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1 Introduction

Think of an investor who provides seed financing to an entrepreneurial firm. The

success of her investment will depend crucially on the effort that the entrepreneur

puts in. Yet, the incentives of the two individuals are not perfectly aligned, as the

entrepreneur bears the whole cost of such effort while sharing the pecuniary returns

with the investor. Since monitoring the entrepreneur’s conduct is prohibitively ex-

pensive, the investor will find it optimal to implement an incentive scheme that links

rewards to observables. We are interested in characterizing the implications of such

scheme for the dynamics of firm size and value, as well as the latter’s split between

the two agents.

The problem just described can be conveniently cast as a model of repeated bilat-

eral exchange with hidden action, along the lines of Spear and Srivastava (1987) and

Wang (1997). The only caveat is that in their models there is no notion of important

features of firm dynamics such as production and capital accumulation. The purpose

of this paper is to explicitly model both of them. We do so by assuming that the

entrepreneur is equipped with a production function that exhibits decreasing returns

and is hit by multiplicative shocks whose probability distribution depends in a natural

way on managerial effort.

The incentive scheme chosen by the investor belongs to the set of constrained–

efficient allocations, which in turn consist of sequences of effort provision, payouts,

and investment, that maximize the value of the investor’s claim (outside equity) for

given rewards to the entrepreneur.

The main insight generated by our analysis is a rationale for firm decline, which

follows from the negative relation between the marginal value of investment and the

value of the entrepreneur’s claim (inside equity). Since the entrepreneur’s utility is

additively separable in consumption and effort and displays constant relative risk

aversion to consumption bets, incentive provision is costlier, the greater the value

of the entrepreneur’s claim to the venture’s cash flows.1 Everything else equal, this

means that the higher the entrepreneur’s wealth, the lower the constrained–efficient

level of effort provision. By reducing the likelihood of a high productivity shock, this

results in a lower marginal value of investment.

A lending contract assigns to the entrepreneur a level of capital and a claim to

1This is a well–known property, exploited by Spear and Wang (2005) and Wang (2006) to model
the optimal termination of employment contracts and by Newman (2007) to study the relationship
between wealth and occupational choice.
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future cash flows. For consistency with the empirical evidence on the relative size of

entrant firms, assume that the initial capital is small (in a sense to be made precise

later). Then, the typical firm dynamics predicted by our model is as follows. Given

decreasing returns, early on the marginal product of capital is high. Since further

infusions of capital from the investor are ruled out by assumption, firm size gradually

increases over time, thanks to the investment of retained earnings. Optimal incentive

provision dictates that on average inside equity increases as well. These forces have

countervailing effects on the marginal value of managerial effort, positive for capital

and negative for entrepreneurial wealth. Eventually, the latter dominates. Capital

and effort start declining, and so does firm value.

When the elasticity of intertemporal substitution is greater than one and agents

discount future utility at the same rate, in the limit all cash flows accrue to the

entrepreneur. Firm size, effort, and inside equity converge to a constant. When the

entrepreneur is either relatively more impatient or her EIS coefficient is smaller than

1, the model allows for a non–degenerate stationary distribution of firm size, firm

value, and its split between the two agents.

We find that the qualitative features of firm dynamics we have just described

survive the generalization to the scenario in which productivity shocks are persistent.

This paper contributes to a small but growing literature that explores the im-

plications of moral hazard for firm dynamics. Albuquerque and Hopenhayn (2004)

and Cooley, Marimon, and Quadrini (2004) consider scenarios where the entrepreneur

has limited commitment, while Clementi and Hopenhayn (2006), Brusco and Ropero

(2007), Quadrini (2003) and DeMarzo, Fishman, He, and Wang (2008) study the case

of hidden information. All of these models, as well as other theories of firm dynamics

such as Jovanovic (1982) and Hopenhayn (1992), are able to rationalize the negative

correlation between age and the exit hazard rate that was documented for relatively

young firms. None of them, however, is consistent with the evidence, provided by

Aggarwal and Gort (1996, 2002), that for older firms the exit hazard rate increases

with age, irrespective of the industry life–cycle phase.

This caveat does not apply to our theory. For every cohort of firms whose dynamics

are described by our contract, there is a point in time after which average firm size

and value decline with age. Assuming a a constant outside value for firms’ assets, this

would result in a positive association between age and exit hazard rate.

Our paper also belongs to a large literature, started by Holmstrom (1979), that an-

alyzes constrained–efficient allocations in principal–agent models with hidden action.
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Our work is part of the more recent tradition which began with Rogerson (1985b),

that explicitly considers repeated relationships. A number of papers in this line of

work, among which Wang (1997) and Clementi, Cooley, and Wang (2006), have inter-

preted the principal–agent relationship as one between shareholders and executives.

This alternative interpretation is also valid for our model.

Finally, our framework also has close ties to equilibrium models that allow for

capital accumulation in environments where market incompleteness is caused by

moral hazard. Among these, the closest work is by Bohacek (2005), who provides

conditions under which an economy à la Atkeson and Lucas (1995) admits a sta-

tionary and ergodic distribution of consumption. Other papers in this class include

Marcet and Marimon (1992), Khan and Ravikumar (2001), and Espino (2005).

The remainder of the paper is organized as follows. The model is introduced in

Section 2. In Section 3 we characterize the constrained–efficient allocations that arise

in two special cases of our environment, namely one with no dynamics and one with

dynamics but no capital accumulation. That analysis helps building intuition for the

results illustrated in Section 4, where the general model is considered. In Section 5 we

discuss the empirical relevance of our theory. Section 6 is dedicated to comparative

statics exercises. Section 7 considers the scenario in which shocks are autocorrelated.

Finally, Section 8 concludes.

2 Model

Time is discrete and is indexed by t = 1, 2, ... There are two agents, who we will refer

to as investor and entrepreneur, respectively. The latter is endowed with a production

technology, that produces a homogeneous good with capital as the only input. Output

(yt) is given by

yt = θtf(kt),

where kt ∈ [k, k] ∈ #+ and θt ∈ Θ ⊆ #+ is a random variable distributed according to

the time–invariant distribution function G(θt|at). The variable at ∈ A ≡ [a, a] ∈ #+

denotes managerial effort. We assume that G has a density denoted by g, which is

twice continuously differentiable with respect to a, and that Θ is compact.

While the output of the production process is public knowledge, the effort exerted

by the entrepreneur is her private information.

At the outset, the investor provides the entrepreneur with capital k1. We do not

model the bargaining process by which the two agents agree on such level of capital
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and on a particular split of the surplus. We also assume that any further investment

must be financed with resources produced internally. It follows that, at all t,

ct + xt ≤ θtf(kt), (1)

where ct ≥ 0 is the entrepreneur’s consumption and xt denotes investment. Since

condition (1) requires the payoffs to the investor to be non–negative, we will refer to

it as the limited liability constraint. The law of motion for capital is the usual one:

kt+1 = (1 − δ)kt + xt,

where δ ∈ (0, 1) denotes the depreciation rate. The last two conditions imply the

following resource constraint:

ct ≤ θtf(kt) + (1 − δ)kt − kt+1.

We assume that the investor is risk–neutral, while the entrepreneur is risk–averse.

The latter’s static preferences are represented by the utility function u(ct) − a. We

posit that u(·) belongs to the CRRA class, i.e. u(c) = c1−χ

1−χ , χ > 0, χ )= 1. Agents

discount future utility streams at the common rate 1
β − 1, where β ∈ (0, 1).2

We allow for employ history–dependent pure strategies. If we let h0 denote

the empty history, then the history at time t ≥ 1 is given by the sequence ht =

h0∪{(θs, ks)}t
s=1. The investor’s task is to offer the entrepreneur an incentive scheme

(contract) σ = {at(ht−1, kt), ct(ht), kt+1(ht−1, kt)}∞t=1. This notation reflects the as-

sumption, typical in neoclassical macroeconomics, that investment is chosen at the

beginning of every period, before the realization of the shock.3 The timing is sum-

marized in Figure 1.

Given ht and kt+1, the continuation profile of a contract σ from date t + 1 on

is denoted as σ|ht, kt+1. Conditional on the entrepreneur following the actions rec-

ommended by such profile, her continuation value and the investor’s are denoted by

ω(σ|ht, kt+1) and v(σ|ht, kt+1), respectively.

A contract σ is said to be feasible if, at all times and after any history, effort

recommendations belong to the set A and the resource constraint is satisfied. More

formally,

2In Section 6 we will relax this restriction by considering the case in which the entrepreneur is
relatively more impatient.

3In Section 3 we comment briefly on how the constrained–efficient allocation would change, if we
assumed that investment was chosen after the realization of the shock.
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t−1, kt)

is planned

#

!

Revenue θtf(kt)
realizes

"
!

Entrepreneur
consumes ct(h

t)

#

!

Investor receives
θtf(kt) − xt(h

t−1, kt) − ct(h
t)

"
!

New capital is available:
kt+1 = kt(1 − δ) + xt(h

t−1, kt)

#

!

Figure 1: Timing in period t.

