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1 Introduction

Grossman and Hart (1986) argued that in contracting situations where states of nature

are observable but not veri�able, asset ownership (or vertical integration) could help limit

the extent to which one party can be held up by the other party, which in turn should

encourage ex ante investment by the former. However, vertical integration as a solution

to the hold-up problem has been questioned in various papers1 which all use or extend

the subgame perfect implementation approach of Moore and Repullo (1988). In particular,

Maskin and Tirole (1999a)2 argue that although parties may have di¢ culty foreseeing future

physical contingencies they can write contracts which specify ex ante the possible payo¤

contingencies. Once the state of the world is realized, the parties can ��ll in�the physical

details. The latter step is subject to incentive-compatibility considerations. That is, each

agent must be prepared to specify the details truthfully. Maskin and Tirole achieve this

through a 3-stage subgame perfect implementation mechanism which induces truth-telling

by all parties as the unique equilibrium outcome3.

In this paper, we consider the robustness of the Moore-Repullo (MR) mechanism to the

introduction of small amounts of asymmetric information. We �nd that the MR mechanism

may not yield even approximately truthful revelation in pure or totally mixed strategies as

the amount of informational asymmetry goes to zero. Moreover, we show that this non-

robustness result does not require informational asymmetries on agents�types (call it the

introduction of crazy types): small deviations from symmetric information on the buyer�s

willingness to pay for the good or on the seller�s production cost, su¢ ce to generate this

non-robustness result. This, in turn, has important implications for the debate on the

foundations of incomplete contracts: namely, while asymmetric information about agents�

types can eliminate the hold-up problem at the same time as it introduces undesirable

equilibria in sequential mechanisms, asymmetric information about valuation and costs is

1For example, see Aghion-Dewatripont-Rey (1999) and recently Maskin-Tirole (1999a, 1999b).
2See also Maskin and Tirole (1999b).
3Whereas Nash implementation (see Maskin 1977, 1999) does not guarantee uniqueness.
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shown to preserve the hold-up problem even though it perturbs the MR mechanism.

We proceed in several steps. In Section 2 we introduce a simple example of ex-post

bargaining and exchange drawn from Hart and Moore (2003)4 to illustrate our �rst point on

the robustness of the MR mechanism to the introduction of small amounts of asymmetric

information. More precisely, we modify the signal structure of the game by assuming that

each player receives private signals about the true value of the good, instead of knowing it

perfectly; thus the value is �almost common knowledge�in the sense of being common p-belief

(Monderer and Samet (1989)) for p near 1. Our main �nding here is that the simple subgame-

perfect implementation mechanism à la MR for this example, does not yield approximately

truthful revelation in either pure or totally mixed strategies as the correlation between the

private signals and the true value of the good becomes increasingly perfect, although truthful

revelation can be approximated by a partially mixed equilibrium.

The basic idea behind this result is that even a small amount of uncertainty at the

interim stage, when players have observed their signals but not yet played the game, can

loom large ex post once a player has sent a message. This is closely related to the observation

that backwards induction and related equilibrium re�nements are not in general robust to

perturbations of the information structure (see Fudenberg, Kreps and Levine (1988), Dekel

and Fudenberg (1990) and Borgers (1994)) so that the predictions generated under common

knowledge need not obtain under almost common knowledge. However, in this example we

restrict attention to informational asymmetries about the value of the good as opposed to

the more general perturbations considered in the robustness literature. More speci�cally,

in our modi�cation of the Hart-Moore-Repullo example, the Seller produces a good whose

valuation is stochastic, and may be high or low. Each contracting party gets a private and

yet almost perfect signal about the good�s valuation; the players have a common prior on

the joint distribution of values and signals. The Moore-Repullo mechanism requests that

one party, say the Buyer, make an announcement about the value of the good, and then the

4This example itself illustrates the mechanism in Moore and Repullo (1988, Section 5).
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Seller may either challenge or not challenge the Buyer�s announcement. Obviously, under

perfect information, the Buyer�s announcement contains no information which the Seller did

not have ex ante. However, when each player receives a private signal about the value of the

good, the Buyer�s announcement does contain information about her own signal of the good�s

valuation. The Seller will then update his belief about the value of the good, on the basis of

both, his own signal and the announcement made by the Buyer. And the resulting Bayesian

updating is what causes the subgame implementation logic to break down mechanism to

break down. For example, if the two parties commit to play the MR mechanism and yet the

Buyer announces a low value for the good, then the Seller will update his beliefs towards

the notion that the true value of the good is indeed low. Consequently, the Seller will not

challenge the Buyer by fear of being �ned under the MR mechanism for having unfairly

challenged the Buyer.

In Section 3 we extend our analysis to a general setting with n states of nature and trans-

ferable utility, and we show that in this setting there exist natural social choice functions

which cannot be implemented in any totally mixed equilibrium of perturbed MR mecha-

nisms with arbitrarily small amount of private information about the value of the good. In

Section 4 we move beyond Moore-Repullo mechanisms and ask whether the same logic can

apply to any extensive-form mechanism. Here we make a more general but weaker claim: for

any game induced by an extensive form-mechanism, there exists a nearby game with almost

perfect information in which at least one equilibrium is �undesirable�, i.e. does not induce

truth-telling by the contracting parties. While this conclusion can be easily established if

we allow for private signals about payo¤s, based on Fudenberg, Kreps and Levine (1988),

henceforth FKL5, we also prove non-robustness to the common p-belief perturbation con-

sidered in Section 2 when restricting attention to pure strategies and three-stage sequential

mechanisms.6.
5FKL show that any Nash equilibrium is the limit of strict (and thus sequential) equilibria when a small

change is made to prior beliefs. So if agents have any doubts about the payo¤ structure, extensive-form
mechanisms cannot robustly improve on Nash implementation.

6Parallel work by Kunimoto and Tercieux (2009), who show that only Maskin-monotonic social choice

4



Thus, Section 4 suggests that if we start from any subgame implementation mechanism

under perfect information, one could show the existence of at least one undesirable equi-

librium with arbitrarily small perturbations of the information structure, whereas Section

3 shows that for MR mechanisms, this perturbation leads to uniqueness of an undersir-

able equilibrium. Together these �ndings highlight the di¢ culties in moving beyond Nash

implementation which, in contrast to subgame perfect implementation, is robust to these

deviations from perfect information. However, most settings in contract theory involve non-

Maskin monotonic social choice functions (as in Section 2 and 3), and hence cannot be Nash

implemented.

