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1 Introduction

Macroeconomists have devoted signi�cant e¤ort to the identi�cation and study of technology

shocks. The most commonly used empirical approach is structural vector autoregressions

(VAR), frequently making use of long run restrictions (e.g. Shapiro and Watson (1988),

Blanchard and Quah (1989), and Gali (1999)). Such identi�cation leaves open the question

of whether the resulting shocks a¤ect technology on impact or are �news shocks�that point

to future movements in technology while leaving current productivity largely unchanged.

This distinction is critical because the two shocks have very di¤erent implications in most

models, as detailed later in this paper and in Sims (2009).

News shocks have attracted growing interest frommacroeconomists in recent years (Cochrane

(1994b), Beaudry and Portier (2006), and Barsky and Sims (2008)). Much of this work has

been theoretical (Beaudry and Portier (2004) and Jaimovich and Rebelo (2008)), with a fo-

cus on whether or not news about changes in future technology can be an important source

of cyclical �uctuations. In comparison to the theoretical work in this area, there has been

relatively little empirical work aimed at isolating these news shocks, and certainly no widely

accepted method for identifying them.

This paper �lls that void by proposing and implementing a generalized method for the

identi�cation of news shocks. In a vector autoregression (VAR) featuring a utilization

adjusted measure of total factor productivity (hereafter �technology�) and several forward-

looking variables, we identify the surprise technology shock as the innovation in technology.

We then identify the news shock as the structural shock orthogonal to technology innova-

tions that best explains future variation in technology. This identi�cation strategy is an

application of principal components. It identi�es the news shock as the linear combination

of reduced form innovations orthogonal to technology which maximizes the sum of contribu-

tions to technology�s forecast error variance over a �nite horizon. This is a highly �exible

empirical approach. It can be applied to systems estimated in levels or as stationary vector

error correction (VECM) models, and on systems with a large number of variables without

having to impose additional structure.

Cognizant of recent work questioning the ability of structural VARs to adequately identify

economic shocks (e.g. Chari, Kehoe, and McGrattan (2008)), we provide simulation-based

evidence that our empirical approach is likely to perform well in practice. We generate

data from a New Keynesian model augmented with news shocks about future technology

and apply our identi�cation strategy to the simulated data. We �nd that our methodology

applied to arti�cial data reliably identi�es both news and surprise technology shocks as well

as their dynamic implications for the variables of the model. In simulated samples of realistic
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sizes, the estimated impulse responses to a news shock are roughly unbiased at all horizons,

and the average correlation between true and identi�ed shocks exceeds 0.85.

We focus on the implications of news shocks for long run growth and for forward-looking

variables; Sims (2009) applies a similar methodology to study the implications of news

shocks for the business cycle. We include in our benchmark VAR a quarterly version

of the Basu, Fernald, and Kimball (2006) utilization-adjusted technology series, as well as

measures of aggregate consumption, stock prices, consumer con�dence, in�ation, and inter-

est rates. Beaudry and Portier (2006) document that surprise movements in stock prices

are informative about future productivity movements, while Barsky and Sims (2008) reach

similar conclusions for forward-looking measures of consumer con�dence. Aggregate con-

sumption should incorporate information about future fundamentals under the permanent

income hypothesis, while in�ation is a forward-looking jump variable in typical models with

nominal frictions. The interest rate is included to allow the monetary authority to respond

to news shocks as well as to check that the real interest rate implications of news shocks are

consistent with the general equilibrium predictions of standard DSGE models.

In post-war US data, we �nd that news shocks are responsible for the bulk of low frequen-

cies movements in productivity. In contrast, surprise innovations to measured technology

appear largely transitory. Since information about new processes is typically available be-

fore any actual e¤ect on productivity, this �nding �ts nicely with the idea that a narrow

view of technology as the result of �inventions�is largely responsible for the trend, but that

there are also a variety of real shocks that are di¢ cult to pin down that behave similarly

to the persistent but transitory productivity disturbances emphasized in the real business

cycle literature (Kydland and Prescott (1982)). An historical simulation on the basis of

our identi�ed VAR shows that surprise technology shocks account for most of the short run

variation in technology, while news shocks help to explain the productivity slowdown of the

1970s and ensuing speed up of the 1990s.

We �nd that favorable news shocks lead to increases on impact in both aggregate con-

sumption and stock prices. Both of these series undershoot their long run responses; this

undershooting is consistent with general equilibrium implications associated with increases

in real interest rates. While news shocks account for large shares of the variation in aggregate

consumption at most horizons, they only modestly contribute to the forecast error variance

of stock prices at short horizons, explaining a larger share of stock price variation at lower

frequencies. Indeed, there appear to be important movements in stock prices unrelated to

technology shocks altogether. Our historical simulations show that news shocks can account

for the general downward trend in stock prices from the 1960s through the early 1980s as

well as the ensuing bull market from the early 1980s onwards. News shocks do not, however,
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capture most of the short run cyclical �uctuations in stock prices evident in the data.

Consistent with the �ndings in Barsky and Sims (2008), favorable news shocks are pos-

itively correlated with surprise movements in forward-looking measures of consumer con�-

dence. Rather strikingly, good news shocks are highly disin�ationary, and explain a large

share of the forecast error variance of in�ation both on impact and at subsequent horizons.

The historical simulations reveal that news shocks are capable of explaining most of the

important movements in both consumer con�dence and in�ation over the sample period. In

particular, news shocks explain well the coincident high in�ation and low con�dence of the

1970s and the reverse situation of the 1990s.

Our �nding that news shocks are highly correlated with surprise movements in in�ation

is somewhat surprising. The strong correlation between news and in�ation is potentially

consistent with forward-looking models of price-setting, in which in�ation is equal to a

present discounted value of future real marginal costs. The prediction of the benchmark New

Keynesian model augmented with a Taylor rule (1993), however, is actually for good news to

be in�ationary on impact, not disin�ationary as we �nd in the data. In Section 4 we diagnose

the reasons for this prediction of the model, and propose various modi�cations capable of

making it better �t the data. We show that real wage rigidity of the type introduced

by Blanchard and Gali (2007) is capable of making good news shocks disin�ationary. In

addition, we show that sensible variations on the Taylor rule �in particular ones in which

the monetary authority responds to an activity measure di¤erent from the theoretical output

gap �are also capable of generating disin�ation. We then estimate a subset of parameters

of the model with these proposed modi�cations. We use a minimum distance estimator to

pick structural parameters to match the observed response of in�ation to a news shock in

the data. The parameterized model is capable of producing a disin�ation in response to

good news that is both quantitatively and qualitatively similar to what we estimate in the

data.

The remainder of the paper is organized as follows. The next section lays out our

empirical strategy in formal detail and provides simulation evidence that it is in fact capable

of doing a good job. Section 3 presents our main results, while Section 4 rationalizes our

�nding that favorable news shocks are disin�ationary in the context of the New Keynesian

model with forward-looking price-setting. The �nal section concludes.

2 Empirical Strategy

We assume that aggregate technology is well-characterized as following a stochastic process

driven by two shocks. The �rst is the traditional surprise technology shock of the real
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business cycle literature, which impacts the level of technology in the same period in which

agents see it. The second is the news shock, which is di¤erentiated from the �rst in that

agents observe the news shock in advance.