Definition 1 A contract σ is feasible if, for all t ≥ 1,

at(h
t−1, kt) ∈ A,∀ ht−1, kt, (2)

and

0 ≤ ct(h
t) ≤ θtf(kt) + (1 − δ)kt − kt+1(h

t−1, kt),∀ ht. (3)

The temporary incentive compatibility constraint rules out one–shot deviations at

all dates and after all histories and can be formally stated as follows:

Definition 2 A contract σ is temporary incentive compatible if, ∀t ≥ 1 and ∀ ht−1, kt,

at(h
t−1, kt) ∈ arg max

a

∫

θ

{

u(ct(h
t)) − a + βω(σ|ht, kt+1)

}

g(θt|a)dθt. (4)

Given our assumptions, the unimprovability principle guarantees that condition (4)

also rules out any arbitrary sequence of deviations from the investor’s effort recom-

mendation plan.4

The fact that the set A is a connected subset of #+ suggests that rewriting (4) as a

first–order condition may be handy. In the literature, this is known as the first–order

approach, which is not universally valid. To ensure its validity, we follow Rogerson

(1985a) and Spear and Srivastava (1987) in assuming that the Monotone Likelihood

Ratio Property and the Convexity of the Conditional Distribution Condition hold.

4See Green (1987).
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Let Ω be the set of pairs (k,ω ) such that there exists a feasible and incentive

compatible contract that delivers ω, given k. That is, for∆ ∈ #2 non–empty and

compact, let

Ω ≡
{

(k,ω ) ∈ ∆ | ∃ σ s.t. (2), (3), (4), k1 = k, and ω(σ|h0) = ω
}

.

For every (k,ω ) ∈ Ω, define Φ(k,ω ) as the set of the investor’s expected dis-

counted utilities that can be generated by feasible and incentive compatible contracts

delivering ω to the entrepreneur for given k. That is,

Φ(k,ω ) =
{

v(σ|h0) | ∃ σ s.t. (2), (3), (4), k1 = k, and ω(σ|h0) = ω
}

.

Proposition 1 Φ(k,w) is compact ∀(k,ω ) ∈ Ω.5

For given (k,ω ), the investor’s problem is to choose a feasible and incentive com-

patible contract σ that attains the maximum element in Φ(k,ω ). Denote such element

as v∗(k,ω ).

Proposition 2 shows that v∗(k,ω ) is a fixed point of the operator T , which maps

the space of bounded and continuous functions v : Ω → # into itself, with the sup

norm, and is given by

T (v)(k,ω ) ≡ max
a∗,k′,c(θ),ω′(θ)

∫

Θ

{

θf(k) − c(θ) − k′ + (1 − δ)k + βv(k′,ω′(θ))
}

g(θ|a∗)dθ

s.t.

∫

Θ

{

u(c(θ)) − a + βω′(θ)
}

g(θ|a∗)dθ = ω, (5)

a∗ ∈ arg max
a∈A

∫

Θ

{

u(c(θ)) − a + βω′(θ)
}

g(θ|a)dθ, (6)

0 ≤ c(θ) ≤ θf(k)− k′ + k(1 − δ) ∀θ ∈ Θ, (7)

(k′,ω′(θ)) ∈ Ω ∀θ ∈ Θ. (8)

Proposition 2 v∗(k,ω ) = T (v∗)(k,ω ) for all (k,ω ) ∈ Ω.

Since T satisfies Blackwell’s sufficient conditions for a contraction, the contraction

mapping theorem ensures that the fixed point is unique. Solving for it also yields

policy functions for recommended effort a(k,ω ), entrepreneur’s cash flows c(k,ω,θ ),

and continuation utility ω′(k,ω,θ ), which can be used to recover the constrained–

efficient contract in a straightforward manner.

5All the results and the proofs not included in the main text can be found in Appendix A.
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By adapting results from Abreu, Pierce, and Stacchetti (1990) to our environ-

ment, Proposition 3 shows that Ω is the fixed point of the set operator B, defined as

follows.

Definition 3 For any arbitrary Σ ∈ #2,

B(Σ) = {(k,w) | ∃
{

a, k′, c(θ),ω′(θ)
}

s.t. (5), (6),(7), and (k′,ω′(θ)) ∈ Σ,∀θ}.

Proposition 3 (a) Ω = B(Ω). (b) Take any closed and bounded set X0 such that

X0 ⊆ Ω0. Let Xn+1 = B(Xn), for n = 0, 1, 2, ... Then, lim
n→∞

Xn = Ω.

Proposition 3 also shows that the sequence constructed by iterating on B starting

with X0 ⊆ Ω0 converges to the set Ω. Since an analytical characterization of the

constrained Pareto–optimal contract is not possible, this result will be useful in the

numerical approximation of the allocation that results from it.

In the next section, we make assumptions about functional forms and parameters

that we will maintain for the remainder of the paper. The algorithms that were

designed to approximate the set Ω and the function v(k,ω ) are described in Appendix

B.

2.1 Numerical Implementation

We assume that the production function is f(k) = kα, α ∈ (0, 1). Furthermore, we

posit that A = [0, ā] and Θ= {θl, θh}, with θh > θl and G(θl|a) = e−a.6 While this

choice of conditional distribution is mostly dictated by tractability, it has appealing

features. The probability of a good outcome is zero if no effort is exerted, and goes

to 1 as effort grows unboundedly large. Furthermore, the marginal effect of effort on

the probability of success is decreasing in the effort itself. From now on, all variables

that are contingent on the shock realization will be denoted with the subscripts l or

h.

Under the assumptions listed above, the Bellman equation is

v(k,ω ) = max
a∗,k′,{ci,ωi}i=h,l

(1 − e−a∗
)[θhkα − ch + βv(k′,ωh)] + e−a∗

[θlk
α − cl + βv(k′,ωl)]

+ k(1 − δ) − k′ (P1)

6The upper bound ā will be chosen so as to ensure it never binds.
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s.t. (1 − e−a∗
) [u(ch) + βωh] + e−a∗

[u(cl) + βωl] − a∗ = ω, (9)

a∗ ∈ arg max
a∈A

(1 − e−a) [u(ch) + βωh] + e−a [u(cl) + βωl] − a, (10)

0 ≤ ci ≤ θik
α − k′ + (1 − δ)k ∀ i = h, l, (11)

(

k′,ωi
)

∈ Ω ∀ i = h, l. (12)

For all (k,ω ) ∈ Ω, v(k,ω ) yields the expected discounted value of the cash flows

that will accrue to the investor when the current capital stock is k and promised utility

is ω. For this reason, it can be thought of as outside equity. We denote as C(k,ω )

the expected discounted cost to the investor of delivering ω to the entrepreneur, when

the current capital stock is k. The function C(k,ω ) solves the following functional

equation:

C(k,ω ) = (1 − e−a∗
)[c∗h + βC(k′∗,ω∗h)] + e−a∗

[c∗l + βC(k′∗,ω∗l )],

where the asterisks designate the optimal choices generated by problem (P1). Since

C(k,ω ) is also the expected discounted value of the cash flows that will accrue to the

entrepreneur, we will often refer to it as the value of inside equity.

Unless stated otherwise, the parameter values used to compute the examples in the

remainder of the paper are those reported in Table 1. Even though we set β,χ,α, and

δ to values that are standard in the macroeconomics literature, we wish to emphasize

that by no means should this be considered a calibration exercise.

The analysis that follows will show that the choice of χ is particularly relevant. In

our benchmark, we set χ = 0.5 because of the rapidly amassing experimental evidence

in favor this value.7 Section 4.2 discusses how the constrained–efficient allocation

changes when χ > 1.

k k̄ β χ α δ θh θl ω
0 3.5 0.95 0.5 0.3 0.1 1.5 0.4 10.5

Table 1: Parameter Values.

3 The Optimal Contract Without Capital Accumulation

The purpose of this section is to illustrate the properties of the optimal incentive

schemes that obtain in two scenarios that are special cases of the environment de-

7See for example Choi, Fisman, Gale, and Kariv (2007) and references therein cited.

8



scribed above. The intuition gained here will be helpful in Section 4, where we will

tackle the general case.

We start by considering the scenario where the relationship between investor and

entrepreneur lasts only one period. In Section 3.2 we will study the case of infinitely

repeated interaction without capital accumulation.

3.1 The Static Case

The inverse of the utility function yields the cost to the investor of delivering a certain

level of utility. Denote it as c(u). Obviously, c(u) is strictly increasing and strictly

convex. For χ )= 1, we have that c(u) = [(1 − χ)u]1/(1−χ). For χ = 1, c(u) = eu.8

We find it convenient to reformulate the problem to let the investor choose utilities

rather than consumption allocations. With some abuse of notation, let ui ≡ u(ci) de-

fine the utility the entrepreneur derives from consuming ci, for i = h, l. For notational

simplicity, let also ūi = u(θikα − δk). Finally, denote as ω̄(k) and ω(k) the supremum

and infimum elements of the set of utilities that can be awarded to the entrepreneur

by a feasible and incentive compatible contract, when the installed capital is k. The

two points are characterized by Lemma 3.

When capital in place is k, the value to the investor of delivering to the en-

trepreneur a utility ω, ω(k) ≤ ω ≤ ω̄(k), is

max
uh,ul

(1 − e−a∗
) [θhkα − c(uh)] + e−a∗

[θlk
α − c(ul)] − δk,

s.t. (1 − e−a∗
)uh + e−a∗

ul − a∗ = ω, (13)

a∗ = arg max
a∈A

(1 − e−a)uh + e−aul − a,

u ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

where u = 0 if χ < 1 and u = −∞ otherwise. The constrained–efficient allocations

are characterized formally in Proposition 5. Here we describe their main features with

the help of Figure 2.