In Section 5, we link our analysis of the non-robustness of subgame perfect implemen-

tation to the hold-up problem. In particular we argue that while the hold-up problem also

may be �solved�by introducing even small amounts of private information about the agents�

types, in contrast the hold-up problem remains when introducing small amounts of private

information about valuation and/or costs. In other words, it is the non-robustness of MR

and other extensive-form mechanisms to introducing private information about valuation or

costs which restores the Grossman-Hart logic once we allow for message games, not their

non-robustness to the introduction of �crazy types�.

In addition to the contracting and mechanism design literatures mentioned above, our

paper also relates to previous work by Cremer and McLean (1988), Johnson, Pratt and

Zeckhauser (1990), and Fudenberg, Levine and Maskin (1991). These papers show how

one can take advantage of the correlation between agents�signals in designing incentives to

approximate the Nash equilibrium under perfect information. These papers consider static

implementation games with commitment, and look at fairly general information structures,

as opposed to our focus on the robustness of subgame-perfect implementation to small devia-

tions from complete information. Chung and Ely (2003) show that only Maskin-monotonic

social choice functions are implementable in undominated Nash equilibrium.

functions can be implemented in the closure of the sequential equilibrium correspondence, suggests that this
result may extend to mixed strategies.
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The remainder of this paper is organized as follows. Section 2 illustrates our basic

idea using the simple example of Hart and Moore. We �rst present the implementation

result under perfect information; then we introduce (small) informational asymmetries and

illustrate our non-convergence result in that context; then we discuss the robustness of the

example. Section 3 establishes a more general non-convergence result for 3-stage Moore-

Repullo (MR) mechanisms with transferable utility, and then it discusses the non-robustness

of subgame perfect implementation through extensive-form mechanisms other than MR.

Section 4 extends the discussion to other sequential mechanisms. Finally, Section 5 analyzes

how the non-robustness of MR and other subgame perfect implementation mechanisms,

a¤ects the debate on the foundations of Grossman-Hart (1986).

2 An example

2.1 Setup

Consider the following simple example from Hart and Moore (2003). This example captures,

in the simplest possible setting, the logic of subgame perfect implementation mechanisms.

There are two parties, a B(uyer) and a S(eller) of a single unit of an indivisible good. If

trade occurs then B�s payo¤ is

VB = v � p;

where p is the price. S�s payo¤ is

VS = p�  ;

where  is the cost of producing the good, which we normalize to zero.

The good can be of either high or low quality. If it is high quality then B values it at

v = �v = 14; and if it is low quality then v = v = 10:
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2.2 Perfect information

Suppose �rst that the quality v is observable by both parties, but not veri�able by a court.

Thus, no initial contract between the two parties can be made credibly contingent upon v:

Yet, as shown by Hart and Moore (2003), truthful revelation of v by the buyer can be

achieved through the following contract/mechanism, which includes a third party T.

1. B announces either �high�or �low�. If �high�then B pays S a price equal to 14 and

the game then stops.

2. If B announces �low�then: (a) If S does not �challenge�then B pays a price equal to

10 and the game stops.

3. If S challenges then:

(a) B pays a �ne F to T

(b) B is o¤ered the good for 6

(c) If B accepts the good then S receives F from T (and also the 6 from B) and we

stop.

(d) If B rejects at 3b then S pays F to T

(e) B and S Nash bargain over the good and we stop.

When the true value of the good is common knowledge between B and S this mechanism

yields truth-telling as the unique equilibrium. To see this, let the true valuation v = �v = 14;

and let F = 9: If B announces �high�then B pays 14 and we stop. If, however, B announces

�low�then S will challenge because at stage 3a B pays 9 to T and, this being sunk, she will

still accept the good for 6 at stage 3b (since it is worth 14). S then receives 9+6 = 15, which

is greater than the 10 that she would receive if she didn�t challenge. Thus, if B lies, she gets

14� 9� 6 = �1, whereas she gets 14� 14 = 0 if she tells the truth. It is straightforward to

verify that truthtelling is also the unique equilibrium if v = v = 10: Any �ne greater than

8 will yield the same result.
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2.3 Less than perfect information

2.3.1 Setup

Now let us introduce a small amount of noise into the setting above. Suppose that the

players have a common prior that Pr(v = 14) = Pr(v = 10) = 1=2: Each player receives an

independent draw from a signal structure with two possible signals: �0 or �00: Let the signal

structure be as follows:

�0B�
0
S �0B�

00
S �00B�

0
S �00B�

00
S

Pr(v = 14) 1
2
(1� ")2 1

2
(1� ") " 1

2
" (1� ") 1

2
"2

Pr(v = 10) 1
2
"2 1

2
(1� ") " 1

2
" (1� ") 1

2
(1� ")2

For simplicity we will keep the payments under the mechanism the same as above and

assume that B must participate in the mechanism. We could easily adjust the payments

accordingly and assume voluntary participation.

2.3.2 Pure strategy equilibria

We �rst claim that there is no equilibrium in pure strategies in which the buyer always reports

truthfully. By way of contradiction, suppose there is such an equilibrium, and suppose that

B gets signal �0B: Then she believes that, regardless of what signal player S gets, the value

of the good is greater than 10 in expectation. So she would like to announce �low�if she

expects that subsequently to such an announcement, S will not challenge. Now, suppose B

announces low. In a fully revealing equilibrium, S will infer that B must have seen signal

�00B if she announces low. S now believes that there is approximately 1=2 probability that

v = 10 and therefore she will not challenge. But if S will not challenge then B would prefer

to announce �low�when she received signal �0B: Therefore there does not exist a truthfully

revealing equilibrium in pure strategies.
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2.3.3 Mixed strategies and Bayesian updating

One might wonder if the truthful revelation outcome can be approximated by a mixed

equilibrium, in the way that the pure-strategy Stackelberg equilibrium can be approximated

by a mixed equilibrium of a �noisy commitment game�(van Damme and Hurkens (1997)).

We show below that this is not the case. Comparing their result with ours suggests that

the assumption of common knowledge of payo¤s is less robust to small changes than is the

assumption of perfectly observed actions.