Letting A denote technology, this identifying assumption can be expressed in terms of

the moving average representation:

� lnAt = [B11(L) B12(L)]

"
"1;t

"2;t

#
"1;t is the conventional surprise technology shock while "2;t is the news shock. The only

restriction on the moving representation is that B12(0) = 0, so that news shocks have no

contemporaneous e¤ect on technology.1

The following is an example process satisfying this assumption:

lnAt = At�1 + gt�1 + "1;t (1)

gt = (1� �)g + �gt�1 + "2;t (2)

Here log technology follows a random walk with drift, where the drift term itself follows a

stationary AR(1) process. � describes the persistence of the drift term and g is the steady

state growth rate. "1;t is the conventional surprise technology shock. Given the timing

assumption, "2;t has no immediate impact on the level of technology but portends a period

of sustained growth.

In a univariate context, it would not be possible to separately identify "1 and "2. The

identi�cation of news shocks must come from surprise movements in variables other than

technology. As such, estimation of a vector autoregression (VAR) seems sensible in this

context. In a system featuring an empirical measure of aggregate technology and several

forward-looking variables, we identify the surprise technology shock as the reduced-form in-

novation in technology. The news shock is then identi�ed as the shock that best explains

future movements in technology not accounted for by its own innovation. This identi�cation

follows directly from our assumption that two shocks characterize the stochastic process for

technology. In practice, our identi�cation strategy involves �nding the linear combination of

VAR innovations contemporaneously uncorrelated with technology innovations which maxi-

mally contributes to technology�s future forecast error variance. This identi�cation strategy

is closely related to Francis, Owyang, and Roush�s (2007) maximum forecast error variance

1More generally, the shock to the level and the shock to the growth rate of technology may be correlated.
If so, our orthogonalization assigns the common component to the surprise technology shock.
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approach, which builds on Faust (1998) and Uhlig (2003, 2004). On the basis of simula-

tions from a popular DSGE model, we show in subsection 2.2 that our approach is likely to

perform well at identifying news shocks in practice.

2.1 Identifying News Shocks

Let yt be a k� 1 vector of observables of length T . One can form the reduced form moving
average representation in the levels of the observables either by estimating a stationary vector

error correction model (VECM) or an unrestricted VAR in levels:

yt = B(L)ut (3)

Assume there exists a linear mapping between innovations and structural shocks:

ut = A0"t (4)

This implies the following structural moving average representation:

yt = C(L)"t (5)

WhereC(L) = B(L)A0 and "t = A
�1
0 ut. The impact matrix must satisfyA0A

0
0 = �, where

� is the variance-covariance matrix of innovations, but it is not unique. For some arbitrary

orthogonalization, eA0 (e.g. a Choleski decomposition), the entire space of permissible impact

matrices can be written as eA0D, where D is a k � k orthonormal matrix (DD0 = I).

The h step ahead forecast error is:

yt+h � Et�1yt+h =
hX
�=0

B� eA0D"t+h��

The share of the forecast error variance of variable i attributable to structural shock j at

horizon h is then:


i;j(h) =

e0i

 
hX
�=0

B� eA0Deje
0
jD

0 eA0
0B

0
�

!
ei

e0i

 
hX
�=0

B��B
0
�

!
ei

=

hX
�=0

Bi;� eA0


0 eA0

0B
0
i;�

hX
�=0

Bi;��B
0
i;�

The ei denote selection vectors with one in the ith place and zeros elsewhere. The

selection vectors inside the parentheses in the numerator pick out the jth column ofD, which

we will denote by 
. eA0
 is then a k � 1 vector corresponding with the jth column of a
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possible orthogonalization. The selection vectors outside the parentheses in both numerator

and denominator pick out the ith row of the matrix of moving average coe¢ cients, which we

denote by Bi;� .

Let technology occupy the �rst position in the system, and let the unanticipated shock

be indexed by 1 and the news shock by 2. Our identifying assumption implies that these

two shocks account for all variation in technology at all horizons:


1;1(h) + 
1;2(h) = 1 8 h

We propose picking parts of the impact matrix to come as close as possible to making this

expression hold. With the surprise shock identi�ed as the innovation in technology, 
1;1(h)

will be invariant at all h to alternative identi�cations of the other k � 1 structural shocks.
As such, choosing elements ofA0 to come as close as possible to making the above expression

hold is equivalent to choosing the impact matrix to maximize contributions to 
1;2(h) over

h. Since the contribution to the forecast error variance depends only on a single column of

the impact matrix, this suggests choosing the second column of the impact matrix to solve

the following optimization problem:


� = argmax
HX
h=0


1;2(h) =

hX
�=0

Bi;� eA0


0 eA0

0B
0
i;�

hX
�=0

Bi;��B
0
i;�

s.t.

eA0(1; j) = 0 8 j > 1

(1; 1) = 0


 0
 = 1

So as to ensure that the resulting identi�cation belongs to the space of possible orthogo-

nalizations of the reduced form, the problem is expressed in terms of choosing 
 conditional

on an arbitrary orthogonalization, eA0. H is some �nite truncation horizon. The �rst two

constraints impose that the news shock has no contemporaneous e¤ect on the level of tech-

nology. The third restriction (that 
 have unit length) ensures that 
 is a column vector

belonging to an orthonormal matrix. Uhlig (2003) shows that this maximization problem

can be rewritten as a quadratic form in which the non-zero portion of 
 is the eigenvector
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associated with the maximum eigenvalue of a weighted sum of the lower (k�1)�(k�1) sub-
matrices of

�
B1;� eA0

�0 �
B1;� eA0

�
over � . In other words, this procedure essentially identi�es

the news shock as the �rst principal component of technology orthogonalized with respect

to its own innovation.

The common assumption in the news shock literature is that a limited number of shocks

lead to movements in aggregate technology. Our identi�cation strategy is based solely on

this assumption, and does not rely upon (potentially invalid) auxiliary assumptions about

other shocks. Our approach is a partial identi�cation strategy, only identifying the two

technology shocks. As such, it can be conducted on a system with any number of variables

without having to impose additional assumptions.

Our identi�cation strategy is thus highly �exible, and encompasses the existing identify-

ing assumptions in the empirical literature on news shocks. Beaudry and Portier (2006) and

Beaudry, Dupaigne, and Portier (2008) propose identifying news shocks with the innovation

in stock prices orthogonalized with respect to technology innovations. Were the conditions

required for this identi�cation to be valid satis�ed, our approach would identify (asymptot-

ically) exactly the same shock. Beaudry and Lucke (2009) propose using a combination of

short and long run restrictions to identify news shocks. In particular, in systems featuring

technology and stock prices, they use two long run restrictions to identify the two technol-

ogy shocks, and di¤erentiate the news shock from the surprise technology shock with an

orthogonality restriction. This identi�cation is identical to ours as the truncation horizon

gets arbitrarily large (i.e. as H ! 1). In practice the long run identi�cation is problem-

atic in that it identi�es a news shock and a surprise technology shock that together leave a

large share of the variance of technology unexplained. As shown in Sims (2009), the long

run identi�cation fails to account for as much as 40 percent of the variance of measured

technology at business cycle frequencies.

