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1 Introduction

Anyone who has shopped for a mattress, tried to compare the full sets of fees charged by

multiple banks or mortgage lenders, or gotten quotes from contractors for a home renovation

will find it easy to question the universality of the classic economic argument that firms will

disclose all relevant information.1 Ellison and Ellison (2009) describe practices in which

firms intentionally make shopping complicated, difficult, or confusing as “obfuscation” and

provide empirical evidence from online shopping. It is easy to think of reasons why it would

be collectively rational for firms to practice obfuscation: equilibrium prices are increasing in

consumer search costs in many search models, and price discrimination arguments can also

be given.2 Arguments based on collective rationality, however, bring up a natural critique:

why collude on obfuscation rather than just colluding directly on price? In this paper, we

discuss a search-based model in which it is individually rational for firms to raise consumer

search costs.

Diamond (1971) first formalized the connection between search costs and price levels,

noting that even an ε search cost could increase prices from the competitive level to the

monopoly level because consumers will have no incentive to search if they expect all firms

to charge monopoly prices. Several subsequent papers developed two other important

insights: there is a more natural search problem when price dispersion is present, and price

dispersion will exist in equilibrium when consumers are differentially informed.3 Our model

closely follows that of Stahl (1989), who considers a continuum of consumers shopping for

a homogenous good offered by N firms. A fraction µ of the consumers have no search costs

and learn all firms’ prices. The other 1 − µ pay a search cost of s every time they obtain

a price quote. Consumers have identical downward sloping demands D(p). Stahl shows

that this produces an elegant, tractable model. All consumers with positive search costs

search exactly once. Firms choose prices from a nonatomic distribution on an interval [p, p]

1See Grossman (1981) and Milgrom (1981).
2Diamond(1971) and many subsequent papers connect search costs and equilibrium price levels. Ellison

(2005) shows that the joint adoption of add-on pricing strategies can increase prices in a competitive price
discrimination model.

3Classic papers include Butters (1977), Salop and Stiglitz (1977), Varian (1980), Rosenthal (1980), and
Burdett and Judd (1983). See Baye and Morgan (2001) for a recent model applied to online markets and
Baye, Morgan, and Scholten (2006) for a nice survey including recent developments.
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following mixed strategies like those in Varian (1980) and Rosenthal (1980). The model’s

comparative statics clearly bring out the collective incentive to increase search costs: prices

and firm profits increase as the search cost s increases.

Section 2 of our paper introduces our model and derives some preliminary results that

are common to the different versions we eventually consider. We model obfuscation in a

very simple way: consumers are assumed to have a disutility that depends on the the total

time spent shopping, and each firm is allowed to choose the length of time that is required

to learn its price. In the bank application, for example, the firm may be choosing the

complexity of its fee structure which determines how long it would take a consumer to read

through the full list of fees for overdrafts, low balances, ATM use, wire transfers, etc. and

estimate what he or she will end up paying each month.4 This time is not observable to

consumers until after they have visited the firm. A number of the basic features of Stahl’s

model carry over to our environment: in equilibrium, firms make positive profits and choose

prices from a nonatomic distribution with support [p, p]; and consumers search until the

expected gain from taking another draw from the price distribution exceeds the expected

search costs.

Section 3 analyzes our simplest model of obfuscation. On the firm side obfuscation is

assumed to be costless. On the consumer side we assume that consumers have a strictly

convex disutility g(t) for the time t they spend shopping. We view this as a small departure

from the traditional assumption in a realistic direction: disutility would be convex in a

standard time-allocation model with decreasing returns to leisure; and for many results

g′(t) need only be ε greater than g′(0) even in the t→∞ limit. Yet, it is a departure that

can greatly alter the equilibrium set. Holding obfuscation levels fixed our model is much like

Stahl’s and the firms’ pricing strategies will coincide with those of Stahl’s model, with the

search cost parameter set equal to the incremental costs of a second search. The possibility

of doing slightly more obfuscation than consumers expect, however, can have a dramatic
4The “price” the consumer is learning can also be interpreted as the time required to learn the product’

quality and thereby learn a quality-adjusted price. For example, in the case of mattress shopping the price
of each mattress at a store, e.g. “Sealy Posturepedic Ruby”, may be readily observable but time will be
required to inquire about product attributes and learn which name corresponds to the mattress the consumer
had seen at another store and/or to make mental adjustments to account for differences in the attributes of
different stores’ offerings.
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effect on what is possible in equilibrium. Specifically, equilibria in which the upper bound

of the price distribution is strictly less than the monopoly price become impossible because

a firm can simultaneously make small deviations in two dimensions: increase its price to

slightly above p and also slightly increase its obfuscation level. Hence, in all equilibria of

our model the upper bound of the price distribution is the monopoly price. Such an upper

bound on the equilibrium distribution is only possible if equilibrium search costs are above

some lower bound. Therefore, there is a lower bound on the level of equilibrium obfuscation.

The lower bound can be zero, but can also be substantial. Obfuscation hurts consumers in

two ways: consumers incur higher search costs and pay higher prices.

Section 4 considers costly obfuscation. This makes obfuscation levels more determinis-

tic, because in equilibrium each firm must be choosing the minimum level of obfuscation

consistent with the equilibrium level of consumer search. It also allows us to discuss cross-

sectional relationships between prices and obfuscation. For example, in some circumstances

we note that firms with the lowest markups will not obfuscate at all, whereas firms with

the highest markups can only make sales if they are doing substantial obfuscation. We

present results from two different modeling approaches. One is an equilibrium refinements

approach which can be motivated by thinking of the cost of obfuscating as lexicographically

less important to firms than profits. The other is a more traditional model.

Section 5 considers an alternate mechanism for producing obfuscation. We return to

the traditional assumption that consumers have a linear disutility of search effort, dropping

the strict convexity assumption used in sections 3 and 4. Instead, we depart from Stahl’s

model in another direction we find realistic: we assume that there is common uncertainty

about how much time is required to learn a firm’s price in the absence of obfuscation. A key

feature of such models is that consumers’ expectations about future search costs increase in

the amount of time it takes them to learn the price of the first firm they visit. For example,

one could think of this as a model in which consumers are not born knowing how long it

takes to get a price quote from a home improvement contractor and in which consumers who

spend a long time discussing a project with the first contractor they contact will assume

that the process of getting a bid from another contractor will also be time-consuming.

A natural consequence of such an effect is that obfuscation can occur for signal-jamming
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reasons. Some predictions of the signal-jamming model are similar to the convex costs

model: we provide conditions under which some obfuscation must occur and show that

the equilibrium price distributions are a selection from the set of equilibrium distributions

of Stahl’s model. But the mechanism behind the obfuscation is somewhat different and

this leads to some interesting differences in predictions. One is an “excess obfuscation”

result noting that obfuscation is almost always above what is necessary to deter search.

Another is that the selection among the equilibria of Stahl’s model is different and that

excess obfuscation can eliminate equilibria with very high prices. Some comparative statics

results also differ across the models.

Our paper is related to a number of others. Ellison and Ellison (2009) provide informal

descriptive evidence on obfuscation among a group of e-retailers and present empirical

evidence that suggests that at least two mechanisms are involved: consumers appear to

have a substantially incomplete knowledge of prices, and firms’ add-on pricing strategies

appear to create an adverse-selection effect that would be expected to increase equilibrium

markups. A number of subsequent papers have explored obfuscation mechanisms.5 Ellison

(2005) discusses add-on pricing in the context of a competitive price discrimination model.

It notes that add-on pricing is not individually rational in the base model, but could be

made individually rational by adding a subpopulation of irrational consumers who were

exploited by the add-on strategy. Gabaix and Laibson (2006) work out an explicit model

along these lines.

Spiegler (2006) provides an alternate boundedly-rational approach. In his model, con-

sumers are only capable on evaluating products on one of many dimensions. Firms “ob-

fuscate” by randomizing and making the product more attractive on some dimensions (e.g.

making fees lower if some contingency arises) and less attractive on others. He notes that

an increase in the competitiveness of the market (more firms) leads to an increase in obfus-

cation but no change in average prices. This is a somewhat similar in spirit to our finding

that decreases in exogenous search costs don’t change average prices because they are fully

offset by a change in obfuscation. But the meaning of obfuscation and the mechanisms

are, of course, completely different. His model and ours may differ in other predictions.
5Ellison (2006) includes a survey of some of this literature.
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Eliaz and Spiegler (2008) address some related topics, e.g. whether firms with higher prices

do more or less to inform consumers, in another elegant model with boundedly rational

consumers. Their model, however, is more similar in spirit to the traditional information

revelation literature than to our paper in that informing consumers is the costly action.

Carlin (2008) and Wilson (2008) are most closely related to our paper. Each also

models obfuscation as a strategic decision by firms that increases search costs in a model

with optimal consumer search. Carlin’s model differs from ours both in the focus and

in the type of search model it uses. The search model is an all-or-nothing model along

the lines of Salop and Stiglitz (1977) and Varian (1980).6 More importantly, Carlin’s

(2008) focus is primarily on how obfuscation affects market prices, whereas some of our

main motivations are to explore why it is individually (as opposed to collectively) rational

to obfuscate and how obfuscation varies in the cross-section. Carlin (2008) does make

obfuscation individually rational and not just collectively rational, but this is done in a

fairly straightforward manner so the paper can focus on other things: consumers observe a

summary statistic (like the average obfuscation level) before deciding whether to conduct

an all-or-nothing search and do not observe any individual firm’s obfuscation level, so an

increase in obfuscation by any one firm leads to exactly the same outcome as would a

smaller coordinated increase by all firms.

Wilson (2008) does focus on the question of why obfuscation is individually rational

and develops a very nice argument (which is also very different from ours). The primary

difference between Wilson’s model and ours is that Wilson assumes that the firm-specific

search costs are observable to consumers when they choose which stores to visit. One’s

first thought might be that this will make obfuscation impossible, because consumers will

always choose to visit firms with the lowest search costs first. Wilson’s clever observation is

that while it is true that many or all consumers will visit the low-search-cost firm first, this

does not necessarily render obfuscation unappealing. Obfuscation can provide strategic-

commitment benefits: by making itself less attractive to the consumers with positive search

costs, the obfuscating firm induces its rival to focus more on these consumers and raise

prices, which can benefit both firms. Our paper differs from his in the assumptions on
6Baye, Morgan, and Scholten (2006) refer to these as clearinghouse models.
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observability, in the mechanisms that drive obfuscation, and in the details of many results.

For example, in his paper obfuscating firms tend to charge lower prices, whereas obfuscation

is associated with charging high prices in our model.

2 Model and Preliminary Results

In this section we present our model and derive some basic results. Our model is similar to

that of Stahl (1989) with two additions: search costs are allowed to be a nonlinear function

of the number of searches carried out; and the per-search cost is an endogenous choice of

the firms. The results in this section show that some standard results carry over: consumer

search strategies can be characterized using standard cutoff rules, firms earn positive profits

in a dispersed price equilibrium, and equilibrium price distributions are atomless.

2.1 Model

We consider a unit mass of consumers of two types: proportion µ are “costless searchers”

who automatically learn all firms’ prices and proportion 1 − µ are “costly searchers” who

must incur search cost g(t) to spend a total time t searching. We assume that ascertaining

firm i’s price requires time τ + ti, where τ > 0 is exogenous and ti is the obfuscation level

chosen by firm i. For example, τ might be the amount of time it takes to drive to a store or

to access a website, whereas ti might be the amount of time it takes to discover the relevant

price after the store is reached or the website is opened.7 Therefore, a costly searcher would

incur cost g(τ + t1) to learn the price of a firm that chooses obfuscation level t1 if this is her

first search and would incur total cost g(2τ + t1 + t2) if she chose to continue her search and

also learn the price of a second firm that chooses obfuscation level t2. We assume that g(·)

is twice continuously differentiable, strictly increasing, and weakly convex with g(0) = 0.