Speci�cally, denote by �0B; �
0
B 2 [0; 1]: the probability that B announces �low" after

seeing signals �0B; and let �
00
B be the probability B announces "high" after seeing �

0
B , as in

the following table:

High Low

�0B 1� �0B �0B

�00B �00B 1� �00B

The corresponding mixing probabilities for player S are

Challenge Don�t Challenge

�0S 1� �0S �0S

�00S �00S 1� �00S

2.3.4 The result

Using the above payo¤ expressions, we will now show that the pure information equilibrium

whereby the buyer announces the valuation truthfully, does not obtain as a limit of any

equilibrium E" of the above imperfect information game as "! 0: More speci�cally:

Proposition 1 For any �ne F there is no sequence of totally mixed equilibrium strategies

�B; �S such that �0B; �
00
B; �

0
S and �

00
S all converge to 0 as "! 0:

Proof. For the sake of presentation, here we prove the Proposition under the restriction

that the challenging �ne F is �xed (equal to 9 as in the above perfect information example),

however this restriction is immaterial.
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Suppose, contrary to the theorem, that as "! 0; there is a sequence of equilibria along

which �0B; �
00
B; �

0
S and �

00
S all converge to 0 as "! 0: Note that in this case

Consider the seller�s decision whether or not to challenge the buyer when �S = �0S and

the buyer announces �low�. Computations in the Appendix show that

VS (Cj�S = �0S; L) = �(")[�(")(�4) + (1� �("))15]

+(1� �("))[
1

2
(�4) + 1

2
15];

where

�(") = Pr (�B = �0Bj�S = �0S; L)

=

�
1
2
(1� ")2 + 1

2
"2
�
(�0B("))�

1
2
(1� ")2 + 1

2
"2
�
(�0B(")) + "(1� ") (1� �00B("))

and

�(") = Pr (v = 10j�0B; �0S)

= 1�
1
2
(1� ")2

1
2
(1� ")2 + 1

2
"2
:

Note that �(")! 0 as "! 0:There are two cases to consider.

Case A: �(")! 0:

In this case as "! 0 we have

VS (Cj�S = �0S; L)!
1

2
(�4) + 1

2
15 < VS (DCj�S = �0S; L) = 10:

Thus S does not challenge if the buyer announces �low�and �S = �0S:
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Now consider the case where �S = �00S: We have

VS (Cj�S = �00S; L) = m(")[
1

2
(�4) + 1

2
15]

+(1�m("))[n(")(�4) + (1� n("))15];

where (see Appendix)

m(") = Pr (�B = �0Bj�S = �00S; L)

=
"(1� ") (�0B("))

"(1� ") (�0B(")) +
�
1
2
"2 + 1

2
(1� ")2

�
(1� �00B("))

and

n(") = Pr (v = 10j�0B; �00S)

= 1�
1
2
"2

1
2
"2 + 1

2
(1� ")2

:

Thus m(")! 0 and n(")! 1 when "! 0: Thus in the limit, challenging yields �4 which is

strictly less than the payo¤ (10) of not challenging. It follows that if (�0B; �
00
B)! (0; 0); then

necessarily (�0S; �
00
S) ! (1; 0) in equilibrium when " ! 0; which contradicts the assumption

that �
0
S ! 0:

Case B: �(") 6! 0 and �0S(") > 0 for all ":

It is possible that �0B can be of order "; so that � (") can be non-zero. Note that in such

a case that, as "! 0; VS (Cj�S = �0S; L)! 51
2
+ 91

2
�("):

Since VS (DCj�S = �0S; L) = 10; if �
0
S > 0; it must be that

5
1

2
+ 9

1

2
�(") = 10:
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Thus along a sequence of equilibria �0B(") ! 0; �00B(") ! 0; �0S(") ! 0; �00S(") ! 0; and

�
0
S(") > 0; we know that lim"!0 �(") must exist and equal 9=19: Because �00B ! 0; we have

�(") =

�
1
2
(1� ")2 + 1

2
"2
�
(�0B("))�

1
2
(1� ")2 + 1

2
"2
�
(�0B(")) + "(1� ")

;

so

lim
"!0

�(") = lim
"!0

�0B(")

�0B(") + 2"

and thus lim"!0 �(") = 9=19 requires that lim"!0�
0
B(")=" = 9=5; : so in particular �

0
B(") >

0. However, lim"!0VB (Hj�B = �0B) = 0; while �
0
S(")! 0 implies that lim"!0 VB (Lj�B = �0B) =

�1; so for small "; the buyer strictly prefers to announce H; a contradiction.

To keep B to be indi¤erent between announcing high and low given that she saw signal

�B = �0B requires

4�0S = (1� �0S);

as "! 0; i.e. �0S ! 1=5: This contradicts the supposition that �0S ! 0:

2.4 Discussion of the example

It is easy to show that he uniform prior of p = 1=2 is essential for Proposition 1 when the

mechanism designer can choose any value of F (i.e. potentially greater than F = 9 as in the

example). If p > 1=2 (i.e. the good being high value has greater prior probability) then in

this example F can be chosen su¢ ciently large so as to induce the seller to challenge when

she observes the high signal but B announces �low�.

Similarly, even if p = 1=2; one could amend the example to include a di¤erent �ne7 at

stage 3d than the one at stage 3a (i.e. B and S pay di¤erent �nes depending on whether B

accepts the good at stage 3b). If the �ne B pays is su¢ cient large relative to F then the

conclusions of Proposition 1 do not hold (e.g. if B pays F = 30 if challenged and S pays

7We thank Ivan Werning for suggesting this possibility.
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F = 15 if B subsequently accepts).

We return to both of these issues when discussing the general mechanism in the next

section. As it turns out, neither asymmetric �nes nor large �nes will lead to approximately

truthful revelation with almost perfect information in the general Moore-Repullo mechanism.

As we mentioned in the introduction, this Hart-Moore-Repullo example is su¢ ciently

simple that a 2-stage mechanism in which each player acts only once can achieve approximate

e¢ ciency.

A notable feature of the example, or more precisely the statement of Proposition 1, is

that the sequence of equilibrium strategies we rule out involves �0S ! 0 and �00S ! 0: In

the context of the example this may, at �rst sight, appear rather odd: for if B announces

truthfully then S does not make a move and hence �0S and �
00
S are moot on the equilibrium

path. In the more general environment considered below, however, such considerations are

crucial.

This also relates to the fact that while there are no approximately truthful totally mixed

equilibria, it is possible to construct such an equilibrium where the low type of buyer and

seller both play pure strategies, but the high types both mix8. Again, in the general

environment this is not possible.

3 More general Moore-Repullo mechanisms

Moore and Repullo (1988) o¤er a class of mechanisms which, with complete information,

work well in very general environments. They also outline a substantially simpler mechanism

which yields truth telling in environments where there is transferable utility. Since this is

the most hospitable environment for subgame perfect implementation, and because most

incomplete contracting settings are in economies with money, we shall focus on it.