From the incentive compatibility constraint it follows immediately that the recom-

mended effort is a∗ = log(uh−ul). A higher effort is implementable only by increasing

s ≡ uh − ul, the gap between contingent rewards.

Combining (13) with the expression for the effort recommendation, the optimiza-

8Notice that for χ < 1, c : "+ → "+. For χ = 1, c : " → "+. For χ > 1 c : "− → "+.
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Figure 2: Static Model. Policies for χ = 1/2 (left) and χ = 2 (right).

tion problem reduces to

max
s≥1

(

1 −
1

s

)

[θhkα − c(uh)] +
1

s
[θlk

α − c(ul)] − δk,

s.t. uh = 1 + ω + log(s),

ul = 1 + ω + log(s) − s,

u ≤ ui ≤ u(θik
α − δk) ∀ i = h, l.

Necessary and sufficient condition for an interior solution is

1

s2
[θh − θl]k

α =
1

s2
[c(uh) − c(ul)] +

s − 1

s2

[

c′(uh) − c′(ul)
]

. (14)

Notice that the term 1/s2 is the marginal increase in the probability of success induced

by an increase in s ≡ uh − ul. The left–hand side of (14) is the expected marginal

revenue gain resulting from the increase in s. The right–hand side is the marginal

increase in the cost of compensating the entrepreneur. The first term reflects the

increased probability of awarding uh rather than ul. The second term reflects the

marginal impact on the expected cost arising from an increase in the risk imposed on

the entrepreneur. By strict concavity of the utility function, this term is positive as

well.

As long as the solution is interior (i.e. u < ul < ū), Figure 2 shows that the

recommended level of effort decreases with ω. As promised utility increases, incentive

provision becomes costlier. In turn, this implies that it is constrained–efficient to

require the entrepreneur to exert a lower effort. Proposition 5 establishes that χ ≥ 1/2

is a sufficient condition (although not necessary) for this property to hold.
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Figure 2 also shows that ul is constant for relatively high ω, signaling that the

limited liability constraint binds in the low state. Proposition 5 shows that when

ūh − ūl > 1, as it is the case in our example, effort grows with ω over this range.

When ūh − ūl ≤ 1, effort is identically zero in the same region.

Finally, notice that, since utility is bounded below for χ < 1, efficient effort

provision must be increasing with ω for low expected utility. In other words, since

the constraint ul ≥ 0 binds in this region, larger values of ω can only be implemented

by increasing uh and therefore the effort recommendation.

3.2 The Dynamic Case

We now consider the case in which the time horizon is infinite, but there is no capital

accumulation. This scenario is very close to those analyzed by Spear and Srivastava

(1987) and Wang (1997). It differs from the former in that we impose limited liability,

i.e. the entrepreneur’s cash–flow must be non–negative. It differs from the latter, since

Wang assumes that the effort choice is binary and u(c) belongs to the CARA class.

With slight abuse of notation, let v(ω) denote the value accruing to the investor

when delivering utility ω to the entrepreneur and let s ≡ uh + βωh − (ul + βωl).

We begin by considering the scenario for χ < 1, without the limited liability

constraint. Without an upper bound to entrepreneur’s consumption, all levels of

promised utility ω ≥ 0 could be implemented by a feasible and incentive compatible

contract. It would suffice to require zero effort and award consumption c[ω/(1 − β)]

at all future dates. Therefore, we impose an arbitrary upper bound ω̄ > 0.

From the incentive compatibility constraint, it follows that recommended effort is

a∗ = log(s), for s ≥ 1. Then, for all ω such that 0 ≤ ω ≤ ω̄, the value of outside

equity v(ω) is the fixed point of the following operator:

v(ω) = max
s≥1,ωh,ωl

(

1 −
1

s

)

[θhkα − c(uh) + βv(ωh)] +

(

1

s

)

[θlk
α − c(ul) + βv(ωl)] − δk,

(P2)

s.t. uh = ω + 1 + log(s) − βωh, (15)

ul = ω + 1 + log(s) − s − βωl, (16)

ui ≥ 0 ∀ i = h, l,

0 ≤ ωi ≤ ω̄ ∀ i = h, l.

Proposition 4 Assume there is no limited liability constraint and χ < 1. Then, the

value function v(ω) is strictly concave. Furthermore, for all ω such that the optimal

11



choices ωl and ωh are interior:

(a) ωl < ω <ω h;

(b) payments to the entrepreneur follow a sub–martingale.

Along with (15)–(16), the following conditions are necessary and sufficient for an

interior solution to Problem (P2):

c′(ui) = −v′(ωi), i = h, l (17)

and

[θh − θl]k
α + β[v(ωh) − v(ωl)] = [c(uh) − c(ul)] + (s − 1)

[

c′(uh) − c′(ul)
]

. (18)

Condition (17) requires that the investor distributes contingent utility awards

efficiently over time. Equation (18) is the analogue of condition (14). It indicates

that the forces that shape the optimal spread of utilities across states are essentially

the same as in the static case. The only difference is that the marginal benefit

of increasing effort also depends on the difference between the investor’s contingent

continuation values.

When the solution is interior, the envelope condition is

v′(ω) = −

(

1 −
1

si

)

c′(uh) −

(

1

si

)

c′(ul). (19)

The latter, along with (17), implies that

v′(ω) =

(

1 −
1

s

)

v′(ωh) +

(

1

s

)

v′(ωl). (20)

In turn, strict concavity of the value function implies that ωl < ω <ω h.

Combining (19) and (17) yields a further condition, which is common to many

repeated hidden action models and was first illustrated by Rogerson (1985b). Letting

si, uih, and uil denote next period’s choices contingent on the current state of nature

being i, we have that

c′(ui) =

(

1 −
1

si

)

c′(uih) +

(

1

si

)

c′(uil), i = h, l. (21)

By proposition 3 of Rogerson (1985b), claim (b) in Proposition 4 follows immediately

from (21).

Effort is not monotone in ω. Here is why. It is obvious that ω = 0 is an absorbing

state. For that level of promised utility, a∗ = 0 and ul = uh = 0 at all times. For low
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but strictly positive values of ω, the probability of ending up in such state is relatively

high. In order to lower such probability, an increase in recommended effort should be

implemented by lowering current utility at the benefit of the future. Unfortunately

such strategy is compromised by the lower bound on utility. For ul = 0, the promise–

keeping constraint reads ω = uh +βωh−1− log[uh +β(ωh−ωl)]. Lowering ωl towards

its lower bound increases the probability of success and allows for higher utility in the

high state. However, these gains are balanced by the fact that a bad shock will bring

promised utility closer to 0. As ω grows, the ability to provide incentives improves.

For ω large enough, the effort choice becomes unconstrained. When this is the case,

all of our numerical examples indicate that effort decreases with promised utility.

We now turn to the effects of introducing the limited liability constraint. Lemma

1 establishes that limited liability implies an upper bound for promised utility and

that such upper bound is an absorbing state of the dynamical system.

Lemma 1 For ūh − ūl > 1, the maximal element of the set Ω is ω̄ = 1
1−β [ūh − 1 −

log(ūh−ūl)]. The constrained–efficient contract is such that ui(ω̄) = ūi and ωi(ω̄) = ω̄

for i = h, l. For ūh − ūl ≤ 1, ω̄ = ūl
1−β , with a∗(ω̄) = 0, ul(ω̄) = ūl and ωl(ω̄) = ω̄. In

either case, v(ω̄) = 0.

Proof. The maximal element ω̄ is the fixed point of the APS operator B(ω):

B(ω) ≡ max
a∈A,{ui,ωi}i=h,l

(

1 − e−a
)

[uh + βωh] + e−a[ul + βωl] − a

s.t. 0 ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

ω ≤ ωi ≤ ω ∀ i = h, l.

In turn, this means that as long as effort is strictly positive, ω̄ satisfies

ω̄ = max
s≥1,uh,ωh

uh + βωh − 1 − log(s),

s.t. 0 ≤ ui ≤ u(θik
α − δk), ∀ i = h, l,

ω ≤ ωi ≤ ω̄ ∀ i = h, l.

The solution of the optimization problem requires that current and continuation util-

ities are set equal to their upper bounds. That is, ωi(ω̄) = ω̄ and ui(ω̄) = ūi for

i = h, l. Furthermore, ω̄ = 1
1−β [ūh − 1 − log(ūh − ūl)] and v(ω̄) = 0.

Unfortunately, standard sufficient conditions for concavity of the value function

do not hold in this scenario, as the feasible set is not convex. However, in all our

13
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Figure 3: Value and Policy Functions for χ = 1/2 and ūh − ūl > 1.

numerical examples, the value function turned out to be strictly concave. Figure 3

refers to one such example, for χ = 1/2 and ūh − ūl > 1.

Consistent with the above discussion, effort is increasing for low ω. This is why

the value function is increasing in this range, implying that the contract is not

renegotiation–proof. Once ω is such that current utility is greater than its lower

bound, recommended effort and the spread between current utility awards decline

with ω. Finally, for relatively high levels of the state variable, the limited liability

constraint binds in the bad state of nature. Given the upper bound on continuation

utility ω, implementing higher ω necessarily requires increasing the spread between

current utilities.

