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Abstract

We present a theory of spatial development. Manufacturing and services �rms lo-

cated in a continuous geographic area choose each period how much to innovate. Firms

trade subject to transport costs and technology di¤uses spatially across locations. The

result is a spatial endogenous growth theory that can shed light on the link between

the evolution of economic activity over time and space. We apply the model to study

the evolution of the U.S. economy in the last few decades and �nd that the model can

generate the reduction in the employment share in manufacturing, the increase in ser-

vice productivity starting in the second part of the 1990s, the increase in the value and

dispersion of land rents in the same period, as well as several other spatial and temporal

patterns.

1. INTRODUCTION

Economic development varies widely across space. It is a common observation, as stated

in the 2009 World Development Report, that the location of people is the best predictor

of their income. This is clearly true when we move across countries, but there is also

signi�cant variation within countries. In the U.S., employment concentration and value

added vary dramatically across space, and so does the rate of growth (see, e.g., Desmet

�We thank Satyajit Chatterjee, Elhanan Helpman, Robert Helsley, Gianmarco Ottaviano, Diego Puga,
Steve Redding and various seminar participants for useful comments. Financial support from the Sloan
Foundation, the European Commission (EFIGE 225343), the Comunidad de Madrid (PROCIUDAD-CM),
and the Spanish Ministry of Science (ECO2008-01300) is gratefully acknowledged.
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and Rossi-Hansberg, 2009). Even though a casual look at the spatial landscape makes

these observations seem almost trivial, there has been little work incorporating space, and

the economic structure implied by space, into modern endogenous growth theories. This

paper addresses this shortcoming by presenting a dynamic theory of spatial development

and contrasting its predictions with evidence on the spatial evolution of the U.S. in the last

few decades.

The theory we present has four main components. First, it includes a continuum of loca-

tions where �rms produce in one of two industries: manufacturing and services. Production

requires labor and land, with technologies being constant returns to scale in these two

inputs. Since the amount of land at a given location is �xed, the actual technology experi-

enced at a location exhibits decreasing returns to scale. This constitutes a congestion force.

Land and labor are the only two factors of production. We allow for local technological

innovation by �rms. In a broad sense, local technological innovation could be interpreted

not only as improving �rm technology, but also as adding to the local capital stock or the

local infrastructure.

Second, �rms can trade goods and services by incurring iceberg transport costs. Given

these costs, national goods markets in both sectors clear in equilibrium. Labor is freely

mobile and workers can relocate every period before technological innovations are realized.

Thus, in a given period, all workers obtain a common utility in equilibrium.

Third, �rms can invest to improve their technology. They can buy a probability of draw-

ing a proportional shift in their technology from a given distribution. We assume that wages

and land rents are determined before innovations are realized and that �rms face �nancial

constraints that prevent them from incurring negative operating pro�ts. Technology dif-

fusion, together with these assumptions, implies that the bene�ts from innovation last for

only one period. As a result, the technology investment decision maximizes current pro�ts.

The more workers in a location, the more a potential innovation can be exploited in the

current period, and thus the greater the incentives to invest in innovation. Therefore, the

model exhibits a local scale e¤ect in innovation, implying that �rms in more dense locations

innovate more.
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Fourth, technology di¤uses spatially. Locations close to others with a more advanced

technology get access to a spatially discounted version of that technology through di¤usion.

Firms in each location will produce using the best technology they have access to, whether

through invention or di¤usion.

We contrast the theory to U.S. macroeconomic and spatial data for the period 1980-2005.

A well known fact is that the employment share in manufacturing has declined over time

and, correspondingly, the employment share in services has increased. This shift has been

accompanied by a decline in the relative price of manufactured goods (see, e.g., Buera and

Kaboski, 2007). Ngai and Pissarides (2007) show that a faster increase in manufacturing

productivity, relative to service productivity, together with CES preferences and an elastic-

ity of substitution less than one, can yield these e¤ects. Our model starts o¤ with a similar

mechanism. Initial conditions are such that in the beginning �rms specializing in manufac-

turing are more productive, and so have a larger scale and innovate more. This implies a

reduction in the manufacturing share and a drop in the relative price of manufactured goods,

just as in Ngai and Pissarides (2007). Where we di¤er is that in our model this reallocation

of employment toward services at some point endogenously accelerates innovation in some

locations specializing in services. From then onward service productivity increases together

with manufacturing productivity, ultimately leading to a fairly constant growth path in

both industries and the economy. This is consistent with the evidence on manufacturing

and service productivity in Triplett and Bosworth (2004), who document an acceleration in

service productivity growth starting around 1995, while manufacturing productivity keeps

growing at around 2% per year throughout.1 Our model also generates a corresponding

increase in land rents around that period, a prediction that is very clearly present in the

data. Real wage growth exhibits a similar pattern, which is likewise corroborated by the

data.
1Table A-4 in Triplett and Bosworth (2004) shows that growth in value added per worker in goods-

producing sectors went from 2.11% between 1987 and 1995 to 1.94% between 1995 and 2001. In contrast, in
service-producing sectors the growth rate went from 0.78% to 2.49%. If we focus only on the contribution of
TFP, the di¤erence is smaller but still there: growth in TFP went from 0.75% to 1.29% in goods-producing
sectors and from 0.41% to 1.41% in service-producing sectors.
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With respect to the spatial dimension, the theory predicts that, initially, when service

productivity is about stagnant, manufacturing is more concentrated than services.2 Once

the service sector starts innovating, concentration in the service sector increases in terms of

both employment and productivity, implying a positive link between employment density,

innovation and productivity growth. These e¤ects are accompanied by an increase in the

dispersion of land rents. These theoretical predictions are borne out in the data: over the

last decades the service sector has become more concentrated, in terms of both employment

and productivity, making it look increasingly similar to manufacturing along this spatial

dimension. This is consistent with the evidence in Desmet and Rossi-Hansberg (2009), who

compare spatial growth in two di¤erent time periods, 1980-2000 and 1900-1920, and �nd

that service growth at the end of the 20th century looked very similar to manufacturing

growth at the beginning of the 20th century. Both industries, in very di¤erent time periods,

exhibited increasing concentration in medium-size locations.3

Since our theory incorporates both a time and a space dimension, it provides a link

between the location decision of agents and their decision to innovate. Two parameters

that govern this link are transport costs and the elasticity of substitution. Even though

increases in transport cost lead to the standard static losses familiar from trade models,

they also lead to dynamic gains by generating denser areas that, together with the scale

e¤ect in innovation, lead to faster growth.

Decreasing the elasticity of substitution between manufacturing and services implies that

agents can substitute less and therefore prefer to be closer to areas specializing in the sector

in which they do not work. This puts a break on the emergence of large clusters, as such

clusters would increase the average distance to locations that specialize in the other sector.

The result is more dispersion and therefore less innovation. However, lowering the elasticity

of substitution also implies that agents in manufacturing areas, where the relative price of

2See Murata (2008) for an analysis of the structural transformation from agriculture to manufacturing
within a New Economic Geography framework. However, in contrast to our work, in that paper there are
no dynamics, there is no innovation and space consists of only two regions. Instead, the driving force behind
the structural transformation is an exogenous decline in transportation costs.

3However, Desmet and Rossi-Hansberg (2009) do not link their �ndings to the structural transformation
and to other macroeconomic variables, which is the main focus of this paper.
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services is high, consume a greater share of their income on services. This increases the

scale of service producers located close-by, thus leading to more innovation. The result is a

non-monotonic pattern in the e¤ects of the elasticity of substitution on location and growth.

The �rst e¤ect dominates for high values of the elasticity of substitution whereas the second

e¤ect dominates for lower values. To our knowledge, these spatial-dynamic e¤ects are novel.

The existing literature on spatial dynamic models is fairly small. There is a successful

literature in trade that has focused on dynamic models with two or more countries (see,

among others, Grossman and Helpman, 1991, Eaton and Kortum, 1999, Young 1991, and

Ventura, 1997).4 The main di¤erence with our work is that in these models there is no

geography in the sense that locations are not ordered in space. In fact, most of these papers

do not even introduce transport costs, let alone geography. In contrast, we introduce a

continuum of locations on a line. Locations are therefore ordered geographically, and both

transport costs and technology di¤usion are a¤ected by distance.

