
NBER WORKING PAPER SERIES

NUMERICALLY STABLE STOCHASTIC SIMULATION APPROACHES FOR SOLVING
DYNAMIC ECONOMIC MODELS

Kenneth Judd
Lilia Maliar

Serguei Maliar

Working Paper 15296
http://www.nber.org/papers/w15296

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2009

Professor Lilia Maliar acknowledges support from the Hoover Institution at Stanford University, the
Generalitat Valenciana under the grant BEST/2008/090 and the Ministerio de Educación y Ciencia
de España under the grant SEJ 2007-62656 and the José Castillejo program JC2008-224. Professor
Serguei Maliar acknowledges support from the Hoover Institution at Stanford University and the Ministerio
de Educación y Ciencia de España under the grant SEJ 2007-62656 and the Salvador Madariaga program
PR2008-190. The views expressed herein are those of the author(s) and do not necessarily reflect the
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2009 by Kenneth Judd, Lilia Maliar, and Serguei Maliar. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models
Kenneth Judd, Lilia Maliar, and Serguei Maliar
NBER Working Paper No. 15296
August 2009
JEL No. C63,C68

ABSTRACT
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1 Introduction

Dynamic stochastic economic models do not generally admit closed-form so-
lutions and should be approached with numerical methods; see Taylor and
Uhlig (1990), Judd (1998), Scott and Marimon (1999), and Santos (1999)
for reviews of such methods. The majority of methods for solving dynamic
models fall into three broad classes: projection methods, which approximate
solutions on tensor-product grids using quadrature-integration; perturbation
methods, which find solutions locally using high-order Taylor expansions of
optimality conditions; and stochastic simulation methods, which simultane-
ously compute an ergodic distribution of state variables, its support and the
associated decision rules. All three classes of methods have their relative
advantages and drawbacks, and the optimal choice of a method depends on
the details of the application in question. Projection methods are accurate
and fast when applied to models with few state variables, however, their cost
increases exponentially as the number of state variables increases.1 Pertur-
bation methods are generally cheap, however, the range within which they
are accurate is uncertain. Stochastic simulation methods can compute global
approximations in high-dimensional problems at a reasonable cost, however,
they are generally less accurate and less numerically stable than other meth-
ods.2

In this paper, we focus on the stochastic simulation class of methods.3 We
specifically attempt to enhance numerical stability and accuracy of existing
stochastic simulation methods for solving dynamic economic models. Our
approaches distinguish themselves from existing methods in how we use sim-

1The cost of projection methods can be reduced using more efficient constructions of
multi-dimensional grids (e.g., the Smolyak sparse grid described in Krueger and Kubler,
2004), however such constructions cannot prevent costs from nonetheless growing quickly
with the dimension of the state space.

2The performance of projection and perturbation methods in the context of moderately
large economic models is studied in Judd and Gaspar (1997).

3Stochastic simulations are widely used in economics and other fields; see Asmussen
and Glynn (2007) for an up-to-date review of such methods. In macroeconomic literature,
stochastic simulation methods have been used to approximate an economy’s path (Fair
and Taylor 1983), a conditional expectation function in the Euler equation (Den Haan
and Marcet, 1990), a value function (Maliar and Maliar, 2005), an equilibrium interest
rate (Aiyagari, 1994), and an aggregate law of motion of a heterogeneous-agent economy
(Krusell and Smith, 1998), as well as to make inferences about the parameters of economic
models (Smith, 1993) among others.
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ulation data to approximate decision rules: we build an approximation step
on a linear regression model, and we approximate decision rules using fast
and efficient linear approximation methods. Such methods are designed to
handle ill-conditioned problems including an extreme case of linearly depen-
dent variables. The use of numerically stable approximation methods enables
us to compute high-order polynomial approximations without encountering
numerical problems. All the approximation methods described in the paper
are simple to implement. We provide a Matlab routine that can be used in
other economic applications.
A stochastic simulation approach is attractive for high-dimensional ap-

plications because it allows to compute solutions only in an area of the state
space which is visited in simulations. In Figure 1, we plot an ergodic distri-
bution of capital and technology shock for a one-sector growth model with
a closed-form solution (for a detailed description of this model, see Section
2). The ergodic distribution takes the form of an oval and most of the rec-
tangular area that sits outside of the oval’s boundaries is never visited. In
the two-dimensional case, a circle inscribed within a square occupies about
79% of the area of the square, and an oval inscribed in this way occupies
even less of the original squares’s area. Thus, in the model with two state
variables, the state space is reduced by at least 21%, and quite possibly even
more. In an n-dimensional case, the ratio of a hypershere’s volume Ωs

n to a
hypercube’s volume Ωc

n is given by the following formula:

Ωs
n

Ωc
n

=

⎧⎪⎨⎪⎩
(π/2)

n−1
2

1·3·...·n for n = 1, 3, 5...

(π/2)
n
2

2·4·...·n for n = 2, 4, 6...

. (1)

The ratio Ωsn
Ωcn
declines very rapidly with the dimension of the state space; see

Table 1 and Figure 2. For dimensions three, four, five, ten and thirty, this
ratio is 0.52, 0.31, 0.16, 3 · 10−3 and 2 · 10−14, respectively. Hence, when
computing a solution on an ergodic hypershere distribution, we face just a
tiny fraction of cost we would have faced on a tensor-product hypercube grid,
used in projection methods. In particular, restricting attention to ergodic
distribution allows us to avoid computing a solution in an enormously large
number of points on the hypercube’s edges.
However, an ergodic distribution is unknown before a model is solved.

Marcet (1988) and Den Haan and Marcet (1990) propose to compute both
the unknown ergodic distribution and the associated decision rules using
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the following stochastic simulation procedure: guess a solution, simulate the
model, then use the simulation results to update the guess, and iterate until
convergence. On each iteration, this procedure generates a set of points that
can be viewed as an endogenous grid. Den Haan and Marcet’s (1990) method
is referred to in the literature as parameterized expectation algorithm (PEA)
because of a specific parameterization used: the conditional expectation in
the Euler equation. We will call this method simulation-based PEA to em-
phasize that it belongs to the stochastic simulation class of methods.4 Den
Haan and Marcet (1990) use simulated series not only to construct an ergodic
distribution but also to evaluate conditional expectations via Monte Carlo
integration. The last is not a very efficient integration technique because
stochastic simulations oversample the center and undersample the tails of
the ergodic distribution. However, in high-dimensional applications, Monte
Carlo integration can be a useful alternative to expensive quadrature inte-
gration.5

The main shortcoming of the simulation-based PEA, however, is not inef-
ficiency but numerical instability. First, polynomial terms in the approximat-
ing function are highly correlated even under low-order polynomials which
can often lead to a failure of the approximation step; see Den Haan and
Marcet (1990) and Christiano and Fisher (2000). Second, an exponentiated
polynomial approximation used in the simulation-based PEA is estimated
with non-linear least-squares (NLLS) methods and such methods require sup-
plying an initial guess and involve computing costly Jacobian and Hessian
matrices; moreover, on many occasions they simply fail to converge; see
Christiano and Fisher (2000).6 To reduce the likelihood of numerical prob-
lems in the approximation step, we propose to use a linear regression model
and linear approximation methods instead of the exponentiated polynomial
model and NLLS methods in Den Haan and Marcet (1990).

4There are PEAs that do not rely on stochastic simulations (see, e.g., Christiano and
Fisher, 2000, for projection PEAs), and there are stochastic simulation algorithms that do
not parameterize conditional expectation functions (see, e.g., Maliar and Maliar, 2005, for
a stochastic simulation algorithm parameterizing value function). A stochastic simulation
approach abstracts from the specific decision function being parameterized (conditional
expectation, capital, consumption, etc.) and emphasizes the use of simulations.

5Creel (2008) develops a parallel computing toolbox which allows to reduce the cost of
Monte Carlo integration in a version of the simulation-based PEA by running simulations
on a cluster of computers.

6Maliar and Maliar (2003a) propose a simple modification that stabilizes the simulation-
based PEA by restricting simulated series to be within certain bounds.
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We start from diagnosing the exact causes of the simulation-based PEA’s
numerical instability: specifically, we ask whether this instability is caused by
specific implementation of the algorithm (i.e. specific conditional-expectation
parameterization, NLLS methods used, etc.) or the intrinsic instability of
the iterative learning process in dynamic economic models. We find that
the primary reason for the numerical instability of the stochastic simulation
algorithm is ill-conditioning of the least-squares (LS) problem that is solved
in the approximation step; however, we also detect cases in which the learn-
ing process itself appears unstable. Ill-conditioning arises as a consequence
of multicollinearity and poor scaling of explanatory variables, and instabil-
ity of learning occurs when the parameterized decision rules do not capture
the essence of the agent’s choice. We explore the following five strategies
designed to enhance the numerical stability of the stochastic simulation al-
gorithm: (1) to parameterize different decision rules (capital decision rule
versus marginal-utility decision rule); (2) to use different polynomial families
for the approximating functions (ordinary versus Hermite polynomial repre-
sentations); (3) to normalize the variables in the regression; (4) to use LS
methods that are more numerically stable than the standard OLS method;
and (5) to replace the ill-conditioned LS problem with some other less ill-
conditioned problem. Strategy (1) helps restore the stability of the iterative
learning process, whereas strategies (2) − (4) help mitigate the effect of ill-
conditioning on the LS problem.
In the case of strategy (4), we consider two alternatives: one is a LS

method using singular value decomposition (SVD) which can stand higher de-
grees of ill-conditioning than OLS; the other is Tikhonov regularization which
reduces degrees of the ill-conditioning of the LS problem. In our pursuit of
strategy (5), we propose to perform the approximation step using a least-
absolute deviations (LAD) problem which is generally not so ill-conditioned
as the LS problem. The LAD problem can be cast into the standard linear
programming form and solved with linear programming methods. We formu-
late a primal and dual representations of the LAD problem that are suitable
for our approximation step, and we subsequently develop regularized versions
of the primal and dual problems, which are particularly robust and numeri-
cally stable. We next show that our numerically stable methods can be also
used to stabilize non-linear regression models including the regression with
exponentiated polynomials advocated in the previous literature. We finally
merge the proposed approximation methods and the principal component
analysis into a unified approach that can handle problems with any degree of
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ill-conditioning including the case of perfectly collinear explanatory variables.
Most of the approximation methods described in the paper are drawn

from the fields of applied mathematics and statistics. We apply those approx-
imation methods in a novel way by bringing them into an iterative process
that solves dynamic economic models. In this context, we are the first to use
the LAD approach and to show that a dual formulation of the LAD problem
saves cost and memory relative to the primal formulation. Our findings sug-
gest that the LAD approach can be a useful alternative to the standard LS
approach in economic applications.
Some of the methods we present in the paper are new to the literature.