The dynamical system has two absorbing points, for ω = 0 and ω = ω̄. However,

all of our simulations indicate that the latter is the only attractor. For all strictly

positive initial conditions, the sequence {ωt} converges to ω̄ almost surely. On average,
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the entrepreneur’s consumption increases over time, converging to its rest point from

below. Effort increases on average when the promised utility is relatively low and

decreases when it is high.

When the contract is renegotiation–proof, consumption and leisure are comple-

mentary ways of rewarding the entrepreneur. High effort is elicited at the cost of

low insurance. In such condition, delivering utility via consumption is particularly

expensive for the investor. High average levels of compensation are more efficiently

delivered when recommended effort is low and the entrepreneur bears relatively less

risk.

This simple mechanism also characterizes the scenario with χ > 1. Numerical

simulations show that effort increases when consumption drops, and vice–versa. The

limiting behavior, however, is different.

For χ > 1, utility is unbounded below. In turn, this means that all values

ω ≤ ω̄ < 0 are implementable. When the RRA coefficient is greater than 1, con-

dition (21) implies that payments to the entrepreneur follow a super–martingale, and

therefore decrease on average. These considerations suggest that the contract should

be front–loaded. High payments and low effort early on, followed by a declining pat-

tern for consumption and a rise in effort. Our inability to characterize analytically the

comparative statics of effort also prevents us from formally establishing this result.

Not even a numerical verification of this conjecture is not possible, because in order

to compute the constrained–efficient allocation, it is necessary to impose an arbitrary

lower bound on promised utility ω. Under such condition, the limiting distributions

for all relevant variables are non–degenerate.

By lowering the elasticity of substitution, a higher level of χ diminishes the en-

trepreneur’s tolerance for postponing consumption. This simple mechanism is likely at

the origin of the differences between the scenarios with χ < 1 and χ > 1, respectively.

4 The Full–fledged Model with Capital Accumulation

We now turn to the general case with capital accumulation. Once again, we focus on

the scenario where χ < 1. The case of χ > 1 will be considered in Section 4.2.

The left panel of Figure 4 depicts Ω, the set of promised utilities that can be

delivered by a feasible and incentive–compatible contract. The lower–contour of ω,

denoted as ω, was chosen arbitrarily, making sure that the contract is renegotiation–

proof. The upper contour ω̄(k) is the fixed point of the APS operator B, defined
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as

B(ω)(k) ≡ max
a∈A,k′,{ui,ωi}i=h,l

(

1 − e−a
)

[uh + βωh] + e−a[ul + βωl] − a (P3)

s.t. 0 ≤ ui ≤ u[θik
α + (1 − δ)k − k′], ∀ i = h, l,

ω ≤ ωi ≤ ω(k′) ∀ i = h, l.
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Figure 4: Set Ω and Value Function.

As expected, ω̄(k) is increasing in k. The solution to (P3) implies that, for every

pair (k,ω ) such that ω = ω̄(k), the optimal contract dictates ui(k,ω ) = u[θikα + (1−

δ)k − k′], ωi(k,ω ) = ω̄(k′) for i = h, l, and v(k,ω ) = 0.

The right panel shows that the value function is strictly increasing in the level of

capital and strictly decreasing in the entrepreneur’s promised utility ω. In all of our

numerical examples, v(k,ω ) is also globally strictly concave. However, since standard

sufficient conditions for concavity are not satisfied, we cannot assert this as a general

property.

Figure 5 depicts the policy functions for current and promised utility. In the left

panel, we have plotted ui(k,ω ), i = h, l. In the right panel, we have pictured the

contingent variation in promised utility ωi(k,ω ) − ω, i = h, l.

For given capital stock, the entrepreneur’s contingent compensation schedules dis-

play the same qualitative features as in the case with no accumulation. The spread

between continuation utilities appears to be decreasing in ω, while the spread between

current utilities is decreasing in ω for low values and increasing for high values. Once

again, this is due to the fact that the limited liability constraint binds in the bad state

of nature.
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The necessary condition for optimality of the effort choice is the analogue of equa-

tions (18). Refer to the left panel of Figure 6. Consistent with the intuition developed

in Section 3, recommended effort is increasing in the capital stock and decreasing in

the level of promised utility ω.
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Figure 6: Policy Functions for Effort and Net Investment.

The novelty with respect to the simpler models analyzed above is capital accu-

mulation. The policy function for net investment is rendered in the right panel of

Figure 6, where we plotted max[0, k′(k,ω ) − k]. The most interesting feature is that,

for given capital, net investment is declining in ω. The optimality conditions tell us

why this is the case.

Consider first the scenario in which the limited liability constraint is slack. When
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the value function is differentiable, the first–order condition for the capital choice is
(

1 −
1

s

)

∂v(k′,ωh)

∂k′
+

1

s

∂v(k′,ωl)

∂k′
=

1

β
. (22)

From the envelope theorem, it follows that

∂v(k,ω )

∂k
=

[(

1 −
1

s

)

θh +
1

s
θl

]

αkα−1 + (1 − δ).

Differentiating the latter with respect to ω yields

∂2v(k,ω )

∂k∂ω
=

1

s2
(θh − θl)αkα−1 ∂s

∂ω
. (23)

Since ∂s/∂ω< 0, (23) says that the marginal effect on future net cash–flows deriving

from an increase in capital is decreasing in ω. The higher ω, the lower the optimal

utility spread s and the probability of success. In turn, this leads to a lower marginal

value of investment.

Now fix k and consider the effect of increasing ω on the optimal choice of k′. As

long as the value function is concave, such effect will have the same sign as that of

the derivative of (22) with respect to ω. The first term, 1
s2

[

∂v(k′,ωh)
∂k′ − ∂v(k′,ωl)

∂k′

]

∂s
∂ω ,

is positive. A higher value of ω today leads to a lower utility spread s, which in turn

increases the probability of a bad outcome. Since ωh > ωl, this means that the effect

on the marginal gain is positive. On the other hand, as long as ωh and ωl are strictly

increasing in ω, the second term
(

1 − 1
s

) ∂2v(k′,ωh)
∂k′∂ωh

∂ωh
∂ω

+ 1
s

∂2v(k′,ωl)
∂k′∂ωl

∂ωl
∂ω

is negative. In

our simulations, the latter effect dominates. Investment decreases with ω.

When the limited liability constraint binds in the bad state of nature, the opti-

mality condition for capital reads as follows:
(

1 −
1

s

)[

β
∂v(k′,ωh)

∂k′
− 1

]

+
1

s

[

β
∂v(k′,ωl)

∂k′
+

(

c′(ul) +
∂v(k′,ωl)

∂ωl

)

u′(cl)

]

= 0.

with cl = θlkα +(1−δ)k−k′ and ul = u(cl). The term c′(ul)+
∂v(k′,ωl)

∂ωl
is the marginal

effect of increasing ωl. Since the limited liability constraint binds, it must be negative.

An increase in k′ distorts compensation in the bad state of nature, leading to a drop in

ul to the advantage of ωl. In other words, an increase in k′ lowers the investor’s payoff

by reducing the insurance the contract provides to the entrepreneur. Unfortunately

the comparative statics of k′ is now considerably more involved. The role of the

limited liability constraint in shaping firm dynamics will be re–examined in Section

4.1.

Figure 7 illustrates one simulation of the system, starting from arbitrary initial

conditions. The state space is partitioned in four subsets. The policy for capital is
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Figure 7: Sample Path.

such that k′(k,ω ) > k in regions A and B, and k′(k,ω ) < k otherwise. The dynamics of

promised utility is such that in regions B and C, ωh(k,ω ) > ω >ω l(k,ω ). Irrespective

of the realization of the shock, promised utility increases in region A and decreases in

region D, respectively. In light of the above discussion, it is not surprising that the

locus separating regions B and C, along which net investment is identically zero, is

downward sloping for most values of k.

The scatter plot illustrates the dynamics of the state variables. The paths followed

by the other relevant variables are shown in Figure 8. When k and ω are relatively

low, the marginal product of capital is high and providing incentives is relatively

inexpensive. Therefore the returns to investment are high. Capital grows in both

states of nature. During the transition towards the locus separating the partitions B

an C, all other variables also increase on average. However, increases in both ω and k

lead to a progressive reduction in the marginal gain from capital accumulation. Once

reached the locus, incentive provision becomes so expensive to discourage investment.

From that moment onwards, positive shocks lead to contemporaneous increases in

current and future payouts to the entrepreneur, and to a decrease in the continuation

value of the investor’s claim. The next period, the capital and effort choice will be

lower. The opposite will be true, conditional on negative shocks.9

9Changing the timing in such a way that capital is chosen after the realization of the shock
would definitely enhance efficiency, but it would not have a sizeable impact on dynamics. The main
difference would be that capital reacts to shock realizations with one period delay, rather than two
periods, as is the case under our assumptions.
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On average, ω increases over time. This calls for lower effort, lower capital, and

lower outside equity. Eventually the system converges to a steady state where outside

equity is zero and the entrepreneur’s promised utility lies on the upper contour of

the set Ω. The constrained–efficient arrangement prescribes that in the limit the

entrepreneur controls all cash–flow rights.

