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seen to depend importantly on both the slope of the term structure and the

variance of the one month rate. However, the cap value is not sensitive to the

source of the slope of the term structure —— what precise combination of

interest rate expectations and risk aversion determined the slope. This

insensitivity is fortunate because of the great difficulty of knowing at any

point in time why the term structure is what it is.

Given the variation in the slope of the term structure and the variance of the

one month rate that occurred over the 1979—84 period, the addition to the

coupon rate on a one—month ARM that lenders should have charged for a 5 percent

life of loan cap has ranged from 5 to 40 basis points.
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Pricing Rate Caps on Default—Free Adjustable—Rate Mortgages

Stephen A. Buser, Patric H. Hendershott and Anthony B. Sanders

Adjustable rate mortgages (ARMs) have become an important component of

housing finance. Over 60 percent of conventional mortgage loans closed during

1984 were ARMs, and this portion will probably exceed 65 percent in the last

half of the year. The vast majority of ARMs have caps on how fast and/or how

much overall the rates can rise. Survey data (Lea, 1984) indicate an enormous

variation in charges for rate caps. Moreover, on average thrifts do not appear

to be charging a greater coupon rate on capped ARMs than on noncapped ARMs.

To our knowledge, only two studies have attempted to model formally the

value of restrictions on contract rate adjustments. Cox, Ingersoll and Ross

(CI&R, 1980) provide a closed—form solution for the value of a uniform hf e—

of—loan cap on a perpetual instrument. To derive their equation, they assume

that: (1) the coupon payment on the instrument freely fluctuates with the

short—term rate of interest, subject to the cap restriction, and (2) the

short—term interest rate follows a diffusion process with a constant elasticity

of variance. Pozdena and Iben (P&I, 1984) employ numerical procedures to value

the life—of—loan cap on a 30—year instrument with a linear amortization

schedule. Like CI&R, P&i assume that the coupon payment freely fluctuates with

the short—term rate of interest subject to a uniform life—of—loan cap.

However, P&i assume that process governing the short—term rate is discrete

(geometric binomial) rather than continuous. Both sets of authors assume a

zero drift in interest rates.

Our model blends and extends these two studies. Like P&I, we examine

30—year contracts, rather than the perpetual instrument studied by CI&R, and we

employ numerical procedures. However, we assume that the short—term rate
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follows a diffusion process, as in the CI&R model, into which we introduce a

mean—reverting drift. We compute the sensitivity of the value of life—of—loan

interest rate caps to empirically relevant variations in the term structure of

interest rates (owing, alternatively, to variations in the expected drift in

rates and in risk aversion) and in the uncertainty of interest rates around the

expected path.

Our paper contains two large sections and a short summary. In Section I

we describe a standard model for valuing any default—free interest—dependent

claim and then tailor the generic model to an ARM with a life—of—loan rate cap.

We begin Section II with a discussion of plausible ranges of all the key

parameters determining the value of rate caps and then present, describe, and

interpret our simulation results, which are summarized in Section III.

I. Model Specification

General Assumptions

The general setting of our model for pricing any default—free contract is

described by four assumptions [see Vasicek (1977), Cox, Ingersoll and Ross

(1978), Dunn and McConnell (1981) or Buser and Hendershott (1984)].

A.l The spot rate of interest (r) follows a mean reverting process:

dr k('i—r)dt + a(r)dz, (1)
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where p is the steady—state mean, k is the speed of adjustment, 0(r)

is the standard deviation of the spot rate, and dz is a Wiener

process.

A.2 The value of a default—free contract is a function only of time (t)

and the prevailing spot rate of interest:

B = B(t,r) . (2)

A.3 Interest dependent claims, such as B, generate expected rates of

return that satisfy the zero—arbitrage risk/return relation (see

Merton [1973)):

a(r,t) + c(r,t)/B = r + X(r)$(r,t), (3)

where a(.) and (.) are functions that measure the mean and standard

deviation of the rate of change in the security's value; c(.) is the

cash flow for the security; and X(r) is the market price of

interest—rate risk.

