization in our view. Take a city such as Dallas, which starts with vast quantities

of unoccupied land around it. It can grow in a fairly unlimited way, but it needs to pay

for the land use, e.g. building infrastructure such as road, electricity and running water. It

makes sense to model this activity as a constant-return to scale activity, at least in the first

approximation. At the other end of the spectrum, we may have New York. But even it has

grown considerably by geographical expansion, which lends credence to our model. It would

be interesting, and surely desirable, to extend the model with some sort of increasing cost

of land use (given some limit). We conjecture that, if the random growth effects are large

enough, this will modify the power law distribution, but will not eliminate it. A calibration

of the deviation from the constant return to scale model, and the deviation of the power law,

would be useful, but we will not attempt it here.

Here cities are basically constant-return-to-scales economies, except for one large Mar-

shallian force that makes a given good only producible in one city (as “secrets of the trade”

may be exclusive that city). Of course, this is a stark model, but it is parsimonious, and

is consistent with our scaling facts. In addition, external effects linked to cities may not

be huge. For instance, Glaeser (1998) reports quantitatively moderate deviations from the

hypothesis that cities are constant-return-to scale (see also Bettencourt et al. (2007)). For

instance, Glaeser (1998) reports that the average commute time in cities of less than 100,000

is 20.5 minutes each way, while in cities of more than 1,000,000 it is 31.9 minutes each way2.

This difference may be small compared to the huge differences in size and area that our

model focuses on.

Our model postulates that Gibrat’s law holds. However, deviations from Gibrat’s law

2In a related vein, Ciccone and Hall (1996) estimate that a doubling of density increases productivity by
5.5%, while Davis, Fisher and Whited (2009) finds an increase of 2%. This is a arguably small deviation
from the constant-return to scale benchmark we use in our model.
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have been found in the literature and for the CCA clusters (e.g. Glaeser, Scheinkman and

Shleifer (1995), and Rozenfeld et al. (2008)). A simple theoretical solution to this apparent

tension between the data and the idealization used in models based on Gibrat’s law is

discussed in Gabaix and Ioannides (2004), Section 3.2.2. Urban growth may accommodate

a wide range of growth processes exhibiting a Pareto distribution, but also deviations from

Gibrat’s law, as long as they contain a unit root (which satisfies Gibrat) with respect to

the logarithm of city size: in particular, growth processes can have some mean-reverting

component that violates Gibrat’s law. Under that hypothesis, the deviations from Gibrat’s

law would come from the mean-reverting component of the growth process, but Gibrat’s law

in the unit root part of the process would ensure the Pareto law. More research is needed

to empirically assess this possibility. It would likely require empirical studies of Gibrat’s law

over long time intervals.

We think that the model could be extended to add positive and negative agglomera-

tion externalities, which also can generate random growth, as in Gabaix (1999b), Eeckhout

(2004), and Rossi-Hansberg and Wright (2007). We also eschew a detailed modelling of

the heterogeneity within a city, such as the one in Lucas and Rossi-Hansberg (2002). Such

developments would be very welcome, but we propose to defer them to future research.

6 Conclusion

We have used a “bottom-up” approach which allows us to construct cities independently of

their “legal” definition, instead using a more geographical and economic basis. The resulting

data extend the domain of validity of Zipf’s law to a considerable range: we show that when

cities are constructed independently of their administrative boundaries, Zipf’s law appears

to be a genuine regularity for the bulk of the city size distribution. Second, we are able to

analyze city areas, which allows for the estimation of a potentially very important quantity

in urban economics, and anchors the definition of cities much more in geography. We find

evidence for a power-law distribution of areas, with an exponent close to 1. Third, we

presented a model incorporating both population and area, that matches our “macro” facts.

Fourth, we provide a public good by putting on our web page the correspondence between

ZIP code and our Clusters, so that other researchers can use the agglomerations constructed

with the CCA, and study dimensions of local economics other than areas and populations.

In the present work we have investigated only two countries. It is natural to extend this

study to more countries, an investigation that might offer confirmation of the scaling laws

for areas, population and density that we have found, and also perhaps find economically

interesting deviations from them. The minimalist model presented here could be extended to

incorporate richer specification of the internal structure of cities. We think that this “bottom-

up” approach could be useful for a host of urban questions. Combining our geographical
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approach with land price data could lead to a much more constrained and geography-based

theory of the macro and internal structure of cities.
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