Our approach has at least four advantages over previous work. First, we do not rely

heavily upon stock prices as an information variable to help reveal movements in future tech-

nology. Indeed, we �nd that stock prices are fairly uninformative about future movements

in technology relative to other forward-looking variables. Second, since ours is a partial

identi�cation strategy, we can include a large number of variables in the system without

having to impose potentially invalid auxiliary assumptions about the other shocks. Third,

we address the problem with existing work that the resulting shock leaves a large share of

technology unexplained. Finally, our approach has better �nite sample properties than the

approach based on long run restrictions. Identi�cation at frequency zero is based on sums

of VAR coe¢ cients, which are biased in �nite samples. Summing up biased coe¢ cients ex-

acerbates the bias, and the resulting identi�cation and estimation are often highly unreliable
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(Faust and Leeper (1997)). Francis, Owyang, and Roush (2007) show that medium run

identi�cation similar to that proposed here performs better in �nite samples than does long

run identi�cation.

2.2 Simulation Evidence

We now present simulation evidence which con�rms that our proposed empirical strategy is

indeed capable of doing a good job of identifying news shocks. We consider a simple New

Keynesian model with exogenous price stickiness. The equilibrium conditions of the model

log-linearized about the balanced growth path are:

Etct+1 = ct + � (it � Et�t+1) (6)

ct = yt (7)

�t =

�
(1� �)(1� ��)

��

�
mct + �Et�t+1 (8)

yt = at + nt (9)

mct = wt � pt � at (10)

1

�
nt = wt � pt �

1

�
ct +  t (11)

it = �it�1 + (1� �)
�
�y(yt � yft ) + ��(�t � ��)

�
+ "3;t (12)

 t = � t�1 + "4;t (13)

These are the standard equations of the New Keynesian model �see Woodford (2003)

or Gali (2008) for a complete derivation. Equation (6) is the consumption Euler equation,

with � the elasticity of intertemporal substitution. Equation (7) re�ects the accounting

identity that, in the model without capital, all output must be consumed in equilibrium.

Equation (8) is the conventional New Keynesian Phillips Curve, with � describing the degree

of exogenous price stickiness and � the subjective discount factor. Output is produced

according to a constant returns to scale production function in technology and employment.
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Let at = lnAt, and assume that it follows the stochastic process given in (1) and (2) above.

Equation (10) de�nes real marginal cost as the (log) discrepancy between the real wage and

the marginal product of labor. Equation (11) is the labor supply curve, with � the Frisch

elasticity and  t a stochastic preference parameter, which obeys equation (13). Equation

(12) describes a partial adjustment nominal interest rate rule, with yft corresponding to the

level of output that would obtain in the absence of nominal rigidities.

We choose a baseline parameterization as follows: � = 1, � = 1, � = 0:99, � = 0:67,

� = 0:75, �y = 1, �� = 1:5, � = 0:6, � = 0:5, and g = 0:0025. Technology (and thus

output) grow at the annualized rate of of one percent along the balanced growth; given

the unit intertemporal elasticity of substitution, labor hours are stationary. We draw the

four shocks from mean zero normal distributions with the following standard deviations:

�1 = 0:006, �2 = 0:00165, �3 = 0:001, and �4 = 0:001. Given the calibration of �, a one

standard deviation news shock portends a level of technology that is one third of a percent

higher along the new balanced growth path.

For this calibration of parameters, we simulate 2000 data sets with 200 observations each.

For each simulation we estimate a four variable, unrestricted vector error correction model

(VECM) in technology, consumption, in�ation, and the interest rate with four lags.2 Similar

results obtain when the system is estimated as a VAR in levels. We identify the news shock

by following the identi�cation strategy outlined above, maximizing the variance share over

a horizon of twenty quarters.

Figure 1 depicts both theoretical and estimated impulse responses averaged over the

simulations to a news shock. The theoretical responses from the calibrated model are in

solid black, while the estimated responses averaged over the simulations are depicted by the

dotted lines. The dashed lines depict the 10th and 90th percentiles of the distribution of

estimated impulse responses. The real interest rate response in the simulations is imputed

as the nominal interest rate response less the VAR forecast of one quarter ahead in�ation.

The interest rate and in�ation responses are expressed at an annualized rate.

A cursory examination of the �gure reveals that our empirical strategy is capable of

performing well on model generated data. The estimated impulse responses to a news shock

are roughly unbiased on impact and at subsequent horizons. There is some evidence of

a slight upward bias in the estimated responses of technology and consumption at longer

horizons, though it is very small. The estimated responses from the simulations capture

well the dynamics implied by the model, and the distributional con�dence bands contain

2In particular, we allow the matrix of cointegrating relations to be full rank, so that this is asymptotically
equivalent to a VAR in levels with one more lag. This is an ine¢ cient estimation procedure, as we know from
the model that there is only one cointegrating relationship. Nevertheless, this is the conservative approach
advocated by Hamilton (1994), and we will also apply it in the empirical section of the paper.
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the model responses at all horizons. Similarly good results obtain when focusing on the

surprise technology shock. The average correlation between the identi�ed and true news

shocks across the simulations is 0.83. The median correlation is 0.88, and the 10th and

90th percentile correlations are 0.67 and 0.94, respectively. As the sample size becomes

arbitrarily large, the distributions of estimated responses collapse on the model responses

and the correlation between true and identi�ed shocks approaches one.

We also want to verify that we do not spuriously identify a news shock when no such

shocks are present. When the data are generated without news shocks (i.e. with �2 = 0),

our empirical procedure identi�es a very small spurious news shock in the sense that, in

�nite samples, it identi�es a positive long run response of technology (and consumption,

given that they are cointegrated). Nevertheless, the estimated responses of interest rates

and in�ation (and consumption on impact and at high frequencies) to the non-existent news

shock are unbiased. This small degree of spuriousness goes away as the simulated sample

sizes become larger.

Alternative calibrations of the parameters of the model or slight di¤erences in the em-

pirical procedure (di¤erent truncation horizon, di¤erent lag lengths, VAR in levels instead

of VECM, etc.) produce very similar results. The Appendix to Sims (2009) conducts simu-

lation exercises for a similar empirical procedure on data generated from a real model with

capital and reports similarly good simulation results. Sims (2009) also considers the role

of any potential non-invertibilities (see Fernandez-Villaverde, Rubio-Ramirez, Sargent, and

Watson (2007)) owing to the presence of news shocks and shows that these are likely of

limited importance. Non-invertibilities arise when the variables included in the VAR fail to

reveal the value of missing states. As stressed by Watson (1994), the inclusion of forward-

looking variables mitigates the impact of potential non-invertibilities even if these variables

do not fully reveal the missing state(s). Our simulation results, as well as the inclusion of a

variety of additional forward-looking variables in our empirical VARs, suggest that one need

not be overly concerned with non-invertibilities in this context.3

3 Empirical Results

Our empirical strategy requires a suitable measure of aggregate technology. The conventional

Solow residual is not particularly appealing, as standard growth accounting techniques make

3Blanchard, L�Hullier, and Lorenzoni (2009) argue that the presence of news shocks observed with noise
renders the system non-invertibile, invalidating structural impulse response analysis. In their model it
is not possible to separately identify the impulse responses to a noise disturbance, but structural VAR
identi�cation of the news shock from the perspective of the agents in the model continues to be capable of
reliably identifying the model�s structural impulse responses.
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no attempt to control for unobserved input variation. Since our identi�cation strategy

requires orthogonalization with respect to technology, it is important that our measure of

technology adequately control for unobserved input variation. To address this issue, we

employ a quarterly version of the Basu, Fernald, and Kimball (2006) technology series.4

Their insight is to exploit the �rst order condition implying that �rms should vary input

intensity along all margins simultaneously. As such, they propose proxying for unobserved

input variation with observed variation in hours per worker.