A.4 The standard deviation of the spot rate and the market price of

interest—rate risk vary with the square root of the spot rate:

a(r) cir2 (4)

and X(r) = Xr2, (5)



—4—

where a and X are constants, the latter being a transformed price of risk which

we refer to as 'the risk aversion parameter." The square root relation is

computationally convenient, due to the work of Cox, Ingersoll and Ross (1978)

which derives an explicit expression fora. (Moreover, Buser and Hendershott

(1984) report that the coefficient is as consistent with return data as are

coefficients of 0 and 1.)

By applying Ito's Lemma to equation (1), we represent the mean and

variance of changes in interest—dependent claim values as:

a = [B + k(i—r)B + J/B and

= ar2(—B)/B. (6)

combining (6) with (3) reproduces the standard pricing equation:

Bt + [k(—r) + AcnE + c(r,t) — rB = 0. (7)

In principle, it is possible to solve this equation for given

specifications of : (1) the cash flow, c(r,t); (2) a terminal value condition;

and (3) boundary conditions for extreme values of the spot rate. Except as

noted in the specification of the contract assumptions, we employ the standard

boundary conditions [see Dunn and Mcconnell (1981)]: (1) any fixed—rate or

capped—rate bond becomes worthless as the spot rate approaches infinity, and

(2) the value of the bond at a zero spot rate is determined by the

corresponding special case of (6) which serves as a "natural" boundary

condition, i.e., variance in the spot rate, 02r, is zero at the origin so that

the second—order difference equation is reduced to a first—order difference

equation:
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Bt + kpB + c(O,t) = 0. (7')

In the absence of a general analytic solution, we employ numerical procedures

that are analogous to the 'implicit—difference method" described by Brennan and

Schwartz (1977)

Contract Assumptions

In addition to the aforementioned general assumptions, we impose two

contractual assumptions that allow us to price adjustable—rate mortgages

subject to rate caps. We state these assumptions in terms of discrete time

intervals to reflect the numerical procedures that we use to value the

contracts.

B.l The life of adjustable rate mortgages (T) is 360 months. Two

amortization schedules are examined: nonamortization and linear

amortization. The conventional fully—amortizing contract will

always fall between these two extremes because amortization goes to

zero as the coupon rate (i) goes to infinity and approaches

linearity as the coupon approaches zero. Given the two principal

repayment schedules, we can define the cash flows of the

corresponding securities. For the nonamortizing contract, the cash

flow is the product of the coupon rate and the par value prior to

maturity and this plus par (PAR) at maturity. For the linearly

amortizing contract, the cash flow consists of a principal payment

and interest based on the declining mortgage balance. Thus, the

cash flows in these two cases are given by:
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N
c = 1i(PAR) (8N)

c = + itlAR)Tl, (8L)

where N and L denote the nonamortization and linear amortization

regimes and t refers to the end of period t. With these cash flows,

the terminal condition or value at maturity is zero in both cases.

B.2 The ARM coupon rate is adjusted each period (month) subject to an

interest rate cap:

= min(r + m, i + x), (9)

where m is the markup, and x is the amount that the current coupon

may be above the initial contract rate. The markup is zero when no

caps exist (x=) and will be higher the "tighter" is the life—of—

loan cap being analyzed (smaller is x). The model solves for the m

which, with the c specifications, forces B in (7) to PAR.

II. Simulation Results

Parameter Values

In an earlier estimation of equation (1) , Buser and Hendershott (1984)

found k to be in the 0.05 to 0.25 range and a to vary between 0.02 (in the

January 1970 — October 1979 period) and 0.05 (between November 1979 and

December 1983) . We set k = 0.1 in our base case, and we examine the

sensitivity of our simulations to values as low as 0.01 (effectively no mean
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reversion) and as high as 0.2.1 More recent data suggest that has receded to

0.04. We take this as the base parameter and test the sensitivity of the

estimates to values as low as 0.02 and high as 0.06. We set the spot rate of

interest, r, equal to 0.1, roughly its value in 1984.