Incorporating a continuum of locations into a dynamic framework is a complicated task

for two reasons: it increases the dimensionality of the problem by requiring agents to

understand the distribution of economic activity over time and over space, and clearing

goods and factor markets is complex because prices depend on trade and mobility patterns

at all locations. These two di¢ culties make spatial dynamic models intractable, and the

only way forward is to simplify the problem. A set of recent papers, such as Quah (2002),

Boucekkine et al. (2009), and Brock and Xepapadeas (2008a,b), introduce a continuum of

locations with geography and simplify the problem by assuming that each point in space

is isolated, except for spatial spillovers or di¤usion. By abstracting from transport costs,

national goods markets, and factor mobility, they save the need to calculate price functions

across locations over time. By imposing enough structure, they are able to mathematically

characterize some aspects of social optima or equilibrium allocations, though they fall short

of proposing a complete solution. In addition, they are unable to connect to the data, since

the simplifying assumptions do not yield empirical predictions that are rich enough.

4See also Baldwin and Martin (2004) for a survey of similar work within the �New Economic geography�
model.
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In contrast, our main goal is to propose a theoretical framework that can be used to study

the spatial evolution of the U.S. economy over the last decades. To do so, it is crucial to

have a model that is rich enough to capture a variety of spatial patterns of the economy.

In order to deal with the complexity of forward-looking agents in a spatial context, the

previous papers had to sacri�ce many of the relevant spatial interactions. Another way

around this problem, and the one we will follow, is to impose enough structure � through

the mobility of factors and the land and �rm ownership structure� that �rms do not care to

take the future equilibrium allocation path into account when making decisions, given that

they do not a¤ect the returns of their current decisions. As for the problem of clearing factor

and goods markets in a framework with a continuum of locations, we follow the method

in Rossi-Hansberg (2005) that consists of clearing markets sequentially. These assumptions

are key to making a rich structure solvable and computable.

In Desmet and Rossi-Hansberg (2009) we use a similar methodology to study the dynam-

ics of manufacturing and service growth across U.S. counties in the 20th century. Although

that model also analyzes the link between innovation and spatial growth, our current paper

is di¤erent in two ways. First, we explicitly model innovation as the outcome of a pro�t-

maximizing problem and, in that sense, provide micro-foundations for why certain locations

innovate more than others. Second, in Desmet and Rossi-Hansberg (2009) innovation in

a given sector gets jump-started exogenously, thus making its timing ad hoc and indepen-

dent of what is happening in the other sector. In our current paper innovation starts o¤

endogenously as explained above.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 presents the data we use to empirically explore the theoretical predictions, carries out

numerical simulations of the model, and discusses the link between our results and the

data. Section 3 also analyzes the novel spatial e¤ects that result from changes in transport

costs and the elasticity of substitution. Section 4 concludes.
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2. THE MODEL

The economy consists of land and agents located in the closed interval [0; 1] : Throughout

we refer to a location as a point in this interval, and we let the density of land at each

location ` be equal to one. Hence, the total mass of land in the economy is also equal to

one. The total number of agents is given by L; and each of them is endowed with one unit

of time each period. Agents are in�nitely lived.

2.1 Preferences

Agents live where they work and they derive utility from the consumption of two goods:

manufactures and services. Every period labor is freely mobile across locations and sectors.

Agents supply their unit of time inelastically in the labor market. They order consumption

bundles according to an instantaneous utility function U(cM ; cS) with standard properties,

where ci denotes consumption of good i 2 fM;Sg. The utility function U (�) is homoge-

neous of degree one. Agents hold a diversi�ed portfolio of land and �rms in all locations.5

Goods are non-storable, and there is no other savings technology apart from land and �rm

ownership. The problem of an agent at a particular location ` is given by6

max
fci(`;t)g10

E
1X
t=0

�tU(cM (`; t) ; cS (`; t)) (1)

s:t: w (`; t) +
�R(t) + � (t)

�L
= pM (`; t) cM (`; t) + pS (`; t) cS (`; t)

for all t and `:

where pi (`; t) denotes the price of good i, w (`; t) denotes the wage at location ` and time

t, and �R (t) and �(t) denote total land rents and total �rm pro�ts per unit of land. Given

that agents hold a diversi�ed portfolio of land and �rms in all locations, �R(t)=�L and �(t)=�L
5Since U (�) is constant returns to scale, agents are not risk averse. If they were, they would like to hold

this diversi�ed portfolio to insure themselves against idiosyncratic local shocks.
6Since we assume labor mobility, utility levels will equalize across space each period and so we can study

the optimization problem of an agent as if she were to stay in the same location forever.
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represent the per agent dividend from land and �rm ownership. The �rst-order conditions

of this problem yield Ui(cM (`; t) ; cS (`; t)) = � (`; t) pi (`; t), for all i 2 fM;Sg, where Ui (�)

is the marginal utility of consuming good i and � (`; t) is a location- and time-speci�c

Lagrange multiplier. Denote by �U(pM (`; t); pS(`; t); w(`; t)+
�
�R(t) + � (t)

�
=�L) the indirect

utility function of an agent at location `.

Free labor mobility in each period guarantees that

�U
�
pM (`; t); pS(`; t); w(`; t) +

�
�R(t) + � (t)

�
=�L
�
= �u (t) ; for all t and ` 2 [0; 1] ; (2)

where �u (t) is determined in equilibrium. In the numerical examples in the next section we

will use a CES speci�cation

U(cM ; cS) = (hMc
�
M + hSc

�
S)
1=� (3)

with elasticity of substitution 1=(1� �) < 1.

We assume that each period labor can move, but only before innovation and production

take place. As we specify below, �rms will invest in innovation, and the realization of

these innovations will be random. But because �rms are small, there will be no aggregate

uncertainty. Rational expectations then imply that workers correctly anticipate prices and

aggregate pro�ts. In addition, wages and rents will be determined when workers move, and

thus before innovation occurs. Hence, at the time of their location decisions, workers either

observe or correctly anticipate all the variables they need for calculating their utility levels

at all locations. Therefore, mobility guarantees that utility levels equalize across locations

each period.

2.2 Technology

Firms specialize in one sector. The inputs of production are land and labor. Each �rm

requires one unit of land to produce, so in each location there is one �rm. Production of a

�rm in location ` at time t, if it produces in the manufacturing sector, is given by

M (LM (`; t)) = ZM (`; t)LM (`; t)
� ;
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and, similarly, if it produces services, its production is

S (LS (`; t)) = ZS (`; t)LS (`; t)
� ;

where Zi (`; t) is the technology level and Li (`; t) is the amount of labor used at location

` and time t in sector i. In the following sections we will describe the determination of

technology. For now, we just point out that �rms will decide whether and how much to

invest in innovation, and that the realizations of local innovations are random.

Firms compete for workers and land at the time when workers can move across locations,

which happens before innovations are realized and output is produced. In addition, �rms

face �nancial constraints: they cannot incur negative operating pro�ts (i.e., pro�ts before

deducting the cost of innovation).7 This obliges �rms to choose their inputs and compete

for workers and land as if the technology they will use for production is the one before

innovations are realized. The reason is simple: any other behavior would give negative

operating pro�ts were they to be unlucky and not draw any improvement in technology.

Hence, the problem of a �rm in sector i 2 fM;Sg at location ` is given by

max
Li(`;t)

pi (`; t)Zi (`; t)Li (`; t)
� � w (`; t)Li (`; t) ; (4)

where � 2 f�; �g and Zi (`; t) refers to the technology before innovations are realized. To

solve the above problem, �rms must be able to anticipate prices. Since innovations are local,

and counties are small, there is no aggregate uncertainty, so that rational expectations will

ensure that this is indeed the case.

If we denote the optimal �rm choice by L̂i (`; t), the maximum per unit land rent that

�rms in sector i are willing to pay, the bid rent, is then given by

Ri (`; t) = pi (`; t)Zi (`; t) L̂i (`; t)
� � w (`; t) L̂i (`; t) ; (5)

which guarantees that if the level of productivity stays at Zi (`; t) after the innovation process

the operating pro�ts equal zero, pi (`; t)Zi (`; t) L̂i (`; t)
� � w (`; t) L̂i (`; t) � R (`; t) = 0. If

the innovation process leads to higher productivity, �rms will make positive pro�ts, since

the number of workers, wages, and land rents will not adjust until next period.
7Firms will be able to �nance innovation with intertemporal loans from shareholders, as described below.
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2.3 Di¤usion and Timing

Technology di¤uses between time periods. This di¤usion is assumed to be local and to

decline exponentially with distance. In particular, if Z (r; t� 1) was the technology used

in location r in period t � 1, in the next period, t; location ` has access to (but does not

necessarily need to use) technology

e��j`�rjZi (r; t� 1) :

Hence, before the innovation decision in period t, location ` has access to

Zi (`; t) = max
r2[0;1]

e��j`�rjZi (r; t� 1) (6)

which of course includes its own technology of the previous period. This type of di¤usion

is the only exogenous source of agglomeration in the model.8

The timing of the problem is key. Figure 1 illustrates the assumed timing.