Formally, the quarterly version of this technology series presumes a constant returns to

scale production function of the form: Y = AF (ZK;EQH), where Z is capital utilization, E

is labor e¤ort, H is total labor hours, and Q is a labor quality adjustment. The traditional

Solow residual is then �A = �Y � ��K � (1 � �)�QH, where � is capital�s share. The

utilization correction subtracts from this �U = ��Z + (1 � �)�E, where observed labor

variation is used as a proxy for unobserved variation in both labor and capital. The standard

Solow residual is both more volatile and procyclical than the resulting corrected technology

measure.

We measure consumption as the log of real consumption of non-durables and services.

Similar results obtain when durable consumption is included. We convert this series to per

capita by dividing by the civilian non-institutionalized population aged sixteen and over.

Our results are insensitive to this transformation. Our measure of stock prices is the log of

the real S&P 500 Index. The measure of in�ation is the annualized percentage change in the

CPI for all urban consumers. We use the three month Treasury Bill as our measure of the

interest rate. The stock price, price index, and interest rate data are available at a monthly

frequency. We convert to a quarterly frequency by taking the last monthly observation in

each quarter. The consumer con�dence data are from the Michigan Survey of Consumers,

and summarize responses to a forward-looking question concerning aggregate expectations

over a �ve year horizon.5 For more on the con�dence data, see Barsky and Sims (2008).

We include the following variables in our benchmark system: the Basu, Fernald, and

Kimball (2006) technology measure, stock prices, consumption, consumer con�dence, in�a-

tion, and interest rates. The data begin in the �rst quarter of 1960 and end in the third

quarter of 2007. We follow a conservative approach and estimate the system as an un-

restricted vector error correction model (VECM); we obtain nearly identical results when

estimating the system as a VAR in levels. As suggested by a variety of information criteria,

4This series was constructed and given to us directly by John Fernald.
5The question underlying the con�dence data is: �Looking ahead, which would you say is more likely �

that in the country as a whole we�ll have continuous good times during the next �ve years, or that we�ll have
periods of widespread unemployment and depression, or what?� The series is constructed as the percentage
of respondents giving a favorable answer less the percentage giving an unfavorable answer plus 100.
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we estimate the system with four lags. In terms of the identi�cation strategy outlined in the

previous section, we set the truncation horizon at H = 60. The news shock is thus identi�ed

as the structural shock orthogonal to technology innovations that best explains technology

movements over a �fteen year horizon.

Figure 2 shows the estimated impulse responses to a news shock. The dashed lines

represent one standard error con�dence bands, and are obtained from the bias-corrected

bootstrap of Kilian (1998). Following a favorable news shock, technology grows smoothly

for an extended period of time, with a long run response in the neighborhood of 0.5 percent.

Consumption jumps up modestly on impact. After the impact e¤ect, it grows rapidly for a

number of quarters, reaching a new long run level of roughly 0.75 percent. The signi�cant

undershooting of consumption is consistent with the general equilibrium implications of

higher real interest rates, which is broadly compatible with what we estimate in the data.6

The implied intertemporal elasticity of substitution from the estimated responses is 0.56,

which is well within the range of other estimates in the literature.

Stock prices increase on impact in response to a favorable news shock, though this e¤ect

is statistically insigni�cant. Immediately after impact, they rise rather sharply over the

next four to eight quarters, quickly levelling o¤ to a new permanently higher steady state.

The sharp predictable increase in stock prices following impact (though not statistically

signi�cant) is consistent with the general equilibrium implications of higher real interest

rates that we �nd in the data.7 Consumer con�dence rises strongly and signi�cantly on

impact in response to the favorable news. It rises further after impact before reverting

to its initial value. This impulse response is consistent with the �ndings in Barsky and

Sims (2008) that con�dence innovations are prognostic of future productivity improvements.

Perhaps the most striking impulse response is that of in�ation. Following a good news

shock, in�ation jumps down sharply, and this e¤ect is highly statistically signi�cant. While

the disin�ation is statistically signi�cant for a number of quarters after impact, it is not

particularly persistent, with the largest response on impact.

6The real interest rate impulse response is imputed in the data as the nominal interest rate responses less
the one quarter ahead VAR forecast of in�ation, and is expressed at an annualized percentage rate. The
point estimate of the impact response of the real interest is negative, though statistically insigni�cant, but
is positive and signi�cant at subsequent horizons. The calculation of the intertemporal elasticity is based
on a regression of the consumption growth response on the non-annualized real interest rate response.

7There are speci�cations of our identi�cation strategy in which the impact e¤ect of the news shock on
stock prices is negative (though also statistically insigni�cant). In particular, the impact e¤ect on stock
prices is smaller the smaller is the truncation horizon in the identi�cation problem. The theoretical impact
of favorable news on stock prices is ambiguous in most models when rates of return rise; an impact decline
in stock prices is potentially consistent with the general equilibrium implications of rising real rates we �nd
in the data. Regardless of the truncation horizon, the impact e¤ect is always followed by positive growth
in stock prices to a new higher steady state level.

12



Table 1 shows the forecast error variance decomposition for our benchmark estimation.

The numbers in brackets are the one standard error bias-corrected bootstrap con�dence

intervals. The news shock explains a growing share of the variance of technology as the

horizon increases; at a horizon of ten years, for example, news shocks explain more than half

of the variation in technology. Our identi�ed shock accounts for a modest, though non-

negligible, share of the consumption innovation variance. The news shock quickly accounts

for the bulk of the variance in consumption as the horizon grows. News shocks are only

weakly correlated with stock price innovations on impact, but, similarly to consumption,

account for a growing share of stock price movements at lower frequencies. The identi�ed

shock is positively and strongly correlated with consumer con�dence innovations and explains

a large share of movements in con�dence at all horizons. News shocks explain a modest

fraction of interest rate variations. Perhaps somewhat surprisingly, we �nd that news shocks

account for the bulk of variation in in�ation, explaining slightly more than 60 percent of its

innovation variance.

Figure 3 shows impulse responses to the surprise technology shock. The upper left re-

sponse shows the impulse response of technology to its own innovation. Strikingly, this

response is quite transitory. In particular, technology jumps up roughly 0.7 percent on im-

pact but begins to decline immediately, with the point estimate of the response roughly zero

at horizons in excess of eight years. Technology�s estimated response to its own innovation,

in conjunction with the slowly-building response to the identi�ed news shock, suggests that

the bulk of the permanent component of productivity is attributable to news shocks.8 The

surprise technology shock leads to small transitory increases in both consumption and stock

prices; the reversion in these series is consistent with the equilibrium implications of lower

real rates, which is what we �nd in the data. The surprise technology shock is associated

with little important movement in consumer con�dence, disin�ation at high frequencies, and

slightly higher in�ation at longer horizons.