To obtain realistic estimates of the values of the interest rate caps,

the remaining parameter values must be specified carefully relative to the spot

rate. More specifically, we need to specify base values of p. and A such that

the implied spread between yields on long— and short—term Treasury securities

approximates the average historical spread, and we need to identify respective

ranges for K and/or that are consistent with observed changes in the spread

between yields on long— and short—term Treasuries. To this end, the spreads

between the yields on 30 year and 3 month Treasuries, as well as the value of

the latter, over the past dozen years are listed in Table 1. The overall

average spread is nearly a full percentage point, and we interpret this average

as representative of the "normal" term structure. The spread exceeded three

percentage points in parts of 1975—77, 1980, and 1982—84; we refer to this

range as a "steeply upward sloping" term structure. On the other hand, the

annual average spread was minus one to minus one and a quarter percentage

points in 1979 and 1981; this range is labelled a "steeply negatively sloped"

term structure.

To establish a plausible bound for A consistent with the average one

percentage point upward slope in the term structure over the 1973—84 period,

we set p — r = 0 and generate an implied value of Xc = 0.0222. Higher values

of x imply a negative average value of p. — r during a period of generally

rising interest rates (the three month rate rose from 5.20 percent in January

1973 to 10.07 percent in May 1984) which seems unlikely. We take risk

neutrality (A = 0) as our second limiting case and generate an implied p — r
0.0234.
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Table 1: Yield Curve Data

Spread between 30—Year and 3 Month Average
Treasuries quoted on Bond—Equivalent Basis 3—Month Rate

Average Maximum Minimum

1973 0.02 1.34 —1.45 6.97

1974 0.03 2.17 —0.88 7.95

1975 2.24 3.08 0.73 5.97

1976 2.83 3.27 2.55 5.11

1977 2.40 3.11 1.69 5.28

1978 1.10 1.81 —0.58 7.32

1979 —1.01 0.81 —2.44 10.21

1980 —0.52 3.34 —2.94 11.75

1981 —1.26 2.09 —3.08 14.67

1982 1.83 3.95 —0.34 11.09

1983 2.41 2.99 1.90 8.83

1984 2.61 2.74 2.49 9.59

(through May)

Average 0.97

Source: Salomon and Hutzler.
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Table 2 indicates variations in interest—rate expectations and in the

price of risk that would generate a spread between 30—year and 3 month Treasury

rates ranging from roughly —2½ percentage points to 3½ percentage points, given

these bounds on plausible average values of p — r and X. The yield spread data

in the first column were generated by varying p — r over 2 percentage point

increments (as indicated in the second column) and calculating the 30 year — 3

month yield spread for a Acof 0.0222. The third column indicates the p— r

values that are consistent with the first column and X = 0. The fourth column

contains the prices of risk that are consistent with the computed yield spreads

Shown in the first column assuming flat interest—rate expectations, and the

fifth column gives the prices assuming p — r = 0.0234. The table suggests

that variations in either p — r over a 12 or 13 percentage point range or in Xa

over a 0.14 range would account for the swings in the yield curve observed over

the 1973—84 period.2

The Value of a Five Percent Life of Loan Rate Cap

Our first task is to determine the importance of the slope of the yield yve.

to the value of life of loan rate caps. Table 3 contains estimates of the

value of a five percent life of loan cap under different assumptions regarding

both the observed slope of the yield curve and the sources of that slope

(p and X). All values are predicated on k = r = 0.1 and a 0.04, and the

ranges of estimates in the table reflect the two amortization schedules, with

zero amortization giving slightly larger values. Because the life of loan cap

limits the coupon rate, zero amortization, which occurs as the coupon

approaches infinity, understates the slowest feasible amortization; the linear

amortization assumption, which can be interpreted as allowing for some early
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Table 3: Value (in Basis Points) of Five Percent Life of Loan Cap for
Various Values of the Observed Yield Curve Induced by Changes

in Risk Aversion or in Interest Rate Expectations

Spread Between Varying Interest Rate
30 Year and Expectations(p.—r) Varying Risk Aversion(A)
3 Month Rates

