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I. Introduction

Propensity score matching estimators (Rosenbaum and Rubin, 1983) are widely used to

estimate treatment effects when all treatment confounders are measured. Rosenbaum and

Rubin (1983) define the propensity score as the conditional probability of assignment to

a treatment given a vector of covariates including the values of all treatment confounders.

Their key insight is that adjusting for the propensity score is enough to remove the bias

created by all treatment confounders. Relative to matching directly on the covariates,

propensity score matching has the advantage of reducing the dimensionality of matching

to a single dimension. This greatly facilitates the matching process, because units with

dissimilar covariate values may nevertheless have similar values in their propensity scores.

Propensity score values are rarely observed in practice. Usually the propensity score

has to be estimated prior to matching. In spite of the great popularity that propensity

score matching methods have gained since they were proposed by Rosenbaum and Rubin

in 1983, their large sample distribution has not yet been derived for this case. A possible

reason for this void in the literature is that matching estimators are highly non-smooth

functionals of the distribution of the matching variables, which makes it difficult to establish

an asymptotic approximation to the distribution of matching estimators when a matching

variable is estimated in a first step. Moreover, it has been shown that the bootstrap is not

in general valid for matching estimators (Abadie and Imbens, 2008).

In this article, we derive the large sample distribution of propensity score matching

estimators. Our derivations take into account that the propensity score is itself estimated

in a first step. We prove that first step estimation of the propensity score affects the

large sample distribution of propensity score matching estimators. Moreover, we derive

an adjustment to the large sample variance of propensity score matching estimators that

corrects for first step estimation of the propensity score. Finally, we use a small simulation

exercise to illustrate the implications of our theoretical results.

To preview the large sample results, let F (x′θ) be a parametric model for the propensity

score, with unknown parameters θ, and let θ̂N be the maximum likelihood estimator for θ.
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In the main result in this paper we show that, under regularity conditions, the estimator τ̂N ,

for the average treatment effect τ = E[Y (1) − Y (0)], based on matching on the estimated

propensity score F (X ′
i θ̂N), satisfies

√
N(τ̂N − τ )

d→ N(0, σ2 − c′I−1
θ c).

In the expression for the variance σ2 is the variance of the matching estimator based

on matching on the true propensity score F (X ′
iθ) (which follows from results in Abadie

and Imbens, 2006), Iθ is the Fisher information matrix for the parametric model for the

propensity score, and c is a vector that depends on the covariance between the covariates

and the outcome, conditional on the propensity score and the treatment. Thus, matching

on the estimated propensity score has a smaller asymptotic variance than matching on the

true propensity score. This is in line with results in Rubin and Thomas (1992ab) who argue

in settings with normally distributed covariates that matching on the estimated rather than

the true propensity score improves the properties of matching estimators, as well as with

the results for weighting estimators in Hirano, Imbens and Ridder (2003).

The rest of the article is organized as follows. Section II provides an introduction to

propensity score matching. Section III is the main section of the article. In this section

we derive the large sample properties of an estimator that match on estimated propensity

scores. Section IV proposes an estimator for the adjusted standard errors derived in section

III. In section V we report the results of a small simulation exercise. Section VI concludes.

II. Matching on the Estimated Propensity Score

In evaluation research the focus of the analysis is typically the effect of a binary treatment,

represented in this paper by the indicator variable W , on some outcome variable, Y . More

specifically, W = 1 indicates exposure to treatment, while W = 0 indicates lack of exposure

to treatment. Following Rubin (1974), we define treatment effects in terms of potential

outcomes. We define Y (1) as the potential outcome under exposure to treatment, and

Y (0) as the potential outcome under no exposure to treatment. Our goal is to estimate

2



the average treatment effect,

τ = E
[
Y (1) − Y (0)

]
,

where the expectation is taken over the population of interest, based on a random sample

from this population. Estimation of treatment effects is complicated by the fact that

for each unit in the population, the observed outcome reflects only one of the potential

outcomes:

Y =

{
Y (0) if W = 0,
Y (1) if W = 1.

Let X be a vector of covariates that includes treatment confounders, that is, variables that

affect the probability of treatment exposure and the potential outcomes. The propensity

score is p(X) = Pr(W = 1|X). The following assumption is often referred to as “strong

ignorability” (Rosenbaum and Rubin (1983) ).

Assumption 1: (i) Y (1), Y (0) ⊥⊥ W |X almost surely; (ii) 0 < p(X) < 1 almost surely.

Assumption 1(i) will hold if all treatment confounders are included in X; so, after control-

ling for X, treatment exposure is independent of the potential outcomes. Assumption 1(ii)

states that for almost all values of X the population includes treated and untreated units.

Let µ(w, x) = E[Y |W = w, X = x] and µ̄(w, p) = E[Y |W = w, p(X) = p] be the regres-

sion of the outcome on the treatment indicator and the covariates, and on the treatment

indicator and the propensity score respectively. Rosenbaum and Rubin (1983) prove that,

under Assumption 1,

τ = E
[
µ̄(1, p(X)) − µ̄(0, p(X))

]
.