We assume that consumers cannot observe a firm’s obfuscation level before they visit it

and learn its price, but do have rational expectations about the distribution of obfuscation
7We assume throughout that consumers can choose to go back to a previously visited firm at zero cost.

This would fit the example of Internet search if consumers leave open a browser window containing the best
price they have found. The driving example does not fit this property well if consumers must drive back to
a previously visited store to purchase from it, but fits it better if consumers can call the store back on the
phone to order a previously researched product.
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levels.8

As in Stahl (1989), we assume that consumers have downward-sloping demand functions

D(p) that satisfy
∫ z

0 D(x)dx < ∞ for all z ≥ 0 and let R(p) ≡ pD(p), the revenue a firm

obtains from selling to consumer with demand D(p) at price p. We assume that R(p) is

continuously differentiable with unique maximum pm and that R′(p) > 0 if p < pm. Each

firm i out of N ≥ 2 firms chooses price pi and obfuscation level ti. Firms produce at zero

marginal cost. Firm i incurs a fixed obfuscation cost of c(ti) when it chooses obfuscation

level ti; we assume that the obfuscation cost function is differentiable with c(0) = 0 and

c′(t) ≥ 0 for all t. In some sections we will focus on the case of costless obfuscation, c(t) = 0

for all t, which allows for the simplest results.

The game proceeds as follows. First, firms simultaneously and noncooperatively choose

obfuscation levels and prices. Then, costless searchers automatically learn all firms’ prices

and can buy from any firm, and costly searchers search strategically: they draw a new,

randomly selected firm with each search and may stop searching and buy from any firm

they have visited at any point. We say that costly searchers “enter” if they choose to

search at least once. We will look for symmetric Nash Equilibria of this game9; henceforth

by “NE” we mean symmetric Nash Equilibria.10

2.2 Search strategies

In this section we show that standard results on optimal search strategies carry over to

our model. To state this formally, note first that every symmetric strategy profile induces

a price distribution F (p). If the price distribution is given by F (p) and a consumer has

already spent total time t0 searching and has observed price p0 but no lower prices, then

the consumer’s expected cost to searching again is Et [g(t0 + τ + t)− g(t0)], whereas her

expected benefit from searching again and then buying from the lowest-price firm she has
8In some of our models one could alternately regard consumers as learning the ti after incurring only the

cost τ , with the option to discontinue search at this point, but such interpretations will require some strong
refinement on beliefs to prevent bootstrapped equilibria in which consumers assume that a firm offers a very
unattractive price if its obfuscation level is not exactly equal to some value.

9Note that as usual the assumption that costless searchers automatically learn all firms’ prices rather
than searching sequentially with zero search cost is substantive. If we assumed the latter, all firms’ setting
price equal to pm would be an equilibrium, for example.

10Our assumption that consumers search randomly among firms would be unappealing if firms did not
follow symmetric strategies.
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observed is

V (p0) ≡
∫ p0

p
(CS(x)− CS(p0))f(x)dx

=
∫ p0

p

(∫ ∞
x

D(p)dp−
∫ ∞
p0

D(p)dp
)
f(x)dx

=
∫ p0

p

(∫ p0

x
D(p)dp

)
f(x)dx

=
∫ p0

p

(∫ p

p
f(x)dx

)
D(p)dp

=
∫ p0

p
D(p)F (p)dp

where p is the infimum of the support of F (p), and CS(p) is the consumer surplus at price

p.

We begin by showing that optimal consumer search is given by continuing search if

Et [g(t0 + τ + t)− g(t0)] < V (p0) and by stopping search if Et [g(t0 + τ + t)− g(t0)] >

V (p0).11

Proposition 1 In any NE, a costly searcher stops searching if V (p0) < Et [g(t0 + τ + t)− g(t0)]

or if all N firms have been visited and continues searching if V (p0) > Et [g(t0 + τ + t)− g(t0)].

We present a formal proof in the appendix. It proceeds by induction on the number of

stores remaining using a two case argument: if the incremental cost of the next search is less

than V (p0), then searching must be optimal because searching exactly once is better than

not searching; and if the incremental cost is greater than V (p0), then not searching must

be optimal because continuing to search is less appealing than it would be if incremental

search costs were constant, and standard results imply that continuing is not optimal in

that case.

2.3 Price equilibrium

In this section we recall some standard results for the case where t is a parameter rather

than a choice variable and show that properties of these equilibria carry over to our model.
11This is not a direct corollary of the classic results since here the expected search costs faced by consumers

depends on the entire history of the obfuscation levels they have encountered.
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Before doing so, we should note that our model sometimes has equilibria in which the

costly searchers are inactive. If exogenous or endogenous search costs are sufficiently high,

then costly searchers will not get even a single price quote. We will mostly ignore these

equilibria and use the phrase “nontrivial NE” to mean a NE in which the costly searchers

do get at least one price quote.12

Proposition 2 (Stahl 1989) Suppose that every firm’s level of obfuscation is fixed exoge-

nously at t. Then the price distribution for any nontrivial NE takes one of two possible

forms:

1. If there exists an r ∈ (0, pm) for which∫ r

p
D(p)

(
1−

[(
1− µ
Nµ

)(
R(p)
R(p)

− 1
)] 1

N−1

)
dp = g(2(τ + t))− g(τ + t),

then the equilibrium price distribution is F (p) = 1 −
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 , with

p = r, and R
(
p
)

=
[

1−µ
1+(N−1)µ

]
R (p).

2. If there does not exist such a value of r, then the equilibrium price distribution is

F (p) = 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 , p = pm, and R

(
p
)

=
[

1−µ
1+(N−1)µ

]
R (p).

Proof. By Proposition 1, costly searchers search for a second time after observing price p0 if

V (p0) > g(2(τ+t))−g(τ+t) and do not search for a second time if V (p0) < g(2(τ+t))−g(τ+

t). The result then follows immediately from Stahl’s analysis for s = g(2(τ + t))− g(τ + t).

�

Note that Proposition 2 can be thought of as showing that two slightly different types of

mixed equilibria arise. The first type arises when search costs are small. In these equilibria,

the constraint that consumers must be willing to buy from a firm offering price p rather

than searching again is binding and pins down the upper bound of the support of the price

distribution. The upper bound of the support and the distribution of prices vary with the

search cost in these equilibria. The second type arises when search costs are larger. In these
12In a trivial NE the fact that only costless searchers are in the market implies that firms are Bertrand

competitors, so firms must price at cost (or at least two firms must do so without the symmetry restriction).
Obfuscation levels would need to be high enough so that costly searchers nonetheless do not want to enter.

9



equilibria, consumers strictly prefer buying from the first firm they visit to getting another

price quote. The upper bound of the price distribution is always the monopoly price. And

the price distribution is also independent of the search cost over the range of search costs

for which this case applies.

When t is exogenously fixed, it is well-known that every NE price distribution is atom-

less, that every firm makes positive profits in any NE, and that in any NE every costly

searcher buys from the first firm she visits. The former two results continue to hold gen-

erally when t is a choice variable, while the last result requires the additional assumption

that obfuscation is costless for firms, which we impose in Section 3.

Lemma 1 Every firm makes positive profits in any nontrivial NE.

Proof. Setting a strictly negative price is strictly dominated, so in any nontrivial NE all

prices are weakly positive. Therefore, if the first price a costly searcher observes is p0,

then in NE her benefit from searching again if every firm sets ti = 0 is
∫ p0

0 D(x)F (x)dx−

(g(2τ)− g(τ)) ≤
∫ p0

0 D(x)dx− (g(2τ)− g(τ)), which is negative for p0 sufficiently close to

0. By convexity of g, her benefit from searching again is no greater than this if any firm

sets positive obfuscation. Therefore, in NE any firm can guarantee itself positive profits by

choosing such a sufficiently small but strictly positive p0, so every firm must make positive

profits in any NE. �

Lemma 2 If F (p) is a nontrivial NE price distribution, then it is atomless.

Proof. By Lemma 1, no firm sets p = 0 in any NE in which costly searchers enter. So if

F (p) has an atom, it must have an atom at some p > 0. But then pricing slightly below

this atom yields strictly higher profits than pricing at the atom, as it yields a discrete gain

in profits from the costless searchers and an arbitrarily small loss in profits from the costly

searchers. �

Lemma 3 If c(t) = 0 for all t, then on the equilibrium path of any NE every costly searcher

searches at most once.

Proof. Let F (p) be a nontrivial NE price distribution for a model with costless obfuscation.

Let p̄ be the maximum of the support of F (p). Consider a firm that sets price equal to p̄. If

10



this firm does not sell to any of the costly searchers that visit it first, then with probability

1 it will not sell to any consumers as, by Lemma 2, every other firm has a lower price

with probability 1 and consumers buy from the lowest-priced firm they visit. This would

contradict Lemma 1, so a firm that sets price equal to p̄ must sell to some costly searchers

that visit it first. Furthermore, if consumers mix between buying and not buying from

a firm with price equal to p, then by lowering prices by an arbitrarily small amount the

firm could sell to these consumers with probability 1, by Proposition 1, strictly increasing

profits. So if F (p) is a NE price distribution then every costly searcher who visits a firm

with price equal to p first buys immediately.

Since those costly searchers who first visit a highest-priced firm buy from it, any lower-

priced firm could sell to those costly searchers who visit it first by setting the same obfus-

cation level as the highest-priced firm. And raising one’s obfuscation level only increases

the number of consumers one sells to, by our characterization of optimal consumer search,

so if a lower-priced firm did not sell to those costly searchers who visited it first it could

strictly increase profits by raising its obfuscation level to that of the highest-priced firm.

�

Note that for Lemma 3 we added an assumption that obfuscation is costless. We believe

that this is necessary given that we have made few assumptions on the g(t) function. To

see why, consider, for example, a g(t) function which is zero up some point and then

follows a strictly convex function with unbounded slope. In this case, firms have the option

of deterring future searches by customers who visit them first, but may need to incur a

positive obfuscation cost to do so. In such a model it seems plausible that there could be

equilibria in which firms setting low prices choose t = 0 and accept that all customers who

visit them first will obtain a second quote, while firms with prices near the upper bound

avoid getting zero demand by choosing an obfuscation level sufficient to ensure that they

sell to all consumers who visit them first.
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3 An Obfuscation Model: Costless obfuscation and convex
disutility of search

In this section we analyze our model under the assumption that obfuscation is costless and

consumer disutility for shopping, g(t), is strictly convex. The convex search costs assump-

tion is a departure from much of the previous literature, but we think it is a departure

that is worth exploring for two reasons. First, we think it is descriptively accurate: search

costs would be convex in a textbook consumer-theory model of time allocation if there

are decreasing returns to leisure. Second, it turns out that even small departures from

more traditional assumptions in this directions can have dramatic effects on equilibrium

outcomes.

The first subsection below discusses the impact that of the convex-search costs as-

sumption on the possible distributions of equilibrium prices. We show that some of the

equilibrium price distributions of Stahl’s model remain equilibria and some do not. The

second subsection discusses equilibrium obfuscation levels. The costlessness of obfuscation

results in a degree of indeterminacy, but the result on price distributions implies that there

is a lower bound on the amount of obfuscation that can occur in equilibrium. The results

only require a slight departure from the more traditional linear search cost assumption in

that they will apply even if g′(t) is uniformly bounded above by g′(0)+δ for a small positive

δ.

3.1 Equilibrium price distributions

We may now state our first main result characterizing price distributions with endogenous

search costs: if costly searchers search, F (p) is a NE price distribution of the model with

endogenous obfuscation if and only if it is a NE price distribution of Stahl’s model with

search costs fixed at some level and has the upper bound of its support equal to pm. In

other words, NE price distributions of the second possible form in the characterization of

Proposition 2 remain as possible equilibria, whereas equilibrium price distributions of the

first form (and all other distributions) cannot arise in our endogenous obfuscation model.
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Proposition 3 F (p) is a price distribution for a nontrivial NE only if

F (p) = 1−
[(

1− µ
Nµ

)(
R(pm)
R(p)

− 1
)] 1

N−1

(1)

for all p ∈
[
p, pm

]
, where p is given by R(p) =

[
1−µ

1+(N−1)µ

]
R(pm). Such a price distribution

is a nontrivial NE price distribution if and only if g(τ) ≤ V (∞).