Notice further that, even at the steady state, the contract does not yield full

insurance and requires strictly positve effort. This result does not hold with generality.

When the difference between θh and θl is small enough, the entrepreneur will end up

receiving full insurance and exerting no effort.

Staring at Figure 9 confirms what we have learned so far. We have initialized

the system by assigning to the state variables the same initial conditions used to

construct Figures 7 and 8. Then we have conducted a large number of 80–period

long simulations and plotted their simple averages. Early on all variables tend to

increase. Eventually, however, effort, capital, and the value of the investor’s claim

start declining.

We have assumed throughout that no other agent is able to operate the technology.

Or, alternatively, that the investor is fully committed to the contract. It would be

interesting to understand under what conditions the investor would be better off

by rescinding the contract, honor his promises by means of a constant sequence of
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consumption, and hire someone else to manage the project. Spear and Wang (2005)

and Wang (2006) address this issue in simpler environments, without production or

capital accumulation.

4.1 The Role of the Limited Liability Constraint

The purpose of this section is to clarify how the constrained–efficient allocation is

affected by the limited liability constraint. We’ll accomplish this task by discussing

the allocation that obtains when the constraint is not imposed and χ < 1.

Without upper bounds to entrepreneur’s consumption, all non–negative levels of

utility could be delivered by a feasible and incentive compatible contract. For the

purpose of computations, we simply impose an exogenous upper bound.10

A first and somewhat obvious finding is that, given ω and no matter the initial

capital k1, it is optimal for the investor to invest (or disinvest) instantaneously until

the firm lies on the locus separating the partitions B and C in the state space (see

Figure 7).

Our numerical experiments also show that, as it was the case in our benchmark

10The simulation of which in Figure 10 was obtained by imposing ωi(k,ω ) ≤ 50 for i = h, l and
for all (k,ω ). However, the qualitative features illustrated below are the same, no matter the upper
bound.
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scenario, positive shocks are followed by an increase in promised utility in the same

period and by lower capital and lower effort in the following period. However, the

limiting behavior is different. The dynamical system admits stationary distributions

for all relevant variables, illustrated in Figure 10.11

As long as ventures start out with a relatively low level of inside equity (i.e. low

ω), firm value, outside equity, size, and effort will decrease over time. Inside equity

will increase. The fact that firm value and size are maximal at the beginning of

the life–cycle is at odds with the empirical evidence. Requiring that investment is

financed by retained earnings, the limited liability constraint avoids this unappealing

feature. The reader that feels uncomfortable with such assumption should consider

that convex capital adjustment costs of the type commonly assumed in the macroe-

conomic literature would lead to a dynamics which is qualitatively the same as in our

benchmark case. In particular, for a low enough initial capital stock, net investment

would be positive early on and would decrease (on average) later on.

11The figure was obtained initializing the system with arbitrary levels of the state variables and
letting the system run for 50,000 period. We subtracted the first 500 and reported the frequency
distributions.
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4.2 The case of χ > 1

The basic theme of this Section also applies to this scenario: positive shocks are asso-

ciated to an increase in promised utility in the same period and by lower capital and

lower effort in the following period. However, differently from the case of χ < 1, the

dynamical system admits stationary limiting distributions for all relevant variables.

Figure 11 illustrates such distributions when χ = 2 and the lower bound on promised

utility is ω = −100.
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Figure 11: Stationary Distribution for χ = 2.

When the system is initialized with relatively low levels for capital and promised

utilities, average dynamics is qualitatively similar to that implied by our benchmark.

In particular, capital, outside equity, and firm value increase early on, and then de-

crease. On average, inside equity and payments to the entrepreneur are monotonically

increasing.

In light of the fact that for χ > 1, condition (21) implies that consumption is a

super–martingale, the result just illustrated may sound surprising. Notice however

that (21) holds only when the solution is interior. In fact, inspection reveals that

when the limited liability constraint binds, expected consumption growth following a

bad shock is positive.
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5 Empirical Relevance

Much of the empirical literature on firm dynamics has focused on growth and sur-

vival of relatively young firms.12 Among its most robust findings are that both exit

hazard rates and survivors’ growth rates decline with age, both unconditionally and

conditional on size. Models based on learning or financing constraints have proven

successful in rationalizing both phenomena.13

As put by Caves (1998), however, “organizational geriatrics has received little

attention.” That is, little attention has been devoted to the dynamics of relatively

older firms. Notable exceptions are the studies conducted by Aggarwal and Gort

(1996, 2002) (AG hereafter) and Loderer, Neusser, and Waelchli (2009). Consistent

with most of the literature, they find that hazard rates decrease with age early in life.

However, they also find that firms eventually reach a senility point, after which exit

hazard rates increase with age. In this Section we argue that, differently from other

theories of firm dynamics, our own is able to rationalize this evidence.

Exit hazard rates are likely to be the result of both firm–specific and industry–

specific attributes. In order to discriminate among the two, AG document firm sur-

vival in five different phases of the industry life–cycle.14 Aggarwal and Gort (1996)

shows that the senility point exists no matter the phase in which firms are born.

Aggarwal and Gort (2002) argues that it exists no matter the phase in which firms

live. This evidence leads us to conclude that for every cohort there exists a time after

which, conditional on industry–wide factors, the value of the average survivor declines

with age.

None of the models of firm dynamics we referred to above are consistent with this

behavior. All of them predict that survivors’ size and value converge from below to a

stationary distribution. Exit hazard rates are monotonically decreasing and converge

to a constant.

AG posit that the observed firm dynamics depends in part on the evolution of

firms’ “initial endowments,” among which Aggarwal and Gort (1996) include “ob-

served variables, such as an initial organization with a record of successful operation

in a related industry,” and “unobserved variables such as managerial talent.” In every

12See Caves (1998) for a survey.
13See Jovanovic (1982) in the case of learning and Albuquerque and Hopenhayn (2004),

Clementi and Hopenhayn (2006), Cooley and Quadrini (2001) and Quadrini (2003) in the case of
financing constraints.

14The five phases are supposed to track the industry in its path from infancy to maturity. AG
identify them operationally by means of Bahk and Gort (1993)’s criterion, based on the rate of net
entry.
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cohort the average endowment level changes over time because of attrition of low en-

dowment firms and because of survivors’ net investment. As firms age, obsolescence

rises with respect to new investment. Eventually, net investment will turn negative

and lead firms to decline. According to AG, this is the mechanism responsible for the

fact that, for relatively old firms, hazard rates increase with age.

AG’s argument has the flavor of the simple technological theory of industry dy-

namics presented in Hopenhayn (1992). In that paper, a firm’s endowment is a

stationary and serially correlated random variable determining productivity. The av-

erage entrant has a lower endowment than the average incumbent, and is therefore

closer to the exit threshold. This assumption is responsible for the selection effect

that drives the negative correlation between age and hazard rate. Because of the

stationarity of productivity, every cohort’s size distribution converges to an ergodic

distribution (also stationary, when re–scaled by its mass), characterized by a constant

exit rate. In turn, this means that the hazard exit rate also converges to a constant

from above. Differently from what advocated by AG, on average obsolescence of the

endowment is always smaller than new investment.

In our model, AG’s endowment is managerial effort, which in turn is responsible

for the productivity of the capital invested. The analysis conducted in Section 4

suggests that almost surely there exists a point in time after which the endowment

is expected to decline. Think of a cohort of firms whose dynamics are generated

by our contract. Optimal incentive provision prescribes that, on average, promised

utility increases over time. In turn, this calls for lower effort and lower capital, which

imply lower value. While we do not explicitly model exit, it is clear that assuming a

constant outside value for the assets would yield a positive relation between age and

exit hazard rate.

We conclude this section by speculating on our framework’s predictions for the

cross–sectional relationship between personal wealth and entrepreneurship. Newman

(2007) shows that a static version of our model has a patently counterfactual impli-

cation. When individuals in a population are given the choice between working for a

wage (at zero risk) and becoming entrepreneurs, relatively rich people turn out to be

workers, and poor people become entrepreneurs. As long as the value assigned to the

agent by the contract is monotone in the agent’s wealth, it is easy to see why this is

the case. Everything else equal, the poorer the entrepreneur the cheaper is incentive

provision, and the larger is the payoff to investors. Our analysis shows that in general

Newman (2007)’s conclusion is not warranted in a dynamic setting. While it is still
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true that poorer people are more likely to try entrepreneurship, it is also true that

those among them that succeed become progressively wealthier.

6 Comparative Statics

In this section, we document how the optimal contract and the implied dynamics

change when we select alternative values for either the entrepreneur’s discount factor

or the support of the conditional distribution Θ.

6.1 An Impatient Entrepreneur

Throughout Sections 3 and 4 it was assumed that the two agents discount future

utility flows at the same rate. Here we consider the case in which the entrepreneur

discounts future utility at the rate 1
ρ − 1, with ρ <β .