In other words, adjusting for the propensity score is enough to eliminate the bias created

by all treatment confounders.

This result by Rosenbaum and Rubin (1983) motivates the use of propensity score

matching estimators. Following Rosenbaum and Rubin (1983) and the vast majority of

the empirical literature, consider a generalized linear specification for the propensity score

p(X) = F (x′θ). In empirical research the link function F is usually specified as logit

or probit. Assume for the moment that the parameters of the propensity score, θ, are
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known. For each observation, i, let JM(i, θ) be a set of M observations in the treatment

group opposite to i and with propensity score values similar to F (X ′
iθ). A propensity score

matching estimator can be defined as:

τ̂N (θ) =
1

N

N∑

i=1

(2Wi − 1)



Yi −
1

M

∑

j∈JM (i,θ)

Yj



 .

In this article we will consider matching with replacement, so each unit in the sample can

be used as a match multiple times. In the absence of matching ties, the sets JM(i, θ) can

be defined as:

JM(i, θ) =

{
j : Wj = 1 − Wi,

(
N∑

k=1

1{Wk=1−Wi} 1{|F (X ′

iθ)−F (X ′

kθ)|≤|F (X ′

iθ)−F (X ′

jθ)|}

)
≤ M

}
.

Let KN,i(θ) be the number of times that observation i is used as a match (when matching

on F (X ′θ)):

KN,i(θ) =

N∑

k=1

1{i∈JM(k,θ)}.

The estimator τ̂N (θ) can be represented as:

τ̂N (θ) =
1

N

N∑

i=1

(2Wi − 1)

(
1 +

KN,i(θ)

M

)
Yi.

In practice, propensity scores are not directly observed and estimators that match on the

true propensity score are therefore unfeasible. For some random sample {Yi, Wi, Xi}N
i=1, let

θ̂N be an estimator of θ. A matching estimator of τ that matches on estimated propensity

scores is given by:

τ̂N (θ̂N) =
1

N

N∑

i=1

(2Wi − 1)



Yi −
1

M

∑

j∈JM(i,bθN )

Yj



 .

We assume, in concordance with the literature, that θ̂N is the Maximum Likelihood esti-

mator of θ. In the next section, we derive the large sample distribution of τ̂N (θ̂N).
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III. Large Sample Distribution

We begin by introducing a decomposition of τ̂N(θ̂N ) that will be used later in this section.

Define

TN(θ) =
√

N
(
τ̂N(θ) − τ

)

=
√

N

(
1

N

N∑

i=1

(2Wi − 1)

(
1 +

KN,i(θ)

M

)
Yi − τ

)
.

Notice that TN(θ) = DN (θ) + RN(θ), where

DN (θ) =
1√
N

N∑

i=1

(
µ̄(1, F (X ′

iθ)) − µ̄(0, F (X ′
iθ)) − τ

)

=
1√
N

N∑

i=1

(2Wi − 1)

(
1 +

KN,i(θ)

M

) (
Yi − µ̄(Wi, F (X ′

iθ))
)
,

and

RN(θ) =
1√
N

N∑

i=1

(2Wi − 1)
(
µ̄(1 − Wi, F (X ′

iθ)) −
1

M

∑

j∈JM(i)

µ̄(1 − Wi, F (X ′
iθ))
)
.

Let P θ be the distribution of Z = {Y, W, X}, induced by the propensity score, F (x′θ),

the marginal distribution of X, and the conditional distribution of Y given X and W .

Proposition 1: (Abadie and Imbens, 2006) Under P θ,

TN(θ)
d→ N(0, σ2),

where

σ2 = E

[
var(Y |F (X ′θ), W = 1)

F (X ′θ)
+

var(Y |F (X ′θ), W = 0)

1 − F (X ′θ)

]

+ E

[(
E[Y |F (X ′θ), W = 1] − E[Y |F (X ′θ), W = 0] − τ

)2
]

+
1

2M
E

[(
1

F (X ′θ)
− F (X ′θ)

)
var(Y |F (X ′θ), W = 1)

]

+
1

2M
E

[(
1

1 − F (X ′θ)
−
(
1 − F (X ′θ)

))
var(Y |F (X ′θ), W = 0)

]
.
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Consider ZN,i = {YN,i, WN,i, XN,i} with distribution given by the local “shift” P θN with

θN = θ + h/
√

N , where h is a conformable vector of constants.

Assumption 2: (i) For w = 0, 1, the regression function µ̄(w, F ) is Lipschitz-continuous in

F ; (ii) for some ε > 0 and all θ∗ ∈ R
k such that ‖θ − θ∗‖ ≤ ε, the distribution of F (X ′θ∗)

is continuous with support equal to an interval bounded away from zero and one.

Proposition 2: Under P θN , RN (θN)
p→ 0.