One narrow view of aggregate technology is that it re�ects inventions and the development

of new productive processes. It seems reasonable that this kind of technological progress is

at least partly forecastable and thus known in advance. Implicit in the real business cycle

literature, on the other hand, is the idea that there are also di¢ cult to pin down real shocks

which manifest themselves as transitory but persistent movements in measured technology.

Our �ndings support the notion that the former is responsible for the trend, while the latter

accounts for most of the high frequency variation in technology.

8We do not impose that the long run response of technology to its own innovation is zero. Indeed, it
is technically not �the point estimate of the response is roughly -0.1 percent at su¢ ciently long horizons.
Likewise, the point estimates for the long run responses of both consumption and stock prices are slightly
negative, though all are indistinguishable from zero in the both the statistical and economic senses.
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Table 2 presents corroborating evidence for these conclusions from a series of long horizon

regressions. In particular, the table shows the adjusted R2 from several regressions of

k step ahead technology growth on the current levels of the remaining variables in our

benchmark system. While we are able to account for only about 3 percent of the one

quarter ahead variation in technology growth, almost 25 percent of technology growth over a

one year horizon is explicable by our forward-looking variables. This number rises to more

than 50 percent at horizons in excess of �ve years. Our �ndings that a large fraction of

productivity growth over long horizons is predictable and that the low frequency component

of productivity is largely unrelated to technology innovations are similar to Rotemberg�s

(2003) model of smooth trends driven by slowly di¤using technical progress.

Figure 4 depicts the impulse responses of technology and stock prices to a stock price

innovation orthogonalized with respect to the technology innovation. After a period of ini-

tial decline, technology grows slowly, with a positive long run response, though smaller in

magnitude than technology�s response to our identi�ed news shock. This impulse response is

nearly identical to the responses from the same identi�cation in Beaudry and Portier (2006)

and Beaudry, Dupaigne, and Portier (2008). The qualitative and quantitative discrepancies

between technology�s response to a news shock and its response to an orthogonalized stock

price innovation are consistent with our �nding that the news shock is only modestly corre-

lated with stock price innovations. In response to its own innovation orthogonalized with

respect to technology, the stock price rises on impact and then revert, though levelling o¤ to

a new higher level in the long run. The estimated long run response is quantitatively similar

in magnitude to the long run response of stock prices to the news shock. In conjunction with

the estimated reversion to its own orthogonalized innovation at low horizons, this suggests

that there is an important transitory component to stock prices. This �nding is consistent

with Cochrane�s (1994a) conclusion that stock price innovations orthogonalized with respect

to dividends are largely transitory.

In Figure 5 we show several historical simulations from our benchmark system. The

upper two �gures plot the actual and simulated values of technology, with the simulated

values obtained using the estimated VAR coe¢ cients assuming that news shocks or surprise

technology shocks are the only stochastic disturbances in the system, respectively. News

shocks appear to explain movements in technology over long horizons quite well, while the

surprise technology shock accounts for almost all of the short run variation. In particular,

the news shock simulation does a good job of accounting for the productivity slowdown in

the 1970s and ensuing speedup in the 1990s. News shocks do not explain signi�cant short

run �uctuations in technology. These simulations are consistent with the �ndings from our

impulse responses and variance decomposition that news shocks are the main driving force
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behind low frequency movements in technology, while surprise technology shocks account for

most of the high frequency variation.

The remaining plots in Figure 5 show the simulated and actual values of some of the other

series in the benchmark system, assuming that news shocks are the only shock. Our identi�ed

news shock does an excellent job in accounting for historical movements in both in�ation

and consumer con�dence. In particular, the news shock explains well the coincident high

in�ation and low con�dence of the 1970s as well as the reverse situation in the 1990s. News

shocks appear to do an exceptional job of explaining historical movements in consumption.

Consistent with the results from the variance decomposition, news shocks do a good job

accounting for low frequency movements in stock prices. In particular, the simulation does

a good job at picking up the general downward trend in stock prices from the 1960s through

the early 1980s as well as the bull market from the early 1980s onward. News shocks do not

appear to account for the large cyclical variations in stock prices evident in the data.

Figure 6 shows estimated impulse responses to a favorable news shock from a system

similar to our benchmark, but with average labor productivity in place of the utilization

corrected technology measure.9 Our measure of labor productivity is output per hour in the

non-farm business sector, and is obtained from the BLS. The estimation and identi�cation

of news shocks are otherwise the same as before. The results are qualitatively very similar

to the results from the system with the corrected technology measure. Labor productivity

grows smoothly and steadily in response to the news shock, with a long run response that is

quantitatively somewhat larger than is the response of technology.10 News shocks account for

a larger share of the innovation variance in stock prices in the system with labor productivity,

and the impulse response of stock prices is quantitatively larger at all horizons. Consumption

jumps up by less on impact in response to good news in the system with labor productivity,

but otherwise follows a very similar dynamic path. Consumer con�dence still rises on impact

and at most horizons, though the response is somewhat smaller. As before, news shocks

are highly disin�ationary and are associated with higher real interest rates. News shocks

continue to appear to account for a large share of the permanent component of productivity.

The correlation between the news shock identi�ed in this system with the shock from the

9The assumption that news shocks are contemporaneously orthogonal to the empirical measure of tech-
nology becomes apparently more precarious when using average labor productivity in place of technology.
Nevertheless, Ball and Mo¢ tt (2001) have argued that average labor productivity is a more exogenous
measure of true technology than is total factor productivity.
10In a model with capital accumulation, it is to be expected that average labor productivity would respond

more than true technology in the long run to a news shock of the same size. With a capital�s share of one-
third and stationary labor hours, a neoclassical model, for example, would predict a long run response
of labor productivity 1.5 times that of true technology. The impulse responses in Figure 6 are roughly
consistent with this prediction.

15



benchmark system with the utilization technology measure is also high at 0.86.

While some small quantitative discrepancies do exist, our qualitative results are robust

to other sensible variations on our benchmark estimation. The general pattern of responses

is similar when using the uncorrected Solow residual, though stock prices and consumption

respond less in the long run and there is some evidence of reversion in the technology response

to the news shock. Likewise, we obtain qualitatively similar results with di¤erent lag lengths

and di¤erent speci�cations of the truncation horizon in the optimization problem underlying

identi�cation, as well as when the system is estimated as a VAR in levels as opposed to a

VECM. We robustly �nd that favorable news shocks account for an important part of the

permanent component of productivity, are strongly and negatively correlated with in�ation

innovations, positively correlated with consumer con�dence innovations, positively correlated

with consumption innovations, and are associated with increasing stock prices.

4 In�ation and News Shocks

Our main empirical �ndings can be summarized as follows. Shocks contemporaneously

uncorrelated with technology innovations account of the bulk of productivity movements

over long horizons, while technology innovations themselves are quite transitory. News

shocks are associated with important �uctuations in aggregate consumption, stock prices,

consumer con�dence, and consumer price in�ation. That forward-looking variables such as

consumption or stock prices would incorporate news about future productive possibilities is

not surprising. That a survey measure of consumer con�dence would also accurately re�ect

information about the future may be more surprising, but is consistent with the evidence

in Barsky and Sims (2008). That news shocks are so heavily incorporated into in�ation

innovations is the most intriguing and unexpected result, and we examine it in more detail

in this section.