Proof. We first show that any such F (p) is a NE price distribution if g(τ) ≤ V (∞).

Consider the following equations:

g(2(τ + t))− g(τ + t) ≥
∫ pm

p
D(p)F (p)dp (2)

g(τ + t) ≤
∫ ∞
p

D(p)F (p)dp (3)

Since g(·) is strictly increasing and convex with g(0) = 0, we have g(2(τ + t))− g(τ + t) ≥

g(τ+t) and limt→∞ g(2(τ+t))−g(τ+t) =∞. Together with g(τ) ≤ V (∞) and g continuous,

this implies that there exist t ∈ R+ that satisfy both (2) and (3). Suppose that each firm

chooses obfuscation level equal to such a t. By equation (3), all consumers will search

once; by equation (2) and our characterization of optimal consumer search, no consumer

will search more than once. Now a firm that chooses price pm obtains profit 1−µ
N R(pm),

while a firm that chooses price p < pm obtains profit
[
µ(1− F (p)]N−1 + 1−µ

N

]
R(p). It is

easy to check that these are equal for all p ∈
[
p, pm

]
when F (p) is given by equation (1),

while profits associated with any p outside this interval are strictly smaller. So F (p) is a

NE price distribution supported by any t satisfying equations (2) and (3).

Now suppose that costly searchers enter and that F (p) is not given by equation (1). We

consider two cases. First, suppose that p 6= pm is such that F (p) = 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1

for all p in the support of F . If p > pm, a firm could deviate to pm and make strictly

higher profits from both costless and costly searchers. Suppose p̄ < pm. By Lemma

3, if a firm plays (ti,p̄) in NE then Et [g(2τ + ti + t)− g(τ + ti)] ≥
∫ p̄
p D(p)F (p)dp. So,

by strict convexity of g, there exist ε, ε′ such that Et [g(2τ + ti + ε+ t)− g(τ + ti + ε)] >∫ p̄+ε′
p D(p)F (p)dp, so if such a firm deviated to playing (ti + ε, p̄+ ε′) then a consumer will

prefer to buy at price p̄+ ε′ rather than searching again when the firm’s obfuscation level
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is ti + ε. This deviation gives the firm strictly higher profits from the costly searchers and

makes no difference to its profits from the costless searchers, since at price p̄ it had zero

probability of selling to these consumers (by Lemma 2) and still has zero probability of

selling to them at price p̄+ ε.

Suppose that there exists p in the support of F such that F (p) 6= 1−
[(

1−µ
Nµ

)(
R(p)
R(p) − 1

)] 1
N−1 .

Then it is easy to check that profits at p do not equal profits at p̄, contradicting that p and

p̄ are both in the support of F .

Finally, if g(τ) > V (∞), then costly searchers will not search when the price distribution

is F (p), so there is no nontrivial NE with price distribution F (p). �

Proposition 3 shows that the costless obfuscation model looks much like Stahl’s model,

with the important difference that equilibria with p̄ < pm are ruled out. In particular, any

symmetric equilibrium of the costless obfuscation model has the same price distribution as

Stahl’s model with p̄ = pm, which is also the same price distribution as in Varian (1980)

and Rosenthal (1980).

Note that Proposition 3 makes no assumptions on the consumer search cost function g

other than that it is strictly convex. Our intuition for why making g even slightly convex can

have a large effect on the equilibrium set follows very much along the lines of the proof: we

should think about the possibility that firms can simultaneously deviate to a price slightly

above the upper bound of the equilibrium price distribution and an obfuscation level that

is slightly higher than consumers expect. In Stahl’s model, firms are indifferent between

all prices in the interval [p, p] because price distributions adjust so that there is a tradeoff

between the number of consumers served and the profit per consumer. Equilibria of Stahl’s

model must also be such that firms do not gain from deviating to a price above p. This

happens because (in equilibria of the first type) this would lead consumers to get another

price quote or (in equilibria of the second type) this would be counterproductive because

p = pm. In our model, a firm can raise a consumer’s incremental search costs from another

search by at least some small amount by increasing its obfuscation level. This would allow

the firm to make sales at some price p + ε. Hence, any equilibrium of Stahl’s model with

p < pm does not survive.
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3.2 Equilibrium obfuscation levels

We now consider equilibrium obfuscation levels and note that obfuscation can have sub-

stantial effects on search costs and consumer surplus. The fact that all equilibria must have

p = pm puts a lower bound on equilibrium search costs—consumers must not be willing to

conduct a second search when they have found price pm and know that prices are drawn

from the distribution given in Proposition 3. If the exogenous component τ of the search

costs is not too large, this implies that firms must obfuscate in equilibrium.

Corollary 1 If g(2τ)− g(τ) <
∫ pm

p D(p)F (p)dp, where F (p) is given by equation (1), then

in any nontrivial NE some firms set t > 0.

Proof. By Proposition 3, firms are willing to set price equal to pm in any NE in which

costly searchers enter. If g(2τ)− g(τ) <
∫ pm

p D(p)F (p)dp and ti = 0 for all i, then a costly

searcher who first observes a price sufficiently close to pm will search again, contradicting

Lemma 3. �

We next note the basic welfare consequences of obfuscation. Consumers suffer both

directly from the effect of obfuscation on search costs and indirectly because obfuscation

leads to higher prices. Firm benefit from the higher prices.

Corollary 2 Suppose g(2τ) − g(τ) <
∫ pm

p D(p)F (p)dp, where F (p) is given by equation

(1). Compared to the model in which obfuscation is impossible (t = 0 identically for all

firms), the model in which obfuscation is possible leads to higher prices in sense of first-

order stochastic dominance, higher profits for all firms, and lower utility for all consumers

in every nontrivial NE.

Proof. In the model where t = 0, the possible nontrivial NE price distributions are given

by Proposition 1. If obfuscation is possible, the nontrivial NE price distribution is given

by Proposition 3. Since the formula for F (p) is the same in both cases and is decreasing

in p̄ for all p, prices are higher in the sense of first-order stochastic dominance in the latter

NE. This and the fact that obfuscation reduces consumer welfare directly imply that in

the latter NE firms earn higher profits and consumer welfare is lower. �
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One striking fact about Proposition 3 and Corollaries 1 and 2 is that, as long as g(τ) ≤

V (∞), any reduction in the exogenous fixed component of consumer search costs has no

effect whatsoever on the equilibrium distribution of prices and profits—any reduction in

τ that would lead to lower prices must be offset by changes in the equilibrium level of

obfuscation. Hence, our model provides a formalization of the observation in Ellison and

Ellison (2009) that improvements in search technology need not make search more efficient.

Their empirical findings are consistent with the idea that the reduction in search costs

online have led to greater equilibrium obfuscation, although probably not with the extreme

finding of this section that the response can be so large as to keep the price distribution

unchanged.13

3.3 Comparative statics with price-independent obfuscation

The assumption that obfuscation is costless leads to a degree of indeterminacy in obfus-

cation levels: obfuscation can vary within a range as long as it is not so low as to induce

consumers to search for a second time after seeing price pm, nor so high as to deter con-

sumer entry; and obfuscation can also covary with prices in many ways. Here, we provide

some comparative statics results by restricting attention to equilibria in which obfuscation

levels are independent of the realization of the mixture over prices.

All the comparative statics results in this paper (Propositions 4, 5, 6, 16, 17, 18 and 19)

depend on the fact that, if obfuscation is costless, costly searchers must enter and then buy

from the first firm they visit in any nontrivial NE. We call these requirements the “entry”

and “stopping” conditions; in the current model, when all firms set obfuscation level t, these

conditions are equations (2) and (3), respectively. The entry condition requires that total

search costs be sufficiently low, while the stopping condition requires that total search costs

be sufficiently high. Note that, as long as obfuscation is not too concentrated in firms that

charge the highest prices, the condition that a consumer who first visits a firm charging p

does not want to search again is sufficient for the stopping condition. In the current model,

both the entry and stopping conditions can always be satisfied simultaneously in equilibria

with p̄ = pm as long as the entry condition is satisfied when all firms set zero obfuscation
13The markups they report are lower than one would find in traditional retail.

16



(i.e. g(τ) ≤ V (∞)), because a consumer’s benefit from a second search is always lower than

the benefit from a first search, while the cost of a second search is always higher than the

cost from a first search. We will see that this is no longer true in the signal-jamming model

of Section 5.

Also, since our models may admit multiple equilibria, all comparative statics are on sets

of equilibria with respect to the strong set order. Recall that a (one-dimensional) set X is

higher than Y in the strong set order if, given elements x in X and y in Y , the maximum

of x and y is in X while the minimum of x and y is in Y .

Our first result identifies a sense in which obfuscation levels must rise when the exoge-

nous component of search costs falls.

Proposition 4 The set of obfuscation values tu (for “u”niform) played in any nontrivial

NE in which firms do not mix over obfuscation levels is decreasing in τ , the fixed component

of consumer search costs, in the strong set order.

Proof. As in the proof of Proposition 3, the lower bound on tu is given by g(2(τ+tu))−g(τ+

tu) =
∫ pm

p D(p)F (p)dp and the upper bound on tu is given by g(τ + tu) =
∫∞
p D(p)F (p)dp,

so an increase in τ causes both of these bounds to decrease. �

Proposition 4 shows that changes in equilibrium obfuscation offset changes in the ex-

ogenous component of search costs. This follows because high exogenous search costs rule

out equilibria with high obfuscation, by the entry condition, and eliminate the need for

high obfuscation, by the stopping condition. That is, costly searchers will not be willing

to obtain a price quote if they face both high exogenous search costs and high obfusca-

tion, and firms have no need to set high obfuscation when consumers are already deterred

from comparison-shopping by high exogenous search costs. This effect, however, is weak

enough that an increase in τ must nonetheless lead to a decrease in the set of nontrivial

NE values of consumer welfare. The intuition is that prices are fixed by Proposition 3 and

any nontrivial NE value of consumer welfare given τ ′ ≥ τ can be reproduced by uniformly

increasing obfuscation by τ ′ − τ . Note that Proposition 5 does not restrict attention to

equilibria with price-independent obfuscation.

Proposition 5 The set of nontrivial NE values of the costly searchers’ welfare is decreasing
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in τ in the strong set order.

Proof. Note that consumer welfare u is given by u ≡ V (∞) − E[g(t + τ)]. Suppose that

τ ′ ≥ τ and u′ ≥ u, where u is a nontrivial NE value of consumer welfare with fixed search

cost τ and u′ is a nontrivial NE value of consumer welfare with fixed search cost τ ′. We

must show that u′ is a nontrivial NE value with search cost τ and that u is a nontrivial NE

value with search cost τ ′.

First, suppose that u′ is the value of consumer welfare for a nontrivial NE with price

distribution F (p) and obfuscation strategies given as a function of price t′(p). Note that

t′(p) can be a probability distribution over obfuscation levels, if firms mix over obfuscation

levels given their prices. Consider the profile where firms price according to F (p) and use

obfuscation strategies t(p) = t′(p) + τ ′ − τ ≥ t′(p) ≥ 0, where if t′(p) is a probability

distribution over obfuscation levels this is interpreted as shifting this distribution up by

τ ′ − τ . It is clear that this profile is a nontrivial NE when fixed search costs are given

by τ , because at every history a consumer’s expected future total search cost when the

fixed component is given by τ and the variable component is given by t(p) is the same as

when the fixed component is given by τ ′ and the variable component is given by t′(p). And

consumer welfare in this NE is u′.