Let

ΛN (θ|θN) =
N∑

i=1

log
dP θ

dP θN
(ZN,i),

and

∆N(θ) =
1√
N

N∑

i=1

XN,i

WN,i − F (X ′
N,iθ)

F (X ′
N,iθ)(1 − F (X ′

N,iθ))
f(X ′

N,iθ).

As defined before, θ̂N is the Maximum Likelihood estimator of θ. Then, under conventional

regularity conditions we have that, under P θ,
√

N(θ̂N − θN)
d→ N(0, I−1

θ ), where

Iθ = E

[
f(X ′θ)2

F (X ′θ)(1 − F (X ′θ))
XX ′

]
,

is the Fisher Information Matrix for θ.

Assumption 3: Under P θN :

ΛN(θ|θN) = −h′∆N (θN) − 1

2
h′Iθh + op(1), (1)

∆N(θN)
d→ N(0, Iθ), (2)

and
√

N(θ̂N − θN) = I−1
θ ∆N(θN ) + op(1). (3)

For regular parametric models, equations (1) can be established using Proposition 2.1.2 in

Bickel et al. (1998). Also for regular parametric models, equation (2) is derived in the

proof of Proposition 2.1.2 in Bickel et al. (1998). Equation (3) can be established using the
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same set of results plus classical conditions for asymptotic linearity of maximum likelihood

estimators (see, e.g., van der Vaart (1998) Theorem 5.39).

Our derivation of the limit distribution of
√

N (τ̂N − τ ) is based on the techniques

developed in Andreou and Werker (2005) to analyze to limit distribution of residual-

based statistics. We proceed in four steps. First, we derive the joint limit distribution

of (TN (θN), ∆N(θN)) under P θN . The following result is useful in that respect.

Proposition 3: Under P θN :

(
DN (θN)
∆N (θN)

)
d→ N

((
0
0

)
,

(
σ2 c′

c Iθ

))
.

where Iθ is the Fisher Information Matrix for θ,

c = E

[
cov(X, µ(W, X)|F (X ′θ), W )

f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

]
,

and σ2 is the asymptotic variance of TN(θ).

Notice that propositions 2 and 3 imply:

(
TN (θN)
∆N (θN)

)
d→ N

((
0
0

)
,

(
σ2 c′

c Iθ

))
, (4)

under P θN .

Second, we use equation (4) ,along with Assumption 3, to obtain the joint limit distri-

bution of (TN(θN),
√

N(θ̂N − θN ), ΛN(θ|θN)) under P θN :




TN(θN )√

N (θ̂N − θN)
ΛN(θ|θN)



 d→ N




(

0
0

−h′Iθh/2

)
,

(
σ2 c′I−1

θ −c′h
I−1
θ c I−1

θ −h
−h′c −h′ h′Iθh

)

 .

Third, applying Le Cam’s third lemma, we obtain

(
TN(θN)√

N(θ̂N − θN )

)
d→ N

((
−c′h
−h

)
,

(
σ2 c′I−1

θ

I−1
θ c I−1

θ

))
,

or equivalently:

(
TN(θ + h/

√
N)√

N(θ̂N − θ)

)
d→ N

((
−c′h

0

)
,

(
σ2 c′I−1

θ

I−1
θ c I−1

θ

))
,
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under P θ, for any h ∈ R
k. Finally, we calculate the limit distribution of TN(θ̂N) =

√
N(τ̂N−

τ ) as the limit distribution of TN(θ+h/
√

N) conditional on θ̂N = θ+h/
√

N (i.e.
√

N(θ̂N −
θ) = h), integrated over the distribution of

√
N(θ̂N − θ). Formally, for the conditioning in

this step the estimator θ̂N needs to be discretized (Andreou and Werker, 2005). Then, as

we take the limit of the discretization, we obtain the main result.

Theorem 1: Under P θ

√
N(τ̂N − τ )

d→ N(0, σ2 − c′I−1
θ c).

The asymptotic variance of τ̂N is adjusted by −c′I−1
θ c to account for first-step estimation

of the propensity score. In this case, the adjustment reduces the asymptotic variance. This

need not be the case for matching estimators of other treatment parameters, such as the

average treatment effect on the treated.

IV. Estimation of the Asymptotic Variance

Let HJ(i, θ) be the set of the J units with W = Wi and closest values of F (X ′θ) to F (X ′
iθ),

and let Ȳ
(J,θ)

i be the average of Y for for the units in {i∪HJ (i, θ)}. Consider the following

estimator of v̂ar(Yi|F (X ′
iθ), Wi):

σ̂2
N,i(θ) =

1

J

∑

j∈{i∪HJ(i,θ)}

(Yj − Ȳ
(J,θ)
i )(Yj − Ȳ

(J,θ)
i ).

Abadie and Imbens (2006) propose the following estimator for σ2(θ):

σ̂2
N(θ) =

1

N

N∑

i=1

(
(2Wi − 1)

(
Yi −

1

M

∑

j∈JM (i,θ)

Yj

)
− τ̂N (θ)

)2

=
1

N

N∑

i=1

((
KN,i(θ)

M

)2

+
2M − 1

M

(
KN,i(θ)

M

))
σ̂2

N,i(θ).