8We are grateful to Johannes Horner and Andy Skrzypacz for pointing this out.
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3.1 Setup

Let 
 be the (�nite) set of possible states of nature9. Let there be two agents: 1 and

2; whose preferences over a social decision d 2 D are given by !i 2 
i for i = 1; 2: Let


i = f!1i ; :::; !ni g : The agents have utility functions as follows:

u1 (d; !1)� t1;

u2 (d; !2) + t2

where d is a collective decision, t1 and t2 are monetary transfers. The agent�s !s are common

knowledge among each other (but not �publicly�known in the sense that the third party

introduced below does not know the agents !s).

Let f = (D;T1; T2) be a social choice function where for each (!1; !2) 2 
1� 
2 the

social decision is d = D (!1; !2) and the transfers are (t1; t2) = (T1 (!1; !2) ; T2 (!1; !2)) :

Moore and Repullo (1988) propose the following class of mechanism, which we shall refer

to as "the MR mechanism." There is one phase for each agent and each phase consists of

three stages. The game begins with phase 1, in which agent 1 announces a value !1 as we

now outline.

1. Agent 1 announces a preference !1; and we proceed to stage 2.

2. If agent 2 agrees then the phase ends and we proceed to phase 2. If agent 2 does not

agree and �challenges�by announcing some �1 6= !1; then we proceed to stage 3.

3. Agent 1 chooses between

fd; t1g (!1) = fx; tx +�g

and

fd; t1g (�1) = fy; ty +�g ;
9Moore and Repullo (1988) allow for an in�nite space but impose a condition bounding the utilitiy

functions which is automatically satis�ed in the �nite case.
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where these functions are speci�ed by the mechanism such that

u1 (x; !i)� tx > u1 (y; !1)� ty

and

u1 (x; �1)� tx < u1 (y; �1)� ty:

Also, if agent 1 chooses fx; tx +�g ; then agent 2 receives t2 = tx � � (and a third

party receives 2�): If, however, agent 1 chooses fy; ty +�g then agent 2 receives

t2 = ty +�:

Phase 2 is the same as phase 1 with the roles of players 1 and 2 reversed, i.e. agent 2

announces a !2: We use the notation stage 1.2, for example, to refer to phase 1, stage 2.

The Moore-Repullo logic is as follows. If agent 1 lied at stage 1:1 then agent 2 could chal-

lenge with the truth and then at stage 1.3 agent 1 will �nd it optimal to choose fy; ty +�g :

If � is su¢ ciently large then this will be worse for agent 1 than telling the truth and having

the choice function f implemented. Moreover, agent 2 will be happy with receiving ty +�:

If agent 1 tells the truth at stage 1:1 then agent 2 will not challenge because she knows that

agent 1 will choose fx; tx +�g at stage 1.3 which will cause agent 2 to pay the �ne of �:

3.2 Perturbing the information structure

We now show that this result does not hold for a small perturbation of the information

structure. Consider the following information structure. For each agent�s preferences there

is a separate signal structure with n signals. For agent 1�s preferences recall that the states

are !11; :::; !
n
1 : The n signals are �

1
1; :::; �

n
1 : The conditional probability of signal �

j
1 given

state !j1 given is 1 � "; and the probability of each signal �j1 conditional on state k 6= j is

"= (n� 1) : Similarly, for agent 2�s preferences the states are !12; :::; !n2 : The n signals are

�12; :::; �
n
2 : The conditional probability of state !

j
2 given signal �

j
2 is 1�"; and the probability
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of each state k 6= j conditional on signal �j2 is "= (n� 1) : The following table illustrates

this.

[TABLE 1 HERE]

The timing is as follows. Nature chooses a payo¤ parameter for each player from a

uniform distribution. Then each player simultaneously and privately observes a conditionally

independent signal from the above signal structure about player 1�s preferences. They then

play phase 1 of the MR mechanism to elicit player 1�s preferences. They then simultaneously

and privately observe a conditionally independent signal from the above signal structure

about player 2�s preferences. Then they play phase 2 of the MR mechanism to elicit player

2�s preferences10.Denote the probability that agent 1 announces �j1 conditional on seeing

signal �k1 as �
j
k: Similarly let the probability the agent 2 announces �j (at stage 2) conditional

on observing signal �k1 be �
j
k: In the second phase of the mechanism (designed to elicit agent

2�s preferences) the corresponding mixing probabilities are as follows. The probability that

agent 2 announces �j2 conditional on seeing signal �
k
2 is �

j
k and the probability the agent 1

announces �j (at stage 2) conditional on observing signal �
k
2 is �

j
k:

Theorem 1 Suppose that the agents�beliefs are formed according to the above signal struc-

ture. Then there exists a social choice function f such that there is no pro�le of totally

mixed equilibrium strategies
�
�jk; �

j
k; �

j
k; �

j
k

	
such that �jj ! 1; �jj ! 1 and �jk ! 0; �jk ! 0

for all k 6= j:

Proof. See appendix.

Remark 1 If the strategies are not totally mixed then there is no guarantee that any par-

ticular �k` > 0; and hence the above expression for � (") may not be well de�ned. In other

10One could also imagine the players receiving both signals and then playing the two phases of the mech-
anism. This would complicate the analysis because it would expand the number of payo¤ parameters for
each player.
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words, Bayes Rule o¤ers no guide as to beliefs in this case. Consider, however, two sets of

beliefs in such circumstances: (i) that if no type of player 1 announces �̂1 = �k1 then such an

announcement is considered to be truthful; or (ii) that beliefs about �̂1 are uniformly distrib-

uted. In the �rst case Pr
�
�1 = �j1

�� �2 = �j2; �̂1 = �k1

�
= 0 = � (") : In the second �kj = 1=n

for all k; and therefore lim"�>0 � = 0; which is the conclusion we obtain when Bayes Rule is

applicable.

The di¢ culty which arises under almost perfect information is that player 1 can announce

a state which is not the one �suggested�by her signal and have player 2 not challenge. After

seeing the likely signal and a di¤erent announcement from player 1, player 2 believes that

there is now only a 50:50 chance that the actual state is consistent with her signal. She

then believes that if she challenges half the time she will receive the �ne of �; but half the

time she will pay it. This eliminates the role of the �ne which was crucial to the mechanism

under perfect information. This in turn allows player 1 to announce whichever signal will

lead to the best social choice function for her. If her preferences are aligned with player 2�s

then she will announce truthfully, but if not she will not. Thus, in general, not all social

choice functions can be implemented under almost perfect information.

The Hart-Moore-Repullo buyer-seller example is a simple setting in which preferences

are clearly not aligned. There are always gains from trade, so the social decision is that

there be trade. But regardless of the quality of the good, the buyer would prefer to pay

10 for it, not 14: The seller obviously prefers to receive 14; no matter what the quality.

We suggest that such con�ict is common in the settings where Property Rights Theory has

proved useful, and therefore that 3-stage mechanisms may not lead to private information

being revealed.