 

Mid Period t: 

L moves, w(l,t) 
and R(l,t) are set  

Late Period t-1: 

Production with Z(l,t-1) 

Early Period t: 

Diffusion leads to Z(l ,t) 

Late Period t: 

Innovation leads to new 
Z(l,t) 

Late Period t: 

Production with new 
Z(l,t) 

Figure 1: Timing

During the night, between periods t � 1 and t, technology di¤uses locally as described

above. This leads to a level of technology Zi (`; t), given by (6), in the morning. Labor then

moves according to this technology, and the wage and land rents are determined using this

technology, as explained above. After labor moves, �rms may decide to try to improve their

technology by investing in innovation. The level of technology a �rm uses in production

in period t is then either the one it woke up with or the improved technology, provided it

invested in innovation and was successful doing so.

8As we describe below, there is an endogenous source of agglomeration that results from trade. Locations
that experience high relative prices of a given good are more likely to form clusters specialized in the
production of that good.
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To reiterate, we are assuming that the number of people in location `, denoted by L (`; t),

reacts to Zi (`; t) and adjusts before innovation is realized. That is, labor moves in the middle

of the period, so that innovation has no contemporaneous e¤ect on labor mobility, wages

and rents (an implication of the �nancial constraints faced by �rms). Given that agents hold

a diversi�ed portfolio of land and �rms in all locations, given that wages are determined

before any possible innovation, and given that the absence of aggregate uncertainty implies

that agents correctly anticipate prices, there is no need for agents to build expectations

about future innovations in di¤erent locations when deciding where to reside.

2.4 Idea Generation

A �rm can decide to buy a probability � � 1 of innovating at cost  (�) in a particular

industry i. This implies that with probability � the �rm obtains an innovation and with

probability (1� �) its technology is not a¤ected by the investment in innovation.9

A �rm that obtains the chance to innovate draws a technology multiplier zi from a Pareto

distribution (with lower bound 1), leading to an improved technology level, ziZi (`; t), where

Pr [z < zi] =

�
1

z

�a
:

Thus, conditional on innovation and a technology at the beginning of the period Zi, the

expected technology is

E (Zi (`; t) jZi; Innovation) =
a

a� 1Zi for a > 1: (7)

The expected technology for a given �, not conditional on innovating but conditional on

Zi, is

E (Zi (`; t) jZi) =
�

�a

a� 1 + (1� �)
�
Zi =

�
�+ a� 1
a� 1

�
Zi:

The innovation draws are i.i.d. across time, but not across space. Conditional on an

innovation, let s (`; `0) denotes the correlation in the realizations of zi (`) and zi (`0). We

9 Instead we could assume that �rms buy a realization of a Poisson distribution for a number of oppor-
tunities to innovate. In this case, we need to calculate the expectation of the maximum draw out of N
realizations, which is distributed Fréchet, as discussed in Eaton and Kortum (2002).
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assume that s (`; `0) is non-negative, continuous, symmetric, and

lim
`#`0

s
�
`; `0
�
= 1 and/or lim

`"`0
s
�
`; `0
�
= 1.

Hence, innovation draws are spatially correlated, and �rms that are located arbitrarily close

to each other obtain exactly the same innovations. This is important since, given di¤usion,

absent any spatial correlation, an in�nite number of i.i.d. draws from a distribution with

unbounded support would imply in�nite productivity in all locations. In what follows, we

assume that s (`; `0) declines fast enough with the distance between ` and `0 such that the

law of large numbers still guarantees that there is no aggregate uncertainty.

2.5 Innovation Decisions

Firms choose innovation probabilities to maximize the present discounted value of pro�ts.

However, the pro�ts �rms obtain from innovating last for only one period, since next period

workers can move, and wages and rents are determined anew. Nevertheless, a �rm�s current

innovation decision could in principle a¤ect its future scale, and thus change its gains

from future innovations. However, as we prove below, this will not be the case because

today�s innovations di¤use by tomorrow, so that a �rm�s scale will also be determined by

the innovations of neighboring locations: an externality. Then, continuity in the di¤usion

process and the spatial correlation in innovation realizations guarantee that a �rm�s own

decisions do not a¤ect the expected technology it wakes up with tomorrow, and thus do not

change its future innovation decisions. The next proposition formalizes this logic.

Proposition 1 A �rm�s optimal dynamic innovation decisions maximize current period

pro�ts. That is, �i (`; t) is chosen so as to maximize the �rm�s period t pro�ts only.

Proof. The objective function of a �rm in a given location ` at time t0 is given by

max
f�i(`;t)g1t0

Et0

" 1X
t=t0

��
�i (`; t) + a� 1

a� 1

�
Zi (`; t) pi (`; t) L̂i (`; t)

�

�w (`; t) L̂i (`; t)�R (`; t)�  (�i (`; t))
�i
;
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given Zi (`; t0). Because every period, once labor moves and wages are determined, the

pro�ts of �rms before innovation are set to zero,

Zi (`; t) pi (`; t) L̂i (`; t)
� � w (`; t) L̂i (`; t)�R (`; t) = 0;

the problem above can be simpli�ed to

max
f�i(`;t)g1t0

Et0

" 1X
t=t0

��
�i (`; t)

a� 1

�
Zi (`; t) pi (`; t) L̂i (`; t)

� �  (�i (`; t))
�#

(8)

= max
f�i(`;t)g1t0

�
�i (`; t0)

a� 1

�
Zi (`; t0) pi (`; t0) L̂i (`; t0)

� �  (�i (`; t0))

+Et0

" 1X
t=t0+1

��
�i (`; t)

a� 1

�
Zi (`; t) pi (`; t) L̂i (`; t)

� �  (�i (`; t))
�#

Note that the last term in (8) is independent of the decision in t0 except for its dependence

on the technology early in period t0+1; Zi(`; t0+1). However, this technology is independent

of the choice �i (`; t0). To prove this, �rst note that by (6) technology at the beginning of

the period is continuous in `, and so is L̂i (`; t) and Ri (`; t). Furthermore, a location is small

so it does not change pi (`; t). Since lim`!`0 s (`; `0) = 1 from above or below, (6) implies

that if

` = arg max
r2[0;1]

e��j`�rjZi (r; t0)

there exists an `0 arbitrarily close to ` such that

`0 = arg max
r2[0;1]

e��j`�rjZi (r; t0) :

Hence,

Zi (`; t0 + 1) = Zi
�
`0; t0

�
and so innovation decisions in ` do not determine Zi (`; t0 + 1), which implies that the last

term in (8) does not depend on �i (`; t0). Hence, to determine �i (`; t0), maximizing (8) is

equivalent to solving

max
�i(`;t0)

�
�i (`; t0)

a� 1

�
Zi (`; t0) pi (`; t0) L̂i (`; t0)

� �  (�i (`; t0))

= max
�i(`;t0)

��
�i (`; t0) + a� 1

a� 1

�
Zi (`; t0) pi (`; t0) L̂i (`; t0)

�

�w (`; t0) L̂i (`; t0)�R (`; t0)�  (�i (`; t0))
�
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which denotes current expected pro�ts.

The previous proposition implies that the innovation problem of a �rm, given factor prices

and the amount of labor, is given by

max
�i

�
�i + a� 1
a� 1

�
Zi (`; t) pi (`; t) L̂i (`; t)

� � w (`; t) L̂i (`; t)�R (`; t)�  (�i) (9)

Given that the spatial distribution of workers, as well as wages and rents, are determined in

advance, �rms take w (`; t) L̂i (`; t)+R (`; t) as given, so that maximizing pro�ts, or revenue

net of the investment costs, is equivalent.

Suppose the innovation cost satis�es  0 (�) > 0; and  00 (�) � 0: A ready example would

be

 (�) =  1 +  2
1

1� � for  2 > 0; (10)

which we use in the numerical examples below. The advantage of this cost function is that

it has an asymptote at 1. This prevents us from dealing with corner solutions at 1. The

FOC is then given by

��i (`; t) = 1�
 

 2 (a� 1)
Zi (`; t) pi (`; t) L̂i (`; t)

�

! 1
2

: (11)

Then

�i (`; t) =

8>>>>>>>>><>>>>>>>>>:

0
if  (��i (`; t)) �

��i (`;t)
(a�1) Zi (`; t) pi (`; t) L̂i (`; t)

�

and/or ��i (`; t) � 0

��i (`; t)
if  (��i (`; t)) <

��i (`;t)
(a�1) Zi (`; t) pi (`; t) L̂i (`; t)

�

and ��i (`; t) > 0

: (12)

Note that a few results are immediate from these equations. First, investment in innova-

tion is weakly increasing in �rm�s revenues, so �i (`; t) is increasing in Zi (`; t) pi (`; t) L̂i (`; t)
�.