Next, suppose again that u, u′ and t′(p) are as above. To show that u is also a nontrivial

NE value when the exogenous search cost is equal to τ ′, we suppose that firms draw prices

from F (p) and obfuscate according to t(p) = t′(p) + δ, where δ is such that E[g(t′(p) + τ +

δ) − g(t′(p) + τ)] = u′ − u. Note first that t(p) ≥ t′(p) implies that every costly searcher

searches at most once, because compared to the original NE, search costs have increased

while search benefits remain constant. Second, the fact that the equilibrium utility of each

type of consumer is identical to the utility that the same consumer gets in the nontrivial

NE with utility u in the game with exogenous search costs τ implies that costly searchers

are willing to enter. Hence, this profile is a nontrivial NE with payoff u in the game with

exogenous search costs τ ′. �

In addition one can use the comparative statics presented in Stahl (1989) to derive a

number of other comparative statics results. For example, we can show that the lower and
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upper bounds on the NE obfuscation level are both increasing in the proportion of costless

searchers. The reason again follows from considering the entry and stopping conditions.

When there are more costless searchers, Stahl shows that NE prices are lower in the sense

of first-order stochastic dominance. Therefore, more obfuscation is needed to prevent costly

searchers who first observe price pm from searching again, so the lower bound on equilibrium

obfuscation increases by the stopping condition. Similarly, lower prices imply that costly

searchers would be willing to enter despite higher obfuscation, so the upper bound on

equilibrium obfuscation increases by the entry condition.

Proposition 6 The set of obfuscation levels tu played in any nontrivial NE where firms

do not mix over obfuscation levels is increasing in µ, the proportion of costless searchers,

in the strong set order.

Proof. By Proposition 3, F (p) = 1−
[(

1−µ
Nµ

)(
R(pm)
R(p) − 1

)] 1
N−1 andR

(
p
)

=
(

1−µ
1+(N−1)µ

)
R (p̄)

in any pure-strategy nontrivial NE, so F (p) is increasing in µ for all p and p is decreasing

in µ. The lower bound on tu is given by g(2(τ + tu)) − g(tu) =
∫ pm

p D(p)F (p)dp, so it is

increasing in F (p) and therefore increasing in µ. Similarly, the upper bound on tu is given

by g(τ + tu) =
∫∞
p D(p)F (p)dp, so it is increasing in F (p) and therefore in µ as well. �

One can easily show that the set of values of consumer welfare is increasing in µ. The

connection between Proposition 6 and this fact is the same as that between Propositions 4

and 5: raising µ (or decreasing τ) leads to higher obfuscation only because costly searchers

benefit more from entering the market when µ is high (or τ is low) and are thus willing to

tolerate more obfuscation, so obfuscation cannot be so much higher that costly searchers

benefit less on net from entering.

4 Costly Obfuscation

In some cases, practices that frustrate consumers are simply failures by firms to provide

information that they could provide at no (or very little) cost. For example, the computer

memory retailers studied in Ellison and Ellison (2009) could easily add pages to their sites

explaining what “Cas Latency” means and how important it is or is not for consumers

using various applications. In other examples, however, it seems likely that firms incur real
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costs when they engage in obfuscation: mattress stores must incur some costs in getting

manufacturers to label products with unique names; car dealers could presumably reduce

their sales staff if they used posted prices; and banks must incur customer service costs to

deal with questions and complaints that arise from their complicated fee structures.

In this section we explore such applications by considering the case when the obfuscation

cost c(t) that firms must incur in order to raise the time cost of search to t is not identically

zero. Obfuscation costs will naturally eliminate much of the indeterminacy of the costless

model, as firms will not want to do any more obfuscation than is necessary to limit consumer

search to its equilibrium level. Making obfuscation costly thereby creates more deterministic

relationships between price and obfuscation in the cross-section, which we will characterize.

The two subsections do this in two different ways. The first is an equilibrium refinements

approach: we simply posit that it is reasonable to expect that equilibria would satisfy a

given minimal obfuscation condition and characterize equilibria satisfying the refinement.

The second takes the more standard approach of having firms maximize a profit function

that includes explicit obfuscation costs.

4.1 Slightly costly obfuscation

In this section we examine the implications of costly obfuscation in a somewhat nonstan-

dard way: rather than explicitly introducing a small obfuscation cost, we refine the set

of equilibria of the costless obfuscation model. We do this because we feel that this is a

parsimonious way to bring out our several insights. But it also has some drawbacks: one

can debate the refinement; and the equilibrium existence theorem we can provide requires

more convexity of the g function than we would like. Readers who will be too bothered by

these drawbacks can skip to the next section which derives results similar to some of the

results of this section using a more standard approach.

We will call a nontrivial NE of that model a minimal obfuscation NE if conditional on

each realization of firm i’s price, firm i always chooses the lowest obfuscation level that

yields the same profit, i.e. (p, t) is not in the support of firm i’s mixed strategy if there

exists a (p, t′) with t′ < t that yields the same profit. This could be roughly motivated by

thinking about obfuscation costs that exist but are lexicographically less important than
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profits, but our refinement does not impose all restrictions that this would imply.14 We

characterize the price-obfuscation relationship in these equilibria, and also gain insight into

what obfuscation levels are feasible in any nontrivial NE.

As a first step in the analysis, we provide conditions for the existence of a minimal

obfuscation NE.

Proposition 7 Assume that limt→∞ g
′(t) =∞. Let t̃ be such that

g(2τ + t̃)− g(τ + t̃) = V (pm)

If g(τ + t̃) ≤ V (∞), then there exists a minimal obfuscation NE.

The proof is presented in the Appendix. The main idea is that a symmetric mixed

strategy profile is a minimal obfuscation NE if and only if firms choose prices from [p, pm]

according to F (p) and choose an obfuscation level t(p) conditional on each price realization

satisfying

t(pi) = inf{ti ∈ R+ : Ep[g(2τ + t(p) + ti)− g(τ + ti)] ≥ V (pi)}. (4)

We show the existence of such a function t by applying Schauder’s Fixed Point Theorem

to the operator given by

T (t(p))(pi) = inf{ti ∈ R+ : Ep[g(2τ + t(p) + ti)− g(τ + ti)] ≥ V (pi)}.

Note that the assumption that limt→∞ g
′(t) = ∞ is needed to guarantee that the op-

erator T is well-defined. Similar assumptions are made in many literatures in which some

function is convex, but we regard the assumption as unappealing because part of what makes

our basic argument striking is that it only requires that g be slightly convex. Note also that

we had avoided making any such assumption in our earlier results. Indeed, in Lemma 3 and

Proposition 3 among other places our arguments could have been substantially simpler if

we had been willing to make such an assumption. The condition g(τ + t̃) ≤ V (∞) says that

costly searchers enter the market when firms obfuscate to the point where a costly searcher
14It is not equivalent to the lexicographic formulation because we are only requiring that obfuscation be

minimal conditional on the price the firm has chosen, not also that the firm only mix over prices which are
compatible with doing the least possible obfuscation.
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is indifferent between searching and stopping conditional on observing p = pm and t = t̃

when she expects all other firms to set t = 0. This rather strong assumption is necessary

to ensure that costly searchers enter when obfuscation levels are given by a fixed point of

T .

The characterization of a minimal obfuscation NE given by (4) makes it easy to under-

stand the price-obfuscation relationship. There will be a subinterval [p, p′] on which t(p) is

identically zero, because even the lowest possible search costs, g(2τ)−g(τ), will be sufficient

to deter consumers who find prices sufficiently close to p from getting a second price quote.

At higher price levels, obfuscation levels are positive and strictly increasing in p. At the

highest prices, obfuscation levels must be above the minimum possible uniform obfuscation

level tu identified in the previous section.15 Note that this increasing pattern contrasts with

the predictions of the model of Wilson (2008). In Wilson’s two-firm model, the firm that

obfuscates chooses prices from a distribution that is lower than the distribution from which

the non-obfuscating firm chooses its prices.

Another benefit of having characterized and shown the existence of minimal obfuscation

NE is that we gain additional insight into what levels of obfuscation are possible in the

costless model. In the previous section, we characterized the lowest and highest possible

levels of obfuscation in a NE in which all firms choose the same obfuscation level. We note

here that the lowest tu which is possible in a NE with price-independent obfuscation is not

a lower bound on the expected obfuscation in any NE. Indeed, we show that the average

obfuscation level in any minimal obfuscation NE—which must exist by Proposition 7—is

lower.

Proposition 8 Let tu be the minimum obfuscation level such that there exists a nontrivial

NE in which all firm use obfuscation level tu. This tu is given by

g(2(τ + tu))− g(τ + tu) =
∫ pm

p
D(p)F (p)dp

Suppose that t∗(p) is the obfuscation function from a minimal obfuscation NE. Let

t̄∗ ≡
∫ pm

p
t∗(p)f(p)dp

15This latter fact is actually shown in the proof of Proposition 8 below.
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be the average obfuscation level in this equilibrium. Then t̄∗ < tu.

Proof. We first claim that t∗(pm) > tu. For suppose, towards a contradiction, that

t∗(pm) ≤ tu. Then

Ep [g(2τ + t∗(pm) + t∗(p))− g(τ + t∗(pm))] < g(2τ + t∗(pm) + tu)− g(τ + t∗(pm))

as t∗(p) ≤ tu for all p with strict inequality on a set of positive measure (since t∗(p) is

strictly increasing in p in a neighborhood of pm). Convexity of g gives

g(2τ + t∗(pm) + tu)− g(τ + t∗(pm)) ≤ g(2(τ + tu))− g(τ + tu)

and g(2(τ + tu))− g(τ + tu) = V (pm), so combining the inequalities yields

Ep [g(2τ + t∗(pm) + t∗(p))− g(τ + t∗(pm))] < V (pm)

contradicting the hypothesis that all costly searchers buy after at most one search when

obfuscation levels are given by t∗(p).

Now, arguing by contradiction once again, suppose that t̄∗ ≥ tu. Then

Ep [g(2τ + t∗(pm) + t∗(p))− g(τ + t∗(pm))] > g(2τ + t∗(pm) + t̄∗)− g(τ + t∗(pm))

≥ g(2τ + t∗(pm) + tu)− g(τ + t∗(pm))

> g(2(τ + tu))− g(τ + tu) = V (pm)

contradicting the requirement that the firm setting price pm cannot cut its obfuscation level

and still sell to costly searchers when obfuscation levels are given by t∗(p). Note that the

first and third inequalities above follow from strict convexity of g, while the second simply

uses that g is increasing. �

The highest level of obfuscation that is possible in a NE in which all firms choose the

same obfuscation level and consumers enter (as identified by equation (3) in the previous

section) can easily be seen to be a tight upper bound on what is possible in any NE.

Proposition 9 Let t̄ be the average obfuscation level in any nontrivial NE. Then t̄ ≤ t
u,

where tu is the solution to

g(τ + t
u) =

∫ ∞
p

D(p)F (p)dp
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Proof. If costly searchers enter, then

E[g(τ + t)] ≤
∫ ∞
p

D(p)F (p)dp,

where the expectation on the left side is over the marginal distribution induced by firms’

mixed strategies. The convexity of g implies that g(τ + t̄) ≤ E[g(τ + t)] ≤ g(τ + t
u), so

t̄ ≤ tu. �

Thus, considering NE in which obfuscation levels are not constant and price-independent

shows that there may exist nontrivial NE with less obfuscation than those described in

Section 3, though not with more obfuscation.

4.2 Truly costly obfuscation

In this section we consider the impact of obfuscation costs in a more standard way. Specif-

ically, we assume that a firm must pay a cost c(t) to set obfuscation level t, where c(0) = 0

and c is strictly increasing and convex. We provide some results analogous to those of the

previous section and also note some ways in which the equilibria change.

Our first observation is that whether the equilibrium differs from that of the costless-

obfuscation model depends on the search cost function, rather than on the obfuscation cost

function.