Let X̄
(J,θ)
i be the averages of X for for the units in {i ∪ HJ (i, θ)}. Notice that Y =

µ(W, X) + ε, where E[ε |X, W ] = 0. As a result:

cov(X, µ(W, X)|F (X ′θ), W ) = cov(X, Y |F (X ′θ), W ).
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Consider the following estimator of cov(X, Y |F (X ′θ), W ):

ĉov(Xi, Yi|F (X ′
iθ), Wi) =

1

J

∑

j∈{i∪HJ(i,bθN )}

(Xj − X̄
(J,bθN )
i )(Yj − Ȳ

(J,bθN )
i ).

Our estimator of c is:

ĉ =
1

N

N∑

i=1

ĉov(Xi, Yi|F (X ′
iθ), Wi)

f(X ′
i θ̂N)

F (X ′
iθ̂N)(1 − F (X ′

iθ̂N))
.

Finally, let

Îθ,N =
1

N

N∑

i=1

f(X ′
i θ̂N )2

F (X ′
i θ̂N)(1 − F (X ′

i θ̂N))
XiX

′
i.

Because Iθ is non-singular, the inverse of Îθ,N exists with probability approaching one. Our

estimator of the large sample variance of the propensity score matching estimator, adjusted

for first step estimation of the propensity score, is:

σ̂2
adj,N(θ̂N) = σ̂2

N(θ̂N ) − ĉ′Î−1
θ,N ĉ.

Consistency of this estimator can be shown using the results in Abadie and Imbens (2006)

and the contiguity arguments employed in section III.

V. A Small Simulation Exercise

In this section, we run a small Monte Carlo exercise to investigate the sampling distribution

of propensity score matching estimators and of the approximation to that distribution that

we propose in the article.

We use a simple Monte Carlo design. The outcome variable is generated by Y =

5W + 4(X1 + X2) + U , where X1 and X2 are independent and uniform on [0, 1] and U

is a standard Normal variable independent of (W, X1, X2). The treatment variable, W , is

related to (X1, X2) through the propensity score, which is logistic

Pr(W = 1|X1 = x1, X2 = x2) =
exp(1 + x1 − x2)

1 + exp(1 + x1 − x2)
.

Table I reports the results of our Monte Carlo simulation for M = 1 and N = 5000. As

in our theoretical results, the variance of τ̂N (θ), the estimator that matches on the true
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propensity score, is larger than the variance of τ̂N (θ̂N), the estimator that matches on the

estimated propensity score. The estimator of the variance of τ̂N (θ) proposed in Abadie

and Imbens (2006), σ̂2(θ), is centered at the variance of τ̂N (θ). σ̂2
N(θ̂N ) is the estimator of

the variance that treats the first step estimate of the propensity score θ̂N as if it was the

true propensity score, and σ̂2
adj,N(θ̂N ) is the adjusted estimator of the variance that takes

into account that the propensity score is itself estimated in a first step. Finally, the table

reports also confidence interval constructed with adjusted and unadjusted standard errors.

In concordance with out theoretical results, the simulation shows that σ̂2
N(θ̂N) is biased and

too large on average. As a result, confidence intervals constructed with σ̂2
N(θ̂N ) have larger

than nominal coverage rates. In contrast, σ̂2
adj,N(θ̂N ) is unbiased and produce confidence

intervals that have coverage rates close to nominal rates.

VI. Conclusions

In this article, we propose a method to correct to the asymptotic variance of propensity

score matching estimators when the propensity scores are estimated in a first step. Our

results allow valid large sample inference for propensity score matching estimators.
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Appendix

Proof of Proposition 1: See Abadie and Imbens (2006). �

For the proof of Proposition 2 we will need some preliminary lemmas.

Lemma A.1: Consider two independent samples of sizes n0 and n1 from continuous distributions
F0 and F1 with common support: X0,1, . . . , X0,n0

∼ i.i.d. F0 and X1,1, . . . , X1,n1
∼ i.i.d. F1.

Let N = n0 + n1. Assume that the support of F0 and F1 is an interval inside [0, 1]. Let f0 and

f1 be the densities of F0 and F1, respectively. Suppose that for any x in the supports of F0 and
F1, f1(x)/f0(x) ≤ r̄. For 1 ≤ i ≤ n1 and 1 ≤ m ≤ M ≤ n0, let |Un0,n1,i|(m) be the m-th order

statistic of {|X1,i −X0,1|, . . . , |X1,i −X0,n0
|}. Then, for n0 ≥ 3:

E

[
1√
N

n1∑

i=1

1

M

M∑

m=1

|Un0,n1,i|(m)

]
≤ r̄

n1

N 1/2bn3/4
0 c

+M
n1

N 1/2
n

M−1/4
0 exp(−n1/4

0 ).