This scale e¤ect is consistent with the evidence presented by Carlino et al. (2007). They

show that in the U.S. a doubling of employment density leads to a 20% increase in patents

per capita.
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Second, �rms �nance innovations with their expected pro�ts. This implies that some

periods they may spend more than the realized gains and make negative pro�ts on their

innovations, while some other periods they make positive pro�ts. The randomness averages

out over locations, so that agents obtain positive dividends each period, and are thus willing

to �nance these streams of innovations. In that sense, �rms face �nancial constraints when

hiring factors, but not when making innovation decisions. The rationale for this asymmetry

is that owners want to constrain �rms from competing away all the expected pro�ts from

innovation when competing for factors.

In all numerical exercises we make  (�) proportional to wages in each location. Hence,

if an economy grows (and therefore wages increase), the cost of investment in innovation

grows accordingly. Then, the model is such that �with enough locations so that the law of

large numbers applies�the economy converges to a balanced growth path. Of course, for

a �nite number of locations, there will be �uctuations around this balanced growth path,

even in the long run. In contrast, individual locations�employment, specialization, trade,

etc. will keep changing over time.

2.6 Land, Goods, and Labor Markets

Goods are costly to transport. For simplicity we assume iceberg transportation costs that

are identical in manufacturing and services. This is without loss of generality given that

the equilibrium depends only on the sum of transport costs in both industries. If one unit

of any of the goods is transported from ` to r, only e��j`�rj units of the good arrive in r.

Since the technology to transport goods is freely available, the price of good i produced in

location ` and consumed in location r has to satisfy

pi (r; t) = e�j`�rjpi (`; t) : (13)

Land is assigned to a �rm in the industry that values it the most. Hence, land rents are

such that

R (`; t) = max fRM (`; t) ; RS (`; t)g :

Denote by �i(`) 2 f0; 1g the fraction of land at location ` used in the production of good
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i. If R (`; t) = Ri (`; t) then �i (`; t) = 1. To break ties, when RM (`; t) = RS (`; t), we

let �M (`; t) = 1. Once again, note that competition for land determines land rents before

technological innovations are realized, as discussed above.

In order to guarantee equilibrium in product markets, we need to take into account that

some of the goods are lost in transportation. To do this, let Hi (`; t) denote the stock of

excess supply of product i between locations 0 and `. De�ne Hi (`; t) by Hi (0; t) = 0 and

by the di¤erential equation

@Hi (`; t)

@`
= �i (`; t)xi (`; t)� ci (`; t)

 X
i

�i (`; t) L̂i (`; t)

!
� � jHi (`; t)j ; (14)

where xM (`; t) = M
�
L̂M (`; t)

�
�  (�M (`; t)) and xS (`; t) = S

�
L̂S (`; t)

�
�  (�S (`; t))

denote the equilibrium production of good i at location ` per unit of land net of technology

investment costs. That is, at each location we add to the stock of excess supply the amount

of good i produced and we subtract the consumption of good i by all residents of `. We

then need to adjust for the fact that if Hi (`; t) is positive and we increase `, we have to

ship the stock of excess supply a longer distance. This implies a cost in terms of goods and

services given by �. The equilibrium conditions in the goods markets are then Hi (1; t) = 0

for all i. Given the lack of aggregate uncertainty and the fact that there are national goods

markets that clear, under rational expectations all agents anticipate the behavior of prices

correctly.

In equilibrium, labor markets clear. Given free mobility, we have to guarantee that the

total amount of labor demanded in the economy is equal to the total supply L before

technological innovations are realized. The labor market equilibrium condition is thereforeZ 1

0

X
i

�i (`; t) L̂i (`; t) d` = L: (15)

2.7 De�nition of Equilibrium

An equilibrium in this economy is a set of real functions (ci; L̂i; �i;Hi; pi; Ri; w; Zi; �i) of

locations ` 2 [0; 1] and time t = 1; :::, for i 2 fM;Sg ; such that:

� Agents choose consumption, ci; by solving the problem in (1).
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� Agents locate optimally, so w, pi, Ri and L̂i satisfy (2).

� Firms maximize pro�ts by choosing the number of workers per unit of land, L̂i; that

solves (4), and by choosing the land bid rent, Ri, that solves (5).

� Land is assigned to the industry that values it the most, so ifmax fRM (`; t) ; RS (`; t)g =

Ri (`; t), then �i (`; t) = 1:

� Goods markets clear, so Hi is given by (14) and Hi (1) = 0:

� The labor market clears, so �i and L̂i satisfy (15).

� Investment in innovation �i satis�es (12).

� Technology Zi satis�es the innovation process that leads to (7) and the di¤usion

process given by (6).

3. EVIDENCE AND MODEL PREDICTIONS

We now proceed to solving the model numerically and to contrast the equilibrium allo-

cation with the data. To do so, we need to propose values for all of the parameters in the

model. These are based on the evolution of the U.S. economy over the period 1980-2005.

3.1 Evidence

Although many of the stylized facts will appear familiar from the literature on the struc-

tural transformation (see, e.g., Ngai and Pissarides, 2007, and Buera and Kaboski, 2007),

we will also emphasize two less well-known aspects. First, in the last �fteen years, com-

pared to the 1980s, many of those familiar stylized facts have undergone signi�cant changes.

Second, we will present evidence on the spatial dimension, an aspect generally ignored in

this literature.

It is well known that employment has been moving out of goods and into services,10 as
10 In the empirical section we distinguish between �goods�and �services�(where �goods�is the aggregation of

manufacturing, construction and mining) because this is the typical distinction in many of the data sources,
such as the Industry Economic Accounts of the BEA. In the rest of the paper, we refer to the two sectors of
interest as �manufacturing�and �services.�

17



can be seen in Figure 2.1 (where the extension .1 in the �gure�s name refers to the upper

panel and the extension .2 to the lower panel).11 The start of this shift dates back to the

1930s and has continued to the present day. However, since the mid 1990s this shift has

clearly been slowing down. In fact, between 1980 and 1995 the share of service employment

increased by about 10 percentage points but only by 4 percentage points between 1995 and

2005. This change in employment shares has been accompanied by a decrease in the price

of goods, relative to services. As shown in Figure 2.2., this decline was pronounced in the

1980s and early 1990s, but since then has been slowing down, with even a slight reversal in

recent years.

The mid 1990s also marks a breakpoint for wages. Figure 3.1 shows how real hourly wages

of production workers started to increase signi�cantly around 1995, after two decades of

decline.12 This timing also coincides with the evolution of land and housing prices. Figure

3.2 shows sharp increases in the real values of land and housing post-1995, following a fairly

stable pattern throughout the 1980s and the early 1990s. Of course, part of this dramatic

increase is disappearing as a result of the current housing crisis, but it remains to be seen

whether values will return to their pre-1995 levels in real terms.13

The dynamics in our theory are the result of innovations that translate into higher local

productivity. We use value added per worker as the empirical counterpart to productivity

given that local technology can also be interpreted as local capital or infrastructure. Figure

4.1 shows how in the 1980s services productivity growth, as measured by value added per

worker, was falling behind that of goods, a phenomenon that goes back in time and was

described by Baumol (1967), who argued that it was inherently more di¢ cult to innovate

in services than in goods. That same widening gap is also apparent in Figure 4.2, which

reports the log of value added per worker in both goods and services. Since the mid 90s

services productivity growth has clearly been catching up and, on some accounts, may even

have surpassed productivity growth in the goods-producing sector (Triplett and Bosworth,

11Figure 2 to 11 are included at the end of the paper.
12 For purposes of comparison with the numerical section, to obtain real wages we de�ate by the services

price index used in the Industry Economic Accounts of the BEA.
13Once again, we de�ate by the services price index used in the Industry Economic Accounts of the BEA.
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2004).

1980 1995 2005 1980 1995 2005
Log Employment Density Log Employment Density 

(net of local consumption)
Difference 70-30 Difference 70-30
Goods 1.677 1.634 1.632 Goods 1.723 1.650 1.666
Services 1.340 1.462 1.510 Services 1.396 1.993 2.186

Standard deviation Standard deviation
Goods 1.764 1.740 1.695 Goods 1.731 1.676 1.636
Services 1.548 1.613 1.635 Services 1.548 1.613 1.635

Log Earnings per Worker Log Earnings per Worker
(net of local consumption)

Difference 70-30 Difference 70-30
Goods 0.296 0.294 0.325 Goods 0.328 0.261 0.274
Services 0.153 0.191 0.224 Services 0.164 0.261 0.314

Standard deviation Standard deviation
Goods 0.273 0.298 0.335 Goods 0.283 0.269 0.282
Services 0.159 0.207 0.252 Services 0.173 0.254 0.312

Source: REIS, Bureau of Economic Analysis

Table 1: Distribution of Employment Density and Productivity

As for the spatial dimension, the goods sector has become more dispersed in terms of

employment density, whereas the service sector has become more concentrated over time.