First, we develop primal and dual LAD regularization methods that have
advantages compared to the existing LAD regularization method by Wang,
Gordon and Zhu (2006). Second, we propose a non-linear LAD method that
can be used as an alternative to NLLS methods, and we show how to cast
such a method into a linear programming form. Finally, we combine the
principal component analysis with the linear and non-linear regularization
methods into a unified numerically stable approach.
We test the successfulness of the proposed strategies (1)−(5) by applying

them to a one-sector neoclassical stochastic growth model. For the version of
the model with a closed-form solution, we observe that when the OLS method
is used with unnormalized ordinary polynomials, the stochastic simulation
algorithm cannot go beyond a second-order polynomial approximation, and
the Euler equation errors are of order 10−6. Normalization of variables alone
allows us to move to the third-order polynomial approximation and to reach
the accuracy of order 10−7. Under the dual formulation of the LAD prob-
lem and the normalized variables, we can obtain the fourth-order polynomial
approximation and achieve a level of accuracy that is of order 10−8. The
introduction of the Hermite polynomials allow us to compute the polynomial
approximation of all five orders and to achieve the accuracy of order 10−9,
as do all other considered methods, including LS using SVD, Tikhonov regu-
larization, principal component method, and primal and dual LAD regular-
ization methods. In more general versions of the model without closed-form
solutions, we do not achieve such a remarkable accuracy because the solu-
tions are close to linear and high-order polynomial terms do little to improve
accuracy. However, our stochastic simulation algorithm is still stable and is
able to compute polynomial approximations up to the fifth order, except in
the model with a highly risk averse agent in which the parameterized capital
decision rule leads to an unstable learning process. We finally compare the
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polynomial and exponentiated polynomial specifications, and we find that
both specifications lead to very similar results. Thus, replacing Den Haan
and Marcet’s (1990) exponentiated polynomials with simple polynomials has
no detrimental effect on a method’s accuracy.
Although we develop the numerically stable approximation methods in

the context of a specific stochastic simulation algorithm, such methods can
improve stability and accuracy of any stochastic simulation algorithm that
recovers unknown functions from the data. For example, our approximation
methods can be useful for implementing the regression step in Krusell and
Smith’s (1998) algorithm if the LS problem is ill-conditioned (this can be the
case if an aggregate law of motion is approximated not only in terms of the
first and second but also in terms of higher moments of wealth distribution).
The rest of the paper is organized as follows: In Section 2, we describe

stochastic simulation algorithm in the context of the standard neoclassical
stochastic growth model. In Section 3, we compare linear and non-linear
regression models for approximating decision functions. In Section 4, we
discuss the origins and consequences of the ill-conditioning of the LS problem.
In Section 5, we elaborate on potential strategies for enhancing the numerical
stability of stochastic simulation algorithms. In Section 6, we merge the
previously described approximation methods with the principal component
analysis. In Section 7, we present quantitative results. Finally, in Section 8,
we conclude.

2 Stochastic simulation algorithm

We apply the stochastic simulation algorithm for finding a solution to the
standard one-sector neoclassical stochastic growth model. The social planner
in this model solves

max
{kt+1,ct}∞t=0

E0

∞X
t=0

δtu (ct) (2)

subject to the budget constraint,

ct + kt+1 = (1− d) kt + θtf (kt) , (3)

and to the process for technology shocks,

ln θt = ρ ln θt−1 + �t, �t ∼ N
¡
0, σ2

¢
, (4)
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where initial condition (k0, θ0) is given. Here, Et is the operator of con-
ditional expectation; ct, kt and θt are, respectively, consumption, capital
and technology shock; u and f are, respectively, the utility and production
functions, both of which are assumed to be strictly increasing and concave;
δ ∈ (0, 1) is the discount factor; d ∈ (0, 1] is the depreciation rate of capi-
tal; and ρ ∈ (−1, 1) and σ ≥ 0 are the autocorrelation coefficient and the
standard deviation of the technology shock, respectively.
Under the assumption of an interior solution, the Euler equation of the

problem (2)− (4) is

u0 (ct) = δEt {u0 (ct+1) [1− d+ θt+1f
0 (kt+1)]} . (5)

We restrict attention to a first-order (Markov) equilibrium where decision
rules in period t are functions of current state (kt, θt). Our objective is to find
decision rules for capital, kt+1 = K (kt, θt), and consumption, ct = C (kt, θt),
such that for any sequence of shocks {θt}∞t=0 generated by the process (4),
these rules yield time series {kt+1, ct}∞t=0 that satisfy the Euler equation (5)
and the budget constraint (3).
In the benchmark case, we parameterize the capital decision rule kt+1 =

K (kt, θt). We specifically pre-multiply both sides of the Euler equation (5)
by kt+1 to obtain

kt+1 = Et

½
δ
u0 (ct+1)

u0 (ct)
[1− d+ θt+1f

0 (kt+1)] kt+1

¾
' Ψ (kt, θt;β) , (6)

where Ψ (kt, θt;β) is a flexible functional form that depends on a vector of
coefficients β. Our objective is to find β such that Ψ (kt, θt;β) is the best
possible approximation of the capital decision rule for the given functional
form Ψ.
We compute β by using the following stochastic simulation algorithm.

• Step 1. Choose a length of simulations T . Fix initial condition (k0, θ0).
Draw a sequence of shocks {θt}Tt=1 using the process given in (4) and
fix this sequence for all simulations.

• Step 2. On iteration j, fix some vector of coefficients β(j) and use
the assumed decision rule Ψ

³
kt, θt;β

(j)
´
from (6) to simulate forward

{kt+1}Tt=0 for a given sequence of shocks {θt}
T
t=0.
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• Step 3. Restore the sequence of consumption {ct}Tt=0 from the budget
constraint (3) and compute a variable inside the conditional expecta-
tion, such that

yt ≡ δ
u0 (ct+1)

u0 (ct)
[1− d+ θt+1f

0 (kt+1)] kt+1 (7)

for t = 0, ..., T − 1.

• Step 4. Approximate the conditional expectation function in (6) by
running a regression of a response variable yt on Ψ (kt, θt; β). Designate
the estimated vector of coefficients as bβ.

• Step 5. Compute the next-iteration input β(j+1) as

β(j+1) = (1− μ)β(j) + μbβ, (8)

where μ ∈ (0, 1] is a dampening parameter.

Iterate on these steps until convergence. Our convergence criterion
requires the average relative difference between the capital series ob-
tained on two subsequent iterations to be smaller than 10−ωμ with
ω > 0 and μ ∈ (0, 1], i.e.

1

T

TX
t=1

¯̄̄̄
¯k(j)t+1 − k

(j+1)
t+1

k
(j)
t+1

¯̄̄̄
¯ < 10−ωμ, (9)

where
n
k
(j)
t+1

oT
t=1

and
n
k
(j+1)
t+1

oT
t=1

are the capital series obtained on

iterations j and j + 1, respectively.7

As indicated in (8), the dampening parameter μ controls the amount
by which coefficients are updated on each iteration. The effect of μ on the
performance of the algorithm is twofold: A larger value of μ increases the
speed of convergence, but it also increases the likelihood that the simulated
series become too explosive or implosive and causes the algorithm to crash.

7The described stochastic simulation algorithm parameterizes the conditional expecta-
tion function and hence is a PEA.
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Typically, one must run a number of experiments to find the value of μ that
is most suitable for a given application.
The convergence criterion (9) depends on μ because the difference between

the capital series obtained on two subsequent iterations depends on μ. In
particular, if μ is equal to zero, the series do not change from one iteration to
the next (i.e. k(j)t+1 = k

(j+1)
t+1 ); if μ is small, the difference between successive

capital series is small as well. Adjusting our convergence criterion to μ allows
us to ensure that different values of μ lead to roughly the same accuracy in
the simulated series. Since the simulated series are our true object of interest,
the convergence criterion (9) based on the distance between successive series
is more appealing than the criterion used in the previous literature (e.g.,
Marcet and Lorenzoni, 1999, Maliar and Maliar, 2003), which is based on
the distance between the assumed and re-estimated vectors of coefficients,
β(j)− bβ. In the remainder of the paper, we focus on approximation methods
to be used in Step 4, as well as on other related choices such as a choice of a
decision rule to parameterize, a choice of a polynomial family, etc.

3 Linear versus non-linear regression models

To implement the regression given in Step 4 of the stochastic simulation
algorithm, we need to choose a functional form Ψ (kt, θt; β). One possible
choice for Ψ (kt, θt;β) is suggested by the version of the model (2) − (4)
with a closed-form solution. Under the assumptions of full depreciation of
capital, d = 1, the Cobb-Douglas production function, f (k) = kα, and
the logarithmic utility function, u (c) = ln c, the capital and consumption
decision rules are given by kt+1 = αδθtk

α
t and ct = (1− αδ) θtk

α
t , respectively.