Xc= 0.0222 Xa 0 = 0.10 = 12.34

—2.49 0 0 0 0

—1.21 1 0 0 0

—0.06 3 2 2

0.97 7—9 5—7 7—9 5—7

1.91 15—21 12—18 17—25 14—21

2.77 30—41 26—36 35—49 32—45

3.55 50—70 46—64 56—79 56—79

Table values computed for k = r = 0.1 and a = 0.04.



—12—

repayments, is clearly the more plausible and thus we discuss only the lower

cap values. The cap value is obviously sensitive to the slope of the yield

curve, being negligible at flat or negative slopes but nearly a half percentage

point at very steep positive slopes. But the value is not sensitive to the

source of the slope. For example, when the price of risk is varied from zero

to 0.0222, the cap value never varies by over 4 basis points over the wide

range of interest rate expectations and resulting term structure assumptions

(compare the second and third columns). Similarly, when the slope of the term

structure is altered over the full — 2½ to +3½ percentage point range, the cap

value rises by only 6 basis points (10 percent) more if the alteration is

caused by increased risk aversion rather a switch from steeply falling rate

expectations to sharply rising expectations (compare the second and fourth

columns)

Our second task is to determine the sensitivity of the value of the five

percent rate cap to the variance of interest rates. The cap values are shown

in Table 4 for o-ts of 0.02, 0.04 and 0.06. Because the slope of the term

structure matters (but not its source) , the cap value is computed at three

different term structures. In these calculations, k = r 0.l we maintain Xc

at 0.0222 and obtain the required term structures by varying . The middle

(median variance) row reproduces some of the data from Table 3. The low

variance rate (top row) eliminates the cap value at the normal term structure

and sharply reduces the value at a 2 3/4 percent positively sloped yield curve.

In contrast, the high variance rate creates a 7 basis point value even with the

negatively sloped yield curve, a 25 basis point value with the normal yield

curve, and a 55 to 70 basis point value for a steeply upward sloping yield

curve. To summarize, the value of the cap is worth less than 10 basis points
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Table 4: Effect of Interest Rate Variance on the Value of a Five Percent
Life of Loan Cap for Different Term Structures

(basis points)

Slope of Term
Structure Steeply Steeply

Variance Falling Normal Rising
of Interest Rates (—121) (97) (277)

low (0.02) 0 0 11—18

medium (0.04) 1 7—9 30—41

high (0.06) 7—8 24—28 55—70
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when the yield curve is negatively sloped or when it is normally sloped and the

variance is not extraordinarily large. For a significantly upward sloped yield

curve and moderate variance or normal yield curve and high variance, the cap is

worth a quarter percentage point. With both a steeply sloped yield curve and

high variance, the cap is worth a half to three—quarters percentage point.

The Value of Life of Loan Rate Caps from Zero to Ten Percent

The value of life of loan rate caps from zero to ten percent are plotted

in Figure 1 for a = 0.04, Xc = 0.0222, r = 0.1 and i ranging from 0.06 to 0.14.

The bands reflect the two limiting amortization assumptions. With constant

rate expectations, a zero cap is worth approximately 125 basis points. With

expectations of rising interest rates (30 year rate — 3 month rate = 2 3/4

percentage points) , the difference is a full 250 basis points; with

expectations of falling rates, the difference is only about 40 basis points.

One is tempted to view an ARM with a zero rate cap as a standard 30—year

fixed—rate mortgage (FRM) and thus to interpret the value of the cap as the

excess of the required coupon on a par—value FRM over the prevailing spot rate.