Using U.S. county data, Table 1 shows the evolution of the standard deviation of log em-

ployment in both sectors between 1980 and 2005 (as well as the log di¤erence between the

70th and 30th percentiles). For goods, the tightening distribution implies that counties are

becoming more alike in terms of employment density. In contrast, for services the distri-

bution is widening, implying that service employment is becoming more concentrated in

space. Note also that services started o¤ being more dispersed than goods, and therefore

the two distributions are becoming more similar. The increased spatial concentration in

services also shows up when analyzing labor productivity, as measured by earnings per

worker. Table 1 shows how the distribution of earnings per worker in the industrial sector

did not change much over time. In contrast, in the service sector earnings per worker have

become more unequal across counties, as re�ected by the widening distribution. As with

employment, sectoral di¤erences have become mitigated over time.
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Given that in our theory locations fully specialize, whereas in the data they do not, we

redo our exercise, after making the data more comparable to the theory. For each county we

adjust the earnings in each sector to what they would be were the county fully specialized.

Take a county that is a net exporter of goods. We compute the consumption of goods

implied by the amount of services the county produces and subtract this amount from the

total earnings of goods. To obtain the consumption of goods implied by the production of

services, we use the aggregate ratio of spending on goods relative to spending on services

from the U.S. economy and multiply this by services earnings. This gives us a measure of

adjusted goods earnings were the county fully specialized in the production of goods. We

do a parallel calculation for net service exporters. Obtaining a similarly adjusted measure

for sectoral employment at the county level is straightforward: we just take the adjusted

sectoral earnings and compute the implied sectoral employment. As can be seen in the

right-hand side of Table 1, the results are essentially unchanged. Services start o¤ spatially

more dispersed than goods and, over time, become increasingly concentrated. Depending

on the exact measure, services either converge or overtake goods in terms of the degree of

spatial concentration.

3.2 Numerical Results

The basic message we obtain from the evidence presented above is that between 1980 and

1995 productivity in goods, relative to services, was growing fast, relative prices of goods

were declining, and employment in the goods-producing sectors was steadily falling. During

that same period, service productivity growth was low, and real land rents and wages did not

exhibit signi�cant changes. Then, around 1995, land prices and wages started to increase

in real terms and so did service productivity growth. Changes in employment shares and in

the relative price of goods also slowed down or stopped altogether. This was accompanied

by services becoming geographically more concentrated, making it more similar to goods in

terms of its spatial distribution.

The model is rich enough to match all of these features of the evolution of the U.S.
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economy over the last 25 years, at least qualitatively and sometimes quantitatively. We

now choose the parameters of the model and present a numerical exercise that can be

compared to the data in the previous subsection.

To compute the model we need to specify initial productivity functions for both manu-

facturing and services. We let ZS(�; 0) = 1 and ZM (�; 0) = 0:8+0:4`: The key characteristic

of the initial productivity functions is that service productivity is initially larger than that

of manufacturing for locations close to the left border, whereas manufacturing productivity

is larger than that of services close to the right border. Furthermore, the locations with the

highest manufacturing productivity (namely, the right border) have a 20% larger produc-

tivity than the locations with the highest service productivity. These initial productivity

functions imply that if all other parameters are identical between sectors, innovation always

happens earlier in manufacturing than in services and always in the locations close to the

right border.

We also need to impose spatial correlation in the innovation draws. We assume that

space is divided in �counties�of identical size, which are connected intervals in [0; 1]. Within

the county all �rms obtain identical innovation draws, while outside the county draws are

i.i.d. To make the simulations computationally feasible, we divide the unit interval into 500

�counties�.

The elasticity of substitution between manufacturing and services, 1=(1��); is important

for the results. A key mechanism in the model is that as productivity in one sector increases,

relative to the other sector, the relative price of output in that sector decreases and so does

its employment share. For this to happen, the elasticity of substitution between goods

and services must be less than 1. This is consistent with empirical estimates. Stockman

and Tesar (1995), for example, estimate it to be 0.44 for a set of 30 countries. Given this

evidence, we set � = �1:5, so the elasticity of substitution is 1=(1� �) = 0:4:

The elasticity of substitution is also important for the incentives to innovate in di¤erent

sectors. With an elasticity below 1, when a sector�s relative productivity increases and

employment in that sector declines, the increase in employment in the other sector increases

the incentives for innovation in that slow-growing sector. Eventually, enough people switch
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to the slow-growing sector for innovation to start there. In that sense, the economy self-

regulates. Indeed, as more people move out of the fast-growing sector, thus tending to lower

overall growth, the other sector starts innovating as well, thus tending to increase overall

growth. As we show in the examples, the aggregate trend converges to a balanced growth

path (apart from small random �uctuations). Given the importance of the elasticity of

substitution, in later exercises we study the e¤ect of changes in its value.

Using data from the BEA, Herrendorf and Valentinyi (2007) estimate labor shares in both

sectors to be slightly above 0:6, so we set the share of labor in both sectors to � = � =

0:6: Figure 2.1 shows that by 1980 the share of total employment in services was already

substantially above that in manufacturing. To capture this, we set 1:4 = hS > hM = 0:6,

which generates an initial employment share in services of around 60%; roughly as in the

data.

The timing is important. We let the model run for 50 periods and compare its predictions

to the 25 years of data we have presented, so that a model period amounts to half a year.

Throughout we let � = 0:95, although this parameter plays a limited roll in our results

given that all decisions are essentially static.

We simulate using the cost function in equation (10). We set  2 = � 1 > 0, so there

are no �xed costs of investment in innovation. The intensity of innovation is then governed

by two parameters: the cost parameter,  2, and the shape parameter of the Pareto distri-

bution, a, from which we obtain the productivity draws. Both parameters have a similar

e¤ect. Increasing  2 leads to a higher cost, and increasing a gives a Pareto distribution with

a thinner tail, so that both e¤ects yield less innovation. We let  2 = 0:002054 and a = 43:4;

which results in aggregate productivity growth of around 3% per period in manufacturing

and around 2% per period in services. This parameter con�guration also implies an accel-

eration of services productivity growth around period 30, which in the data is interpreted

as 1995 (15 years after 1980 and 2 periods per year). Once service innovation reaches full

speed, its productivity growth rate is about the same as that of manufacturing, namely, 3%

per period.

Aggregate productivity growth rates and therefore changes in employment shares are
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also determined by technological di¤usion. We set the exponential decline of the di¤usion

of technology, �, equal to 25. This results in employment shares in services that rise from

0:6 to 0:73, an increase of 13% for the 25-year period, as in the data.

We set the transport cost parameter � = 0:008. This level of transport costs in gen-

eral yields two main specialization areas: one for services and one for manufacturing. In

particular, a cluster of service employment forms endogenously close to the manufacturing

cluster. Other areas to the left of that cluster also specialize in services but produce much

less. The formation of this cluster and its location, as well as the timing of the innovation

in services, can vary signi�cantly with the transport cost parameters. We study the e¤ect

of transport costs in more detail below. Of course, through the timing of the innovation

in services, this parameter partially governs the magnitude of the decrease in the relative

goods prices. In the model the manufacturing price falls by about 60%, more than the 40%

observed in the data. Nevertheless we choose this parameterization because the timing is

closer to the data, even if it yields a price decline that is somewhat too large.

3.2.1 An Equilibrium Outcome.�

The result of a numerical realization of the model is presented in Figure 5.14 For all

numerical simulations we present similar graphs, consisting of nine subplots. We denote

subplots using 3 digits (e.g., 5.2.1) where the �rst digit denotes the number of the �gure

and the other two the corresponding row and column. In all �gures services are plotted in

red and manufacturing in blue.