Proof: Consider N balls assigned at random among n bins of equal probability. It is known
that the mean of the number of bins with exactly m balls is equal to

n

(
N

m

)(
1

n

)m(
1 − 1

n

)N−m

(see Johnson and Kotz, 1977). Because f1(x)/f0(x) ≤ r̄, for any measurable set A:

Pr(X1,i ∈ A) =

∫

A

f1(x) dx =

∫

A

(
f1(x)

f0(x)

)
f0(x) dx ≤ r̄Pr(X0,i ∈ A).

Divide the support of F0 and F1 in bn3/4
0 c cells of equal probability 1/bn3/4

0 c under F0. Let ZM,n0

be the number of such cells are not occupied by at least M observations from the second sample:

X0,1, . . . , X0,n0
. For i = 1, . . . , N . Let µM,n0

= E[ZM,n0
]. Notice that n0 ≥ 3 implies bn3/4

0 c ≥ 2.
Then,

µM,n0
=

M−1∑

m=0

bn3/4
0 c

(
n0

m

)(
1

bn3/4
0 c

)m(
1 − 1

bn3/4
0 c

)n0−m

≤
M−1∑

m=0

bn3/4
0 cn

m
0

m!

(
1

bn3/4
0 c

)m(
1 − 1

bn3/4
0 c

)n0−m

≤ Mn
M−1/4
0

(
1 − 1

n
3/4
0

)n0

.

Using Markov’s inequality,

Pr(ZM,n0
> 0) = Pr(ZM,n0

≥ 1) ≤ µM,n0
≤Mn

M−1/4
0

(
1− 1

n
3/4
0

)n0

.
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Notice that for any positive a, we have that a − 1 ≥ log(a). Therefore, for any b < N , we have
that log(1 − b/N ) ≤ −b/N and (1− b/N )N ≤ exp(−b). As a result, we obtain:

(
1 − 1

n
3/4
0

)n0

=

(
1 − n

1/4
0

n0

)n0

≤ exp(−n1/4
0 ).

Putting together the last two displayed equations, we obtain the following exponential bound for

Pr(ZM,n0
> 0):

Pr(ZM,n0
> 0) ≤Mn

M−1/4
0 exp(−n1/4

0 ).

Notice that |Un0,n1,i|(m) ≤ 1. For 0 ≤ n ≤ bn3/4
0 c, let cn0,n = F−1(n/bn3/4

0 c), then

E

[
M∑

m=1

|Un0,n1,i|(m)

∣∣∣ZM,n0
= 0

]
≤

bn
3/4

0
c∑

n=1

M
(
cn0,n − cn0,n−1

)
Pr
(
cn0,n−1 ≤ X1,i ≤ cn0,n

∣∣ZM,n0
= 0
)

=
Mr̄

bn3/4
0 c

bn
3/4

0
c∑

n=1

(
cn0,n − cn0,n−1

)

≤ Mr̄

bn3/4
0 c

.

Now,

E

[
1√
N

n1∑

i=1

1

M

M∑

m=1

|Un0,n1,i|(m)

]
= E

[
1√
N

n1∑

i=1

1

M

M∑

m=1

|Un0,n1,i|(m)

∣∣∣ZM,n0
= 0

]
Pr(ZM,n0

= 0)

+ E

[
1√
N

n1∑

i=1

1

M

M∑

m=1

|Un0,n1,i|(m)

∣∣∣ZM,n0
> 0

]
Pr(ZM,n0

> 0)

≤ E

[
1√
N

n1∑

i=1

1

M

M∑

m=1

|Un0,n1,i|(m)

∣∣∣ZM,n0
= 0

]

+
n1

N 1/2
Pr(ZM,n0

> 0)

=
1√
N

n1∑

i=1

E

[
1

M

M∑

m=1

|Un0,n1,i|(m)

∣∣ZM,n0
= 0

]

+
n1

N 1/2
Pr(ZM,n0

> 0)

≤ r̄
n1

N 1/2bn3/4
0 c

+M
n1

N 1/2
n

M−1/4
0 exp(−n1/4

0 ).

�

Lemma A.2: (Inverse Moments of the Doubly Truncated Binomial Distribution) Let N0 be a

Binomial variable with parameters (N, (1 − p)) that is left-truncated for values smaller than M
and right-truncated for values greater than N −M , where M < N/2. Then, for any r > 0, there

exist a constant Cr, such that

E

[(
N

N0

)r]
≤ Cr,

12



for all N > 2M .