However, the value of the zero cap may be either an over or understatement of

this excess. The value is an overstatement because household borrowing rates

on FRMs do not instantaneously decline in response to decreases in market

interest rates, as is the case with short—term ARMs. On the other hand, the

value understates the excess because a refinanced FRM has a zero cap from that

point while a downward repriced ARM has a cap equal to the difference between

the original rate and the new lower rate. The value of long—term commitments

with rate caps falls sharply as the cap is loosened. A 5 percentage point cap
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is worth less than 10 basis points unless rates are expected to rise, and a 10

point cap is worth less than 5 basis points even when rates are expected to

increase sharply.

The value of the life of loan rate caps based upon different values of

the interest rate variance are plotted in Figure 2 (other assumed parameter

values are r = p = 0.1 and 'a= 0.0222). The points on the vertical axis again

represent a rough approximation to the difference between the required coupon

on a par—value FRN and the spot rate. These differences corraborate the

relative insensitivity of fixed—rate mortgage coupons to the variance noted

by Buser and Hendershott (1984); the difference varies only between 110 and 140

basis points for values of a ranging all the way from 0.02 to 0.06. The

relative sensitivity is much larger for interest rate caps on our one—month

ARM. With a cap of 2½ percentage points the range is 12 to 55 basis points;

with a 5 point cap the range is 1 to 20 basis points.

Our valuations of the life of loan cap are far lower than those computed

by Pozdena and Iben (1984). They find a zero cap to be worth about five

percentage points, roughly four times our 1¼ percentage point value with a

normal term structure and twice our highest value obtained with a steeply

upward sloping term structure. They value the 5 point life of loan cap at two

to three percentage points, many times greater than our high—variance,

steeply—upward--sloping term—structure value of 60 basis points.

One possible source of the difference in our cap values from those of

Pozdena and Iben is our use of a mean reversion interest rate process which

clearly lowers cap values. However, calculations with k equal to 0.0 (other

parameters are r = p = 0.1, a 0.04 and Xcj 0.0222) result in the zero cap

value rising by only about a third, not the multiple of three or four necessary
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to explain differences in our calculations. Similarly, the estimated value of

the 5 percent life of loan cap is still only 30 to 40 basis points, far below

the 2 to 3 percentage points reported by Pozdena and Iben.

III. Summary

Our model extensions were enumerated in the introduction and are thus not

listed here. Rather, we simply summarize our most interesting simulation

results. For brevity, we will couch them in terms of the calculated value of

the fair mark—up in the coupon rate on our one—month ARM for a five percent

life of loan rate cap.

The value of the cap is sensitive to the slope of the yield curve. With

a mildly negatively sloped term structure, the cap has no value; with a normal

structure, the value is 5 to 10 basis points; and with a sharply rising

structure (2 3/4 percentage points) the value is 30 to 40 basis points.

However, the cap value is insensitive to the source of the slope of the term

structure —— what precise combination of interest rate expectations and risk

aversion determined the slope. This insensitivity is fortunate because of the

great difficulty of knowing at any point in time why the term structure is what

it is.

The level of the variance of rates matters. With a steeply rising term

structure, the value of the five percent cap falls from 30 to 15 basis points

as the variance declines from 0.04 to 0.02 and rises to 55 basis points as

the variance rises to 0.06. With a normally sloped yield curve, the impact of

varying the variance is less absolutely but more proportionately. The 8 basis

point value goes to zero at the low variance and up to 25 basis points with the

high variance. For all values of the term structure and variance, our
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computed values of the five percent life of loan cap are a small fraction of

those reported by Pozdena and Iben (1984) . This difference is not due to our

use of a mean reversion process.
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NOTES

1. with this assumption, half of an initial gap between p and r would be

expected to disappear in seven years.

2. With a larger k, smaller variations in p — r are sufficient. To

illustrate, with k = 0.2, a swing of 9 percentage points is ample.
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