Figure 5.1.1 presents the coe¢ cient of variation of log employment (the dashed curve)

and log value added (the solid curve) across counties in both industries.15 The distribution

of employment and value added vary in a parallel fashion. Of course, the coe¢ cient of

variation of value added is higher, since it includes employment, productivity and price

14We present examples of particular realizations of the innovation process. However, given the relatively
large number of locations, results vary little for di¤erent realizations if we preserve the same parameter
values.
15Throughout we exclude from this calculation all locations that have never innovated in the service sector

as they make the coe¢ cient of variation grow faster and the e¤ects are harder to see. None of our conclusions
are altered if we include all locations.
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dispersion. Initially manufacturing is innovating more, as re�ected by the higher values

for the coe¢ cient of variation. Recall that a greater coe¢ cient of variation points to a

more disperse distribution, which means economic activity is spatially more concentrated.16

Over time, as in the data, the service sector catches up with the manufacturing sector and

surpasses it. Both sectors become more concentrated in space as in some of the measures

in Table 1. The main feature of the data that the model is able to replicate is that the

distribution of employment across counties is becoming more similar between manufacturing

and services, with services becoming geographically more concentrated.

Figure 5.1.2 presents aggregate productivity calculated in two di¤erent ways. The solid

curves present aggregate productivity as

Agg1Zi (t) =

R 1
0 xi (`; t) �i (`; t) d`�R 1
0 L̂i (`; t) �i (`; t) d`

�� ; (16)

the dashed curves present an alternative statistic, namely,

Agg2Zi (t) =

R 1
0 xi (`; t) �i (`; t) d`R 1

0

�
L̂i (`; t) �i (`; t)

��
d`
; (17)

where xi denotes output in sector i. Given that there are decreasing returns to scale in labor

at each location, it is not clear which one of them is preferred. Agg1Zi (t) is the equivalent

of a Solow residual, but a shift in Agg2Zi (t) increases aggregate output by exactly the

same amount. Note how, as time passes, we �rst observe the catching up of services in

terms of aggregate productivity, but both manufacturing and services grow eventually at a

roughly constant rate that is common to both sectors (up to the local random realizations

that average out in space, but not fully since we have 500 counties). It is the process of

shifting employment to the sector that innovates less that equates productivity growth in

both sectors asymptotically, thus putting the economy on a balanced growth path.

Figure 5.1.3 presents the stock of excess supply, HM (`; t). Each curve represents excess

supply in a di¤erent time period, HM (:; t). In this simulation, lower curves coincide with

16 Indeed, a tightly concentrated distribution implies that all counties are the same, so that economic
activity is equally dispersed across space. In contrast, a widely dispersed distribution means that counties
are very di¤erent, with economic activity concentrating in some areas and by-passing others.
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later periods. A curve declines when locations specialize in services and it grows when

locations specialize in manufacturing. It is a good way of tracking changes in specialization

over space. A parameter that is key in determining the number of areas of specialization

is the di¤usion parameter �. An increase in � implies that di¤usion dies out fast and so

locations bene�t little from it. To see this, Figure 6 presents a simulation with � = 50.

Compared to Figure 5.1.3, we can see in Figure 6.1.3 that the slope of the stock of excess

supply changes sign many times, indicating several switches in land-use specialization. The

reason is clear: when di¤usion is very local, being close (but not extremely close) to other

regions producing the same good does not provide any advantage.

Figure 5.2.1 presents the value of land over time. It shows the value of the diversi�ed

portfolio of land held by all agents, as well as the value of land specialized in each sector.

Note from the �gure how the value of manufacturing land decreases as technology in man-

ufacturing improves faster than service technology. This happens because the decline in

the value of manufactured goods more than compensates for the increase in productivity.

The value of service land, on the other hand, increases throughout. Once innovation in the

service sector accelerates, both the value of the portfolio of land and manufacturing land

rents start increasing much faster, since both sectors are now competing for the same land

close to each other. This is very clear in the U.S. data presented in Figure 3.2, and the

timing coincides with the increase in service productivity shown in Figure 4.1. Note that

both in the model and in the data we de�ate by the price of service goods.

Figure 5.2.2 exhibits the price of manufactured goods relative to services. The initial

increase in manufacturing productivity, together with an elasticity of substitution less than

1, implies that the relative price of manufactured goods declines over time. Once service

productivity accelerates, the price stabilizes and declines much slower. The pattern is very

close to the one we present in Figure 2.2 for the U.S. economy, although, as discussed, the

magnitude of the decline is somewhat larger than the one observed.

We present the evolution of utility and wages in Figure 5.2.3. Note that wages do not

increase signi�cantly until service productivity starts growing. This is again consistent with

the evidence in Figure 3.1, where wage growth in terms of service goods increases dramat-
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ically starting around 1995. Utility grows throughout, since productivity growth in any

industry always increases welfare independently of the relative price and labor reallocation

e¤ects. There is also an acceleration in utility growth, but it is smaller than the one for

wages.

Figure 5.3.1 shows employment shares in both sectors. Since there is no unemployment

in this economy, one is the mirror image of the other. We chose parameter values to match

the change in shares, so it is not surprising that this �gure looks similar to Figure 2.1.

Finally, Figures 5.3.2 and 5.3.3 present the evolution of productivity over time and space.

Since this is a three-dimensional object, we present colored contour plots. Dark blue areas

represent low productivity, and lighter blue, followed by yellow and red areas, represent

higher productivity levels. These �gures are helpful in identifying the areas in which inno-

vation is happening and how clusters of innovation are created and destroyed over time. As

can be seen in the graphs, manufacturing productivity starts increasing immediately, and

all innovation occurs in locations to the right (the top part in the graphs). In contrast,

initially innovation in services happens only in very few locations, namely, the ones closest

to the manufacturing cluster. Over time, as the employment share in services increases and

di¤usion takes hold, the set of regions that innovate grows, increasing the size of the service

cluster. Regions to the left of the service cluster (the bottom part in the graphs) are not

innovating but are specialized in services. Figure 5.1.3 is useful for assessing the relative

magnitude of the production of all regions and therefore the pattern of specialization. This

is consistent with the evidence presented in Table 1 that shows how the standard deviation

of productivity across regions (in terms of earnings per worker) in both sectors increases

throughout our time span.

Figures 6 and 7 present a comparative statics exercise when we vary the rate of decline of

technology di¤usion. A large value of � implies that technological di¤usion dies out faster in

space. The benchmark parameterization uses a value of � = 25; and we present simulations

with � = 50 and � = 10:With � = 50 we obtain less aggregate growth in both sectors. This

is particularly evident for the service sector, as can be seen in Figure 6.3.3. It is also clear

from Figure 6.1.3 that since technology is very local in this case, specialization switches
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many times in space. In contrast, when we make � = 10 in Figure 7, di¤usion is widespread

and there are only two clusters, with substantially more innovation and productivity growth

over time. The parameter � is related to our de�nition of a period. Letting the economy

run for many more periods results in more di¤usion even if � is high because di¤usion

compounds over time.

3.2.2 Robustness of Numerical Results.�

In the previous subsection we showed results for particular realizations of the paths of

random innovation shocks . This obviously raises the question whether di¤erent realizations

of these shocks would lead to qualitatively di¤erent outcomes. In other words, it is important

to understand which part of the patterns we observe can be explained by the randomness of

a particular realization. To explore this issue, Figure 8 shows the average of the distribution

of outcomes of 100 realizations of the model using the benchmark parameterization of Figure

5.17 Except for the two �gures showing the evolution of productivity over time and space,

all �gures also include the minimum and the maximum outcomes at each point in time over

the 100 realizations.

When looking at the pictures showing average time trends (all but the last two), the

patterns look both qualitatively and quantitatively similar to the ones in the particular

realization of Figure 5. The only di¤erence is that, as expected, the patterns look smoother,

as the randomness across realizations is averaged out. Note, however, that the di¤erence

between the minimum and the maximum across realizations increases with time. Given that

our model generates path dependence through the local scale e¤ect, the initial randomness

�that more or less averages out in the early periods� tends to get reinforced over time,

thus increasing di¤erences across realizations in later periods. In the case of the evolution

of average productivity, Figure 8.1.2 shows that the di¤erence between the minimum and

the maximum is greater in services than in manufacturing. This can be explained by the

17Note that Figure 8.1.3 is not shown because averaging the stock of excess supply at each location for
each time period across the 100 realizations would be hard to interpret. In addition, to increase visibility,
Figure 8.1.1 only shows the coe¢ cient of variation of employment and Figure 8.1.2 only shows aggregate
productivity based on (16).
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randomness in the timing of when innovation jump-starts in the service sector.

The last two pictures show the average productivity in manufacturing and services across

time and space. Compared to the particular realization of the innovation shocks shown

in Figure 5, we now see general areas of high productivity in the respective sectors, but

we are no longer able to distinguish particular clusters within those general areas. This

indicates that in each realization clusters appear, but where exactly they appear within

those areas is random and so averaged out and not perceivable in Figures 8.3.2 and 8.3.3.