Figure 12 compares the policy functions that obtain for ρ = 0.495 with those

relative to the benchmark case. Given the entrepreneur’s preference for early con-

sumption, the optimal contract calls for a change in the time profile of her cash flows

in favor of the current period. The right panel on the bottom row shows that, every-

thing else equal, the entrepreneur receives higher payments in both states of nature.
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Figure 12: Policy Functions. Solid: benchmark. Dashed: ρ = 0.945
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When the limited liability constraint binds, i.e. when ul = u[θlkα + (1 − δ)k −

k′], a higher payment to the entrepreneur necessarily translates into fewer resources

available for investment. This is why, as illustrated on the right panel on the top

row, net investment is lower than in the benchmark. The left panel on the bottom

row shows that recommended effort drops. This is consistent with our discussions

in Sections 3 and 4: a rise in current utility awards also raises the marginal cost of

eliciting effort.

Our simulations show that, as in the case of χ > 1, capital, promised utility, as well

as the other relevant variables converge to non–degenerate stationary distributions.

6.2 A Narrower Gap between θh and θl.

Since the probability of good outcome is endogenous in our model, so is the distribu-

tion of cash–flows. Therefore, the closer we can get to analyzing the role of cash–flow

risk, is to consider the impact of reducing the gap between the two realizations of the

productivity shock.

Figure 13 plots the policy functions that obtain by simultaneously lowering θh

from 1.5 to 1.45 and raising θl from 0.4 to 0.45. Everything else equal, a lower gap

10 15 20 25
0

5

10

15
Value Function

10 15 20 25
−0.5

0

0.5
Net Investment

10 15 20 25
−1

0

1

2
Contingent Variation in Promised Utility

10 15 20 25
−0.5

0

0.5

1
Expected Variation in Promised Utility

10 15 20 25
0

0.5

1
Effort

Current Utility Entitlement (ω)
10 15 20 25

0

1

2

3
Entrepreneur Cash−Flow

Current Utility Entitlement (ω)

Figure 13: Policy Functions. Solid: benchmark. Dashed: θh = 1.45, θl = 0.45.

reduces the marginal benefit of effort. This is why the latter drops. In turn, lower
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effort means more insurance for the entrepreneur.

The right panel on the top row shows that investment is higher. Most likely, this

result depends on the fact that a higher θl relaxes the limited liability constraint in

the bad state of nature. As usual, investment is chosen to equate the marginal effect

on future revenues to the opportunity cost. In Section 4 we have argued that when

the constraint binds, this cost also depends on the intertemporal distortion that is

caused by lower consumption in the low state. This is why efficiency dictates that

the larger revenues in the low state are allocated in part to increase compensation, as

argued above, and in part to increase investment.

7 Auto–Correlated Shocks

So far we have assumed that a successful performance of the entrepreneur only affects

the probability distribution of the shock θ in the same period. Although it is shared

by most of the literature on dynamic hidden action models,15 one may find this

assumption to be particularly removed from reality. In this section we address this

concern by assuming that a successful outcome also alters the probability distribution

in the future. We posit that next period’s distribution conditional on success in the

current period, G(θ′|a′, θh), stochastically dominates the distribution conditional on

failure, i.e. G(θ′|a′, θl), for all a′ ∈ A. In the numerical implementation, we assume

that prob(θ′ = θh|θ = θi) = 1 − e−ψia, with ψh > ψl > 0.

Notice that our modeling choice is different from that of Fernandes and Phelan

(2000). In their case, next period’s distribution depends on current effort (which is

private information), rather than on the current realization (public information).

Figure 14 illustrates value and policy functions along the ω dimension, for given

capital stock. Solid lines refer to ψh = 1.4, while dashed line refer to ψl = 0.8.

All the other parameters are as described in Table 1. For ψ = ψh, a given level of

effort leads to a higher probability of success. With respect to the case of ψ = ψl,

the promised utility ω is delivered by requiring more effort and awarding greater

average consumption and expected continuation utility. Given the higher probability

of success, this plan can be implemented by lowering the state–contingent payoffs to

the entrepreneur, both in the present and in the future. This is why ci(k,ω,ψ l) >

ci(k,ω,ψ h) and ωi(k,ω,ψ l) > ωi(k,ω,ψ h) for all ω and for i = h, l.

In spite of the fact that average continuation utility is higher, net investment is

15For example, see Spear and Srivastava (1987) and Wang (1997).

28



higher for ψ = ψh. The reason is simple. The persistence in the distribution of

the shock and the difference between θh and θl are such that the marginal value of

investment is higher in that case.
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Figure 14: Policy Functions. Solid: ψ = ψh. Dashed: ψ = ψl.

Figure 15 illustrates the effects of persistence on the dynamics of all relevant vari-

ables. A good shock is associated with higher consumption and higher continuation

utility. However, differently from the benchmark scenario, firm value as well as next

period’s investment and recommended effort are also higher following a good shock.

Why is this the case?

For simplicity, consider the case of a good realization when the distribution is

parameterized by ψl. On the one hand, the rise in continuation utility triggered by

the shock still calls for lower effort in the future and therefore implies a lower marginal

value of investment. On the other hand, the improvement in the shock distribution, by

calling for greater effort, raises the marginal value of investment. For our parameter

values, the latter effect dominates.

Similarly to the benchmark scenario described in Section 4, the value of outside

equity converges to zero and the entrepreneur ends up controlling all cash–flow rights.

However, the ergodic set for the state variables is now a non–degenerate subset of Ω’s

upper contour. As the investor’s payoff settles down to its long–run value, the other
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variables are time–varying.
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Figure 15: Sample Path. Case with State–Dependent Shock Distribution

8 Conclusion

In this paper we have characterized the firm dynamics implied by constrained–efficient

contracts between a risk–neutral investor and a risk–averse entrepreneur under the

assumption that the latter’s effort is not publicly observable.

A robust feature of the model is the sub–modularity of the value function. The

marginal gain from investing declines with the level of promised utility. This happens

because the cost of incentive provision is increasing in ω. In turn, this means that

the higher ω, the lower are recommended effort and the probability of success, and

therefore the lower is the return to capital accumulation.

When the entrepreneur’s relative risk aversion coefficient is less than 1 and the two

agents are equally impatient, ω and the value of inside equity follow sub–martingale

processes. Firms that, consistent with the empirical evidence, start out small, have a

relatively high marginal product of capital, and therefore grow over time. The grad-

ualness of the growth process depends on the limited liability assumption, which can

be interpreted as a financing constraint or an extreme form of investment adjustment

costs. Because of the sub–modularity property, the rise in the value of promised util-
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ity implies a drop in the return to investment, which eventually leads to a decline

in the capital stock. In this sense, our theory provides a rationale for firm’s decline.

This feature distinguishes our model from other theories of firm dynamics. According

to those, average firm size and value of survivors increase monotonically over time.

Interestingly, the constrained–efficient contract prescribes that in the long run the

entrepreneur becomes the only claimant to the firm’s cash flows.

When the RRA coefficient is larger than 1 or the entrepreneur is relatively more

impatient, the dynamics of observables has the same qualitative features, as long

as the initial values of capital and promised utility are relatively low. What distin-

guishes these scenarios from our benchmark is that the model admits non–degenerate

stationary distributions for firm size and the other relevant variables.

A key mechanism in our theory is that providing incentives to exert effort becomes

costlier as the manager increases her stake in the firm. We believe that it would be

interesting to extend our framework by allowing for the possibility of termination.

That is, by empowering the investor to liquidate the entrepreneur and hire someone

else to run operations. The insights provided by Spear and Wang (2005) and Wang

(2006) may prove useful in carrying out this task.

We also believe that it would be of interest to study the dynamics implied by our

model under different assumptions on preferences. The results by Rampini (2004)

hint that under certain conditions the results could be quite different. In his study of

the relationship between entrepreneurial activity and the business cycle, he finds that

when preferences are of the type u(c − a), risk tolerance is increasing with wealth,

and therefore incentive provision is cheaper. Exactly the contrary of what happens

in this paper.
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A Proofs and Lemmas

Proof of Proposition 1.

Fix the pair (k,ω ). We already know that Φ(k,w) is bounded. It is left to prove that

it is also closed. Let {Vn} ⊆ Φ(k,w), where Vn → V∞ when n → ∞. We need to show

that V∞ ∈ Φ(k,w). In words, we need to demonstrate that there exists a contract σ∞

that satisfies (2), (3), (4), ω(σ∞|h0) = w, and v(σ∞|h0) = V∞. Now we will construct

such an optimal contract σ∞. By the definition of Φ(k,w), there exists a sequence of

contracts {σn} = {an
t (ht−1), cn

t (ht)} and capital {kn
t+1(h

t−1)}, where the constraints

(2), (3), and (4), ω(σn|h0) = w are satisfied for every n. Therefore

V∞ = lim
n→∞

∞
∑

t=1

βt−1
∫

[θtf(kt) − cn
t (ht) − kn

t+1(h
t−1) + (1 − δ)kt]g(θt|a

n
t (ht−1))dht

For t = 1, notice that {an
1 (h0), cn

1 (h1)} and {kn
2 (h0)} are finite collections of bounded

sequences. Therefore, there exist collections of subsequences {a
nq

1 (h0), c
nq

1 (h1)} and

{k
nq

2 (h0)} such that

lim
nq→∞

a
nq

1 (h0) = a∞1 (h0), lim
nq→∞

c
nq

1 (h1) = c∞1 (h1), and lim
nq→∞

k
nq

2 (h0) = k∞
2 (h0).