The substitution of the closed-form solution for ct, ct+1 and kt+1 into the
definition of yt given in (7) implies that yt = kt+1. To match this result,
one can assume that Ψ (kt, θt;β) is given by the following exponentiated
polynomial

Ψ (kt, θt; β) = exp [β0 + β1 ln kt + β2 ln θt] . (10)

A regression of kt+1 on Ψ (kt, θt;β) should give us β0 = lnαδ, β1 = α and
β2 = 1.
The log-linearity of the closed-form solution, in conjunction with the fact

that the distribution for shock θt is log-normal, suggests that an exponenti-
ated polynomial can be an adequate choice for the functional formΨ (kt, θt;β)
not only in the model with the closed-form solution but also under general
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assumptions about u, fand d when no closed-form solution exists. A general
exponentiated polynomial specification for Ψ is

Ψ (k, θ;β) = exp (Xβ) . (11)

Here, Ψ (k, θ; β) ≡ (Ψ (k0, θ0;β) , ...,Ψ (kT−1, θT−1;β))
0 ∈ RT is a vector of

observations on Ψ; X ≡ [1T , X1, ..., Xn] ∈ RT×(n+1) is a matrix of explana-
tory variables, in which 1T is a T × 1 vector whose entries are equal to 1,
and Xi ∈ RT is a vector of observations on the i-th polynomial term, which
is a function of capital kt and/or shock θt; and β ≡ (β0, β1, ..., βn)0 ∈ Rn+1 is
a vector of regression coefficients. In particular, for the first-order exponen-
tiated polynomial approximation given in (10), X = [1T , ln k, ln θ], in which
k ≡ (k0, ..., kT−1)0 ∈ RT and θ ≡ (θ0, ..., θT−1)0 ∈ RT are vectors of obser-
vations on capital and shock, respectively. The exponentiated polynomial
specifications have been commonly used in the literature relying on stochas-
tic simulations; see Den Haan and Marcet (1990), Marcet and Lorenzoni
(1999), Christiano and Fisher (2000), Maliar and Maliar (2003a), etc.
The exponentiated polynomial specification for Ψ in (11) leads to the

following regression model:

Y = exp (Xβ) + ε, (12)

where Y ≡ (y0, y1, ..., yT−1)0 ∈ RT , and ε ∈ RT is a vector of residuals. An
undesirable feature of the regression model (12) is its non-linearity, which
means that it is estimated with non-linear estimation methods. Suchmethods
typically require an initial guess for the coefficients, may require computing
Jacobian and Hessian matrices and can be slow and numerically unstable.
Furthermore, non-linear estimation methods become increasingly costly and
cumbersome when we move to models with many state variables.
As an alternative to the exponentiated polynomial specification, we pro-

pose to use a simple polynomial specification for the approximating function
Ψ,

Ψ (k, θ;β) = Xβ. (13)

In particular, for the first-degree ordinary polynomial approximation, X =
[1T , k, θ]. The polynomial specification for Ψ in (13) leads to the standard
linear regression model

Y = Xβ + ε. (14)

The advantages of the linear regression model (14) over the non-linear regres-
sion model (12) are both that no initial guess of coefficient value is required
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and that the estimation of coefficients can be performed with linear regression
methods, which are faster and more numerically stable.
In the model with the closed-form solution, the polynomial specification

forΨ given in (13) will not lead to as an accurate solution as will the exponen-
tiated polynomial specification given in (11), which matches the closed-form
solution exactly. However, under general assumptions about u, f and d, the
distribution for yt is not known, and there is no a priori reason to think
that the exponentiated polynomial specification will deliver a more accurate
solution than will the polynomial specification.8 We compare the properties
of the solutions under the polynomial and exponentiated polynomial specifi-
cations in Section 7.3.

4 Ill-conditioned LS problem

To estimate β in both the linear and non-linear regression models, we can
use the least-squares (LS) technique which minimizes the squared sum of
residuals between the response variable Y and the approximation Ψ (k, θ;β),
such that

min
β
kY −Ψ (k, θ; β)k22 = min

β
[Y −Ψ (k, θ; β)]0 [Y −Ψ (k, θ;β)] . (15)

In this case, k·k2 denotes the L2 (Euclidean) vector norm, i.e. for a vector

z = (z1, ..., zT )
0, we have kzk2 ≡

µ
TP
t=1

z2t

¶1/2
. Under the linear regression

model (14), a solution to the LS problem (15) is given by the standard OLS
estimator: bβ = (X 0X)

−1
X 0Y. (16)

For the non-linear regression model (12), the LS estimator generally cannot
be written explicitly and should be computed with non-linear LS (NLLS)
methods; we discuss these methods in Section 5.6.

8For some algorithms, we can discriminate between the two types of polynomial specifi-
cations based on the properties of the solution. In particular, for algorithms that linearize
the optimality conditions around a steady state, Den Haan and Marcet (1994) show that
parameterizing a decision rule for ln kt+1 in terms of ln kt and ln θt is preferable to para-
meterizing a decision rule for kt+1 in terms of kt and ln θt so long as the solution satisfies
the property that an increase in the volatility of shock σ causes the agent to save more
capital.
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It turns out that estimating the linear regression model (14) using OLS
can often cause the matrix X 0X to be ill-conditioned. The degree of ill-
conditioning of X 0X can be measured in terms of a condition number which
is defined as a ratio of the matrix’s largest eigenvalue, λ1, to its smallest
eigenvalue, λn, i.e. κ (X 0X) ≡ λ1/λn. The eigenvalues of X 0X are defined
by the standard eigenvalue decomposition of X 0X,

X 0X = V ΛV 0, (17)

for which Λ is an n× n diagonal matrix with ordered eigenvalues of X 0X on
its diagonal, λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0, and V is an n × n orthogonal matrix
of eigenvectors of X 0X. The larger the condition number, the smaller the
determinant det (X 0X) = det (Λ) = λ1λ2...λn and the closer is X 0X to being
singular (not invertible). Thus, a matrix is ill-conditioned if it has a large
condition number.
An ill-conditioned X 0X matrix has a dramatic impact on the outcome of

the stochastic simulation algorithm: First, the computer may fail to deliver
the OLS estimator if the degree of ill-conditioning is so high that computing
the inverse ofX 0X leads to an overflow problem. Second, the OLS coefficients
may change drastically from one iteration to another which causes cycling
and leads to non-convergence. Finally, even if convergence is achieved, the
resulting approximation may be inaccurate.
Two causes of an ill-conditioned X 0X matrix are multicollinearity and

poor scaling of the variables constituting X. Multicollinearity occurs be-
cause high-order polynomial terms forming the matrix X are significantly
correlated.9 The following example illustrates the effects of multicollinearity
on the LS solution under T = n = 2.10

Example 1 Let Y =

∙
y1
y2

¸
and X = [X1,X2] =

∙
x11 x11 + φ
x12 x12

¸
, with

x12 6= 0 and φ 6= 0. In this case, the OLS solution (16) isbβ1 = y2
x12
− bβ2 and bβ2 = y1

φ
− y2x11

φx12
. (18)

9The multicollinearity problem also occurs in the non-linear regression model with the
exponentiated polynomial specification (12). In particular, Den Haan and Marcet (1990)
find that even under a second-degree ordinary polynomial approximation, a cross term is
highly correlated with the other terms and should be removed from the regression.
10If X is square (T = n) and has a full rank, the system Y = Xβ has a unique solution

β = X−1Y which coincides with the OLS solution.
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If φ → 0, we have det (X 0X) = x212φ
2 → 0, κ (X 0X) = x11+x12

φ
→ ∞,bβ1, bβ2 → ±∞, and bβ1 ≈ −bβ2, i.e. a large positive coefficient on one variable

is canceled by a similarly large negative coefficient on its correlated counter-
part.

The scaling problem arises when polynomial terms inX have dramatically
different means and variances due to differential scaling among either the
state variables (kt and θt) or polynomial terms of different orders (e.g., kt
and k5t ) have different scales. Columns with entries that are excessively small
in absolute value have the same effect on the LS solution as columns of zeros.
We illustrate the effect of the scaling problem on the LS solution with the
following example.

Example 2 Let Y =

∙
y1
y2

¸
and X = [X1, X2] =

∙
x11 φ
x12 0

¸
with x12 6= 0

and φ 6= 0. In this case, the OLS solution (16) is

bβ1 = y2
x12

and bβ2 = y1
φ
− y2x11

φx12
. (19)

If φ → 0, we have det (X 0X) = x212φ
2 → 0, κ (X 0X) = x11

φ
→ ∞, andbβ2 → ±∞, i.e. entries of X2 that are excessively small in absolute value

result in the assignation of an excessively large absolute value to coefficientbβ2.
A comparison of Examples 1 and 2 shows that the effects of multicollinear-

ity and poor scaling on the OLS solution are similar. In both examples,
when φ → 0, the matrix X 0X becomes ill-conditioned, and an information
loss results due to the rounding up of excessively large entries of (X 0X)−1.
Furthermore, since φ appears in the denominator of the OLS solutions, the
OLS coefficients become excessively large in size and oversensitive to changes
in φ. These effects are the cause of the previously discussed problems of low
accuracy and non-convergence of the stochastic simulation algorithm.
On the basis of our examples, we can propose several strategies for en-

hancing the numerical stability of the stochastic simulation algorithm, namely,

1. To consider alternative variants of the Euler equation (6); this leads to
different decision rules and affects the response variable Y .

14



2. To consider alternative polynomial representations of the approximat-
ing function Ψ; this affects the explanatory variables X1, ...,Xn.

3. To re-scale the variables to comparable units.

4. To develop LS estimation methods that are suitable for handling ill-
conditioned problems.

5. To replace the ill-conditioned LS problem with a non-LS problem that
avoids computing the inverse of the ill-conditioned matrix X 0X.

5 Enhancing numerical stability

In this section, we elaborate on the previously proposed strategies for en-
hancing the numerical stability of the stochastic simulation algorithm. In
Sections 5.1-5.3, we discuss the choice of a decision rule to parameterize, the
choice of a polynomial representation and the issue of data normalization,
respectively. In Sections 5.4 and 5.5, we describe numerically stable methods
for estimating the linear regression model, and in Section 5.6, we generalize
such methods to the case of the non-linear regression model.

5.1 Choosing a decision rule to parameterize

In the benchmark version of the stochastic simulation algorithm, we para-
meterize the decision rule for the next-period capital stock, kt+1 = K (kt, θt).
As an alternative, we consider a parameterization of the marginal utility of
consumption that is standard in PEA literature:

u0 (ct) = δEt {u0 (ct+1) [1− d+ θt+1f
0 (kt+1)]} ' δΨu (kt, θt;β) . (20)

Under the parameterization (20), the third step of the stochastic simulation
algorithm, described in Section 2, should be modified such that the assumed
decision rule (20) is used to restore consumption and to compute the next-
period capital stock kt+1 from the budget constraint (3). In this case, the vari-
able under the expectation is modified as yut ≡ u0 (ct+1) [1− d+ θt+1f

0 (kt+1)].
The remainder of the algorithm, including the dampening procedure and the
convergence criterion, is the same as in the benchmark case. We discuss
other parameterizations of the Euler equation in Section 7.4.
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5.2 Choosing a polynomial representation

To approximate Ψ, we restrict our attention to the polynomial space of func-
tions. We consider two alternative representations: an ordinary polynomial
representation and a Hermite polynomial representation. The Hermite (prob-
abilists’) polynomials can be defined by

Hm (x) = (−1)m ex
2/2 D

m

Dxm
e−x

2/2, (21)

where Dm

Dxm
is them-th order derivative of e−x

2/2 with respect to x ∈ (−∞,∞).11
It is also possible to define the Hermite polynomials with a simple recursive
formula: H0 (x) = 1, H1 (x) = x andHm (x) = xHm (x)−mHm−1 (x). Below,
we compare the Hermite polynomials, Hm (x), to the ordinary polynomials,
Pm (x), up to degree five:

P0 (x) = 1 H0 (x) = 1
P1 (x) = x H1 (x) = x
P2 (x) = x2 H2 (x) = x2 − 1
P3 (x) = x3 H3 (x) = x3 − 3x
P4 (x) = x4 H4 (x) = x4 − 6x2 + 3
P5 (x) = x5 H5 (x) = x5 − 10x3 + 15x.