A natural framework for studying movements in in�ation is the New Keynesian model

with Calvo (1983) price-setting. This model o¤ers a potential explanation for our empirical

�nding that favorable news about future productivity is highly disin�ationary. Solving

forward the New Keynesian Phillips Curve (see equation (8)), one sees that current in�ation

is equal to a present discounted value of expected future real marginal costs:

�t =
(1� �) (1� ��)

��

1X
j=0

�jEtmct+j (14)

(1� �) is equal to the probability that �rms will get to update their prices in any period,

while � is the subjective discount factor. Other factors held constant, expected future
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productivity improvements lower expected real marginal costs, and thus exert downward

pressure on current in�ation.

In general equilibrium, however, other factors are not held constant, and the prediction

of the benchmark model as described in Section 2.2 is actually for good news shocks to be

in�ationary, not disin�ationary. Figure 7 replicates the theoretical responses of technology

and in�ation to a favorable news shock, using the calibration of the model described above.

In response to news that technology will grow more rapidly, in�ation rises on impact before

quickly reverting to zero in the model. There are at least two di¤erent but complementary

ways of understanding why the model predicts that good news should be in�ationary, and

we propose and discuss di¤erent model features capable of overturning this prediction and

more closely matching what we �nd in the data.

The �rst is to examine the behavior of real marginal cost in the model. From equation

(10), one sees that the (log-deviation) of real marginal cost is equal to the log di¤erence

between the real wage and technology. Upon arrival of good news about the future, current

productivity is unchanged. But the good news is a positive innovation to the lifetime

wealth of households, and they therefore demand a higher real wage at any given level of

employment. Put di¤erently, the positive wealth e¤ect from good news leads to an inward

shift of the labor supply schedule, and there is thus a strong tendency for real wages to

rise. Given no immediate change in productivity, higher real wages translate into higher

real marginal costs, and thus upward pressure on prices.

One way to overturn the in�ationary predictions of the model is thus to add some feature

which mitigates the rise in real wages in anticipation of technological improvement. A simple

way of doing this is to augment the model with exogenous real wage rigidity. We consider

the speci�cation in Blanchard and Gali (2007):

wt � pt = � (wt�1 � pt�1) + (1� �)mrst (15)

Here mrst corresponds to the real wage which would obtain on the labor supply curve (given

by equation (11) above), and � is a measure of real wage rigidity. While this speci�cation

is obviously somewhat ad hoc, Blanchard and Gali (2007) show that it can be derived from

explicit micro foundations. They also argue that the introduction of real wage rigidity

improves the �t of the model along a number of other important dimensions.

High values of � will dampen the extent to which favorable news shocks increase real

marginal costs on impact, and thereby reduce the tendency of good news to be in�ationary.

Figure 8 shows the impulse response of in�ation to a news shock for a variety of di¤erent

values of � (the response of technology is depicted in Figure 7). The remainder of the model

is parameterized as described in Section 2.2. As expected, the impact increase in in�ation is
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strictly decreasing in the extent of real wage rigidity. For values of � roughly in excess of 0.5

in�ation falls on impact in response to good news. To achieve impact declines in in�ation

quantitatively similar to what we estimate in the data requires values of � in excess of 0.9,

which seems rather large. Nevertheless, it is clear that some real wage rigidity helps to

improve the ability of the model to match the strongly disin�ationary nature of news shocks

evident in the data.

We next consider the role of monetary policy. Because favorable news shocks make

the future output high relative to its present level, the strong tendency is for real interest

rates to rise in general equilibrium. Under conventional speci�cations of interest rate rules

along the lines of Taylor (1993), it is extremely di¢ cult to simultaneously generate higher

real interest rates and lower in�ation. To see this, note the linearized Fisher relationship

between real and nominal rates: rt = it � Et�t+1. Using the approximation that it � it�1

and �t � Et�t+1, one can simplify the policy rule (12) to:11

rt � �y

�
yt � yft

�
+ (�� � 1)�t (16)

Absent monetary policy disturbances, the current real interest rate depends positively on

the gap between the actual and �exible price equilibrium level of output and positively on

current in�ation, assuming that the so-called Taylor principle is satis�ed with �� > 1.12

In the standard model with a policy rule of this form, movements in the output gap are

extremely small. In other words, the Taylor type rule comes very close to restoring the

�exible price equilibrium with yt � yft . Simplifying further with this approximation, one

sees that real interest rates and in�ation must, to a �rst order approximation, commove

positively in the absence of policy disturbances.13

This discussion suggests that another way to reverse the in�ationary predicts of the model

is to alter the speci�cation of the monetary policy rule. We entertain what we consider to

be two sensible variations on the rule which are capable of better �tting the data. The �rst

11This approximation is very good for conventional parameterizations of the New Keynesian model. It
results from the fact that the nominal interest rate is a state variable for � > 0, and thus its current value
will be close to its lagged value, while in�ation is a jump variable, and thus its current value will be close to
its expected value next period (for a su¢ ciently high discount factor).
12The actual condition required for determinacy of a rational expectations equilibrium in the New Keyne-

sian model is �� +
1��
� �y > 1, where � is slope of the Phillips Curve expressed in terms of the output gap.

See Woodford (2003) for a full derivation. For values of the discount factor su¢ ciently close to 1, it is easy
to see that the condition for determinacy is still approximately that �� > 1.
13One might wonder how this conclusion is consistent with the results above that real wage rigidity, in the

context of the New Keynesian model with a conventional Taylor rule, can simultaneously generate disin�ation
and higher real interest rates. As stressed by Blanchard and Gali (2007), the presence of real wage rigidity
breaks what they term the �divine coincidence�. The �uctuations in the output gap become large with
su¢ cient real wage rigidity, invalidating the approximation that yt � yft .
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is to suppose that the policy rule reacts not to the output gap, but rather to output growth.

Formally:

it = �it�1 + (1� �)
�
�y(yt � yt�1 ��y�) + ��(�t � ��)

�
+ "3;t (17)

Rules of this sort in which the central bank reacts to output growth relative to its long

term trend as opposed to an output gap have been gaining traction in the literature �for

example, see Coibion and Gorodnichenko (2007), Fernandez-Villaverde and Rubio-Ramirez

(2007), and Ireland (2004). Orphanides (2003) argues that such a rule �ts the data better

than the traditional gap speci�cation.

Figure 9 shows theoretical responses of in�ation to a news shock from the benchmark

model with policy rule (17) for di¤erent values of �y. The impact increase in in�ation is

decreasing in �y, and is indeed negative for values of this parameter above a modest cuto¤.

The intuition for why the growth rate rule can produce disin�ation in response to favorable

news shocks is straightforward. Output must grow faster than normal for an extended

period of time in order to reach its new higher steady state value. Positive output growth

exerts upward pressure on nominal (and thus real) interest rates in the policy rule, reducing

the need for in�ation to rise to generate rising real rates. Put di¤erently, in the growth

rate rule the monetary authority follows a policy that is too contractionary relative to the

baseline Taylor rule, thereby allowing for the possibility of disin�ation following good news

shocks.