Given the fact that the role of the �ne is eliminated because � is received by player 2

(say) with probability 1=2 upon challenging, but also paid with probability 1=2; one natu-

rally wonders why an asymmetric �ne (whereby player 2 pays or receives di¤erent amount

depending on the choice of player 1) works: In the example of section 2 this worked because
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if B announced �high�then S had no right to challenge. In the general MR mechanism,

however, it is (necessarily) the case that player 2 can challenge any announcement that

player 1 makes. Consider modifying the MR mechanism so that the �nal part of stage 3

reads as follows: � if agent 1 chooses fx; tx +�1g ; then agent 2 receives t2 = tx � �1: If,

however, agent 1 chooses fy; ty +�2g then agent 2 receives t2 = ty + �2:� Following the

same reasoning as in the proof of Theorem 2, when player 1 announces something other than

�j1 the payo¤ as "! 0 to player 2 from challenging is now

0B@ 1
2

�
1
n

Pn
i=i u2 (y; !

i
2) + ty +�2

�
+1
2

�
1
n

Pn
i=i (u2 (x; !

i
2)) + tx ��1

�
1CA :

By making �2 large relative to �1 a challenge can be encouraged. Unfortunately this may

also make player 2 challenge player 1 when she announces truthfully, as we illustrate by

example below.

3.3 An example

We now provide an example which illustrates two points: �rst, that asymmetric �nes do not

help matters, and second that there are very natural social choice functions in simple set-

tings which cannot be implemented by totally mixed equilibria in the setting with imperfect

information11. As an illustration of this suppose that D = fN; Y g ; with the interpretation

that d = Y is the decision to provide a public good and d = N is not to provide it. Let

u1 = �1d + t1 and u2 = �2d + t2 with �i 2 f�L; �Hg for i = 1; 2 with 0 = �L < �H : The

betas have the interpretation of being the utility derived from the public good net of its

production cost. The signal structure for each player is as follows

�01�
0
2 �01�

00
2 �001�

0
2 �001�

00
2

�Hi
1
2
(1� ")2 1

2
(1� ") " 1

2
" (1� ") 1

2
"2

�Li
1
2
"2 1

2
(1� ") " 1

2
" (1� ") 1

2
(1� ")2

11This is adapted from Bolton and Dewatripont (2005), pp.558-559.
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The social choice function we would like to implement involves d = 1 if and only if

�1+�2 > 0; with associated transfers such that �1+ t1 = �2+ t2: That is, provide the good

if and only if it has aggregate bene�t and equate payo¤s.

The �rst phase of the mechanism involves eliciting player 1�s preferences, �1: Let the

probability that agent 1 announces �L conditional on seeing signal �01 as �
0
1 and the prob-

ability that she announces �H conditional on seeing signal �001 as �
00
1: Let the probability

that agent 2 challenges be q: An equilibrium in which agent 1 truthful reveals and is not

challenged involves a sequence of strategies such that �01 ! 0; �001 ! 0 as " ! 0: We will

again consider totally mixed strategies.

The MR mechanism for this phase involves agent 1 announcing �1 and then agent 2

challenging or not by announcing �̂1 6= �1. If agent 2 does not challenge then agent 1�s

preference is deemed to be �1: If agent 2 challenges then agent 1 pays �1 to the third party

and then agent 1 chooses between the social choice functions

(d = N; tN ��1;�tN ��1) ;

and

(d = Y; tY ��1;�tY +�2) ;

such that

tN > �1 + tY ;

and

tN < �̂1 + tY :

Again we assume that if a challenge occurs agent 1 subsequently learns her true prefer-

ence. Suppose by way of contradiction that (�01; �
00
1) ! (0; 0) : The payo¤ to agent 2 from
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challenging given that she observed signal �02 is

V2
�
Cj�2 = �02; �

L
1

�
= Pr

�
�1 = �01j�2 = �02; �

L
1

�
[K]

+
�
1� Pr

�
�1 = �01j�2 = �02; �

L
1

�� �1
2
(�tN ��1) +

1

2
(�tY +�2)

�

The calculation of Pr
�
�1 = �01j�2 = �02; �

L
1

�
is identical to the case considered in Proposition 1

(see section 6.1 of the appendix for these calculations) and hence lim"!0 Pr
�
�1 = �01j�2 = �02; �

L
1

�
=

0; given the supposition that (�01; �
00
1)! (0; 0) : This means that the value ofK is immaterial.

Thus

V2
�
Cj�2 = �02; �

L
1

�
=

1

2
(�tN ��1) +

1

2
u2 (d = 1;�tY +�2) :

=
1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
;

where the last line comes from the fact that player 2 has a 50:50 chance of being type �H :

The value to agent 2 of not challenging is

V2
�
DCj�2 = �02; �

L
1

�
=

1

2

�
�H � �H

2

�
=

1

4
�H :

since the social choice function speci�es that the project be built if player 2�s preference is

�2 = �H given that �1 = �L; agent 2 pays t2 = �H=2: This in turn happens with probability

1=2 in a truthful equilibrium in phase 2. Thus to ensure a challenge requires

1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
>
1

4
�H ; (1)

When �2 = �002 agent 2 will not challenge an announcement of �
L
1 (the calculations are

identical to those for proposition 1 in the appendix). Thus in order to have (�02 �
00
2)! (0; 0)

we require inequality (1) to hold.
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Now suppose �2 = �02 and agent 1 announces �
H
1 : The payo¤ to agent 2 from not

challenging is

V2
�
DCj�2 = �02; �

H
1

�
=

1

2

�
�H � �H � �H

2

�
� 1
2

�H
2

=
1

4
�H :

The payo¤ from challenging is

V2
�
Cj�2 = �02; �

H
1

�
= Pr

�
�1 = �01j�2 = �02; �

H
1

�
266664
Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
(�tN ��1)

+Pr
�
�2 = �002j�1 = �01; �

H
1 ; C

�
�u2 (d = 1;�tY +�2)

377775
+
�
1� Pr

�
�1 = �01j�2 = �02; �

H
1

��
[K 0] ;

where Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
is the posterior probability that agent 1 assigns to agent 2

having observed the high signal given that she (agent 1) saw the high signal and announced

truthfully but was challenged. The calculation of Pr
�
�1 = �01j�2 = �02; �

H
1

�
is identical to

the case considered in Proposition 1 (see section 5.1 of the appendix for these calculations)

and hence lim"!0 Pr
�
�1 = �01j�2 = �02; �

H
1

�
= 1; given the supposition that (�01; �

00
1)! (0; 0) :

This means that the value of K 0 is immaterial. Note that the calculation of agent 1�s

posterior is identical to that in the proof of Theorem 2 and hence

lim
"!0

Pr
�
�2 = �02j�1 = �01; �

H
1 ; C

�
=
1

2
:
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Thus with probability 1=2 agent 1 will choose (d = N; tN ��1;�tN ��1) and with proba-

bility 1=2 will choose (d = Y; tY ��1;�tY +�2)
12. Thus

V2
�
Cj�2 = �02; �

H
1

�
=

1

2
(�tN ��1) +

1

2
u2 (d = Y;�tY +�2)

=
1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
:

So to deter a false challenge requires

1

2
(�tN ��1) +

1

2

�
1

2
�H � tY +�2

�
<
1

4
�H ;

which contradicts (1).