(22)

The Hermite polynomials in (21) are orthogonal with respect to the standard

normal probability distribution whose density function is 1√
2π
exp

³
−x2

2

´
,

where x has a zero expected value and unit variance. Since ln θt is dis-
tributed normally, the Hermite polynomials are a natural choice for the case
of a decision rule expressed in terms of logarithms. Additionally, the Her-
mite polynomials can have advantages over the ordinary polynomials even
if the state variables are expressed in levels. This point is illustrated by a
comparison of the ordinary and Hermite polynomials shown in Figures 3 and
4, respectively. In the case of the ordinary polynomials, the basis functions
Pm (x), m = 1, ..., 5 appear very similar (namely, P2 (x) = x2 looks similar
to P4 (x) = x4, and P3 (x) = x3 looks similar to P5 (x) = x5). As a result,

11The probabilists’ definition of the Hermite polynomials builds on the probability den-
sity function for normal distributions. There is an alternative physicists’ definition for the
Hermite polynomials, and this alternative definition is used to model periodic oscillations.
The two types of Hermite polynomials can be interconverted via scaling.
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the explanatory variables for the regression that appears in Step 4 of the sto-
chastic simulation algorithm are likely to be correlated (i.e. the LS problem
is ill-conditioned) and estimation methods (e.g., OLS) are likely to fail be-
cause they cannot distinguish between similarly shaped polynomial terms. In
contrast, the Hermite polynomials case is characterized by difference in the
shapes of the basis functionsHm (x),m = 1, ..., 5, hence, the multicollinearity
problem manifests to a much lesser degree, if at all.
We approximate the function Ψ by a complete set of polynomials in kt

and θt. For example, the complete set of Hermite polynomials of degree three
is given in levels by

Ψ (kt, θt; β) = β0 + β1kt + β2θt + β3
¡
k2t − 1

¢
+ β4ktθt + β5

¡
θ2t − 1

¢
+

+ β6
¡
3k3t − 3kt

¢
+ β7

¡
k2t − 1

¢
θt + β8kt

¡
θ2t − 1

¢
+ β9

¡
3θ3t − 3θt

¢
,

where variables kt and θt are previously normalized to have zero means and
unit variances. The polynomial approximations of orders one, two, three,
four and five have 3, 6, 10, 15 and 21 coefficients, respectively.

5.3 Normalizing the variables

To reduce the likelihood of the scaling problem highlighted in Example 2, we
must normalize (i.e. center and scale) the variables. Centering consists of
subtracting the sample mean from each observation , and scaling consists of
dividing each observation by the sample standard deviation. By construction,
a centered variable has a zero mean, and a scaled variable has a unit standard
deviation.
In the case of the linear regression model (14), we first center and scale

both the response variable Y and the explanatory variables of X. We then
estimate a regression model without a constant term (i.e. intercept) to ob-

tain the vector of coefficients
³bβ∗1, ..., bβ∗n´. We finally restore the coefficientsbβ1, ..., bβn and the intercept bβ0 in the original (unnormalized) regression model

according to

bβi = (σY /σXi)
bβ∗i , i = 1, ..., n, and bβ0 = Y −

nX
i=1

bβ∗iX i, (23)

where Y and Xi are the sample means, and σY and σXi
are the sample
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standard deviations of the original unnormalized variables Y and Xi, respec-
tively.12

In addition to reducing the impact of the scaling problem, the normaliza-
tion of variables is also useful for the regularization methods, considered
in Sections 5.4.2 and 5.5.2. These methods adjust for the effects of ill-
conditioning by penalizing large values of the regression coefficients. Since
the effect of a penalty depends on the size of the coefficients (i.e., on the
scales of the variables), centering and scaling all explanatory variables to
zero means and unit standard deviations allows us to use the same penalty
for all coefficients. Furthermore, centering of the response variable Y allows
us to estimate a no-intercept model and to impose a penalty on the coeffi-
cients β1, ..., βn without penalizing the intercept β0 (recall that we recover
the intercept according to (23) after all other coefficients are computed).
In the case of the non-linear regression model (12), we can both center and

scale the explanatory variables of X, however, we cannot center the response
variable, Y , because the exponentiated polynomial specification (11) cannot
match negative deviations of Y from its mean. In this case, we shall scale
but not center the response variable Y and estimate the regression equation
(12) with a constant term included.

5.4 LS approaches to the linear regression model

In this section, we present two LS approaches that are more numerically
stable and more suitable for dealing with ill-conditioning than the standard
OLS approach. The first approach, called LS using SVD (LS-SVD), infers
(X 0X)−1 matrix included in the OLS formula (16) from a singular value
decomposition (SVD) of the matrix X. The second approach, called regular-
ized LS using Tikhonov regularization (RLS-Tikhonov), relies on a specific
(Tikhonov) regularization of the ill-conditioned LS problem that imposes
penalties based on the size of the regression coefficients. In essence, the
LS-SVD approach finds a solution to the original ill-conditioned LS prob-
lem, while the RLS-Tikhonov approach modifies (regularizes) the original
ill-conditioned LS problem into a well-conditioned problem.

12To maintain a relatively simple system of notation, we shall not introduce separate
notation for normalized and unnormalized variables. Instead, we shall remember that
when the linear regression model (14) is estimated with normalized variables, the vector
of coefficients β is n-dimensional; when (14) is estimated with unnormalized variables, it
is (n+ 1)-dimensional.
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5.4.1 LS-SVD

We can use an SVD of the matrix X to re-write the OLS formula (16) in a
way that does not require the explicit computation of (X 0X)−1. For a matrix
X ∈ RT×n with T > n, we compute a thin SVD,

X = USV 0, (24)

where U ∈ RT×n and V ∈ Rn×n are orthogonal matrices, and S ∈ Rn×n is
a diagonal matrix with diagonal entries s1 ≥ s2 ≥ ... ≥ sn ≥ 0, known as
singular values of X.13 There is a close relation between the SVD of X and
the eigenvalue decomposition of X 0X defined in (17):

V ΛV 0 = X 0X = (USV 0)
0 × (USV 0) = V S0SV 0. (25)

As this implies, S0S = Λ and thus, the singular values of X and the eigen-
values of X 0X are connected by si =

√
λi. In conjunction with formula

(24), this last result implies that the condition number of X is given by
κ (X) = κ (S) =

p
κ (X 0X). Therefore, X and S are likely to be less ill-

conditioned than X 0X.
We rewrite the OLS estimator bβ = (X 0X)−1X 0Y in terms of the SVD

(24) as follows:

bβ = (V S0SV 0)
−1

V S0U 0Y = V S−1U 0Y. (26)

If X 0X is well-conditioned, the OLS formula (16) and the LS-SVD formula
(26) give identical estimates of β. However, if X 0X is ill-conditioned and the
standard OLS estimator cannot be computed, it is still possible that matrices
X and S are sufficiently well-conditioned for the successful computation of
the LS-SVD estimator to occur.14

We illustrate the advantage of LS-SVD over the standard OLS by way of
example.

13This version of SVD is called thin to emphasize that it is a reduced version of the full
SVD with U ∈ RT×T and S ∈ RT×n. Under T À n, using the thin SVD instead of the
full SVD allows us to save memory and time.
14Another decomposition of X that leads to a numerically stable LS approach is a QR

factorization. A (thin) QR factorization of a T × n matrix X is given by X = QR, where
Q ∈ RT×n is an orthogonal matrix, and R ∈ Rn×n is an upper triangular matrix. The LS
solution based on the QR factorization is given by bβ = R−1Q0Y .

19



Example 3 Let Y =

∙
y1
y2

¸
and X = [X1, X2] =

∙
φ 0
0 1

¸
with φ 6= 0. In

(24), we have S = X and U = V =

∙
1 0
0 1

¸
. The condition numbers of S

and X 0X are related by κ (S) =
p
κ (X 0X) = φ. The OLS and the LS-SVD

estimators coincide such that

bβ = (X 0X)
−1

X 0Y =

∙
1/φ2 0
0 1

¸ ∙
φy1
y2

¸
=

= V S−1U 0Y =

∙
1/φ 0
0 1

¸ ∙
y1
y2

¸
=

∙
y1/φ
y2

¸
. (27)

If φ < 1, the largest elements of (X 0X)−1 and S−1 are 1/φ2 and 1/φ, respec-
tively. When φ ≈ 0, the computer has a better chance to compute 1/φ than
1/φ2 since 1/φ¿ 1/φ2.

In practice, the SVD of a matrix is typically computed in two steps.
First, the matrix is reduced to a bidiagonal matrix; afterwards, the singular
values of the resulting bidiagonal matrix are computed iteratively with QR or
Jacobi methods; for a description of these methods see, e.g., Bjorck (1996),
pp. 81-98. Routines that compute the SVD of matrices are readily available
in modern programming languages.

5.4.2 RLS-Tikhonov

A regularization is a process of re-formulating an ill-conditioned problem
for numerical treatment by imposing additional restrictions on the solution.
Tikhonov regularization is the most commonly used regularization method
for dealing with ill-conditioned problems in approximation theory.15 In statis-
tics, this method is known as ridge regression and is classified as a shrinkage
method to emphasize that the length of the vector of estimated coefficients
shrinks relative to that of the non-regularized solution.16 The key idea behind
Tikhonov regularization is the mitigation of the effects of ill-conditioning of

15Tikhonov regularization is named for Andrey Tikhonov who developed this method
and applied it for solving integral equations; see Tikhonov (1963).
16The term ridge regression was introduced by Hoerl (1959) to emphasize its similarity to

ridge analysis in his previous study of second-order response surfaces. Hoerl and Kennard
(1970) popularized ridge regressions by providing theoretical and practical insights into
benefits of the method.
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the LS problem by shrinking the excessively large LS coefficients that are
responsible for the numerical problems experienced by the stochastic simu-
lation algorithm (see detailed discussion in Section 4).
Formally, Tikhonov regularization consists of imposing an L2 penalty on

the size of the regression coefficients; i.e. for a given regularization parameter
η ≥ 0, we search for β (η) that solves

min
β

kY −Xβk22 + η kβk22 = min
β

(Y −Xβ)0 (Y −Xβ) + ηβ0β, (28)

where Y ∈ RT and X ∈ RT×n are centered and scaled, and β ∈ Rn. The
parameter η controls the amount by which the regression coefficients are
shrunk, with larger values of η leading to greater shrinkage. As outlined
in Section 5.3, centering and scaling allow us to use the same penalty for
all explanatory variables and running a no-intercept regression allows us to
penalize all regression coefficients except of the intercept.
Finding the first-order condition of (28) with respect to β gives us the

following estimator bβ (η) = (X 0X + ηIn)
−1

X 0Y, (29)

where In is an identity matrix of order n. Note that Tikhonov regularization
adds a positive constant to X 0X prior to inverting this matrix. Thus, even
if X 0X is singular, the matrix X 0X + ηIn is non-singular, which allows its
inverse to be computed. The estimator bβ (η) in (29) is biased but it tends
to have a smaller total mean square error than the OLS estimator; see Hoerl
and Kennard (1970) for a proof.