Our second proposed modi�cation of the policy rule is one in which the monetary author-

ity does respond to an output gap, but that this gap does not correspond to the theoretical

gap between the actual and �exible price equilibrium levels (i.e. the �natural rate�) of

output. In particular, we propose a rule of the form:

it = �it�1 + (1� �)
�
�y(yt � ypt ) + ��(�t � ��)

�
+ "3;t (18)

ypt = �ypt�1 + (1� �)yft (19)

Above ypt denotes the authority�s perceived natural rate of output. We assume that the

current perceived natural rate is a convex combination of the previous period�s perception and

the current true natural rate. This speci�cation captures nicely the idea that the monetary

authority may react cautiously and therefore sluggishly to the variety of real disturbances

re�ected in yft . The �exible price equilibrium level of output, y
f
t , is not directly observable,

and is indeed a highly complex function of shocks and deep structural parameters. As such,

assuming that the central bank responds to some activity measure other than the theoretical
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gap seems fairly innocuous.

Figure 10 shows impulse responses of in�ation to a news shock from the benchmark

parameterization of the model with a policy rule given by (18)-(19) for di¤erent values of �.

For su¢ ciently high values of � in�ation falls on impact in response to good news. Similarly

to the growth rate speci�cation, for high values of � the monetary authority follows too

contractionary a policy relative to the standard Taylor rule. In particular, for high degrees

of sluggishness, the central bank perceives a large positive output gap for a number of periods

into the future and reacts accordingly, when in fact no such gap materializes. This action

raises real interest rates more than would happen in a model with �exible prices, thereby

choking o¤ aggregate demand and exerting disin�ationary pressures. Such a scenario is

similar to one explanation for the high in�ation of the 1970s �that the US Fed failed to

recognize an adverse natural rate shift and therefore followed too loose a monetary policy

(Orphanides (2002)).

We next consider the above modi�cations to the standard New Keynesian model simul-

taneously. In particular, we estimate several of the parameters of the modi�ed model to

investigate whether it is capable of quantitatively matching the estimated empirical response

of in�ation to a news shock. Our estimation proceeds in two steps. In the �rst step, we pick

the persistence (�) and standard deviation of the news shock (�"2) to match the estimated

empirical response of technology to a news shock. Formally, the estimated parameter vector

�1 = (�, �"2) is the solution to the following optimization problem:

��1 = argmin (M((�1)�M�)0W (M((�1)�M�)

M(�1) is a (K � 1) stacked vector of the impulse response of technology to a news shock
up to horizon K for a particular draw of the parameters. M� is the stacked vector of the

empirically estimated impulse response of technology to a news shock from our benchmark

estimation in Section 3. W is a diagonal weighting matrix, with elements equal to the

inverse of the standard error of the estimated impulse response. We set K = 20, �tting

the model and estimated impulse responses of technology over a �ve year horizon. The

estimated parameters and standard errors are in the �rst row of Table 3. Figure 11 shows

the model and estimated response of technology to a news shock for these parameter values,

along with the empirical con�dence bands. The resulting �t is quite good.

In the second step we estimate other parameters of the model to match the estimated

empirical response of in�ation to a news shock. For the conventional gap speci�cation of

monetary policy we estimate the parameter vector �2 =
�
�, �y; ��, �

�
; for the mispercep-

tions model of policy we also estimate the parameter governing sluggishness in the perceived
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natural rate, �3 =
�
�, �y; ��, �; �

�
.14 The remaining parameters of the model are cali-

brated as in Section 2.2.

We estimate the parameters in two steps because the in�ation impulse response in the

model is a function of both � and �"2 �in particular, in�ation will in general respond more on

impact the less persistent is the news shock.15 Our goal is to see whether or not the model is

capable of matching the in�ation response to a news shock given the response of technology.

If we proceeded in one step, the estimated values of � and �"2 would be chosen not only to

match the empirical response of technology to a news shock but also the in�ation response.

�2 and �3 are otherwise estimated analogously to �1. In particular, these parameters are

chosen to minimize the weighted squared distance between the model and empirical in�ation

response to a news shock, taking as given the estimated values of � and �"2 from the �rst

stage. As before, the weighting matrix is diagonal with elements equal to the inverse of the

estimated standard errors of the in�ation impulse response.

The estimated parameters and standard errors are in the second and third rows of Table

3. Figure 12 shows the model and estimated impulse responses of in�ation to a news shock

using the estimated parameters, assuming a conventional Taylor rule speci�cation. The

model does a good job at capturing the dynamic response of in�ation to a news shock,

though it is unable to fully match the large impact decline. The better-�tting version of

the model is that with both real wage rigidity and the misperceptions model of monetary

policy. The estimated and model impulse responses are shown in Figure 13. This version

of the model produces a slightly better overall �t. The model still has some di¢ culty fully

matching the estimated impact decline in in�ation, though the impact e¤ect in the model is

within one standard error of the estimated response in the data. Further, the model does a

good job at matching the qualitative nature of the dynamics following a news shock.

We have thus far only considered the simple New Keynesian model without capital. For

the purposes of elucidating the basic mechanisms at work this simpli�cation is justi�ed.16

One might nevertheless wonder how our conclusions would di¤er in a model with endogenous

capital accumulation. The addition of capital to the basic model does not signi�cantly alter

the e¤ects of news shocks on in�ation, nor does it qualitatively impact the e¤ects of the

various ��xes�we have proposed. The main role of the presence of capital is to alter the ef-

fects of news on the intertemporal allocation of consumption and savings. In the benchmark

14We do not report estimates for the growth rate speci�cation of monetary policy, as these yield a similar
�t with the conventional policy rule augmented with real wage rigidity.
15The reason for this is evident upon inspection of the Phillips Curve solved forward (14). For a given

long run movement in technology, the present discounted value of changes in expected real marginal cost
will be larger the sooner most of the productivity improvement occurs.
16Indeed, Woodford (2003) has argued that the simple model without capital serves as a good approxima-

tion to a more elaborate model with su¢ cient investment adjustment costs.
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model with capital favorable news is in�ationary, and the variety of alternative speci�cations

we have proposed continue to be capable of making favorable news disin�ationary.

5 Conclusion

In this paper we proposed a �exible VAR-based procedure for separately identifying surprise

technology shocks and news shocks about future technology. We identify the surprise

technology shock as the innovation in a measure of technology and the news shock by applying

principal components to the VAR innovations, identifying this shock as the structural shock

orthogonal to technology that best explains future variation in technology. We showed

through simulation of DSGE models that this approach is likely to perform well in practice,

and argued that it represents an important improvement over existing proposed identi�cation

strategies found in the literature.

In post-war US data we �nd that news shocks are responsible for the bulk of low fre-

quencies movements in productivity. In contrast, surprise innovations to technology appear

largely transitory. Favorable news shocks are positively correlated with innovations to con-

sumption, stock prices, and consumer con�dence, and negatively correlated with in�ation

innovations. News shocks do a good job at accounting for movements in consumption at all

horizons, and for stock prices at lower frequencies. News shocks explain a large share of the

forecast error variance of both con�dence and in�ation at all horizons, and historical decom-

positions reveal that news shocks do an excellent job at accounting for historical movements

in both of these series.