We now consider t = 2. Notice that {an
2 (h1), cn

2 (h2)} and {kn
3 (h1)} are finite col-

lections of bounded sequences, and we can define {a∞2 (h1), c∞2 (h2)} and {k∞
3 (h1}

similarly as we did for t = 1. If we iterate this procedure for t = 3, 4, ..., and let

σ∞ = {a∞t (ht−1), c∞t (ht)} along with k = {k∞
t+1(h

t−1)}, then it is easy to verify that

the constructed contract σ∞ is what we desired for.

Proof of Proposition 2.

Fix ω, the lifetime discounted utility ensured by the optimal contract to the agent, and

k, the optimal capital level of the firm. First, we show that T (v∗)(k,ω ) ≤ v∗(k,ω ).

This inequality is true if there exists a feasible and incentive compatible contract

σ such that ω(σ|h0) = ω and v(σ|h0) = T (v∗)(k,ω ). The desired contract σ can

be constructed in the following way. Let a(k,ω ), c(θ, k,ω ), k′(k,ω ), and ω′(θ, k,ω )

denote the solution of the maximization problem associated with the definition of

T (v∗)(k,ω ). Now, let a1(h0) = a(k,ω ), c1(h1) = c(θ1, k,ω ), and k2(h0) = k′(k,ω ),

∀h1 for k = k1 given. For the realization of θ in t = 1, denoted θ1 for the purpose of this

proof, there exists a feasible and incentive compatible contract σθ1
that ensures a level

of expected discounted utility ω′(θ1, k,ω ) to the agent, and v∗(k′(k,ω ),ω′(θ1, k,ω ))

to the principal. Thus, we can say that σ|h1 = σθ1
, ∀h1. It is obvious that the

constructed contract σ is what is desired.
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We now need to show that v∗(k,ω ) ≤ T (v∗)(k,ω ). Let σ∗ be an optimal contract

that ensures a level of expected discounted utility of ω to the agent, given k. In

consequence, we can say that

v∗(k,ω ) = v(σ∗|h0),

or

v∗(k,ω ) =

∫

Θ

{

θ1f(k1) − c∗1(θ1) − k∗
2(h

0) + (1 − δ)k1 + βv∗(k∗
2(h

0),σ∗|h1)
}

g(θ|a∗1(h
0))dθ,

or, finally,

v∗(k,ω ) ≤ T (v∗)(k,ω ),

where the last inequality is obtained by letting a(k,ω ) = a∗(h0, k1), c(θ, k,ω ) =

c∗1(θ1, k1), ω′(θ, k,ω ) = ω′(σ∗|h0) along with k′(k,ω ) = k∗
2(h

0, k1), for given k = k1.

This solution satisfies the constraints (5), (6), (7), and (8).

Notice that the operator B is monotone, i.e.Σ 1 ⊆ Σ2 implies that B(Σ1) ⊆ B(Σ2).

Following Abreu, Pierce, and Stacchetti (1990), we say that Σ is self–generating if

Σ ⊆ B(Σ).

Lemma 2 (a) Ω is self–generating. (b) If Σ is self–generating, then B(Σ) ⊆ Ω.

Proof. To prove (a), let (k,ω ) ∈ Ω. There exists a contract σ = {at(ht−1), ct(ht)} and

a sequence {kt+1(ht−1)} which satisfy the constraints (2), (3), (4), and ω(σ|h0) = ω.

We now say that

a(k,ω ) = a1(h
0); k′(k,ω ) = k2(h

0); c(θ, k,ω ) = c1({θ}), ∀θ; ω′(θ, k,ω ) = ω2(σ|{θ}), ∀θ.

It is obvious that {a(k,ω ), c(θ, k,ω ), k′(k,ω ),ω′(θ, k,ω )}, defined above, satisfies

the constraints (5), (6),(7), and (8). Therefore, (k,ω ) ∈ B(Ω), which demonstrates

that (a).

To prove (b), let Σ be self–generating, and let (k,ω )h0 ∈ B(Σ). We have to

construct a contract σ = {at(ht−1), ct(ht)} and a sequence kt+1(ht−1) = kh0 that

satisfy the constraints (2), (3), (4), and ω(σ|h0) = ωh0. We construct such a contract

recursively. First, there exist {a(kh0 ,ωh0), c(θ, kh0 ,ωh0), k′(kh0 ,ω h0),ω′(θ, kh0 ,ωh0)}

that satisfies (6), (8), and
∫

Θ

{

u(c(θ, kh0 ,ωh0),m(a(kh0 ,ωh0))l(k)) + βω′(θ, kh0 ,ωh0)
}

g(θ|a(kh0 , wωh0))dθ = ωh0,

0 ≤ c(θ, kh0 ,ωh0) ≤ θf(k) − kh0 + (1 − δ)k.
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For t = 1, let a1(h0) = a(kh0 ,ωh0) and c1(h1) = c(θ1, kh0 ,ωh0), ∀h1. Also, let

k′
h0 = kh1 = k′(kh0 ,ωh0) and ωh1 = ω′(θ, kh0 ,ωh0), ∀h1. Notice that (kh1 ,ωh1) ∈ Σ ∈

B(Σ) implies the existence of {a(kh1 ,ωh1), c(θ, kh1 ,ωh1), k′(kh1 ,ωh1),ω′(θ, kh1 ,ωh1)}

that satisfies (6), (8), and
∫

Θ

{

u(c(θ, kh1 ,ωh1),m(a(kh1 ,ωh1))l(k)) + βω′(θ, kh1,ωh1)
}

g(θ|a(kh1 ,ωh1))dθ = ωh1,

0 ≤ c(θ, kh1 ,ωh1) ≤ θf(k)− kh1 + (1 − δ)k.

We can iterate for t = 2, 3, 4, ... to construct the complete profile σ. We can then

observe that, by construction, for any arbitrary t ≥ 0 and ht,

ω(σ|ht) − ωht =

∫

Θ
β[ω(σ|ht∗1) − ωht∗1]g(θ|a(kht ,ωht))dθt∗1

Since 0 < β< 1 and the utilities are bounded, the above equation implies that

ω(σ|ht) = ωht ∀ t ≥ 0 and ∀ ht.

Hence, the contract that we have constructed is what is desired.

Proof of Proposition 3.

Part (a) is obvious. To show part (b), we will first show that the sequence {Xn} is con-

vergent. Obviously, B(X0) ⊆ X0. Next, we operate B on both sides of this expression

and obtain Xn+1 = B(Xn) ⊆ Xn, ∀n, because B is monotone increasing. Hence, {Xn}

is a bounded and monotone decreasing set sequence with X∞ = lim
n→∞

Xn =
∞
∩

n=0
Xn.

Now, we show thatΩ ⊆ X∞. Given thatΩ ⊆ X0, the monotonicity property of B

ensures that B(Ω) ⊆ B(X0). However, it must be true that Ω= B(Ω), by part (a),

and B(X0) = X1, by construction. Then,Ω ⊆ X1. By iteration we obtainΩ ⊆ Xn,

∀n ≥ 0, and consequently,Ω ⊆ X∞. Now, we demonstrate that X∞ ⊆ Ω. Given

the properties of the sequence {Xn}, we have that B(X∞) = X∞. Hence, X∞ is

self–generating, and X∞ = B(X∞) ⊆ Ω.

Lemma 3 Let k ≥ (θl/δ)
1/(1−α). If ūh − ūl < 1, then ω̄(k) = ūl. If ūh − ūl > 1, then

ω̄(k) = ūh − 1 − log(ūh − ūl). For χ < 1, ω(k) = 0. For χ ≥ 1, ω(k) = −∞.

Proof. The value ω̄(k) is given by

ω̄(k) = max
uh,ul

(1 − e−a∗
)uh + e−a∗

ul − a∗,

s.t. a∗ = arg max
a

(1 − e−a)uh + e−aul − a,

u ≤ ui ≤ ūi i = h, l.
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Conditional on the optimal level of effort being zero, the solution calls for ul = ūl.

When effort is strictly positive, then problem rewrites as

ω̄(k) = max
uh,ul

uh − 1 − log(uh − ul)

and the solution calls for ui = ūi, i = h, l. Since uh −ul > 1 implies uh − 1− log(uh −

ul) > ul it follows that ω̄(k) = ūl for ūh − ūl < 1 and ω̄(k) = ūh − 1 − log(ūh − ūl)

otherwise.

Now turn to ω(k). For χ > 1, any level of utility ω < ūl can be awarded by setting

a∗ = 0 and cl = c(ω). Such allocation is feasible and incentive compatible. For χ < 1,

any ω such that 0 ≤ ω ≤ ūl can be delivered in exactly the same way. Therefore,

ω(k) ≤ 0. By contradiction, assume that ω(k) < 0. Obviously, this must happen for

a∗ > 0. However, in this case promised utility is ul + ea∗
− 1 − a∗, which is always

non negative for a∗ > 0.

For any k > 0, let ωb(k) be equal to the infimum of the set of values ω such

that the constraint ui ≥ u does not bind. It is easy to see that such set is always

non–empty.