5.5 LAD approaches to the linear regression model

In this section, we replace the ill-conditioned LS problemwith a least-absolute
deviations (LAD) or L1 problem, which consists of minimizing the sum of
absolute deviations. Since the LAD problem does not involve minimizing
the squared sum of residuals, it does not require computing (X 0X)−1. In
Section 5.5.1, we develop primal and dual linear programming formulations
of the LAD problem, and in Section 5.5.2, we regularize the primal and dual
formulations of the LAD problem by imposing a penalty on the size of the
regression coefficients.
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5.5.1 LAD

As applied to the linear regression model (14), the LAD problem is

min
β
kY −Xβk1 = min

β
10T |Y −Xβ| . (30)

where k·k1 denotes L1 vector norm, i.e. for a vector z = (z1, ..., zT )
0, we

have kzk1 ≡
TP
t=1

|zt|, and |·| denotes the absolute value.17 Without a loss of
generality, we assume that X and Y are centered and scaled.
The LAD approach is known to be more robust to outliers than the LS

approach because it minimizes errors without squaring them and thus, places
comparatively less weight on distant observations than the LS approach does.
The statistical literature suggests that the LAD approach is preferable to
the LS approach in many applications; see Narula and Wellington (1982),
and Dielman (2005) for surveys of the literature on the LAD estimation of
econometric models. An example of economic application where the LAD
approach was critical for solving an approximation problem is Michelangeli
(2008).
There is no explicit solution to the LAD problem (30) similar to the

explicit OLS solution (16) to the LS problem. However, we can re-formulate
the LAD problem to consist of a linear objective function bound by a set of
linear constraints, and we can solve this reformulated problem with standard
linear programming techniques. By substituting the absolute value term
|Y −Xβ| in (30) with a vector p ∈ RT , we obtain

min
β, p

10Tp (31)

s.t. − p ≤ Y −Xβ ≤ p. (32)

This problem has n + T unknowns. To find a solution to (31) and (32),
linear programming methods convert the 2T inequality restrictions imposed
by (32) into equalities by adding non-negative slack variables; this effectively

17LAD regression is a particular case of quantile regressions introduced by Koenker and
Bassett (1978); see also Koenker and Hallock (2001) for many examples. The central
idea behind quantile regressions is the assignation of differing weights to positive versus
negative residuals, Y −Xβ. A θ-th regression quantile, θ ∈ (0, 1), is defined as a solution
to the problem of minimizing a weighted sum of residuals, where θ is a weight on positive
residuals. The LAD estimator is the regression median, i.e. the regression quantile for
θ = 1/2.
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creates 2T additional lower bounds on the slack variables. Although this
formulation of the LAD problem is intuitive, we argue below that it is not
the most suitable for a numerical analysis.

LAD: primal problem (LAD-PP) Charnes et al. (1955) show that a
linear LAD problem can be transformed into the standard linear program-
ming form by representing each deviation as the difference between two non-
negative variables. We use this result to elaborate an alternative formulation
of the LAD problem (30).
We express the deviation for each observation as a difference between two

non-negative variables ut and vt, such that

yt −
nX
i=0

βixit = ut − vt, (33)

where xit is the t-th element of the vector Xi. The variables ut and vt can
be interpreted as non-negative vertical deviations above and below the fitted
line, byt = Xt

bβ, respectively; the sum ut+vt is the absolute deviation between
the fit byt and the observation yt. Thus, the LAD problem is to minimize the
total sum of absolute deviations subject to the system of equations (33). In
vector notation, this problem is

min
β,u,v

10Tu+ 1
0
Tv (34)

s.t. u− v +Xβ = Y, (35)

u ≥ 0, v ≥ 0, (36)

where u, v ∈ RT . We refer to the above linear programming problem as
primal problem. A noteworthy property of its solution is that ut or vt cannot
both be strictly positive; if so, we can subtract the same positive number
from both ut and vt, which will reduce the value of the objective function
without affecting the constraint (35). The advantage of the formulation given
by (34)− (36) compared to that which is shown in (31) and (32) is that the
former has T equality constraints while the latter had 2T constraints.

LAD: dual problem (LAD-DP) A useful result of linear programming
is that every primal problem can be converted into a dual problem.18 The

18See Ferris, Mangasarian, Wright (2007) for duality theory and examples.
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dual problem corresponding to the primal problem (34)− (36) is

max
q

Y 0q (37)

s.t. X 0q = 0, (38)

−1T ≤ q ≤ 1T , (39)

where q ∈ RT is a vector of unknowns. Wagner (1959) argues that if the
number of observations, T , is sizable (i.e. T À n), the dual problem (37)−
(39) is less computationally cumbersome than the primal problem (34)−(36).
Indeed, the dual problem contains only n equality restrictions, and the primal
problem has contained T equality restrictions, while the number of lower and
upper bounds on unknowns is equal to 2T in both problems. Note that the
vector of coefficients β, which is a primary object of our estimation, does
not enter into the dual problem explicitly. However, as noted in Wagner
(1959), we need not make any extra computations to find the coefficients of
the vector β since these coefficients are equal to the Lagrange multipliers
associated with the equality restrictions given in (38).

5.5.2 Regularized LAD (RLAD)

In this section, we modify the original LAD problem (30) to incorporate an L1
penalty on the vector of coefficients β.19 We refer to the resulting problem as
regularized LAD (RLAD). Like Tikhonov regularization, our regularization
of the LAD problem reduces the impact of ill-conditioning on the solution
by shrinking the values of the coefficients toward zero. Introducing an L1
penalty in place of the L2 penalty used in Tikhonov regularization, has an
important advantage in the case of LAD: It preserves the linearity of the
objective function, which allows the RLAD problem to be cast into a linear
programming form. Formally, for a given regularization parameter η ≥ 0,
the RLAD problem attempts to find β (η) that solves

min
β

kY −Xβk1 + η kβk1 = min
β
10T |Y −Xβ|+ η10n |β| , (40)

where Y ∈ RT and X ∈ RT×n are centered and scaled, and β ∈ Rn. As
in the case of Tikhonov regularization, centering and scaling of X and Y in

19In statistics, the L1 penalty was originally applied to the LS estimation of linear
models by Tibshirani (1996) and is known as lasso (least absolute shrinkage and selection
operator); see Hastie, Tibshirani and Friedman (2009), pp. 68-79.
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the RLAD problem (40) allows us to use the same penalty parameter for all
explanatory variables and to avoid penalizing an intercept.
There is another paper in the literature that considers a regularized

version of the LAD problem, namely, Wang, Gordon and Zhu (2006) re-
formulate the RLAD problem (40) as a linear programming problem of type
(31), (32) by representing the absolute value terms |βi| as sign (βi)βi. Here,
we develop a linear programming formulation of the RLAD problem that is
parallel to the primal problem (34)− (36), i.e. we replace the absolute value
terms |βi| with two variables as discussed in Section 5.5.1.

RLAD: primal problem (RLAD-PP) To cast the RLAD problem (40)
into a linear programming form, we represent the coefficients of the vector
β as differences between two non-negative variables: i.e. βi = ai − bi, with
ai ≥ 0, bi ≥ 0 for i = 1, ..., n. We then impose a linear penalty on each ai
and bi. The resulting regularized version of the primal problem (34) − (36)
is

min
a,b,u,v

10Tu+ 1
0
Tv + η10na+ η10nb (41)

s.t. u− v +Xa−Xb = Y, (42)

u ≥ 0, v ≥ 0, (43)

a ≥ 0, b ≥ 0, (44)

where a, b ∈ Rn are vectors that define β. The above problem has 2T + 2n
unknowns, as well as T equality restrictions as given in (42) and 2T + 2n
lower bounds as given in (43) and (44).

RLAD: dual problem (RLAD-DP) The dual problem corresponding
to the RLAD-PP (41)− (44) is

max
q

Y 0q (45)

s.t. X 0q 6 η · 1n, (46)

−X 0q 6 η · 1n, (47)

−1T ≤ q ≤ 1T , (48)

where q ∈ RT is a vector of unknowns. Here, 2n linear inequality restrictions
are imposed by (46) and (47), and 2T lower and upper bounds on T unknown
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components of q are given in (48). By solving the dual problem, we obtain
the coefficients of the vectors a and b as the Lagrange multipliers associated
with the restrictions (46) and (47), respectively; we can then restore the
RLAD estimator using β = a− b.