Perhaps the most surprising empirical result is that news shocks are so strongly (nega-

tively) correlated with in�ation innovations. While forward-looking models of price-setting

suggest that in�ation should incorporate news about future productive possibilities, the pre-

diction of the benchmark New Keynesian model is actually for good news to be in�ationary,

not disin�ationary as in the data. We proposed a variety of sensible modi�cations of the

model capable of better �tting the data, and showed that these versions of the model are in

fact capable of generating an impulse response of in�ation to a news shock that is similar

to what we estimate in the data. Though the �t is imperfect, we view the ability of the

basic forward-looking model of price-setting to generate disin�ation in response to good news

about future productivity as something of a success.
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Table 1
Fraction of Forecast Error Variance Explained by News Shock

h = 0 h = 4 h = 8 h = 16 h = 24 h = 40

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Tech. 0.0 1.9 4.4 14.8 28.3 51.4

[0.0,0.0] [0.7,7.2] [1.3,18.0] [6.2,37.0] [19.1,49.0] [41.0,65.5]

Stock Price 7.1 18.0 23.5 33.9 37.7 41.5

[1.3,29.7] [4.3,41.3] [6.4,47.0] [10.2,57.8] [12.0,62.9] [12.3,68.1]

Consumption 21.7 57.7 81.4 91.7 91.6 87.3

[4.8,35.0] [26.9,68.2] [49.4,85.3] [64.3,92.6] [66.1,94.0] [59.8,93.3]

In�ation 63.9 53.6 55.1 46.7 43.8 43.3

[28.1,73.3] [28.7,58.6] [29.4,59.9] [27.3,55.2] [25.6,53.8] [25.0,53.8]

Con�dence 39.3 57.1 66.7 62.1 57.3 54.6

[15.0,49.2] [27.2,65.1] [35.6,72.2] [32.9,69.6] [29.8,65.9] [27.6,64.9]

Interest Rate 18.5 11.7 8.7 10.7 13.5 18.6

[2.9,33.6] [3.1,31.0] [3.3,29.7] [6.8,29.8] [11.1,30.8] [13.6,37.7]

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

The numbers in brackets are the 68 percent bias-corrected bootstrap con�dence intervals.

Table 2
Long Horizon Regressions

at+k � at = �+
PN

i=1 �ixi;t + et

Horizon Adjusted R2

� � � � � � � � � � � � � � � � �
k = 1 0:034
k = 4 0:235
k = 8 0:357
k = 16 0:491
k = 40 0:512

� � � � � � � � � � � � � � � � �

These are results from long horizon regressions of technology growth on the current levels of consumption,

stock prices, consumer con�dence, in�ation, and the interest rate.
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Table 3
Parameter Estimates

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �b�1 � �2
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0.89 0.0035
(0.18) (0.0036)
[0.66.0.98] [0.0018,0.0010]

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �b�2 � �y �� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0.97 1.24 1.80 0.91
(0.18) (0.30) (0.24) (0.09)

[0.59,0.99] [1.08,1.51] [1.25,1.87] [0.87,0.94]
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �b�3 � �y �� � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0.97 1.49 1.61 0.70 0.82
(0.11) (0.46) (0.29) (0.25) (0.15)

[0.83,0.99] [0.92,1.96] [1.25,2.01] [0.10,0.79] [0.71,0.98]
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

This table presents parameter estimates from the estimation of Section 2.4. The estimates in the b�1 row

are from the �rst stage estimates of the autoregressive process for technology growth. The estimates in theb�2 row are for other parameters of the baseline model with a standard Taylor rule and real wage stickiness.

The estimates in the b�3 row are for the model with both real wage stickiness and the misperceived output

gap Taylor rule. The bootstrap standard errors are in parentheses, and the numbers in brackets are the one

standard error bootstrap con�dence bands.
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Figure 1
Model and Monte Carlo Estimated Impulse Responses to News Shocks
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The black lines show the theoretical responses to a news shock from the model of Section 2.2. The solid

blue line depicts the estimated responses averaged over the simulations, with the dashed blue lines showing

the 10th and 90th percentiles of the distribution of estimated impulse responses.
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Figure 2
Estimated Empirical Impulse Responses to a News Shock
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The dashed lines represent the 68 percent bias-corrected bootstrap con�dence bands.
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Figure 3
Impulse Responses to Surprise Technology Shock
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Figure 4
Impulse Responses to Stock Price Innovation Orthogonalized with Respect to Technology
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Figure 5
Historical Simulations

.3

.4

.5

.6

.7

.8

.9

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual TFP: News Shock

.3

.4

.5

.6

.7

.8

.9

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual TFP: Surprise Technology Shock

­4.4

­4.2

­4.0

­3.8

­3.6

­3.4

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual Consumption: News Shock

5.2

5.6

6.0

6.4

6.8

7.2

7.6

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual Stock Prices: News Shock

­4

0

4

8

12

16

20

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual Inflation: News Shock

40

60

80

100

120

140

1965 1970 1975 1980 1985 1990 1995 2000 2005

Simulated Actual

Simulated vs. Actual Confidence: News Shock

32



Figure 6
Estimated Empirical Impulse Responses to a News Shock

System with Average Labor Productivity

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Labor Productivity to News Shock

Horizon

P
er

ce
nt

ag
e 

P
oi

nt
s

0 5 10 15 20 25 30 35 40
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0
Stock Price to News Shock

Horizon

P
er

ce
nt

ag
e 

P
oi

nt
s

0 5 10 15 20 25 30 35 40
­0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Consumption to News Shock

Horizon

P
er

ce
nt

ag
e 

P
oi

nt
s

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
Confidence to News Shock

Horizon

U
ni

ts

0 5 10 15 20 25 30 35 40
­1.8

­1.6

­1.4

­1.2

­1

­0.8

­0.6

­0.4

­0.2

0
Inflation to News Shock

Horizon

P
er

ce
nt

ag
e 

P
oi

nt
s

0 5 10 15 20 25 30 35 40
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Horizon

P
er

ce
nt

ag
e 

P
oi

nt
s

Real Interest Rate to News Shock

The dashed lines represent the 68 percent bias-corrected bootstrap con�dence bands.
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Figure 7
New Keynesian Model Responses to News Shock
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Figure 8

New Keynesian Model In�ation Response to News Shock
Real Wage Rigidity
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Figure 9
New Keynesian Model In�ation Response to News Shock

Growth Rate Policy Rule
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Figure 10
New Keynesian Model In�ation Response to News Shock

Incorrect Output Gap Rule
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Figure 11
Technology Response to News Shock
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Figure 12
In�ation Response: Optimal Parameter Values
Sticky Real Wages, Conventional Taylor Rule

0 2 4 6 8 12
­1.8

­1.6

­1.4

­1.2

­1

­0.8

­0.6

­0.4

­0.2

0

0.2
Inflation Response

Horizon

P
er

ce
nt

ag
e 

D
ev

ia
tio

n

Model
Data

36



Figure 13
In�ation Response: Optimal Parameter Values
Sticky Real Wages, Misperception Taylor Rule

0 2 4 6 8 12
­1.8

­1.6

­1.4

­1.2

­1

­0.8

­0.6

­0.4

­0.2

0

0.2
Inflation Response

Horizon

P
er

ce
nt

ag
e 

D
ev

ia
tio

n

Model
Data

37