Proof: Let N1 = N −N0. For all q̄ > 0,

E

[(
N

N0

)r]
= E

[(
N

N0

)r

1

{
N

N0
> q̄

}]
+E

[(
N

N0

)r

1

{
N

N0
≤ q̄

}]

≤
(
N

M

)r

Pr

(
N

N0
> q̄

)
+ q̄r

=

(
N

M

)r

Pr

(
N1 >

(
1 − 1

q̄

)
N

)
+ q̄r

Notice that:

Pr

(
N1 >

(
1 − 1

q̄

)
N

)
=

x≤N−M∑

x>(1−1/q̄)N,x≥M

(
N
x

)
px(1 − p)N−x

x≤N−M∑

x≥M

(
N
x

)
px(1 − p)N−x

For N > 2M the denominator can be bounded away from zero. Therefore, for some positive
constant C, and q̄ > 1/(1− p),

Pr

(
N1 >

(
1 − 1

q̄

)
N

)
≤ C

x≤N−M∑

x>(1−1/q̄)N,x≥M

(
N
x

)
px(1 − p)N−x

≤ C
∑

x>(1−1/q̄)N

(
N
x

)
px(1 − p)N−x

≤ C exp
{
−2(1 − 1/q̄ − p)2N

}
,

by Hoeffding’s Inequality (e.g. van der Vaart and Wellner (1996), p. 459). Therefore E[(N/N0)
r]

is uniformly bounded for N > 2M . �

Lemma A.3: Suppose that the propensity score, Pr(W = 1|X), is continuously distributed and

that there exist cL > 0 and cU < 1 such that cL ≤ Pr(W = 1|X = x) ≤ cU for all x ∈ X . Let f1
be the distribution of the propensity score conditional on W = 1, and let f0 be the distribution of

the propensity score conditional on W = 0. Then, the ratio f1(p)/f0(p) is bounded and bounded
away from zero.

Proof: Use Bayes’ Theorem to show that f1(p)/f0(p) = (p/(1−p))(Pr(W = 1)/Pr(W = 0)). �

Proof of Proposition 2: Let fθN
1 be the distribution of the propensity score conditional on

W = 1, and let fθN
0 be the distribution of the propensity score conditional on W = 0. By lemma

A.3 the ratio fθN
1 (p)/fθN

0 (p) is uniformly bounded by some constant r̄. Consider N0 and N1 as
in Lemma A.2. Let

ψ
(1)
M,N0,N1

= r̄
N1

N 1/2bN 3/4
0 c

+M
N1

N 1/2
N

M−1/4
0 exp(−N 1/4

0 ).
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Then, ψ
(1)
M,N0,N1

p→ 0. Rearrange the observations in the sample so that the first N1 observations
have W = 1 and the remaining N0 = N −N1 observations have W = 0. For 1 ≤ i ≤ N1 and 1 ≤
m ≤M , let |UN0,N1,i|(m) be them-th order statistic of {|F (X ′

iθN )−F (X ′
N1+1θN )|, . . . , |F (X ′

iθN )−
F (X ′

NθN )|}. For N1 + 1 ≤ i ≤ N and 1 ≤ m ≤M , let |UN0,N1,i|(m) be the m-th order statistic of

{|F (X ′
iθN ) − F (X ′

1θN )|, . . . , |F (X ′
iθN ) − F (X ′

N1
θN )|}. Lemma A.1 implies

E

[
1√
N

N1∑

i=1

1

M

M∑

m=1

|UN0,N1,i|(m)

]
≤ E

[
ψ

(1)
M,N0,N1

]
. (A.1)

Therefore, to prove that the left-hand-side of equation (A.1) converges to zero, it is enough to

show that ψ
(1)
M,N0,N1

is asymptotically uniformly integrable:

lim
k→∞

lim sup
N→∞

E
[
ψ

(1)
M,N0,N1

1{ψ(1)
M,N0,N1

> k}
]

= 0

(see, e.g., van der Vaart (1998), p. 17). Notice that the ratio N 3/4/bN 3/4c is bounded. This, in

combination with Lemma A.2, implies that for all k > 0 and some positive constant C,

E
[
ψ

(1)
M,N0,N1

1{ψ(1)
M,N0,N1

> k}
]

≤ E
[
ψ

(1)
M,N0,N1

]

≤ E

[
r̄
N 1/2

bN 3/4
0 c

+M
N 1/2

N
3/4
0

N
M+1/2
0 exp(−N 1/4

0 )

]

≤ C E

[
N 1/2

N
3/4
0

]

=
C

N 1/4
E

[
N 3/4

N
3/4
0

]
→ 0.

Similarly,

E


 1√

N

N∑

i=N1+1

1

M

M∑

m=1

|UN0,N1,i|(m)


 p→ 0.

Using Markov’s inequality, we obtain that for any ε > 0:

Pr

(
1√
N

N∑

i=1

1

M

M∑

m=1

|UN0,N1,i|(m) > ε

)
≤

E

[
1√
N

N∑

i=1

1

M

M∑

m=1

|UN0,N1,i|(m)

]

ε
−→ 0.

The result now follows from Lipschitz-continuity of the regression functions, µ(w, F ). �

Proof of Proposition 3: Consider the linear combination CN = z1DN(θN ) + z′2∆N(θN ).