4 More general extensive-form mechanisms

4.1 Common p-belief

We have so far restricted attention to Moore-Repullo mechanisms, and one may naturally

wonder whether a di¤erent extensive-form mechanism could lead to truthful revelation as the

unique equilibrium outcome when allowing for (small) p-belief perturbations. As a �rst step

towards answering this question, in this section we consider a simple two-player-two-state

example but allow for fairly general extensive-form mechanisms.

Thus, suppose there are two players: 1 and 2, and two states of the world A and B.

The players have a common prior that each state is equally likely. Each player receives a

conditionally independent signal from the symmetric signal structure we have considered

earlier in the paper so that when " is small the true state of the world is common p-belief

for p near 1. Consider any mechanism in the following class: there are three stages, and in

12Here we assume, as in the �rst example, that in the event of a false challenge agent 1 learns the true
state at stage 3: Again, we could give here a 50:50 chance of making a take-it-or-leave-it o¤er with her
information at the time without altering the conclusion.
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each stage one player acts. Without loss of generality assume that each player�s action set is

identical to her signal. That is, she may announce A or B. Again, without loss of generality,

assume that player 1 acts at time 1, then player 2 acts at time 2, then player 1 acts again

at time 3.

Observe that truthful revelation of the state of the world ! requires one of the following:

(a) player 1 announces ! at time 1 and player 2 announces ! at time 2, or (b) player 2

announces ! at time 2 and player 1 announces ! at time 3.

Denote the messages sent by the players at times 1,2 and 3 as: m1;m2 and m3; and let

the payo¤ to player i be vi(m1;m2;m3). For simplicity we will restrict attention to pure

strategies.

With two states of nature, equal prior pr(A) = pr(B) = 1=2 , and our assumed signal

structure, then when player 2 observes the true state, anticipates player 1 to announce

truthfully but player 1 lies at time 1, then player 2�s posterior belief is simply back her prior

belief 1/2.

Finally, to �x ideas, suppose the true state of the world is A. In the complete infor-

mation game, incentive compatibility for player 2 requires v2(B;A;A) > v2(B;B; �); (where

v2(B;B; �) indicates that once the two players agree the game optimally ends) and incentive

compatibility for player 1 requires v1(B;A;A) > v1(B;A;B). We will work with limiting

payo¤s as the amount of informational asymmetry goes to zero in the imperfect information

game. If both players report truthfully, then player 2�s expected payo¤ (after receiving the

signal that the state of the world is A) from announcing A after player 1 lied is

1

2
v2(B;A;A) +

1

2
v2(B;A;B) (2)

whereas her expected payo¤ from announcing B is

1

2
v2(B;B;A) +

1

2
v2(B;B; �): (3)
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To see this, note that when player 2 receives the signal that the state is A; but believes that

player 1 saw a signal that the state is B; her posterior is 1=2:

Incentive compatibility thus requires

1

2
v2(B;A;A) +

1

2
v2(B;A;B) >

1

2
v2(B;B;A) +

1

2
v2(B;B; �) (4)

Since we have v2(B;A;A) > v2(B;B; �) (from above), a necessary condition for (4) to hold

is

v2(B;A;B) > v2(B;A;A) (5)

But then if the true state of the world is B and player 1 announces truthfully, player 2 will

announce A�since incentive compatibility for player 1 requires v1(B;A;B) > v1(B;A;A)�

which in turn contradicts truthful revelation. This establishes the following:

Proposition 2 Consider a three stage mechanism which implements truth-telling under per-

fect information where two players act sequentially and there are two states of nature. Then,

no common p-belief perturbation of that mechanism, with p < 1; can induce truthful revelation

in pure strategies in both states.

In parallel work, Kunimoto and Tercieux (2009) show that only Maskin-monotonic social

choice functions can be implemented in the closure of the sequential equilibrium correspon-

dence. This in turn suggests that our analysis in this section could be extended to an

arbitrary number of states of nature and to allow for mixed strategies.

4.2 Crazy types

Following Fudenberg, Kreps and Levine (1988) (FKL), we now consider the possibility that

there might not be common knowledge of the payo¤s at terminal nodes of the game induced

by some extensive-form mechanism- this is more general in allowing small probabilities of

e.g. the players having a preference for truthtelling or for making one false report instead of
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another. FKL essentially show that any Nash equilibrium can be �justi�ed�when players

entertain doubts about other players�payo¤s. Under such payo¤ uncertainty, therefore, no

extensive-form mechanism can do better than implement Nash equilibria. The key advantage

of extensive-form mechanisms is to implement social choice functions which are not Nash

implementable, and to do so as a unique equilibrium. But, precisely because such mechanisms

rely on re�nements of Nash equilibrium, they are not robust to introducing payo¤uncertainty.

We illustrate this point in the context of the example of Section 2. Figure 1 depicts the

extensive form game induced by the Hart-Moore-Repullo example discussed in Section 2.

V=10 V=14

High Low

Challenge
No

Challenge

Accept Reject

(0,14)

(4,10)

(1,15) (2,2)

High Low

Challenge

Reject

(4,14)

(0,10)

(3,15) (4,4)

Accept

No

Challenge

Figure 2: Hart-Moore-Repullo example

It is easy to see that when v = 14 the unique subgame perfect equilibrium is for the

Buyer to announce �High�, achieving a payo¤ of 0; rather than announcing �Low�, being

challenged by the Seller, then playing �Accept�and receiving a payo¤ of �1: However, by

writing the game in normal form it is also easy to see that the outcome (Low, No Challenge),

while not subgame perfect, is a Nash equilibrium (the bottom right entry in the left-hand

payo¤ matrix below. Similarly, when v = 10; B announcing 14 is a Nash equilibrium, but

not a subgame perfect equilibrium.
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v=14 C NC

14 (0; 14)� (0; 14)

A (�1; 15) (4; 10)

R (�2;�2) (4; 10)�

v=10 C NC

14 (�4; 14)� (�4; 14)

A (�3; 15) (0; 10)�

R (�4;�4) (0; 10)

Figure 3: HMR example in normal form

But then one can appeal to Proposition 3 in Fudenberg, Kreps and Levine (1988), to

conclude that there exists a �nearby game� (a general elaboration of this game) in which

(Low, No Challenge) is a (subgame perfect) equilibrium.