Proposition 5 When recommended effort is positive, a∗ = log(uh − ul) ≥ 0. Fur-

thermore:

(a) if χ ≥ 1/2, a∗ is strictly decreasing in ω and uh and ul are strictly increasing in

ω for all ω such that the solution is interior;

(b) assume ul ≤ ūl binds; if ūh − ūl < 1, then a∗ = 0, otherwise a∗ = log(u∗
h − ūl),

where u∗
h satisfies u∗

h − 1 − log(u∗
h − ūl) − ω;

(c) let χ < 1; if [θh − θl]kα > c(1), there exists ωr > 0 such that ul = 0 and

uh − 1− log(uh) = ω for all ω ∈ [0,ωr]. If [θh − θl]kα ≤ c(1), then a∗ = 0 and ul = ω

for all ω.

Proof. To prove (a), consider the necessary condition for an interior solution:

[θh − θl]k
α − [c(uh) − c(ul)] − (s − 1)

[

c′(uh) − c′(ul)
]

= 0. (24)

This condition is also sufficient if

−

[

c′(uh)
1

s
− c′(ul)

(

1

s
− 1

)]

−
[

c′(uh) − c′(ul)
]

−(s−1)

[

c′′(uh)
1

s
− c′′(ul)

(

1

s
− 1

)]

< 0.

When c′(·) is convex, sufficiency follows from the convexity of the cost function. This

happens for χ ≥ 1/2. When c′(·) is concave (χ < 1/2), it follows from the fact that

35



c′′(u) = χ
1−χ

c′(u)
u . Applying the implicit function theorem to (24) reveals that χ ≥ 1/2

is sufficient, although not necessary condition for ds
dω < 0. In turn, this directly implies

dul
dω > 0. To see that duh

dω > 0 must hold, start from a pair (k,ω ) and consider an

infinitesimal increase in ω. The left–hand side of (24) does not change. Since ds
dω < 0

and dul
dω > 0, for the right–hand side to remain unchanged it must be that duh

dω > 0.

When ūh − ūl < 1 and ω is such that ul = ūl, a positive effort recommendation

is not incentive compatible. This is not the case when ūh − ūl > 1. In such scenario,

any increase in ω must be accommodated by raising uh. This shows (b).

Now let χ < 1. For ω = 0, it is obvious that a∗ = 0 and uh = ul = 0. In fact,

if it were the case that a∗ > 0, (24) would have to hold for s > 1, which in turn

would imply ul < 0. Now consider an infinitesimal increase in ω. The constraint

s − log(s) ≤ 1 + ω relaxes. By continuity, however, it will still be the case that the

left–hand side of (24) is still strictly positive over the admissible range of s. Since

the left–hand side of (24) is decreasing in ω, when [θh − θl]kα > c(1) there will be a

positive value of ω such that (24) holds true for s such that s − log(s) ≤ 1 + ω. On

the other hand, if [θh − θl]kα ≤ c(1), this will never be the case.

Proof of Proposition 4. Claims (a) and (b) are proven in the main body of the

paper. Strict concavity follows from Theorem 4.8 in Stokey and Lucas (1989). To

see why this is the case, rewrite the optimization program in (P2) as the operator

T , which maps the set of bounded and continuous functions defined over [0, ω̄] into

itself:

(T v)(ω) ≡ max
s≥1,ωh,ωl

(

1 −
1

s

)

[θhkα − c(ω + 1 + log(s) − βωh) + βv(ωh)]+

+

(

1

s

)

[θlk
α − c(ω + 1 + log(s) − s − βωl) + βv(ωl)] − δk,

s.t. ω + 1 + log(s) − βωh ≥ 0,

ω + 1 + log(s) − s − βωl ≥ 0,

0 ≤ ωi ≤ ω̄ ∀ i = h, l.

First, notice that since a∗ ∈ [0, ā] and a = max[0, log(s)], s is bounded. This implies

that the choices of uh and ul are also bounded. Furthermore, the constraint set

is convex, in the following sense. Let Γ(ω) denote the set of feasible triplets κ =

(s,ω h,ωl) when the state is ω. For all pairs ωa,ωb ∈ [0, ω̄] and all {κa,κb} such that

κa ∈ Γ(ωa) and κb ∈ Γ(ωb), ηκa + (1 − η)κb ∈ Γ[ηωa + (1 − η)ωb] for all η ∈ [0, 1].

Finally, strict convexity of the function c guarantees that for all concave, bounded
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and continuous functions v defined over [0, ω̄], (T )(v)(ηωa+(1−η)ωb) > η(T )(v)(ωa)+

(1 − η)(T )(v)(ωb), for all ωa,ωb ∈ [0, ω̄] and all η ∈ [0, 1].

B Algorithm

In this section we provide a brief description of the algorithm that was used to compute

a numerical approximation to the value function v(k,ω ). Given that the set Ω is not

square, it is not efficient to approximate the value function by means of bi–dimensional

splines. For this reason, we will restrict the choice of capital to a finite number of

levels and approximate the value function on the ω dimension by means of cubic

splines.

We start by defining a fine grid for the capital stock. Denote it as K ≡{ kj}
nk

j=1

and let the related set of indexes be J ≡{ j}nk
j=1. The upper bound of K must be

chosen in such a way that the corresponding net investment will be negative for all ω.

For this to be the case, it is sufficient to set it equal to the efficient capital stock when

θ = θh with probability 1 in all periods. That is, we let knk
=

(

αθh
δ

)
1

1−α
. The next

task consists in approximating the equilibrium value set of the transformed problem.

B.1 Approximation of the Set Ω

From the analysis conducted in Section 2, it follows that for every j ∈ J , the set

of feasible and incentive compatible values will be given by an interval [ω, ω̄j] ∈ #+.

This means that our task reduces to approximate the mapping Ω : K → #+ which is

given by the sequence {ω̄j}j∈J . The mapping Ω can be shown to be increasing and

strictly concave.

Following Abreu, Pierce, and Stacchetti (1990), we start by defining an initial

guess Ω0 = {ω̄0j}j∈J . We impose that Ω0 is weakly increasing, weakly concave,

and such that ω̄0j ≥ ω̄j for all j. These requirements are satisfied by letting ω̄0j =
u(θhkα

nk
−δknk

)

1−β . Then, for every j, q ∈ J such that θlkα
j +kj(1−δ)−kq ≥ 0, we compute

bjq ≡ max
a,{ui,ωi}i=h,l

(

1 − e−a
)

[uh + βωh] + e−a[ul + βωl] − a (25)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq),

ω ≤ ωi ≤ ω̄nq

and

ω̄n+1,j ≡ max
j

{bjq} . (26)
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The operator defined by (25)–(26) generates a sequence {Ωn} that converges to Ω .

Our approximation will be Ωm such that ||Ωm − Ωm−1||∞ < 10.0−8.

Notice that, conditional on effort being zero, the above optimization problem

simplifies to

max
ul,ωl

ul + βωl

s.t. 0 ≤ ul ≤ u(θlk
α + k(1 − δ) − kj),

ω ≤ ωl ≤ ω̄nj.

Obviously the solution calls for ul = u(θlkα
j + kj(1 − δ) − kq) and ωl = ω̄nq. Alterna-

tively, when effort is strictly positive, a = log(s), where s ≡ (uh + βωh − ul − βωl).

The optimization problem then becomes

max
s,uh,ωh

uh + βωh − 1 − log(s)

s.t. 0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq),

ω ≤ ωi ≤ ω̄nq.

In this case the solution calls for ui = u(θikα
j + kj(1 − δ) − kq) and ωi = ω̄nq.

B.2 Approximation of the Value Function

For every j ∈ J , we define a coarse grid Zj = {ωjz}
nω

z=1 over the interval [ω, ω̄j ].

We also define an initial guess for the value function: v0j : Zj → #+. For all other

ω ∈ [ω, ω̄j ], the guess is approximated by a cubic spline which we denote as v0j(ω).

We impose that v0j(ω) is decreasing and concave in ω for all j ∈ J and that the

function is increasing and concave in capital. Then, for all z and every j, q ∈ J such

that θlkα
j + kj(1 − δ) − kq ≥ 0, we compute

djzq ≡ max
a∗,{ui,ωi,}i=h,l

(1 − e−a∗
)[θhkα − c(uh) + βvnq(ωh)] + e−a∗

[θlk
α − c(ul) + βvnq(ωl)]

+ kj(1 − δ) − kq, (27)

s.t. (1 − e−a∗
)[uh + βωh] + e−a∗

[ul + βωl] − a∗ = ωjz,

a∗ = arg max (1 − e−a)[uh + βωh] + e−a[ul + βωl] − a,

0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq) ∀ i = h, l,

a∗ ≥ 0,

ω ≤ ωi ≤ ω̄q ∀ i = h, l,
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and

vn+1,jz ≡ max
q

{djzq} . (28)

The operator defined by (27)–(28) generates a sequence Vn ≡ {vnj}j∈J . Our

approximation of the value function on the grid will be Vm such that ||Vm−Vm−1||∞ <

10.0−8. Notice that when recommended effort is positive, the above optimization

problem simplifies to

max
s,{ui}i=h,l

(

1 −
1

s

)

[θhkα − c(uh) + βvnq(ωh)] +
1

s
[θlk

α − c(ul) + βvnq(ωl)]

+ kj(1 − δ) − kq,

s.t. ωh = [ωjz + 1 + log(s) − uh]/β,

ωl = [ωjz + 1 + log(s) − s − ul]/β,

0 ≤ ui ≤ u(θik
α
j + kj(1 − δ) − kq) ∀ i = h, l,

ω ≤ ωi ≤ ω̄q ∀ i = h, l.
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