Two features still survive though: the increase in manufacturing innovation as one moves

right, and the co-location of innovation in both sectors. The former re�ects the persistence

of initial conditions through scale e¤ects, whereas the latter re�ects the incentive of services

to locate close to consumers.

The fact that clusters disappear through averaging out makes us lose some relevant in-

formation. In as far as reality is also the outcome of a particular realization, we do not

necessarily want peaks and valleys to average out when analyzing the predictions of the

model. This, together with the �nding that average time trends do not di¤er qualitatively

across realizations, suggests that there is some value in analyzing particular realizations. In

the rest of the paper we therefore limit ourselves to a particular realization of the model.

3.3 The Role of Space

A natural question to ask in the context of our theory is: what is the nature of the

additional insights it provides relative to standard growth theories because it incorporates

the distribution of economic activity in space? One dimension that neither standard growth

theory nor standard new economic geography models can analyze is how the dynamics

of innovation across sectors a¤ects the dispersion of land prices in space. In addition,

modeling the location of economic activity in space adds economic e¤ects that can overturn

the standard reasoning behind the e¤ect of particular parameters. This is the case for

transport costs, � , and the elasticity of substitution, 1= (1� �). We now turn to a more

detailed discussion of each of these themes.
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3.3.1 Land Rents.�

As discussed before, average land rents in our benchmark calibration start to increase

around period 30, coinciding with the acceleration in innovation in the service sector. In-

deed, once both sectors innovate, they compete for land close to each other, driving up its

value. This �nding suggests that the observed increase in land rents in the data may be

related to the structural transformation, and in particular, to the take-o¤ of the service

industry. In addition to looking at average land rents, having a spatial model with many

locations also allows us to analyze the predicted evolution in the distribution of land rents,

and compare it to the data.

Figure 9 shows the predicted distributions of land rents for the benchmark calibration at

two points in time: just before the service sector starts to innovate in earnest (period 30,

in yellow) and at the end of the simulation (period 50, in red).18 To avoid being subject

to the randomness of a particular realization, the two distributions in Figure 9 are gener-

ated by non-parametrically estimating the predicted density functions of 100 realizations

of the benchmark parameterization. For each realization, the predicted density function is

obtained by dividing the relevant part of the real line into 100 bins. The dots in the �gures

correspond to the predicted density in each bin for all 100 realizations.19

A number of features stand out. First, the dispersion in land rents clearly increases be-

tween period 30 and period 50 (the standard deviation of land rents increases on average

for the 100 realizations from 0.53 to 1.20). As services start innovating, they become more

concentrated, and thus more unevenly spread across space. The di¤erence between more

desirable and less desirable locations increases, implying more dispersion in land rents. This

evolution is further enhanced by the co-location of manufacturing and service clusters. Sec-

18The distribution excludes the locations that have never innovated, which are mostly specialized in
services. Since these correspond to very low employment density locations, one can interpret them as being
not urbanized. Excluding them allows us to compare the distributions with a sample of urban land rents,
as we do below.
19The dots that coincide with the horizontal axis represent bins that are empty. Because of the �nite

number of locations, there is an area just above the horizontal axis without dots. Indeed, as soon as there
is one location in a given bin, it will have a density bounded away from zero. Given that the support of the
density function increases between periods 30 and 50, the minimum strictly positive density is smaller in
period 50 (the red dots) than in period 30 (the yellow dots).
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ond, though slightly harder to see, the two-sector nature of our model generates a bi-modal

distribution, with the more rightward mode mostly representing locations specialized in

services and the more leftward mode corresponding to locations mostly specialized in man-

ufacturing. The intuition for this result is as follows. Initially, when innovation in the service

sector is nascent, service producers already have an incentive to concentrate in locations

close to the manufacturing clusters, because of the proximity to consumers. As a result,

when innovation takes o¤ in services, it will do so in the vicinity of dense manufacturing

areas, turning them into the most expensive locations. Although some manufacturing areas

� those located close to the right border � initially escape this increased competition for

land, the forces of co-location are such that over time land values in both sectors become

more equal, as re�ected in the left mode becoming smaller and eventually disappearing (if

we let the model run for many more periods).

The predicted rise in the dispersion of land prices across space is consistent with what

happened in the U.S. between 1995 and 2005. Using data from Davis and Palumbo (2007),

Figure 10 plots the distribution of land values (in logs) across 40 MSAs in 1995 (period 30

in the model) and 2005 (period 50 in the model). Note that these data re�ect residential

land values, and are thus unable to capture di¤erences in the evolution of the value of land

in function of its use. This may explain why the observed distributions are uni-modal for

both years. In any case, the overall picture is consistent with the predictions of the model:

the dispersion in land values increased signi�cantly between 1995 and 2005. The model is

therefore able to capture not only the rise in land values since the mid 1990s, but also the

increased dispersion. It also o¤ers an explanation for why this happened: the take-o¤ of

innovation in the service sector led to greater competition for land.

3.3.1 Transport Costs.�

In our theory transport costs have the standard negative e¤ect on static welfare that

is familiar from trade models. Higher transport costs imply that more goods are lost in

transportation and agents obtain fewer gains from specialization. But here higher transport

costs also imply that it is more important to produce in areas close to locations where the
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other sector is producing. So if transport costs are relatively high and one sector is already

somewhat clustered (like the manufacturing sector in our benchmark case presented in

Figure 5), economic activity in the other sector will cluster around it. In the example, the

reason is that relative prices of manufactured goods will rise faster as we move away from

manufacturing clusters (goods have to be transported and are therefore more expensive).

Hence, the service-producing locations close to manufacturing areas have a larger scale,

which results in more incentives to innovate. This is evident in Figure 5.3.3. Note also that

once innovation starts in one location, it increases productivity in other close-by regions and

therefore leads to even more innovation in the cluster. So di¤usion, although not necessary

to obtain this e¤ect, reinforces it.

The next proposition proves this positive e¤ect of higher transport costs on innovation

for an initial condition in which the industry is stagnant.

Proposition 2 Given any level of transport costs �, suppose aggregate productivity in in-

dustry i is stagnant in some period t. Then, an increase in the level of transport costs, �,

weakly increases aggregate productivity growth in industry i at time t:

Proof. Let

m` =

�
` : lim

`0%`
�i (`; t) 6= lim

`0&`
�i (`; t)

�
denote the locations in which specialization changes from one industry to the other. Take

` 2 m` and `0 such that �i (`0; t) = 1 and ` = argmin fjl � `0j for l 2 m`g. Let p (`0; t) =

pi (`
0; t) =pj (`0; t) for j 6= i. Then either @p (`0; t) =@� > 0 for j`� `0j < B for some B > 0

(since p (`0; t) decreases at a rate of 2� with j`� `0j by (13)), or @p (`0; t) =@� < 0 for all `0

such that �i (`0; t) = 1: In the latter case innovation in industry i is una¤ected by �. Thus,

the rest of the proof assumes we are in the former case. Note that since �R=�L is constant

across locations, labor mobility (equation (2)) implies that w (`0; t) =pj (`0; t) increases less

than p (`0; t) for j`� `0j < B (since workers can substitute away from the expensive good).

Thus, (4) implies that Li (`0; t) increases for j`� `0j < B, since Zi (`0; t) is predetermined

as a function of Zi (�; t� 1) by (6). The result is that Zi (`0; t) pi (`0; t)Li (`0; t)� decreases
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with j`� `0j and is increasing in � for j`� `0j < B. Hence, max`0 Zi (`0; t) pi (`0; t)Li (`0; t)
�

is increasing in �. Equations (11) and (12) then imply that max` �i (`; t) is increasing

in �: Note that min`0 Zi (`0; t) pi (`0; t)Li (`0; t)
� is decreasing in � and that equation (11)

is concave in Zi (`
0; t) pi (`0; t)Li (`0; t)

�. However, since innovation is bounded below by

zero, �i (`; t) � 0, and we start from a situation where no region is innovating, namely

�i (`; t) = 0 all `, proving that the max` �i (`; t) is weakly increasing in � is su¢ cient to

show that aggregate productivity in industry i is weakly increasing in �. For a growing

industry this is not necessarily the case, since (11) is concave in Zi (`0; t) pi (`0; t)Li (`0; t)
�

and so reductions in the price of good i in some locations may lead to declines in �i (`; t)

that lead to aggregate declines in productivity.

An immediate corollary of this proposition is that, if one of the industries is growing, pro-

ductivity growth in the stagnant industry jump-starts earlier the higher are transport costs.