5.6 LS and LAD approaches to the non-linear regres-
sion model

In this section, we extend the approaches to the linear regression model
(14) that are developed in Sections 5.4 and 5.5 to the case of the non-linear
regression model,

Y = Ψ (k, θ; β) + ε, (49)

where β ∈ Rn+1. The regression model with exponentiated polynomial (12)
is a particular case of (49). For the non-linear regression model (49), we
first consider the non-linear LS problem (15), and we then formulate the
corresponding LAD problem.
The typical NLLS estimation method linearizes the NLLS problem (15)

around a given initial guess, β, by using a first-order Taylor expansion of
Ψ (kt, θt; β) and makes a step ∆β toward a solution, bβ,

bβ ' β +∆β. (50)

Using the linearity of the differential operator, we can derive an explicit
expression for the step ∆β. This step is given by a solution to the system of
normal equations,

J 0J∆β = J 0∆Y, (51)

where J ≡

⎛⎜⎝
∂Ψ(k1,θ1;β)

∂β0
... ∂Ψ(k1,θ1;β)

∂βn

... ... ...
∂Ψ(kT ,θT ;β)

∂β0
... ∂Ψ(kT ,θT ;β)

∂βn

⎞⎟⎠ is a Jacobian matrix of Ψ and

∆Y ≡ (y1 −Ψ (k1, θ1;β) , ..., yT −Ψ (kT , θT ;β))
0; see Judd (1998), pp. 117-

119. Typically, the NLLS estimation method does not give an accurate so-
lution bβ in a single step ∆β, and must instead iterate on the step (50) until
convergence.20

20Instead of the first-order Taylor expansion ofΨ (k, θ;β), we can consider a second-order
Taylor expansion, which leads us to another class of non-linear optimization methods in
which the step ∆β depends on a Hessian matrix; see Judd (1992), pp. 103-117, for a
review.
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A direct way to compute the step ∆β from (51) is to invert the matrix
J 0J , which yields the well-known Gauss-Newton method,

∆β = (J 0J)
−1

J 0∆Y. (52)

This formula (52) has a striking resemblance to the OLS formula (16): The
terms X, Y and β, which appear in (16), are replaced in (52) by J , ∆Y and
∆β, respectively. If J 0J is ill-conditioned, as is often the case in applications,
the Gauss-Newton method experiences the same difficulties in computing
(J 0J)−1 and ∆β as the OLS method does in computing (X 0X)−1 and β.
To deal with the ill-conditioned matrix J 0J in the Gauss-Newton method

(52), we can employ the LS approaches developed for the linear regression
model in Sections 5.4.1 and 5.4.2. Specifically, we can compute an inverse
of the ill-conditioned matrix J 0J by using LS methods based on SVD or QR
factorization of J . We can also use the Tikhonov type of regularization,
which leads to the Levenberg-Marquart method,

∆β = (J 0J + ηIn+1)
−1

J 0∆Y, (53)

where η ≥ 0 is a regularization parameter.21
Furthermore, we can replace the ill-conditioned NLLS problem with a

non-linear LAD (NLLAD) problem,

min
β
kY −Ψ (k, θ; β)k1 = min

β
10T |Y −Ψ (k, θ;β)| . (54)

As in the NLLS case, we can proceed by linearizing the non-linear problem
(54) around a given initial guess β. The linearized version of the NLLAD
problem (54) is

min
∆β

10T |∆Y − J∆β| . (55)

This problem (55) can be formulated as a linear programming problem:
specifically, we can set up non-regularized primal and dual problems, as well
as regularized primal and dual problems, analogous to those considered in
Sections 5.5.1 and 5.5.2.

Example 4 Let us formulate a regularized primal problem for (55) that is
parallel to (41) − (44). Fix some initial a and b (which determine initial

21This method was proposed independently by Levenberg (1944) and Marquart (1963).
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β = a− b) and solve for ∆a and ∆b from the following linear programming
problem:

min
∆a,∆b,u,v

10Tu+ 1
0
Tv + η10n∆a+ η10n∆b (56)

s.t. u− v + J∆a− J∆b = ∆Y, (57)

u ≥ 0, v ≥ 0, (58)

∆a ≥ 0, ∆b ≥ 0. (59)

Compute ba ' a + ∆a and bb ' b + ∆b, and restore the RLAD estimatorbβ ' (a+∆a) − (b+∆b). As in the case of NLLS methods, we will not
typically obtain an accurate solution bβ in a single step, but must instead
solve the problem (56)− (59) iteratively until convergence.

To set up a regularized dual problem for (55), which is analogous to
(45)− (48), we shall replace X and Y with J and ∆Y , respectively.
We should finally notice that the NLLS and NLLAD regularization meth-

ods described in this section penalize all coefficients equally, including a con-
stant term. Therefore, prior to applying these methods, we need to appropri-
ately normalize the explanatory variables and set the penalty on the constant
term to zero.

6 Unified principal component method

The methods developed in Sections 5.4 - 5.6 are more suitable for dealing with
ill-conditioned problems than the standard OLS or Gauss-Newton methods;
nonetheless, they are still likely to fail when the degrees of ill-conditioning are
extremely high. In particular, these methods will not perform appropriately
when the matrix X contains linearly dependent columns (i.e. X is singular).
In this case, the solution is not uniquely determined, and all the studied
methods will either fail to deliver a solution or deliver one of many possible
solutions, which leads to cycling of the stochastic simulation algorithm.
In this section, we describe a numerically stable method that can handle

any degrees of data ill-conditioning including the case of linearly dependent
columns of X. Specifically, we combine the methods of Sections 5.4 - 5.6
with the principal component analysis, used in statistics to deal with multi-
collinearity. The key idea of the proposed method is to reduce the degrees

28



of ill-conditioning to a reasonable level prior to applying the methods of
Sections 5.4 - 5.6.
Let X ∈ RT×n be a matrix of centered and scaled explanatory variables

and consider the SVD of X defined in (24). Let us make the following linear
transformation of the explanatory variables: Z ≡ XV , where Z ∈ RT×n. The
variables Z1, ..., Zn are called principal components of X and are orthogonal,
Z 0iZi = s2i and Z 0jZi = 0 for any j 6= i. Principal components have two
noteworthy properties. First, the sample mean of each principal component
Zi is equal to zero, since it is given by a linear combination of centered
variablesX1, ...,Xn, each of which has a zero mean; additionally, the variance
of each principal component is equal to s2i /T , because we have Z

0
iZi = s2i .

Since the SVD orders the singular values from the largest, the first prin-
cipal component Z1 has the largest sample variance among all the principal
components, while the last principal component Zn has the smallest sample
variance. In particular, if Zi has a zero variance (equivalently, a zero singular
value, si = 0), then all entries of Zi are equal to zero, Zi = (0, ..., 0)

0, which
implies that the variables X1, ..., Xn constituting this particular principal
component are linearly dependent. Therefore, we can reduce the degrees of
ill-conditioning of X to a "desired" level by excluding low variance principle
components corresponding to small singular values.
To formalize the above idea, let κ represent the largest condition number

of the matrix X that we are willing to accept. Let us compute the ratios
of the largest singular value to all other singular values, s1

s2
, ..., s1

sn
. (Recall

that the last ratio is the actual condition number of the matrix X; κ (X) =
κ (S) = s1

sn
). Let Zr ≡ (Z1, ..., Zr) ∈ RT×r be the first r principal components

for which s1
si
≤ κ, and let us remove the last n− r principal components for

which s1
si
> κ. By construction, the matrix Zr has a condition number which

is smaller than or equal to κ.
We re-write the linear regression model (14) in terms of the principal

components Zr,
Y = Zrϑ+ ε, (60)

where Y is centered and scaled, and ϑ ∈ Rr is a vector of coefficients. To
estimate the regression equation (60), we can use any of the LS and LAD
methods described in Sections 5.4 and 5.5. Once the estimate bϑ is computed,
we can find the vector of coefficients for the no-intercept regression, bβ =
V rbϑ ∈ Rn, where V r = (V1, ..., Vr) ∈ Rn×r contains the first r right singular
vectors of X.
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We can also arrive at the regression equation (60) using a truncated SVD
method from the field of inverse problems in applied mathematics. Let the
matrix Xr ∈ RT×r be defined by a truncated SVD of the matrix X, such
that Xr ≡ U rSr (V r)0; under this definition, U r ∈ RT×r and V r ∈ Rn×r are
the first r columns of U and V , respectively, and Sr ∈ Rr×r is a diagonal
matrix whose entries are the r largest singular values of X. As follows from
the theorem of Eckart and Young (1936), the matrix Xr is the closest rank
r approximation of the matrix X ∈ RT×n. To obtain the regression equation
(60), we can use the fact that Zr and Xr are related by Zr = XrV r.
We can use the truncated SVD to represent the LS estimator bϑ in the

regression (60), specifically by setting bϑ = (Sr)−1 (U r)0 Y , which implies

bβ = V r (Sr)−1 (U r)0 Y. (61)

We call the estimator (61) regularized LS using truncated SVD (RLS-TSVD).
If r = n, then RLS-TSVD coincides with LS-SVD described in Section
5.4.1.22

Finally, we shall make three remarks. First, we can extend the results of
this section to the non-linear case by re-formulating the non-linear regression
model (49) in terms of the principal components Zr and by estimating the
model with the numerically stable methods such as those described in Sec-
tion 5.6. Second, the principal component regression (60) is well suited to
the shrinkage type of regularization methods without additional scaling: the
lower the variance of a principal component, the larger is the corresponding
regression coefficient and the more heavily such a coefficient is penalized by
a regularization method. Finally, we should be careful with removing low
variance principal components since they may contain important pieces of
information. Hadi and Ling (1998) construct an artificial regression example
with four principal components, for which the removal of the lowest variance
principal component reduces the explanatory power of the regression dra-
matically: R2 drops from 1.00 to 0.00. A safe strategy is to set κ to a very
large number in order to rule out only cases of extremely collinear variables.

22A possible alternative to the truncated SVD is a truncated QR factorization method
with pivoting of columns; see Eldén (2007), pp. 72-74. The latter method is used in Matlab
to construct a powerful back-slash operator for solving linear systems of equations.
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7 Numerical results

We now investigate the successfulness of the proposed strategies in enhancing
the numerical stability of the stochastic simulation algorithm. In Section 7.1,
we describe the methodology of our numerical analysis. In Sections 7.2 and
7.3, we present the results for the linear and non-linear regression methods,
respectively. In Section 7.4, we discuss the sensitivity experiments.