Proposition 10 Let V (p) be the consumer benefit from search assuming that prices are

distributed as in the nontrivial NE of the costless-obfuscation model.

(a) If g(τ) < V (∞) and g(2τ)−g(τ) > V (pm), then the model with costly obfuscation has a

unique nontrivial NE, in which no obfuscation occurs and the equilibrium price distribution

coincides with that of the costless-obfuscation model.

(b) If g(2τ) − g(τ) < V (pm), then any nontrivial NE of the costly obfuscation model must

have prices distributed on an interval [p, p] with p strictly less than pm.

Proof. For part (a) note that the the conditions on g imply that consumers will search once

and will not search a second time if firms mix over prices as they do in the equilibrium of

the costless obfuscation model. Hence, the same calculations as for the costless obfuscation

model apply and show that there is no profitable deviation that involves zero obfuscation.
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Deviations that involve positive obfuscation are also not profitable, because they cannot

lead to making greater sales (for any price weakly less than pm) and any obfuscation costs

incurred will only reduce profits.

For part (b), note first that Lemmas 1 and 2 imply that prices are distributed according

to some atomless distribution F ∗ on some interval [p, p] with p > c. We must have p ≤ pm

because any price greater than p > pm is dominated by setting p = pm and using the same

obfuscation level. We claim that firms setting prices p0 in a neighborhood of p must sell to

all consumers who visit them first. To see this, first note that if they did not sell to any

consumers who visit them first then they earn arbitrarily small profits (which is impossible,

since all firms must earn the same, strictly positive level of profits in any NE), as consumers

purchase only from the lowest-price firm they visit, and firms with prices close to pm have

a vanishingly small probability of being the lowest-price firm visited by any consumer who

has searched more than once. And if such a firm sells to only some of those consumers

that visit it first, it can cut prices by an arbitrarily small amount and sell to all of these

consumers, yielding a discrete gain in profits. Such firms must also be choosing positive

obfuscation levels satisfying

Ep[g(2τ + t(p) + t(p0))]− g(τ + t(p0)) =
∫ p0

p
D(p)F ∗(p)dp.

where F ∗(p) is the equilibrium price distribution. Indeed, they cannot set lower obfuscation

levels because such levels would cause consumers to search again and result in these firms

earning near-zero profits; and level of t(p0) implied by this equation cannot be negative

because then no firms would engage in obfuscation and F would be the distribution from

the previous section, which we have assumed to induce further search. Hence, for all p0

just below p a first-order approximation to the profit function is

R(p0)
1− µ
N
− c(t(p0))).

This expression is strictly decreasing for p0 near pm, because R′(pm) = 0 and the cost term

has a nonzero derivative. Hence, p cannot be equal to pm. �

The main difference between the equilibrium of the costless obfuscation model and

what part (b) notes is possible with costly obfuscation is that costly obfuscation implies
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that p < pm. The last line of the proof contains all the intuition: prices must be bounded

away from the monopoly price because if p = pm then there is a first-order gain from

reducing the level of obfuscation necessary to deter consumer search, and no first-order loss

in per customer profits.

Note also that in the course of the proof of part (b) we have shown that some obfuscation

must occur in any nontrivial NE in that case: firms with prices near p must engage in

obfuscation because otherwise consumers will conduct a second search and the firms will

earn zero profits.

In our slightly costly model we had a simple expression for the obfuscation level of each

firm. The analog to that conclusion is:

Proposition 11 In any nontrivial NE, a firm that sets price p0 must set obfuscation level

t(p0) such that

Ep[g(2τ + t(p) + t(p0))]− g(τ + t(p0)) ≤
∫ p0

p
D(p)F ∗(p)dp.

The proof of this proposition is immediate: there is no point in doing any more ob-

fuscation than is necessary to deter further consumer search. What is more noteworthy

is what is not in the proposition: we do not claim that the equation holds with equality

whenever obfuscation is necessary to deter further consumer search. The reason is that

firms who have chosen low prices may choose to do little or no obfuscation even though

this may induce consumers to conduct a second search — unlike in the textbook model

with constant search costs, consumers in our model have convex search costs, so they may

search just one more time and then return to the first firm with high probability. We think

this adds realism to the model and it results in some interesting patterns. For example,

search can be nonmonotone in prices with consumers who find very low prices purchasing

right away, consumers who find slightly higher prices searching a second time before giving

up, and consumers who find the highest prices buying immediately because the high-priced

firms engage in sufficient obfuscation to use up the time consumers were willing to spend

searching.

An unfortunate consequence of this feature is that it makes characterizing equilibrium

strategies cumbersome: demand is a complicated function of the vector of prices and there

26



is no neat expression for the equilibrium F ∗ as there is when consumers search exactly once

in equilibrium. Nevertheless, several important properties of the distribution of equilibrium

obfuscation levels carry over from the slightly costly obfuscation case. As before, there is

an interval of positive length [p, p′] on which firms set zero obfuscation, as the exogenous

component of search costs is sufficient to deter a second search for consumers who first

observe a price sufficiently close to p. And there is another interval of positive length

[p′′, p] on which firms set obfuscation such that the inequality in Proposition 11 holds with

equality16, so that obfuscation is increasing in price. Furthermore, a firm that sets price

p must also set the highest obfuscation level; since such a firm sells to costly searchers

that visit it with probability one, any other firm need not obfuscate so much to sell to its

customers with probability one, and beyond this point there is no incentive to obfuscate.

The only potential difference in the pattern of equilibrium obfuscation across firms between

the slightly costly and truly costly obfuscation models, then, is that in the truly costly

obfuscation model the union of the intervals [p, p′] and [p′′, p] need not equal [p, p]. That is,

in both models the lowest-priced firms do not use obfuscation and the highest-priced firms

use the most obfuscation, but only in the slightly costly obfuscation model can we rule out

nonmonotonicity in the obfuscation level.

Indeed, it seems quite possible that one could construct an example with nonmonotone

obfuscation if obfuscation is truly costly for firms. We sketch such an example here: Suppose

that c(t) is very small up to a point t∗ and increases rapidly thereafter, and that that g(t)

and τ are such that no consumer is ever willing to search three times but a consumer may

search a second time if the obfuscation she encountered on her first search was sufficiently

low. We conjecture that there exist parameters such that firms with the lowest prices

set t = 0 and sell to consumers on their first search, firms with slightly higher prices set

t ∈ (0, t∗) and sell to consumers on their first search (since doing so is not very costly), firms

with intermediate prices set t = 0 and sell to consumers on their second search (since setting

high enough obfuscation to sell to consumers on their first search would be very expensive),

firms with even higher prices set t ∈ (0, t∗) and sell to consumers on their second search,

and firms with the highest prices set t ≥ t∗ and sell to consumers on their first search (since
16This is shown in the proof of Proposition 10.
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such firms would hardly ever sell if they did not sell to consumers on their first search).

5 A Signal-Jamming Model

In this section we explore an alternate mechanism through which obfuscation can affect

consumer search. At the broadest level, our signal-jamming model is another way to reach

the conclusions that firms obfuscate in equilibrium and that this affects the equilibrium

price distribution. But the mechanics of the argument are different, and this leads to

some differences in the results. Among these are an “excess obfuscation” problem that

can prevent the existence of equilibria with consumer entry, a different selection among the

possible equilibria of Stahl’s model, and the presence of effects that can change comparative

statics results. In particular, there is no longer a unique equilibrium price distribution, and

the set of equilibrium price distributions depends on parameters in interesting ways.

The basic idea behind our signal-jamming mechanism is straightforward. We assume

that search costs are linear rather than convex. But we assume that there is uncertainty

about the exogenous component of search costs. Consumers learn about this component

from their first shopping experience, so obfuscation raises consumer expectations about the

search costs they will incur on future searches. This mechanism seems plausible for many

applications. For example, if a home-improvement contractor spends a long time with a

consumer discussing details about the job and takes a long time to prepare and submit his

or her bid, then it seems plausible that consumers will expect that getting a second bid will

entail similar time costs.

Formally, we assume that there is an underlying parameter θ with expectation zero

distributed with continuous, strictly positive density h(θ) on [θ,∞) with θ > −τ , such that

it costs a consumer t̃i = τ + θ + ti to visit a firm that sets obfuscation level ti. We assume

that when a consumer visits firm i, she observes only t̃i and pi, so that she must draw

inferences about θ in equilibrium. The timing of the game is almost as before. The one

amendment is that we assume that θ is drawn once and for all at the beginning of the game

and is unobserved by both firms and consumers.17

We focus in this section on costless obfuscation. As before, this lets us bring out our
17We assume that firms do not observe θ to avoid a large multiplicity of signaling equilibria.

28



main observations most simply. We also restrict our attention to strategies for firms which

do not mix over obfuscation levels for a given price. That is, we consider equilibria in which

there exists a function t∗(p) such that the support of firms’ mixed strategies is contained

in the set of ordered pairs (p, t) with t = t∗(p). The import of the assumption is that

equilibrium implies that consumers believe with probability one that θ = θ̂ ≡ t̃− (τ + t∗(p))

after observing total search cost t̃ and price p18. The only exception to this, of course,

is if the observed (p, t) is inconsistent with equilibrium, which can happen if p not in the

support of the equilibrium price distribution or if t̃ < τ + t∗(p) + θ. We do not restrict

beliefs in this case, but will, of course, assume that consumers act rationally given some

belief about θ. Throughout this section we’ll write PBE as a shorthand for “symmetric

Perfect Bayesian Equilibrium in which firms do not mix over obfuscation levels for a given

price.”

5.1 Consumer search behavior

In this section we note that consumer search behavior in the signal-jamming model is similar

to search behavior in our previous model. First, we have a straightforward application of

standard results.

Proposition 12 In any PBE, a costly searcher searches for the first time if τ + E[t(p)] <

V (∞) and continues to search if τ+ θ̂+E[t(p)] < V (p0) and there are previously unsearched

firms remaining. Conversely, a costly searcher does not search for the first time if τ +

E[t(p)] > V (∞) and stops searching if τ + θ̂ + E[t(p)] > V (p0).

Next, we observe that costless search implies that costly searchers search at most once

in equilibrium, as in the previous model.

Proposition 13 In any PBE of the signal-jamming model with costless obfuscation, all

costly searchers search at most once.

Proof. Fix a PBE obfuscation strategy t(p) and suppose that a firm does not sell to all

costly searchers that visit it first when it sets price p and obfuscation level t(p). A consumer
18Without this result, the consumer search problem would become much more complicated, as consumers

would have an incentive to search multiple times in order to learn more about θ.
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who first visits a firm with price p will buy if t̃− t(p) + E[t(p)] > V (p), since in equilibrium

the consumer infers that θ = t̃ − (t(p) + τ) whenever she observes total search cost t̃ and

price p. Therefore, a firm can always induce those consumers who visit it first to buy with

probability 1 by setting t > t(p) + V (p) − E[t(p)]. By Proposition 12, this maximizes the

market share of the firm, so there cannot be a PBE in which a firm does not sell to all

consumers who visit it first. �

The fact that consumers search at most once will again allow us to provide simple,

closed-form expressions for the possible PBE price distributions. It is the primary place

where we use the assumption that the distribution of θ is unbounded. If θ is bounded, it

may be that consumers sometimes search multiple times.

5.2 Equilibrium prices and obfuscation

The fact that equilibrium consumer search is similar in the two models will lead to similar-

ities in the equilibrium outcomes between the signal-jamming model and our earlier convex

search cost model. But the way in which firms can use obfuscation to influence consumer

behavior differs across the two models. In this section we bring out the differences in what

firms can do and note the effect this has on equilibrium outcomes.

We first note that there are more serious obstacles to the existence of equilibria in which

p = pm in the signal-jamming model.

Proposition 14 Let V (p0) ≡
∫ p0
p D(p)F (p)dp be the value of search when prices are drawn

from the NE of the model with convex search costs and costless obfuscation described in

Proposition 3. The signal-jamming model has a nontrivial PBE with a price distribution

having support [p, pm] if and only if τ ≤ V (∞) and
∫∞
pm D(p)dp ≥ −θ.