CN = z1
1√
N

N∑

i=1

(
µ̄(1, F (X ′

iθN ))− µ̄(0, F (X ′
iθN ))− τ

)

14



+ z1
1√
N

N∑

i=1

(2Wi − 1)

(
1 +

KN,i(θN)

M

) (
Yi − µ̄(Wi, F (X ′

iθN ))
)

+ z′2
1√
N

N∑

i=1

Xi
Wi − F (X ′

iθN )

F (X ′
iθN )(1− F (X ′

iθN ))
f(X ′

iθN ).

CN can be analyzed using martingale methods. Notice that:

CN =

3N∑

k=1

ξN,k,

where

ξN,k = z1
1√
N

(
µ̄(1, F (X ′

kθN ))− µ̄(0, F (X ′
kθN ))− τ

)

+ z′2
1√
N
EθN

[Xk |F (X ′
kθN )]

Wk − F (X ′
kθN )

F (X ′
kθN )(1− F (X ′

kθN ))
f(X ′

kθN ),

for 1 ≤ k ≤ N ,

ξN,k = z′2
1√
N

(Xk−N−EθN
[Xk−N |F (X ′

k−NθN )])
(Wk−N − F (X ′

k−NθN ))f(X ′
k−NθN )

F (X ′
k−NθN )(1− F (X ′

k−N θN ))

+ z1
1√
N

(2Wk−N − 1)

(
1 +

KN,k−N(θN)

M

) (
µ(Wk−N , Xk−N) − µ̄(Wk−N , F (X ′

k−NθN ))
)
.

for N + 1 ≤ k ≤ 2N ,

ξN,k = z1
1√
N

(2Wk−2N − 1)

(
1 +

KN,k−2N(θN )

M

) (
Yk−2N − µ(Wk−2N , Xk−2N)

)
,

for 2N + 1 ≤ k ≤ 3N . Consider the σ-fields FN,k = σ{W1, . . . , Wk, X
′
1θN , . . . , X

′
kθN} for 1 ≤

k ≤ N , FN,k = σ{W1, . . . , WN , X
′
1θN , . . . , X

′
kθN , X1, . . . , Xk−N} for N + 1 ≤ k ≤ 2N , and

FN,k = σ{WN ,XN , Y1, . . . , Yk−N} for 2N + 1 ≤ k ≤ 3N . Then,






i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 3N






is a martingale for each N ≥ 1. Therefore, the limiting distribution of AN is given by the

Martingale CLT (e.g., Theorem 35.12 in Billingsley (1995), p. 476; importantly, notice that this
theorem allows that the probability space varies with N ): under P θN

CN
d→ N (0, σ2

1 + σ2
2 + σ2

3),

where

σ2
1 = plim

N∑

k=1

EθN
[ξ2N,k| FN,k−1],
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σ2
2 = plim

2N∑

k=N+1

EθN
[ξ2N,k| FN,k−1],

and

σ2
3 = plim

3N∑

k=2N+1

EθN
[ξ2N,k| FN,k−1].

After some algebra, we obtain:

σ2
1 = z2

1 E
[(
µ̄(1, F (X ′θ)) − µ̄(0, F (X ′θ)) − τ

)2]

+ z′2E

[
f2(X ′θ)

F (X ′θ)(1 − F (X ′θ))
E[X |F (X ′θ)]E[X ′ |F (X ′θ)]

]
z2.

Following the calculations in Abadie and Imbens (2006, additional proofs) for the expectation of

(1 +KN,i/M)2:

σ2
2 = z′2E

[
f2(X ′θ)

F (X ′θ)(1 − F (X ′θ))
var(X |F (X ′θ))

]
z2

+ z2
1E

[
var(µ(1, X)|F (X ′θ))

F (X ′θ)
+

var(µ(0, X)|F (X ′θ))

1 − F (X ′θ)

]

+ z2
1

1

2M
E

[(
1

F (X ′θ)
− F (X ′θ)

)
var(µ(1, X)|F (X ′θ))

]

+ z2
1

1

2M
E

[(
1

1 − F (X ′θ)
− (1 − F (X ′θ))

)
var(µ(0, X)|F (X ′θ))

]

+ 2 z′2E

[
cov(X, µ(W,X)|F (X ′θ), W )

f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

]
z1.

Here we use the fact that, conditional on the propensity score, X is independent of W . To derive

the constant vector of the cross-product notice that:

E

[
cov
(
X, µ(X,W )

∣∣F (X ′θ), W
)(W − F (X ′θ))(2W − 1)

F (X ′θ)(1 − F (X ′θ))
f(X ′θ)

(
1 +

KN(θ)

M

)]

= E

[
cov
(
X, µ(X, 1)

∣∣F (X ′θ)
) f(X ′θ)

F (X ′θ)

(
1 +

KN(θ)

M

) ∣∣∣W = 1

]
p

+ E

[
cov
(
X, µ(X, 1)

∣∣F (X ′θ)
) f(X ′θ)

1− F (X ′θ)

(
1 +

KN(θ)

M

) ∣∣∣W = 0

]
(1 − p)

→ E

[
cov
(
X, µ(X, 1)

∣∣F (X ′θ)
) f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

∣∣∣W = 1

]
p

+E

[
cov
(
X, µ(X, 1)

∣∣F (X ′θ)
) f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

∣∣∣W = 0

]
(1− p)

= E

[
cov(X, µ(W,X)|F (X ′θ), W )

f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

]
.