7.1 Methodology

We have discussed a variety of approaches for enhancing the numerical sta-
bility of the stochastic simulation algorithm. To assess the above approaches,
we distinguish the following representative methods. For the linear regression
model, we consider four non-regularization methods (OLS, LS-SVD, LAD-
PP, and LAD-DP) and four corresponding regularization methods (RLS-
Tikhonov, RLS-TSVD, RLAD-PP, and RLAD-DP). The RLS-TSVDmethod
is also a representative of the principal component approach. For the non-
linear regression model, we consider one representative method, namely, the
Levenberg-Marquart method. We use the above methods to compute the
solutions in cases involving both unnormalized and normalized data, as well
as both the ordinary and Hermite polynomial representations.
We proceed by eliminating the least successful methods along the numer-

ical experiments. Specifically, we begin with a version of the model with the
closed-form solution under a relatively short simulation length, T = 3, 000.
After solving this model using all methods, we discard any and all methods
that proved to be too costly in terms of memory and time. We subsequently
apply the remaining methods to solving the model with partial depreciation
of capital under a longer simulation length T = 10, 000.
We parameterize the model (2) − (4) in the way which is standard for

macroeconomic literature. We assume the Cobb-Douglas production func-
tion, f (kt) = kαt with α ∈ (0, 1), and the CRRA utility function, u (ct) =
c1−γt −1
1−γ with γ ∈ (0,∞). The share of capital in production is equal to

α = 0.36, the parameters in the process for shocks (4) are set at ρ = 0.95 and
σ = 0.01, and the discount factor is equal to δ = 0.99. We consider two val-
ues of the depreciation rate, namely, d = 1 and d = 0.02. Under the former
value, we set the coefficient of relative risk aversion at γ = 1, which leads
to the model with the closed-form solution, and under the latter value, we
consider three alternative values for the coefficient of relative risk aversion,
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namely, γ ∈ {0.1, 1, 10}. All the experiments are performed with an identical
sequence of shocks: we fix a sequence of shocks of length T = 10, 000, and we
use the first 3, 000 observations of the sequence when computing experiments
with T = 3, 000.23

In all experiments, we intended to compute polynomial approximations
up to the fifth order; however, the algorithm failed to deliver high-order
polynomial approximations in some experiments. To compute the polyno-
mial approximation of order m = 1, we start iterations from a low-accuracy
solution; to compute the polynomial approximations of orderm ≥ 2, we start
from the polynomial approximation of order m− 1. We set the dampening
parameter at μ = 0.1 when the capital decision rule is parameterized, and
we set it at μ = 0.5 when the marginal utility of consumption is parame-
terized. In the model with the closed-form solution, we use the convergence
criterion (9) with ω = 9. In the model with partial depreciation of capital, a
tight criterion does not help improve solution accuracy but does increase the
computational costs, so we use the less strict convergence criterion of ω = 6.
For each computational experiment, we report the time (in seconds) re-

quired to compute a solution, CPU. To compute the Hermite polynomial
terms, we use the explicit formulas shown in (22). As a result, a construc-
tion ofX from the ordinary and Hermite polynomials takes us approximately
the same time, and the differences in computational time between the two
polynomial representations reflect essentially the differences in the number
of iterations.
To evaluate the accuracy of the obtained solutions, we use the Euler

equation error test. To this purpose, we re-write the Euler equation (5) in a
unit-free form,

e (kt, θt) ≡ Et

∙
c−γt+1
c−γt

¡
1− d+ αθt+1k

α−1
t+1

¢¸
− 1, (62)

where e (kt, θt) is the Euler equation error in (kt, θt). Given that e (kt, θt) = 0
for all (kt, θt) in the true solution, we can measure the accuracy of a candi-
date solution by examining the degree to which e (kt, θt) differs from zero.

23In our experiments, the length of simulations was not a determinant factor of accuracy.
In some model economies, Euler equation errors were of order 10−9 under T = 3, 000
and in other model economies, they were of order 10−4 independently of whether we use
T = 3, 000 or T = 100, 000. To increase accuracy of Monte Carlo integration by one order
of magnitude, we should increase T by a factor of 100; see Judd (1998), pp. 292, for a
discussion.
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To implement the test, we draw a new sequence of shocks with length T =
1, 000, and we use the decision rules to simulate the time series {kt+1, ct}1000t=0 .
For each (kt, θt), we compute e (kt, θt) by evaluating the conditional expec-
tation in (62) with a ten-point Gauss-Hermite quadrature rule; see Judd
(1998), pp. 261-263 for details. We then find the average absolute and
maximum absolute Euler equation errors, emean =

1
T

P1,000
t=1 |e (kt, θt)|, and

emax = max
¡
{|e (kt, θt)|}1,000t=1

¢
, respectively.

We run the computational experiments on a desktop computer ASUS with
Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz). Our programs are writ-
ten in Matlab. We compute SVD using the LAPACK package which is built
in Matlab. To solve the linear programming problems, we use the routine
"linprog" under the option of an interior-point method.24 For the non-linear
regression model, we use the NLLS routine "nlinfit," which implements the
Levenberg-Marquart method.

7.2 Linear regression methods

In this section, we present the results of the various linear regression ap-
proaches. We first study the model with the closed-form solution, then turn
our attention to the model with partial depreciation of capital.

7.2.1 Model with the closed-form solution

We describe the results for the model with the closed-form solution in Tables
2 and 3. In Table 2, we compare the performance of four non-regularization
methods (OLS, LS-SVD, LAD-PP and LAD-DP) using both unnormalized
and normalized data as well as both ordinary and Hermite polynomial rep-
resentations.

OLS With unnormalized data and ordinary polynomials, OLS is able to
compute the solutions only up to the second-order polynomials (OLS case
I); under higher orders of polynomials, the stochastic simulation algorithm

24A possible alternative to the interior-point method is a simplex method. Our exper-
iments indicated that the simplex method, incorporated in Matlab, was slower than the
interior-point method; occasionally, it was also unable to find an initial guess. See Portnoy
and Koenker (1997) for a comparison of interior-point and simplex-based algorithms in
computing LAD estimates.
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either breaks down or cycles. The failure of OLS to compute the solutions un-
der high-order polynomials is the consequence of X 0X being ill-conditioned.
The data normalization improves the performance of the OLS method, how-
ever, we still cannot calculate more than a third-order polynomial approxi-
mation (OLS, case III). The introduction of Hermite polynomials completely
resolves the ill-conditioning of the LS problem (OLS, cases II and IV): After
Hermite polynomials are introduced, OLS can compute all five degrees of
the polynomial approximations, and the accuracy of these approximations
improves systematically as we move from the first- to the fifth-order polyno-
mials. For example, the average Euler equation error emean decreases from
10−4 to 10−9. Data normalization has no visible effect on the outcome of the
Hermite polynomials case; this is because the Hermite polynomial terms are,
by construction, already expressed in comparable units (compare OLS, cases
II and IV).

LS-SVD This method produces virtually the same solutions, regardless of
whether the variables are normalized or not and whether ordinary or Her-
mite polynomial representations are used. The LS-SVD method is capable of
computing the solutions for all five degrees of polynomials with a very high
degree of accuracy and with very low computational time. While the case of
LS-SVD with unnormalized data and ordinary polynomials suffers a bit from
the ill-conditioning of the LS problem - namely, its fifth-order polynomial
approximation is slightly less accurate than forth-order polynomial approxi-
mation (LS-SVD, case I) - the remaining LS-SVD experiments do not suffer
from the effects of ill-conditioning at all.

LAD-PP LAD-PPwith unnormalized data and ordinary polynomials (LAD-
PP, case I) can deliver solutions for all five degrees of polynomials; hence, it
performs better than its OLS counterpart (OLS, case I). The solution for the
fifth-order polynomial, however, is slightly worse than that for the forth-order
polynomial; this shows that LAD-PP with unnormalized data and ordinary
polynomials still suffers from the ill-conditioning problem, specifically, from
the scaling problem. Indeed, when the variables were normalized, the ac-
curacy of the solution for the fifth-order polynomial approximation becomes
better than that of the fifth-order polynomial approximation. Using Hermite
polynomials, instead of ordinary polynomials, allows us to visibly improve
the accuracy of the solutions (compare LAD-PP, cases I and II and also,
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cases III and IV).

LAD-DP In the ordinary polynomials cases, LAD-DP is somewhat less
numerically stable than LAD-PP: It can only compute the approximations
up to the third degree when presented with unnormalized data (LAD-DP,
case I), and up to the fourth degree when presented with normalized data
(LAD-DP, case III). In the Hermite polynomials case, LAD-DP does not
seem to suffer from the above problems and performs very similarly to LAD-
PP. Nonetheless, an advantage of LAD-DP over LAD-PP is its considerably
smaller computational time.

Regularization methods In Table 3, we present the results obtained un-
der four regularization methods: RLS-Tikhonov, RLAD-PP, RLAD-DP, and
RLS-TSVD. Normalized data was used for all four regularization methods.
To illustrate on the degree to which solution accuracy depends on the size
of the regularization parameter for each method, we consider two values of
the regularization parameter: In RLS-TSVD, the largest condition number
allowed, κ, is set equal to 108 and 104, and in the other three methods, the
penalty on the size of the regression coefficients, η, is set equal to 10−4 and
10−2. We chose these values arbitrary and hence cannot draw a rigorous com-
parison of accuracy across the methods. For each of our methods, we can
find a value of the regularization parameter that leads to a more accurate
solution than the one reported in the table.25

As we can see from Table 3, the regularization methods under consider-
ation can compute the solutions under all five degrees of polynomials and
deliver a level of accuracy that is comparable or superior to that of the
non-regularization methods shown in Table 2. For the shrinkage methods
(RLS-Tikhonov, RLAD-PP, and RLAD-DP) an increase in η from 10−4 to
10−2 leads to the following changes: RLS-Tikhonov produces less accurate
solutions under both the ordinary and Hermite polynomials, while RLAD-
PP and RLAD-DP deliver less accuracy under the ordinary polynomials and
almost the same accuracy under the Hermite polynomials. For RLS-TSVD,
a decrease in κ from 108 to 104 results in the removal of relevant information
25To choose appropriate values of regularization parameters, one can employ a gener-

alized cross-validation procedure, which is commonly used in statistics; see, e.g., Brown
(1993), pp. 62-71. In our case, one can choose values that minimize the mean or maximum
absolute Euler equation errors on a simulated path.
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from the regression, which causes the accuracy of the solutions to decrease.

Lessons On the basis of our results for the model with the closed-form
solution, we can make the following conclusions. First, in the case of un-
normalized data and ordinary polynomials, all of the proposed methods pro-
duce more accurate and numerically stable solutions than the standard OLS
method. Second, data normalization consistently improves the accuracy of
the solutions in cases of ordinary polynomials while leaving solution accu-
racy unaffected when Hermite polynomials are used; in the subsequent ex-
periments on the linear regression model, we thus use only normalized data.
Finally, our primal-problem formulations LAD-PP and RLAD-PP require
operations on matrices with (2T + n)×T and (2T + 2n)×T dimensions, re-
spectively, which makes these formulations both memory intensive and slow
to compute. In particular, when T exceeds 3, 000, our computer ran out of
memory. One can potentially reduce the cost of these methods by a more
efficient management of computer memory but we do not pursue this direc-
tion. When we move to the model with partial depreciation of capital, we
thus take LAD-PP and RLAD-PP out of consideration and concentrate on
the dual formulations LAD-DP and RLAD-DP which are not so costly in
terms of memory and time.