Proof. Because consumers search once, such an equilibrium must have prices distributed

as in Proposition 3. Hence, V is the value to consumers of an additional search. Let t̄ be

the average level of obfuscation. Consumers will search exactly once if and only if entry

and stopping conditions hold. τ + t̄ ≤ V (∞) is needed to allow consumers to conduct an

initial search. And τ + θ + t̄ ≥ V (pm) is needed to prevent consumers who find price pm

and discover that θ = θ from searching a second time. There exists a value of t̄ satisfying
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both constraints if and only if V (∞) ≥ V (pm) − θ and τ ≤ V (∞).19 The first of these

conditions is equivalent to

−θ ≤ V (∞)− V (pm) =
∫ ∞
pm

D(p)dp.

Finally, if prices are distributed on [p, pm] as in Proposition 3 and all consumers purchase

from the first store they visit, firms have no profitable deviation, since they are indifferent

between charging any two prices in [p, pm] and earn lower profits from charging outside this

interval. �

The first condition in the Proposition, τ ≤ V (∞), is simply the requirement that the

exogenous search costs are not high enough to prevent consumers from searching at least

once. It is analogous to the sole condition required for the existence of a nontrivial NE in

the convex search cost model. The second condition,
∫∞
pm D(p)dp ≥ −θ, is an additional

restriction requiring that the consumer surplus from purchasing at the monopoly price also

be sufficiently large relative to the uncertainty about θ. This reflects that there is what one

can think of as “excess obfuscation” in the signal-jamming model with costless obfuscation.

In equilibrium, firms must obfuscate to the point where consumers will not want to search

again even when the exogenous component of search costs turns out to take on its lowest

possible value. This implies that, with probability one, the average obfuscation level in any

PBE is higher than the minimal average obfuscation level needed to keep all costly searchers

from conducting a second search, conditional on θ. This excess obfuscation makes it harder

to sustain equilibria in which consumers search, as the lowest t such that τ + θ+ t ≥ V (pm)

(the stopping condition) may be so high that τ + t > V (∞) (the negation of the entry

condition), precluding costly searcher entry. To put this another way, in the convex search

costs model we could always simultaneously satisfy the entry and stopping conditions as

long as g(τ) was less than V (∞). Now, the difference between θ and E[θ] drives a wedge

between the entry and stopping conditions, so we may not be able to satisfy them both

simultaneously.

We now provide a complete characterization of the nontrivial PBE of the signal-jamming
19To see this, first note that, if these two conditions hold, taking t̄ = V (∞)− τ satisfies the constraints.

If the constraints hold, τ ≤ V (∞) is immediate and V (∞) ≥ V (pm) − θ follows by subtracting the second
constraint from the first.
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model. Because consumers search once in equilibrium, the distribution of prices must look

like the price distribution in Stahl’s model for some search cost. But the selection turns out

to be different from that of our previous model. In the convex-search-cost model, the key

deviation that prevented almost all of these distributions from being equilibria was that a

firm could charge a price slightly above p̄ and obfuscate slightly more so that consumers

would not search again. This constraint on the PBE set no longer exists in the signal-

jamming model: the above deviation is a deviation to an out-of-equilibrium price, so the

firm cannot necessarily induce any consumers to have the beliefs about θ that it would like

them to have after such deviations. In particular, a consumer who observes a price above

p̄ may believe that the firm that set this price also set very high obfuscation, which would

lead her to believe that θ is very low. So, whereas in the convex costs model p̄ was fixed at

pm, in this model the range of possible values for p̄ is determined by the entry and stopping

conditions.

It turns out that we often get an incomplete selection from the equilibria of Stahl’s

model. Many price distributions may be possible.

Proposition 15 For every p∗ ∈ [0, pm), there is a nontrivial PBE price distribution Fp∗(p)

of the signal-jamming model with costless obfuscation with the supremum of the support of

Fp∗(p) equal to p∗ only if

Fp∗(p) = 1−
[(

1− µ
Nµ

)(
R(p∗)
R(p)

− 1
)] 1

N−1

(5)

for all p ∈
[
p∗, p∗

]
, where p∗ is given by R(p∗) =

[
1−µ

1+(N−1)µ

]
R(p∗). Such a PBE exists if

and only if
∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ + θ and

∫∞
p∗ D(p)dp ≥ −θ. Furthermore, some nontrivial

PBE exists if τ ≤
∫∞

0 D(p)Fpm(p)dp.

The proof is given in the Appendix. The main idea is to initially follow steps as in

our earlier characterizations and then introduce the new constraints as in the previous

proposition. The principle new intuition in this result as compared to Proposition 14 is

that if p∗ < pm firms are tempted to price above p∗, so in equilibrium consumers must be

willing to undertake a second search after observing p > p∗ when they believe that θ is as

low as possible. A necessary condition for this is
∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ+θ, and Proposition
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15 shows that this condition and the requirement that the excess obfuscation problem is

not too severe are jointly sufficient.

The main difference in the outcome between the signal-jamming model and the convex

costs model is that in the signal-jamming model there may be PBE with p̄ < pm. Indeed

there will be parameter values for which such PBE exist while equilibria with p̄ = pm do

not. To construct equilibria with p̄ < pm, one simply assumes that consumers who see a

price greater than p̄ believe that θ is low. Note that the necessary and sufficient conditions

for the existence of an equilibrium with p = p∗ tend to hold for intermediate values of p∗.

It is easy to see why p∗ cannot be too low in equilibrium: if p∗ is close to 0, firms would

deviate to price slightly above p∗ and costly searchers would purchase even if they believe

that θ is low. The argument for why p∗ cannot be too high in equilibrium is more subtle

and comes from the excess obfuscation effect. The idea is that lower prices correspond to

higher consumer welfare and a larger gap between consumer welfare and the benefit of a

second search conditional on observing p∗ and θ, which makes it more likely that the excess

obfuscation needed to satisfy the stopping condition is not so great as to violate the entry

condition.

Finally, observe that even though Proposition 15 places both lower and upper bounds

on equilibria p∗, the last sentence of the proposition shows that existence of some nontrivial

PBE is guaranteed under conditions identical to those in the convex search cost model.

5.3 Analysis and comparative statics

We provide some observations about the emergence of equilibrium obfuscation and its effect

on prices, profits and consumer welfare, as we did in the convex-costs model. The results

here are slightly more subtle due to the range of PBE described in Proposition 15, but

two important ideas—that obfuscation occurs in equilibrium, and that obfuscation offsets

changes in the exogenous component of consumer search costs—continue to come through.

In addition, we show that prices actually fall as the excess obfuscation problem described

above becomes more severe, i.e. as θ decreases, but that nonetheless consumer welfare falls

in response to this as well.

Our first corollary provides conditions sufficient to imply that some obfuscation must
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take place. As in the convex search cost model, obfuscation must occur in equilibrium

unless exogenous search costs are so high that the stopping condition is satisfied with zero

obfuscation. We omit the proof, which is analogous to the proof of Corollary 1.

Corollary 3 In any nontrivial PBE with p̄ = p∗ and θ+ τ <
∫ p∗
p∗ D(p)Fp∗(p)dp, where Fp∗

is given by equation (5), some firms set t > 0.

To simplify our comparative statics analysis in this section, we henceforth impose the

following assumption:20

Assumption 1
∫ p∗
p∗ D(p)Fp∗(p)dp is increasing in p∗ for p∗ < pm.

We first show that the results on the effect of changes in the exogenous component

of consumer search costs on average equilibrium obfuscation and consumer welfare in this

model are qualitatively the same as in the convex search costs model with uniform obfus-

cation. That is, decreases in τ lead to increases in both average obfuscation and consumer

welfare.

Proposition 16 The set of nontrivial PBE average obfuscation levels is decreasing in τ in

the strong set order. Furthermore, for any p∗, the set of nontrivial PBE average obfuscation

levels corresponding to PBE with p̄ = p∗ is decreasing in τ in the strong set order.

Proposition 17 The set of nontrivial PBE values of the costly searchers’ welfare is de-

creasing in τ in the strong set order.

Proofs of these propositions are given in the appendix. Each builds off the observation

that in any nontrivial PBE with the upper bound of the price distribution equal to p∗ < pm,

the average obfuscation level must be
∫ p∗
p∗ D(p)Fp∗(p)dp−θ−τ : consumers must not want to

search again if the price is p∗ and they find out that θ = θ and they must be willing to search

again if the firm deviates to any p > p∗. Proposition 16 reflects that this obfuscation level

is decreasing in τ and that the set of equilibrium obfuscation levels in equilibria with upper
20This assumption is implied by Assumption C in Stahl (1989), which is the same as the “Revenue

Condition” in Stahl (1996). As Stahl (1996) points out, this condition holds “for all concave (and linear)
demand functions, as well as many convex demand functions.”
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bound pm is also decreasing in τ . An intuition for Proposition 17 is that, holding prices

fixed, the direct effect of increasing τ outweighs the indirect effect of reduced obfuscation, as

in Proposition 5. And, under Assumption 1, the set of PBE price distributions is increasing

in τ in the strong set order, so the direct effect cannot be offset by favorable changes in the

price distribution.

While we find Propositions 16 and 17 noteworthy, they do not depend on the signal-

jamming structure of our model. In particular, both of these results hold in the alternative

model where θ is deterministic and search costs are linear.21 The main consequence of

the signal-jamming structure of the model for comparative statics, then, is the excess ob-

fuscation effect. To derive comparative statics on this effect (Propositions 18 and 19) we

consider changes in θ, holding E[θ] constant at zero.

Recalling that an increase in θ corresponds to a decrease in the severity of the excess

obfuscation problem, Proposition 18 shows that an increase in the severity of this problem

leads to a decrease in prices, which is perhaps a surprising result. The intuition here

is that the excess obfuscation problem rules out equilibria with high prices, as per the

discussion following Proposition 15, so increasing the severity of the excess obfuscation

problem eliminates equilibria with the highest prices. Proposition 19 shows that, if all

equilibria have p̄ < pm this effect cannot overturn the direct welfare costs to consumers

of an increase in excess obfuscation, because excess obfuscation leads to lower prices only

by making consumers sufficiently worse off that they refuse to enter when prices are high.

The assumption that equilibria with p̄ = pm do not exist is needed for this result because

equilibria with p̄ = pm can have very high obfuscation, since the only upper bound on

obfuscation in this case is the entry condition, while equilibria with p̄ < pm must also

have low enough obfuscation that firms are not tempted to deviate to prices slightly above

p̄, which makes comparing consumer welfare across equilibria with p̄ < pm and p̄ = pm

difficult. So long as equilibria with p̄ = pm do not exist, then, Propositions 18 and 19 show

that, while equilibrium requires that firms expropriate some of the additional surplus that

comes with an increase in θ through reduced reduced excess obfuscation, consumers are still

better off after such a reduction in uncertainty, at least in the strong set order sense. In this
21However, firms would not have a strict incentive to obfuscate in such a model.
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sense increases in θ are Pareto-improving, even though they make markets less competitive

in that they raise equilibrium prices.

Proposition 18 The set of nontrivial PBE values of p̄ is increasing in θ in the strong

sense order.

Proof. Recall that p∗ is a nontrivial PBE value of p̄ if and only if
∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ+θ

and
∫∞
p∗ D(p)dp ≥ −θ. And

∫ p∗
p∗ D(p)Fp∗(p)dp is increasing in p∗ for p∗ < pm by assumption,

while
∫∞
p∗ D(p)dp is decreasing in p∗, so an increase in θ raises the lower bound on p̄ given

by the first inequality and raises the upper bound of p̄ given by the second. �

Proposition 19 Suppose that no PBE with p̄ = pm exist when the lower bound on θ equals

θ or θ′ for some θ′ ≥ θ. Then increasing the lower bound on θ from θ to θ′ increases the

set of PBE values of consumer welfare in the strong set order.