Finally,

σ2
3 = z2

1 E

[
var(Y |X,W = 1)

F (X ′θ)
+

var(Y |X,W = 0)

1 − F (X ′θ)

]
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+ z2
1

1

2M
E

[(
1

F (X ′θ)
− F (X ′θ)

)
var(Y |X,W = 1)

]

+ z2
1

1

2M
E

[(
1

1 − F (X ′θ)
− (1− F (X ′θ))

)
var(Y |X,W = 0)

]
.

Notice that for any integrable function g(F (X ′θ)):

E
[
g(F (X ′θ))

(
var(µ(w,X)|F (X ′θ)) + var(Y |X,W = w)

)]

= E
[
g(F (X ′θ))

(
var(µ(w,X)|F (X ′θ)) +E

[
var(Y |X,W = w)

∣∣∣F (X ′θ)
])]

= E
[
g(F (X ′θ))

(
var(µ(w,X)|F (X ′θ), W = w) +E

[
var(Y |X,W = w)

∣∣∣F (X ′θ), W = w
])]

= E
[
g(F (X ′θ)) var(Y |F (X ′θ), W = w)

]
.

As a result, under P θN :

CN
d→ N (0, z′V z),

where z = (z1, z
′
2)

′, and

V =

(
σ2 c′

c Iθ

)
,

where

c = E

[
cov(X, µ(W,X)|F (X ′θ), W )

f(X ′θ)

F (X ′θ)(1 − F (X ′θ))

]
,

and σ2 is the asymptotic variance calculated in Abadie and Imbens for the case of a known
propensity score. Applying the Cramer-Wold device, under P θN :

(
DN(θN )

∆N(θN )

)
d→ N (0, V ).

�

Proof of Theorem 1: Given our preliminary results, Theorem 1 follows from Andreou and
Werker (2005). �

17



References

Abadie, A. and Imbens, G.W. (2006), “Large Sample Properties of Matching Estimators for

Average Treatment Effects”, Econometrica , vol. 74, no. 1, 235-267.

Abadie, A. and Imbens, G.W. (2008), “On the Failure of the Bootstrap for Matching Estima-

tors”, Econometrica , vol. 76, no. 6, 1537-1558.

Andreou, E. and Werker, B.J.M. (2005), “An Alternative Asymptotic Analysis of Residual-
Based Statistics”, mimeo.

Bickel, P.J., Klaassen, C.A., Ritov, Y. and Wellner, J.A. (1998), Efficient and Adaptive
Estimation for Semiparametric Models, Springer, New York.

Billingsley, P. (1995), Probability and Measure, third edition. Wiley, New York.

Hirano, K., G. Imbens, and G. Ridder, (2003), “Efficient Estimation of Average Treatment
Effects Using the Estimated Propensity Score,”Econometrica, 71(4): 1161-1189.

Johnson, N. and Kotz, S. (1977), Urn Models and Their Applications, John Wiley & Sons,

New York.

Rosenbaum, P. and Rubin, D.B. (1983), “The Central Role of the Propensity Score in Ob-
servational Studies for Causal Effects,” Biometrika 70, 4155.

Rubin, D.B. (1974), “Estimating Causal Effects of Treatments in Randomized and Non-randomized
Studies”, Journal of Educational Psychology, 66, 688-701.

Rubin, D., and N. Thomas, (1992a), “Characterizing the effect of matching using linear propen-

sity score methods with normal distributions,” Biometrika 79 797-809.

Rubin, D., and N. Thomas, (1992b), “Affinely Invariant Matching Methods with Ellipsoidal

Distributions,”Annals of Statistics 20 (2) 1079-1093.

van der Vaart, A. (1998), Asymptotic Statistics, Cambridge University Press, New York.

van der Vaart, A.W. and Wellner, J.A. (1996), Weak Convergence and Empirical Pro-

cesses, Springer-Verlag, New York.

18



Table I – Simulation Results
(N = 5000, Number of simulations = 10000)

Variances over simulations Coverage of 95% C.I.
(asymp. s.e. = 0.0022)

τ̂N(θ) 0.0053 (τ̂N(θ), σ̂2
N(θ)) 0.9532

τ̂N(θ̂N ) 0.0027 (τ̂N(θ̂N ), σ̂2
N(θ̂N )) 0.9947

(τ̂N(θ̂N ), σ̂2
adj,N (θ̂N)) 0.9488

Averages over simulations

σ̂2
N(θ) 0.0054

σ̂2
N(θ̂N ) 0.0053

σ̂2
adj,N(θ̂N ) 0.0027
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