Recall that innovation takes o¤ when aggregate productivity growth in the other industry

shifts enough labor to the stagnant sector. With higher transport costs, the increasing labor

share of the stagnant sector will be more densely clustered, leading it to jump-start earlier.

Following the logic above, were we to increase � from the benchmark value of 0:008;

we would increase the density of the service cluster, leading to higher growth, wages and

welfare. Qualitatively, the �gures look similar to Figure 5 so we do not present them here.

It is easier to see the e¤ect of trade costs when we make transport costs lower. We therefore

present two additional simulations with lower transport costs, � = 0:005 and � = 0:001:

Consistent with the argument above, we expect to see less innovation. In Figure 11, where

� = 0:005, innovation in the service sector is less concentrated in space, since being farther

away from the areas specialized in manufacturing is less costly. More important, there

is absolutely no innovation in services for the �rst 29 periods. Lowering � even more to

0:001, as we do in Figure 12, spreads service employment even more as prices depend less

on location. Now innovation happens only in period 40, and when it does, it happens in

virtually all locations. As before, the lower transport costs imply lower wages and welfare.

In contrast to standard economic geography models, the static losses from higher trans-
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port costs are outweighed by the higher incentives to innovate in certain areas. The result is

that growth and overall welfare are higher when transport costs are higher. Recall that the

textbook two-region two-sector economic geography model with labor mobility concludes

that higher transport costs lead to more dispersion (Krugman, 1991; Puga, 1999). The

argument runs as follows: if transport costs are high enough and some factors are immo-

bile, the cost of having to trade between the two regions ceases to compensate for the gains

from agglomeration, so that it becomes bene�cial for both regions to produce both goods.

In as far as concentration of economic activity is related to economic growth, this implies

a negative relation between transport costs and economic growth (Baldwin and Martin,

2004).

Whereas in those models higher transport costs lead to more dispersion, in our model they

lead to more concentration. As argued by Helpman (1997), the key di¤erence is that in our

model, as in Helpman�s, both goods face transport costs. This implies that larger transport

costs induce services to locate closer to manufacturing. This leads to services becoming less

dense in areas far away from manufacturing and more dense in areas closer to manufacturing.

The increase in the scale of production then leads to more innovation in service regions that

locate close to manufacturing. In contrast to standard economic geography models, the

co-location of both sectors thus generates the emergence of a service cluster close to the

manufacturing cluster. This co-location is facilitated in a world with many regions. Of

course, in principle another possibility would be for manufacturing to disperse and locate

closer to services, thus implying less concentration. This does not happen because the

initial cluster of manufacturing gets reinforced over time through innovation and di¤usion,

a force absent in Helpman (1997). In other words, innovation and di¤usion imply that there

are more incentives for services to concentrate and form a cluster close to manufacturing

than for manufacturing to disperse and locate close to services. The �nding that higher

transportation costs lead to more innovation, growth and welfare is an example in which

having a rich spatial dimension leads to some novel economic e¤ects.

The result that higher transport costs can lead to higher welfare can best be understood

through a �second best� argument. In our model, the pro�ts from innovation only last

33



for one period. After that, pro�ts get arbitraged away because workers can relocate and

technology di¤uses. This implies an externality, since �rms do not get the full bene�ts

from innovating. Higher transport costs bring the economy closer to its social optimum

by increasing clustering and innovation, but come at the cost of losing resources. The

optimal policy would be to introduce patents. However, because of the local scale e¤ect

in innovation, optimal patents would have to depend on time and location. Given its high

information content, such a ��rst best�policy is probably infeasible.

3.3.2 Elasticity of Substitution

From standard aggregate logic we would expect a lower elasticity of substitution to lead

to faster innovation in services. The reason is simple: as the elasticity of substitution drops,

the initially higher productivity growth in manufacturing moves a larger share of the labor

force into services, implying higher service density and faster growth.

However, the e¤ect of changes in the elasticity of substitution has an important spatial

component. The main logic is that changes in the elasticity of substitution change the

willingness of agents to substitute services for manufactured goods and, therefore, their

decision to locate in space. If the elasticity of substitution is low, agents are not willing to

substitute consumption across sectors and so, given positive transport costs, care more about

locating near areas that specialize in a di¤erent sector. This prevents the emergence of large

service clusters, since those would increase the average distance to close-by manufacturing

areas. Instead, many smaller service-producing areas locate across manufacturing areas.

This lowers the scale of service-producing regions, implying less innovation in services.

There is another economic force that acts in the opposite direction. As we lower the

elasticity of substitution, workers in manufacturing areas consume a higher share of their

income in services the higher the price of services. Hence, locations specialized in services

and close to areas that are specialized in manufacturing achieve a larger scale and therefore

innovate more.

The result of these di¤erent e¤ects leads to a non-monotonic relation between the elastic-
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ity of substitution and innovation. Starting from our benchmark value of 0.4, if we lower the

elasticity of substitution to 0.33, innovation in services declines dramatically. We present

these results in Figure 13. Innovation in services starts only in period 38 and is all close to

manufacturing. Figure 13.1.3 shows how now we have several switches in specialization as

we move across space.

If we lower the elasticity of substitution further to 0:25, we also obtain dispersed location

of services close to manufacturing areas, but innovation starts in period 28 and is overall

stronger. We present these results in Figure 14.20 As with transport costs, this logic carries

through for a wide range of parameterizations. In sum, the negative e¤ect dominates for

high values of the elasticity of substitution and the positive one for low values. This non-

monotonicity is the result of the relocation motivated by the change in preferences, in

combination with our innovation process. Once again, this result is unique to a spatial-

dynamic setup.

4. CONCLUSION

In this paper we have presented a spatial dynamic growth theory in which �rms choose

how much to invest in innovation (if at all). To deal with the intractability of dynamic spatial

frameworks, we have proposed a theory where labor is mobile, ownership of land and �rms

is diversi�ed, and innovation shocks are spatially correlated and di¤use over time. These

features yields a computable dynamic spatial theory which is rich enough to capture many of

the macroeconomic and spatial stylized facts of the U.S. economy. We �nd that employment

relocation is crucial in balancing innovation across sectors. As innovation in one sector

increases relative to the other sector, employment shifts from the more innovative to the

less innovative sector. Relative prices imply that this labor locates close to manufacturing

clusters, thereby increasing the incentives for innovation in the lagging sector, especially in

those locations close to the innovative sector�s clusters. These e¤ects balance the value of

sectors in the economy and lead to a balanced growth path in which aggregate growth in

20Elasticities of substitution larger than the standard case lead to a larger, but similar-looking, cluster in
manufacturing, so we omit the graphs.
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the economy eventually stabilizes.

A stable aggregate path hides important employment reallocation across space. As the

economy grows, local clusters emerge and disappear. The pattern of clusters is related to

the costs of innovation, the spatial scope of di¤usion, transport costs and the elasticity

of substitution, as we document numerically. For the latter two, incorporating the space

and time dimensions overturns the standard logic of their e¤ects familiar from trade and

growth models. We argue that this process of innovation and employment reallocation helps

rationalize many observed phenomena in the U.S. during the last few decades. Applying

our theory to other time periods or countries could, perhaps, lead to a better understanding

of both the theory and the evolution of economic activity in other contexts.

In calibrating the model, we have found that some of its quantitative implications are

hard to reconcile with the data. In particular, in our benchmark calibration targeting the

change in employment shares over time leads to a reduction in the relative price of goods

that is somewhat too large. The model also generates too much innovation and therefore

aggregate productivity grows faster than in the data. This is especially the case if we want

to target the timing of innovation. Exploring other speci�cations of preferences (such as

non-homotheticities as in Buera and Kaboski, 2007) or innovation costs may yield a better

�t, although we believe, it would obscure some of the spatial-dynamic economic forces we

uncover. We therefore leave this exploration for future research.
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Figure 2: Employment Shares and Relative Prices
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Figure 3: Wages, Land Prices, and Housing Prices
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Figure 4: Value Added per Worker
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Figure 5: Simulation Results for Benchmark Parameterization
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Figure 6: Fast Declining Di¤usion (� = 50)
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Figure 7: Slow Declining Di¤usion (� = 10)
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Figure 8: Mean, Max., and Min. over 100 Realizations for Benchmark Parameterization
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Figure 9: Evolution of Model�s Land Rent Distribution (Benchmark Parameterization)
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Figure 10: The Evolution of the Land Value Distribution across MSA�s in the Data
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Figure 11: Low Transport Costs (� = 0:005)
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Figure 12: Very Low Transport Costs (� = 0:001)
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Figure 13: Low Elasticity of Substitution (� = �2)
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Figure 14: Very Low Elasticity of Substitution (� = �3)
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