Proof. Suppose that θ′ ≥ θ and u′ ≤ u, where u is a PBE value of consumer welfare

with lower bound on θ given by θ and u′ is a PBE value of consumer welfare with this

lower bound given by θ′Denote the upper bound of the price distribution yielding consumer

welfare u by p̄ and denote the corresponding upper bound for u′ by p̄′. We must show that

u′ is a PBE value when the lower bound is given by θ and that u is a PBE value when this

bound is given by θ′.

We have that p̄ and p̄′ are both less than pm, so the proof of Proposition 15 gives that∫ p̄
p̄ = τ + θ + t̄ and

∫ p̄′
p̄′ = τ + θ + t̄′, where t̄ and t̄′ are average obfuscation levels corre-

sponding to PBE with price upper bound p̄ and welfare u, and price ceiling p̄′ and welfare

u′, respectively. Recall that u =
∫∞
p̄ Fp̄(p)D(p)dp − τ − t̄, so we have u =

∫∞
p̄ D(p)dp + θ

and u′ =
∫∞
p̄′ D(p)dp+ θ′. Since u′ ≤ u, this implies that p̄′ ≥ p̄. Therefore, we have

u′ =
∫ ∞
p̄′

D(p)dp+ θ′ ≤ u ≤
∫ ∞
p̄

D(p)dp+ θ′

The Intermediate Value Theorem them implies that there exists p∗ ∈ [p̄, p̄′] such that

u =
∫∞
p∗ D(p)dp + θ′, which then implies that u is a PBE value of consumer welfare when

the lower bound on θ is given by θ′ and the upper bound on p is given by p∗. The argument

for u′ is similar. �
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Finally, we remark that the mechanics of the model we have presented in this section

differ from those of standard signal-jamming models in an important way: Usually, the

marginal benefit to jamming the signal is positive in equilibrium, and the equilibrium

quantity of signal-jamming is determined by marginal signal-jamming costs that increase

in the quantity of signal jamming. In our model, however, the marginal cost of signal-

jamming is held constant at zero, so equilibrium requires that the marginal benefit of

signal-jamming equal zero as well. This is what leads to Proposition 13 and the excess

obfuscation effect; in equilibrium, search costs must be so high that consumers search only

once even when they observe the highest possible realization of p and the lowest possible

realization of θ. We believe that this model with costly obfuscation would look more like

a standard signal-jamming model. That is, signal-jamming costs would be convex, so in

equilibrium the marginal benefit of signal-jamming would remain positive, implying that

firms that charged high prices would not sell to consumers when the realization of θ was

low. We view the analysis of this kind of model as a promising avenue for future research,

though the failure of Proposition 13 to hold in such a setting would naturally make simple

expressions for the equilibrium price and obfuscation distributions unlikely.

6 Conclusion

In this paper we have explored obfuscation using two related models in which obfuscation is

treated as an action that increases the amount of time that consumers must spend to learn

a firm’s price. In both cases, the key impact of such actions is that they lead consumers to

behave as if future search costs will be higher. In the convex-costs model this is because

obfuscation directly increases the incremental costs that consumer would incur to perform

another search. In the signal jamming model there is no real effect on the future, but an

informational linkage implies that increased obfuscation leads consumers to expect higher

future search costs.

In both models, we show that obfuscation must occur in an equilibrium unless the

exogenous component of consumer search costs is high enough that consumers are willing

to purchase at the highest equilibrium price in the absence of obfuscation. And we show that

obfuscation has the same qualitative impact on welfare. It is bad for consumers both because
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it directly imposes costs on them and because it leads to higher prices. The higher prices

make obfuscation beneficial for firms, except in the case when excess obfuscation makes

the market completely collapse. Note that obfuscation benefits all firms, not only those

who engage in it; even transparent firms benefit from serving an obfuscation-rich market,

as their customers are prevented from comparison-shopping by other firms’ obfuscation.

The mechanics of our models are similar to those of Stahl (1989). In both cases ob-

fuscation can be seen as selecting among the dispersed price equilibria of Stahl’s model.

In the convex-costs model, the selection is that obfuscation must be sufficiently high to

result in an equilibrium price distribution that goes all the way up to the monopoly price.

In the signal-jamming model, the constraints are that overall obfuscation levels must be

sufficiently high so that consumers are willing to search once, but never more than once.

This can leave a range of possible dispersed-price equilibria.

Our two models also have similar comparative statics implications. In both, equilibrium

obfuscation adjusts to offset changes in the exogenous component of consumer search costs,

though in equilibrium consumers still benefit from reductions in exogenous search costs and

are hurt by increases in these costs. The signal-jamming model is also distinguished by the

fact that it displays excessive obfuscation with probability one; prices fall as the severity of

this problem increases, but consumer welfare decreases.

Our analysis suggests a number of interesting avenues for future research. Our char-

acterizations of the costly obfuscation model are limited. In reality we feel that it takes a

great deal of cleverness for firms to devise effective obfuscation schemes, which could make

such schemes quite costly. Such costs would be natural candidates for explaining why real-

world obfuscation is limited. For example, we noted that whereas our convex costs model

with costless obfuscation predicts that obfuscation will completely offset any technological

reduction in search costs, Ellison and Ellison (2009) report that search is still fairly effective

for at least some consumers in the environment they study. Developing models of costly

obfuscation that are more tractable than ours could be challenging, but could have rewards

both from a theoretical and from an applied perspective.

Relatedly, an important constraint on real-world obfuscation may be that consumers

will give up on a firm before learning its price. In some of our models our analyses can
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be justified by assuming that consumers beliefs are such that they expect the remaining

duration of search to be short enough so that continuing with current firm is better than

paying τ to start over. But in other cases correlations between p and t will prevent such

justifications. And in in any case there may be interesting lessons to learn from thinking

about models in which search is a real continuous time stopping problem rather than just

a series of one or zero decisions about whether to visit each firm.

Finally, we note that there are more basic related areas of search theory that have

not been fully explored. We mentioned that assuming that search costs are convex rather

than constant can create an environment in which search strategies are more interesting

and realistic, with different consumers searching different number of times. Stahl (1996)

explores one way to get such behavior by adding heterogeneous search costs, but the convex

cost model could be a valuable complement and provide additional insights.
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Appendix

Proof of Proposition 1. We proceed by induction on the number of remaining unsearched

stores. The result is immediate when zero stores remains unsearched. So assume that we

have shown the result for all numbers of remaining unsearched stores up to m. Denote

a history xn = ((p1, t1), (p2, t2), . . . , (pn, tn)) and let p0 = min{p1, . . . , pn} and t0 = nτ +∑n
i=1 ti.

First, suppose that V (p0) > Et [g(t0 + τ + t)− g(t0)]. Consider the continuation strat-

egy of continuing at xn and stopping at xn+1 regardless of (pn+1, tn+1). This strategy yields

expected utility
∫∞
p0
D(p)dp+

∫ p0
p D(p)F (p)dp−Et [g(t0 + τ + t)] >

∫∞
p0
D(p)dp−g(t0) con-

ditional on reaching xn while stopping at xn yields utility
∫∞
p0
D(p)dp − g(t0). By the

inductive hypothesis, any strategy of the desired form yields a weakly higher expected pay-

off than the strategy of continuing at xn and stopping at xn+1 regardless of (pn+1, tn+1),

so any such strategy yields a strictly higher expected continuation payoff conditional on

reaching xn than does any strategy involving stopping at xn.

Now suppose that V (p0) < Et [g(t0 + τ + t)− g(t0)]. Consider the alternate model

where search costs are fixed at c ≡ Et [g(t0 + τ + t)− g(t0)]. In the alternate model, it

is well-known that in any sequentially rational strategy the consumer stops at xn.22 But,

relative to expected continuation payoffs conditional on reaching xn in the alternate model,

expected continuation payoffs conditional on reaching xn in the original model are the same

for the strategy that stops at xn and are lower for any strategy that continues at xn. So in

any sequentially rational strategy in the original model the consumer stops at xn as well.

Therefore, any strategy of the desired form yields a strictly higher expected continuation

payoff than any strategy not of this form when there are m+1 remaining unsearched firms,

so the result for m = N follows. �

Proof of Proposition 7. In any minimal obfuscation NE the support of the firms’ mixed

strategies contains a single obfuscation level t(p) for each price p in the support. Every NE of

the costless obfuscation model in which costly searchers enter has the distribution of prices

F (p) given in Proposition 3. A firm i that chooses (pi, ti) from the joint distribution of price
22See Kohn and Shavell (1974) or Weitzman (1979).
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and obfuscation levels in such an equilibrium cannot reduce its obfuscation level and still

sell to costly searchers if and only if either ti = 0 or Ep[g(2τ + t(p)+ ti)−g(τ + ti)] = V (pi).

Hence, our problem is to find a function t(p) such that, for every pi,

t(pi) = inf{ti ∈ R+ : Ep[g(2τ + t(p) + ti)− g(τ + ti)] ≥ V (pi)}

where p has cdf F (p).

Let T be the operator given by

T (t(p))(pi) = inf{ti ∈ R+ : Ep[g(2τ + t(p) + ti)− g(τ + ti)] ≥ V (pi)}.

Note that T is well defined by our assumptions that τ > 0 and limt→∞ g
′(t) = ∞. T is

the best-response operator when firms have lexicographic preferences for first maximizing

profit and then minimizing obfuscation, given their prices, so it will suffice to show that

T has a fixed point and that costly searchers enter when obfuscation levels are given by a

fixed point of T . We will proceed by applying the Schauder Fixed Point Theorem, which

states that any continuous map from a nonempty, compact, and convex subset of a Banach

space to itself has a fixed point.

First, note that T is single-valued. Recall that the space of continuous functions

t : [p, pm] → R under the sup norm is a Banach space. We claim that T is a continu-

ous map with respect to the topology induced by this norm. To see this, observe that if

t(p) ≤ t′(p) for every p, then T (t(p))(p0) ≥ T (t′(p))(p0) for every p0. So given t(p) and δ > 0,

supt′(p):|t′(p)−t(p)|≤δ |T (t(p))− T (t′(p))| = max{|T (t(p))− T (t(p) + δ)| , |T (t(p))− T (t(p)− δ)|},

where t(p)+δ is notation for the function t̂(p) ≡ t(p)+δ for all p and t(p)−δ is defined anal-

ogously. By convexity of g, limδ→0 max{|T (t(p))− T (t(p) + δ)| , |T (t(p))− T (t(p)− δ)|} =

0, which ensures continuity of T.

Finally, we must show that we can restrict our attention to a nonempty, compact, and

convex subset of the space of continuous functions t : [p, pm] → R. Let t0(p) = 0 for all p

and let t1(p) = inf{t : g(2τ + t)− g(τ + t) ≥ V (p)}. Let

S =
{
t : [p, pm]→ R : t is continuous and t0(p) ≤ t(p) ≤ t1(p) for all p

}
Note that t1(p) ≤ t̃ for all p, so costly searchers enter if obfuscation levels are given by t1(p),

and therefore also enter if obfuscation levels are given by t(p) for any t ∈ S. Clearly, S is
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nonempty, compact, and convex. Furthermore, T maps S to itself. For T (t(p))(p0) ≥ 0 by

definition and T (t(p))(p0) ≤ t1(p0) for all t ∈ S, by our observation that T maps uniformly

higher functions to uniformly lower ones, since t(p) ≥ t0(p) for every t in S. Finally, every

function in the image of T is continuous by our assumption that g′′ is continuous. So S is

a nonempty, compact, and convex subset of a Banach space and T : S → S is continuous,

so T has a fixed point in S by the Schauder Fixed Point Theorem, which gives a minimal

obfuscation NE. �

Proof of Proposition 15. The first part of the proposition is the usual condition for

firms to be indifferent between charging any two prices in
[
p∗, p∗

]
, as in Stahl (1989), for

example.