5 Subgame perfect implementation and the hold-up

problem

5.1 Hold-up without subgame perfect implementation but with

common p-belief

In this section, we abstract from subgame implementation mechanisms and analyze whether

the hold-up problem itself may or may not be a¤ected by introducing small amounts of

private information. To introduce the discussion, consider �rst what would happen if we

allow from deviations in the sense of common p-belief, by introducing (small) amounts of

private information. Without common knowledge of payo¤s, we know from Fudenberg,

Kreps and Levine (1988)) and our above discussion that truth-telling cannot be robustly

implemented through extensive-form mechanisms. Yet, this does not provide foundations to

Grossman and Hart (1986)�s analysis of the hold-up problem, simply because the hold-up

problem also disappears once we allow for such deviations. The argument is straightforward:

the hold-up problem involves a sequential game whose solution concept is a re�nement of

Nash equilibrium. FKL show that such re�nements are not robust to deviations from

common knowledge of payo¤s in the following sense: all (pure strategy) Nash equilibria are
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the limit of strict (and hence sequential) equilibrium for an arbitrarily small change to prior

beliefs about payo¤s. But the hold-up problem arises precisely because, at the investment

stage, players anticipate behavior at the (subsequent) bargaining stage. This sequential

rationality is not robust to particular deviations from common knowledge, as FKL show.

This last result is somewhat disquieting as it implies that the non-robustness of subgame

perfect implementation to deviations from common p-belief, is not so important for the

analysis of the hold-up problem: the problem itself disappears when moving from common

p-belief, for example when introducing crazy types. For instance, consider the standard

hold-up where the are two players (1 and 2) who each make an investment, and then they

bargaining sequentially over the split of the surplus. Now suppose that player 1 is, with

very small probability, a crazy type in the sense that he will never accept any o¤er unless

the other player invested at the �rst-best level. When making an o¤er player 1, even if not

the crazy type, could reject an o¤er and player 2 will update and believe with non-negligible

probability that he is the crazy type. Anticipating this, that player 2 is better o¤ investing

at the �rst-best level, rather than shading. Hence there is no hold-up problem.

However, we now argue that the hold-up problem does not disappear when introducing

small amounts of private information about the cost or value of the good. More generally,

with only common p-belief perturbations of the information structure, the hold-up problem

persists. To see this, consider the following hold-up example. Again, there is a (B)uyer and

a (S)eller of a good. The value of the good to B can be high or low (values H and L

respectively). S is endowed with one unit of the good and values it at zero. S can make

an investment, i at cost c (i) ; which a¤ects the prior probability that the good will be high

value. Assume that c is increasing and convex, that c (0) = 0; c0 (0) = 0 and c (1) = 1:

After this investment is made, suppose that B and S each receive a conditionally independent

signal about v; according to the signal structure used before, i.e:
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�0B�
0
S �0B�

00
S �00B�

0
S �00B�

00
S

Pr(v = H) i (1� ")2 i (1� ") " i" (1� ") i"2

Pr(v = L) (1� i) "2 (1� i) (1� ") " (1� i) " (1� ") (1� i) (1� ")2

The timing is as follows: S chooses i; B and S simultaneously observe their signals about

v; then B and S bargaining over the transfer of the good according a bargaining protocol

where each player has a 50:50 chance of being able to make a take-it-or-leave-it o¤er.

The �rst-best involves S solving

max
i
fiH + (1� i)L� c (i)g

The �rst-order condition is

(H � L) = c0
�
iFB
�
:

Now consider the second-best. If B gets to make the o¤er then he clearly o¤ers zero and

gets the good. If S gets to make the o¤er and saw signal �0; then her posterior belief about

v is

Pr (v = Hj�B = �0) =
i (1� ")2 + i (1� ") "

i (1� ")2 + i (1� ") "+ (1� i) "2 + (1� i) (1� ") "

=
i� i"

(1� 2i) "+ i
:

And if she saw signal �00 her posterior is

Pr (v = Hj�B = �00) =
i" (1� ") + i"2

i" (1� ") + i"2 + (1� i) " (1� ") + (1� i) (1� ")2

=
i"

1� (1� 2i) "� i
:

Now consider the following equilibrium for " small but positive. If S gets the high signal

she o¤ers a price of
i� i"

(1� 2i) "+ i
H; (6)
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and if she gets the low signal she o¤ers a price of

i"

1� (1� 2i) "� i
L; (7)

and B accepts price (6) if he got the high signal and price (7) if he got the low signal. S

will not want to deviate from price (7) if she gets the low signal because if she raises it to

price (6) B infers that S�s signal was high, but her signal was almost surely low. So for "

small B�s posterior belief is that v is close to (H + L) =2 and will reject the o¤er. Obviously,

is S got the high signal she does not want to deviate to a lower price. Thus, we have an

equilibrium.

Now consider the investment stage. S�s expected payo¤ is

1

2
0 +

1

2
(iH + (1� i)L)� c (i) :

The �rst-order condition for her maximization problem is therefore

1

2
(H � L) = c0

�
iSB
�
:

By the convexity of c it follows that iSB < iFB; and hence the hold-up problem remains

when introducing small amounts of private information about the value of the good.

5.2 Hold-up and the HM example

Finally, it is straightforward to show that the hold-up problem may no longer be solved by

the MR mechanism once we introduce small amounts of private information about the good�s

valuation. To see this, let us simply introduce a stage prior to the mechanism considered in

Section 2, where the Seller has the opportunity to make an investment which increases the

probability that the good will be of high quality (i.e. that v = 14): This is in the spirit of

Che and Hausch (1999). Let S chooses investment i at cost c(i); and let the Pr(v = 14) = �i:
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The �rst-best benchmark involves maximizing total surplus from this investment. That is

max
i
f�i14 + (1� �i)10� c (i)g :

The �rst-order condition is

4� = c0 (i) :

Under the mechanism considered above the Seller solves the following problem for " small

max
i

8><>: [�i(1� Pr(Ljv = �v)) + (1� �i) Pr (Hjv = v)] 14

+ [(1� �i) (1� Pr(Hjv = v)) + �iPr (Ljv = �v)] 10� c (i)