7.2.2 Model with partial depreciation of capital

Table 4 contains the results for the model with partial depreciation of cap-
ital; such model does not admit a closed-form solution. We compare four
methods: OLS, RLS-Tikhonov, RLAD-DP and RLS-TSVD. When using the
RLS-Tikhonov and RLAD-DP methods, we set the regularization parameter
η equal to 10−3; and in RLS-TSVD method, we set the regularization pa-
rameter κ equal to 106. For each method, we report the results under both
ordinary and Hermite polynomial representations, as well as under three dif-
ferent values of the coefficient of relative risk aversion γ ∈ {0.1, 1, 10}.

Low and medium degrees of risk aversion In the case of γ = 1, we
can distinguish the following regularities. Under the ordinary polynomial
representation, OLS is able to compute the solutions up to the forth-order
polynomial approximation (γ = 1, case I), while all the other methods are
able to do so for all five polynomial approximations considered (γ = 1, cases
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III, V and VII); solution accuracy is very similar across all four methods.26

Under the Hermite polynomial representation, OLS is capable of computing
the solutions for all five polynomial approximations (γ = 1, case II); further-
more, OLS, RLS-Tikhonov and RLS-TSVD are indistinguishable in accuracy
and computational time (γ = 1, cases II, IV and VIII), while RLAD-DP is
generally somewhat slower (γ = 1, case VI). The LS regularization methods
(RLS-Tikhonov, RLS-TSVD) perform slightly better in terms of accuracy
than the LAD regularization method (RLAD-DP). However, the accuracy
comparisons between the regularization methods should be treated with cau-
tion as the accuracy of a regularization method depends on the value of the
regularization parameter chosen. For all the methods considered, the high-
est accuracy is achieved under the second-order polynomial approximations.
The introduction of higher order polynomial terms into the regressions does
not improve solution accuracy. This is because the true decision rules are
close to linear, which means that high-order polynomial terms have little
explanatory power and serve effectively to increase the variance of the esti-
mated coefficients. We observe essentially the same tendencies for γ = 0.1
as for γ = 1.

High degree of risk aversion: instability of learning The case of
γ = 10, however, is different. No method is able to compute the solutions for
all five polynomial approximations: the least successful method is RLAD-DP
which can compute only the first-order polynomial approximation (γ = 10,
cases V and VI), while the most successful method is RLS-Tikhonov which is
able to calculate the forth-order polynomial approximation with sufficiently
small Euler equation errors (γ = 10, cases III and IV). Our attempts to
enhance the convergence by reducing the dampening parameter μ and by
varying the regularization parameters did not lead to satisfactory results.
Since our methods can handle problems with any degree of ill-conditioning,
we conjecture that the convergence failures that occur when γ = 10 are
explained by the instability of the learning process.
To explore this issue in more details, we perform additional experiments

for the model in which γ = 10; namely, we parameterize the marginal-utility
decision rule (20) instead of the capital decision rule (6). This modification
restored the numerical stability of our methods (see the bottom panel of

26Without data normalization, OLS with the ordinary polynomials can only compute
the solutions up to the third-order polynomial approximation.
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Table 4) and allows the computation of the polynomial approximations up
to the fifth degree in all but two instances. In the two exceptional cases,
OLS and RLAD-DP with the Hermite polynomials, polynomial approxima-
tions can be computed up to degree four (γ = 10, cases I and VI). The LS
methods achieve the highest accuracy under the third-order polynomial ap-
proximation with the exception of RLS-Tikhonov with ordinary polynomials;
this method achieves the highest accuracy under the fifth-order polynomial
approximation (γ = 10, case III). For RLAD-DP, the second-order polyno-
mial approximation is most accurate. Although the parameterization of the
marginal-utility decision rule allows us to compute high-order polynomial
approximations, the accuracy of such approximations is actually lower than
that of the second-order polynomial approximation under our benchmark
parameterization of the capital decision rule.27

To gain intuition into why parameterizing the marginal-utility decision
rule increases the chance of convergence compared to parameterizing the cap-
ital decision rule when γ = 10, we shall recall the following property of the
solution. When the value of γ is high, the agent has strong preferences for
consumption smoothing: She effectively chooses an optimal level of consump-
tion and saves the reminder to use as next-period capital. In contrast, when
the value of γ is low, the agent cares little about consumption smoothing:
She decides on the optimal level of next-period capital and then varies con-
sumption as necessary to absorb all fluctuations. Presumably, the agent has
more chances to learn a rational expectation equilibrium (i.e. to achieve the
convergence) when we parameterize a "rigid" decision rule that captures the
key choice of the agent.

7.3 Comparison of the polynomial and exponentiated
polynomial specifications

In Section 3, we argued that the exponentiated polynomial specification (13)
is not necessarily preferable to the polynomial specification (11), except in
the case of the model with the closed-form solution. In this section, we
perform a comparison of the numerical solutions obtained under the two
polynomial specifications. In Table 5, we report the results for the model with

27We find that for other values of γ, the parameterization of the marginal-utility decision
rule also produces less accurate solutions than the parameterization of the capital decision
rule.
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partial depreciation of capital under the ordinary and Hermite polynomials
for three values of the coefficient of relative risk aversion, γ ∈ {0.1, 1, 10}.
To ensure that our comparison is not affected by our choice of a regression
method, we estimate the linear and non-linear regression models (14) and
(12), respectively, with the same NLLS Levenberg-Marquart method.

Polynomial versus exponentiated polynomial specifications In our
experiments, the polynomial specification of Ψ proved to be at least as good
as the exponentiated polynomial specification advocated in Den Haan and
Marcet (1990). In particular, both when γ = 1 and γ = 0.1, the two poly-
nomial specifications are very close in accuracy, with the highest accuracy
achieved under the second-order polynomial approximation. Given γ = 10
and assuming the parameterization of the capital decision rule, the polyno-
mial specification is superior to the exponentiated polynomial specification
as it allows us to go beyond the first-order polynomial approximation. In
turn, when γ = 10 and the marginal-utility decision rule is parameterized,
the exponentiated polynomial specification ensures faster convergence and
more accurate solutions than the polynomial specification.

Linear versus non-linear regression methods So far, we have com-
pared the polynomial and exponentiated polynomial specifications under the
same NLLS Levenberg-Marquart regression method. We can also use the
results shown in Tables 4 and 5 to compare the performance of the linear
and non-linear regression methods under the same polynomial specification
in the linear regression model (14). As seen in these tables, the Levenberg-
Marquart method is as accurate and almost as fast as our linear LS regular-
ization methods, and it is superior to OLS. The Levenberg-Marquart method
is so successful in our experiments because it is designed to regularize the
ill-conditioned LS problem in the same way as our linear regularization meth-
ods.

7.4 Sensitivity analysis

We perform a few additional sensitivity experiments. To economize on space,
we omit the detailed results of these experiments and simply describe the
observed regularities.
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Modifying the explanatory variables We modify a set of explana-
tory variables that constitute the matrix X. Specifically, given the poly-
nomial specification of Ψ (13), we construct X in terms of both ln k and
ln θ ( i.e. X = [1T , ln k, ln θ, ...]) and also, in terms of k and ln θ (i.e.
X = [1T , k, ln θ, ...]). In our numerical experiments, these two modifica-
tions did not lead to improvements in accuracy and/or speed relative to our
benchmark construction of X in levels, X = [1T , k, θ, ...], however, they are
still worth considering in other applications.

Modifying the decision rule In addition to the capital decision rule in
(6) and the marginal-utility decision rule in (20), we experiment with the
parameterization of other decision rules. In particular, we pre-multiply both
sides of the Euler equation by ln kt+1 and parameterize the right hand side
of the resulting equation to obtain a decision rule for ln kt+1 in terms of ln kt
and ln θt. (Note that in this way we can parameterize a decision rule for any
t-period variable, e.g., ln ct or exp (ct)). This construction parallels that of
the non-linear regression model with the exponentiated polynomial (12), and
it matches the closed-from solution (10). We find that this parameterization
works only under low values of γ, and it leads to cycling under γ ≥ 1.
Overall, we have not found any parameterization that dominates the capital
and marginal-utility parametizations in terms of accuracy and speed though
such a parameterization may in fact exist.

Modifying the polynomial representation Instead of the Hermite poly-
nomials, we use the Chebyshev polynomials. Like the Hermite basis func-
tions, the Chebyshev basis functions look different one from another and
hence, decrease the likelihood of the multicollinearity problem compared to
ordinary polynomials. We find that the results under the Chebyshev and
Hermite polynomials are virtually identical, which suggests that other or-
thogonal polynomial representations (e.g., Legendre and Laguerre) will also
perform well in the context of the stochastic simulation algorithm.

Modifying the non-linear regression method Instead of the Levenberg-
Marquart method, we use the standard Gauss-Newton method given in (52),
which does not regularize the LS problem. We find that the Gauss-Newton
method is considerably slower and less numerically stable than the Levenberg-
Marquart method. We do not explore the performance of the non-linear ver-
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sions of the LAD method and the non-linear principal component approach
described in Section 5.6. We leave this for further research.

8 Conclusion

Standard LS methods, such as OLS and Gauss-Newton methods, fail when
confronted with ill-conditioned problems. This failure severely handicaps the
performance of existing stochastic simulation algorithms. The present paper
contributes to the literature by suggesting a novel way of increasing the nu-
merical stability and high accuracy of the stochastic simulation approach
through the use of more powerful and stable approximation methods. The
main lessons that can be learned from our analysis are the following: First,
normalize the variables, as it never hurts. Second, look for basis polyno-
mial functions that do not automatically give multicollinearity. Third, use
approximation methods that can handle ill-conditioned problems. Fourth,
apply the unified principal component method if degrees of ill-conditioning
are very high. Finally, there is no general rule about which decision function
to parameterize in each case; use inferences from the economic theory.
The message of this paper is more broad than selecting one or several

particular methods that perform the best. We show that there are many
alternative computational strategies that can substantially improve the per-
formance of stochastic simulation methods. We should be aware about the
existence of these various alternatives, and should select the alternative that
is most suited for the application considered. We provide a code that makes
it easy to try them all. For our simple model with two state variables, all
the proposed methods work well and any method is sufficient. The ideas
developed in the present paper do not depend on the dimension of a prob-
lem, however. The real test will come with high-dimensional applications, in
which some methods might work better than others. It is too early to make
a decision.
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