For the second part, first note that the conditions
∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ + θ and∫∞

p∗ D(p)dp ≥ −θ hold if and only if there exists a t̄ ≥ 0 such that τ + t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp

and τ + θ + t̄ =
∫ p∗
p∗ D(p)Fp∗(p)dp. For if the former two conditions hold, taking t̄ =∫ p∗

p∗ D(p)Fp∗(p)dp − (τ + θ) yields the latter condition, recalling that
∫ p∗
p∗ D(p)Fp∗(p)dp +∫∞

p∗ D(p)dp =
∫∞
p∗ D(p)Fp∗(p)dp; and if the latter condition holds,

∫ p∗
p∗ D(p)Fp∗(p)dp ≥ τ+θ

is immediate and
∫∞
p∗ D(p)dp ≥ −θ follows by subtracting the equality in the latter condi-

tion from the inequality in it.

Now if there is no t̄ ≥ 0 such that τ + t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp and τ + θ + t̄ =∫ p∗

p∗ D(p)Fp∗(p)dp, there can be no PBE of the desired form. To see this, first note that

costly searchers will not enter if the first inequality is violated and costly searchers will

search for a second time if they observe price p∗ and face average obfuscation t̄ if the right-

hand side of the equality is strictly greater than the left-hand side, which is impossible in

PBE by Proposition 13. And if the right-hand side of the equality is strictly less than the

left-hand side, then a firm would be able to profitably deviate to setting price slightly above

p > p∗, as costly searchers would still buy at such a price with probability one and such a

firm makes zero profit from costless searchers.

If there exists a t̄ ≥ 0 such that τ+t̄ ≤
∫∞
p∗ D(p)Fp∗(p)dp and τ+θ+t̄ =

∫ p∗
p∗ D(p)Fp∗(p)dp,

consider the strategy profile where all firms set obfuscation level equal to
∫ p∗
p∗ D(p)Fp∗(p)dp−

(τ + θ) ≥ 0 and randomize their prices according to Fp∗(p), and suppose that consumers

search optimally and have the off-equilibrium path belief that θ = θ if they ever observe
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p /∈
[
p∗, p∗

]
. Under these strategies, firms sell to all consumers who visit them first and

are indifferent among all prices in
[
p∗, p∗

]
, so the only deviation that could possibly be

profitable would be that to a price greater that p∗. But a consumer that observes p̂ > p∗

expects to face search cost
∫ p∗
p∗ D(p)Fp∗(p)dp − (τ + θ) + τ + θ =

∫ p∗
p∗ D(p)Fp∗(p)dp from

searching again and to receive expected benefit
∫ p̂
p∗ D(p)Fp∗(p)dp >

∫ p∗
p∗ D(p)Fp∗(p)dp from

doing so, so a firm that deviated to such a price would not sell to consumers. So this is a

PBE.

Finally, suppose that τ ≤
∫∞
pm D(p)Fpm(p)dp. If −θ ≤

∫∞
pm D(p)dp, then a nontrivial

PBE with p∗ = pm exists by Proposition 14. So suppose that −θ >
∫∞
pm D(p)dp. Then

0 < τ + θ <
∫ pm

pm D(p)Fpm(p)dp. Note that
∫ p∗
p∗ D(p)Fp∗(p)dp equals 0 if p∗ equals 0, equals∫ pm

pm D(p)Fpm(p)dp if p∗ equals pm, and is continuous in p∗. Therefore, the Intermediate

Value Theorem implies that there exists a p∗ such that τ+θ =
∫ p∗
p∗ D(p)Fp∗(p)dp. Therefore,

−θ = τ −
∫ p∗

p∗
D(p)Fp∗(p)dp

≤
∫ ∞
pm

D(p)Fpm(p)dp−
∫ p∗

p∗
D(p)Fp∗(p)dp

≤
∫ ∞
pm

D(p)dp

≤
∫ ∞
p∗

D(p)dp

where the second inequality again uses the assumption that
∫ p∗
p∗ D(p)Fp∗(p)dp is increasing

in p∗ for p∗ < pm. The characterization in the first part of the proposition then implies

that a PBE exists with p̄ = p∗. �

Proof of Proposition 16. If p∗ < pm, then the proof of Proposition 15 implies that

the unique nontrivial PBE level of average obfuscation is
∫ p∗
p∗ D(p)Fp∗(p)dp− θ − τ , which

is decreasing in τ . If p∗ = pm, then the proof of Proposition 14 implies that nontrivial

PBE average obfuscation may take on any value in between the lower bound given by

V (pm)− θ− τ and the upper bound given by V (∞)− τ , both of which are decreasing in τ .

So the second sentence in the proposition is proved.

Now suppose that τ ′ ≥ τ , t̄′ ≥ t̄, and t̄′ is a nontrivial PBE average obfuscation level for
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a price distribution with supremum p̄′ when exogenous search costs are given by τ ′, while

t̄ is a nontrivial PBE average obfuscation level for a price distribution with supremum p̄

when exogenous search costs are given by τ . We must show that t̄′ is also a nontrivial

PBE average obfuscation level when exogenous search costs are given by τ , and that t̄ is a

nontrivial PBE average obfuscation level when exogenous search costs are given by τ ′.

From the proofs of Propositions 14 and 15, a nontrivial PBE with price upper bound

p̄, exogenous search costs τ and average obfuscation t̄ satisfies τ + θ + t̄ =
∫ p̄
p̄ D(p)Fp̄(p)dp

if p̄ < pm and τ + θ + t̄ ≥
∫ p̄
p̄ D(p)Fp̄(p)dp if p̄ = pm. By Assumption 1, this implies that

p̄′ ≥ p̄, since τ ′ ≥ τ and t̄′ ≥ t̄.

If τ + θ+ t̄′ >
∫ pm

pm D(p)Fpm(p)dp, then by the assumption that τ ′ ≥ τ and Assumption

1, τ ′ + θ + t̄′ >
∫ p̄
p̄ D(p)Fp̄(p)dp for all p̄ < pm, so we must have p̄′ = pm. This implies that

τ ′ + t̄′ ≤
∫∞
pm D(p)Fpm(p)dp, so τ + t̄′ ≤

∫∞
pm D(p)Fpm(p)dp, in which case t̄′ is a nontrivial

PBE average obfuscation level for a price distribution with supremum pm when exogenous

search costs are given by τ , by Proposition 14. Otherwise, we have
∫ p̄
p̄ D(p)Fp̄(p)dp ≤ τ +

θ+ t̄′ ≤
∫ p̄′
p̄′ D(p)Fp̄′(p)dp. Since

∫ p∗
p∗ D(p)Fp∗(p)dp is continuous in p∗, by the Intermediate

Value Theorem there exits p∗ such that τ + θ + t̄′ =
∫ p∗
p∗ D(p)Fp∗(p)dp, which combined

with the facts that
∫∞
p̄ D(p)dp ≥ −θ,

∫∞
p̄′ D(p)dp ≥ −θ, p̄ ≤ p∗ ≤ p̄′, and Proposition 15

implies that t̄′ is a nontrivial PBE average obfuscation level for a price distribution with

supremum p∗ when exogenous search costs are given by τ .

The argument for why t̄ is a nontrivial PBE average obfuscation level when exogenous

search costs are given by τ ′ is very similar. �

Proof of Proposition 17. Let u, u′, τ , and τ ′ be as in the proof of Proposition 5. Suppose

throughout that u is the value of consumer welfare for a nontrivial PBE with price upper

bound p̄ and that u′ is the value of consumer welfare for a nontrivial PBE with price upper

bound p̄′. Let t̄ (t̄′) be the average obfuscation level in a nontrivial PBE with price upper

bound p̄ (p̄′) that yields costly searcher welfare u (u′) when exogenous search costs are τ

(τ ′).

We first claim that p̄ ≥ p̄′. This is trivial if p̄ = pm, so suppose that p̄ < pm. By the

proof of Proposition 15, u =
∫∞
p̄ D(p)dp+ θ, and, by the proofs of Propositions 14 and 15,

u′ ≤
∫∞
p̄′ D(p)dp+ θ. So since u′ ≥ u it must be the case that p̄′ ≤ p̄.
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Next, we note that the set of nontrivial PBE prices is increasing in τ in the strong

set order. Restricting attention to price distributions with p̄ < pm, this follows imme-

diately from Proposition 15 and Assumption 1. To see that there is no problem caused

by PBE with p̄ = pm, recall from Proposition 14 that such a PBE exists if and only if

τ ≤ V (∞) and
∫∞
pm D(p)dp ≥ −θ. Therefore, the set of nontrivial PBE prices must be

increasing in τ in the strong set order if there cannot be nontrivial PBE when τ > V (∞)

and
∫∞
pm D(p)dp ≥ −θ. This is true because τ + θ ≤

∫ p̄
p̄ D(p)Fp̄(p)dp and p̄ < pm imply that

τ + θ <
∫ pm

pm D(p)Fpm(p)dp, by Assumption 1; so if τ > V (∞), then −θ >
∫∞
pm D(p)dp.

We consider separately the cases where p̄ < pm and where p̄ = pm. If p̄ < pm, the fact

that the set of nontrivial PBE prices is increasing in τ in the strong set order implies that

a nontrivial PBE with price upper bound equal to p̄ exists when exogenous search costs

equal τ ′. Recall from the proof of Proposition 15 that in a nontrivial PBE with price upper

bound p̄ < pm, exogenous search costs τ and average obfuscation t̄, costly searcher welfare

equals
∫∞
p̄ D(p)dp+θ, since τ + t̄ =

∫ p̄
p̄ D(p)Fp̄(p)dp−θ. This does not depend on τ or t̄, so

a nontrivial PBE with price upper bound equal to p̄ and exogenous search costs τ ′ yields

costly searcher welfare u. Similarly, if p̄ < pm then p̄′ < pm and there exists a nontrivial

PBE with price upper bound equal to p̄′ when exogenous search costs equal τ , and such a

PBE yields costly searcher welfare u′

Finally, suppose that p̄ = pm. By Proposition 14, this implies that
∫∞
pm D(p)dp ≥ −θ.

Since the set of nontrivial PBE prices is increasing in τ in the strong set order and is

nonempty when exogenous search costs equal τ ′, a nontrivial PBE with price upper bound

pm exists when exogenous search costs equal τ ′, so τ ′ ≤ V (∞). Letting t̄∗ take values

between
∫ pm

pm D(p)Fpm(p)dp and V (∞) − τ ′, we see that nontrivial PBE with price upper

bound pm exist that yield every value of costly searcher welfare between
∫∞
pm D(p)dp+θ and

0, when exogenous search costs equal τ ′. So if u ≤
∫∞
pm D(p)dp+ θ, we already have shown

that a nontrivial PBE yielding costly searcher welfare u exists when exogenous search costs

equal τ ′. If u >
∫∞
pm D(p)dp + θ, recall that u ≤ u′, the costly searcher welfare when price

upper bound equals p̄′ and exogenous search costs equal τ ′. This implies that p̄′ < pm, and

u′ =
∫∞
p̄′ D(p)dp + θ. Since

∫∞
p̄ D(p)dp is increasing in p̄ for p̄ < pm, by the Intermediate

Value Theorem there exists p̄∗ ∈ (p̄′, pm) such that
∫∞
p̄∗ D(p)dp+ θ = u. By Proposition 15,
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there exists a nontrivial PBE when exogenous search costs equal τ ′ with price upper bound

p̄∗ that yields costly searcher welfare u.

It remains only to show that if p̄ = pm, there exists a nontrivial PBE when exogenous

search costs equal τ that yields costly consumer surplus u′. If p̄′ < pm, then this follows

exactly as in the case where p̄ < pm. If p̄′ = pm, then it can easily be checked that there

exists a nontrivial PBE with exogenous search costs τ , price upper bound pm, and average

obfuscation t̄∗ ≡ t̄′ + τ ′ − τ yielding costly searcher surplus u′. �
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