9>=>; ;

where Pr(Ljv = �v) is the asymptotic probability that the buyer announces low when getting

signal �0B and Pr(Hjv = v) is the asymptotic probability that she announces high when

getting signal �00B as "! 0:

Proposition 1 implies that at least one of these two probabilities remains bounded away

from zero as " ! 0: This in turn implies that the equilibrium investment under the above

revelation mechanism, de�ned by the �rst-order condition

4� (1� Pr(Ljv = �v)� Pr (Hjv = v)) = c0 (i) ;

remains bounded away from the �rst-best level of investment as "! 0:

Therefore, the Seller will not invest at the �rst-best level under non-integration of the

Buyer and Seller. This is precisely in accordance with the conclusion of Grossman and Hart

(1986).
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6 Conclusion

Overall, our analysis provides some support for the Grossman-Hart-Moore approach to the

hold-up problem. Namely, we started from a situation with perfect information where there

is hold-up in the absence of a mechanism but the MR mechanism solves the problem; then we

pointed to arbitrarily small deviations from perfect information about the good�s valuation,

for which the MR mechanism fails to induce truth-telling in pure or totally mixed strategies.

We then argued that for a wide class of extensive-form mechanisms, there exist (arbitrarily

small) deviations of this mechanism which involve common p-belief and therefore preserve

the hold-up problem, and yet do not implement truth-telling as unique equilibrium in pure

strategies.

If one allows for crazy types, in the sense of FKL, then there will generally be an equi-

librium in which the hold-up problem disappears, and one where it is still present. In such

settings one might still think of a potential role for asset ownership, namely as an equilibrium

selection device and not as a device for providing incentives for speci�c investments.
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7 Appendix: Bayesian updating and ex post payo¤s

Note: The following calculations are for the general case of prior probability of the good being

high value of p; as opposed to 1=2:

7.1 Preliminaries

In the derivation of posterior beliefs and ex post payo¤s, we shall make use of the fact that

B updates her beliefs about S�s signal according to:

Pr (�S = �0Sj�B = �0B) =
p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")
;

Pr (�S = �00Sj�B = �0B) =
"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")
;

Pr (�S = �00Sj�B = �00B) =
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")
;

Pr (�S = �0Sj�B = �00B) =
" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")
;

Similarly, a type �0S seller updates her beliefs about B�s signal given her own signal and B�s

announcement, according to:

Pr (�B = �0Bj�S = �0S; L) =
(p(1� ")2 + (1� p)"2) (�0B)

(p(1� ")2 + (1� p)"2) (�0B) + "(1� ") (1� �00B)

Pr (�B = �00Bj�S = �0S; L) =
"(1� ") (1� �00B)

"(1� ") (1� �00B) + (p(1� ")2 + (1� p)"2) (�0B)
:

The conditional probabilities for a type �00S seller, are:

Pr (�B = �0Bj�S = �00S; L) =
"(1� ") (�0B)

"(1� ") (�0B) + (p"
2 + (1� p)(1� ")2) (1� �00B)

Pr (�B = �00Bj�S = �00S; L) =
(p"2 + (1� p)(1� ")2) (1� �00B)

(p"2 + (1� p)(1� ")2) (1� �00B) + "(1� ") (�0B)
:
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7.2 Buyer�s ex post payo¤s

Suppose �B = �0B: The value to B from announcing �high�when she receives signal �0B is

VB (Hj�B = �0B) = Pr (�S = �0Sj�B = �0B)

0B@ (E[vj�0B; �0S]� 14)

+ (E[vj�0B; �0S]� 14)

1CA
+Pr (�S = �00Sj�B = �0B)

0B@ �00S (E[vj�0B; �00S]� 14)

+ (1� �00S) (E[vj�0B; �00S]� 14)

1CA
=

p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
14

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
10

1CA
+

"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")
(p14 + (1� p)10)� 14:

The value to B from announcing �low�when she receives signal �0B is

VB (Lj�B = �0B) = Pr (�S = �0Sj�B = �0B)

0BBBB@
(1� �0S)

0B@ Pr (v = 14j�0B; �0S) (14� 9� 6)

+Pr (v = 10j�0B; �0S) (10� 9� 5)

1CA
+�0S (E[vj�0B; �0S]� 10)

1CCCCA

+Pr (�S = �00Sj�B = �0B)

0BBBB@
�00S

0B@ Pr (v = 14j�0B; �00S) (14� 9� 6)

+Pr (v = 10j�0B; �00S) (10� 9� 5)

1CA
+(1� �00S) (E[vj�0B; �00S]� 10)

1CCCCA

=
p(1� ")2 + (1� p)"2

p(1� ")2 + (1� p)"2 + "(1� ")

0BBBBBBBB@
(1� �0S)

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
(14� 9� 6)

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
(10� 9� 5)

1CA
+�0S

0B@
�

p(1�")2
p(1�")2+(1�p)"2

�
14

+
�
1� p(1�")2

p(1�")2+(1�p)"2

�
10� 10

1CA

1CCCCCCCCA
+

"(1� ")

p(1� ")2 + (1� p)"2 + "(1� ")

0B@ �00S (p(14� 9� 6) + (1� p)(10� 9� 5))

+ (1� �00S) (p14 + (1� p)10� 10)

1CA :
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To see where the payo¤s come from recall that if B announces �high�then the mechanism

speci�es that she gets the good for 14: If she announces low and S does not challenge she

gets the good for 10: If S does challenge then we assume that the true state of the good is

revealed to both parties and we are therefore back in the complete information setting13.

When �B = �00B we have

VB (Hj�B = �00B) = Pr (�S = �0Sj�B = �00B)

0B@ E[vj�00B; �0S]� 14

+E[vj�00B; �0S]� 14

1CA
+Pr (�S = �00Sj�B = �00B)

0B@ E[vj�00B; �00S]� 14

+E[vj�00B; �00S]� 14

1CA
=

" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")
(p14 + (1� p)10)

+
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")
(p14 + (1� p)10)� 14;

and

VB (Lj�B = �00B) = Pr (�S = �0Sj�B = �00B)

0BBBB@
(1� �0S)

0B@ Pr (v = 14j�00B; �0S) (14� 9� 6)

+Pr (v = 10j�00B; �0S) (10� 9� 5)

1CA
+�0SE[vj�00B; �0S]� 10

1CCCCA

+Pr (�S = �00Sj�B = �00B)

0BBBB@
�00S

0B@ Pr (v = 14j�00B; �00S) (14� 9� 6)

+Pr (v = 10j�00B; �00S) (10� 9� 5)

1CA
+(1� �00S)E[vj�00B; �00S]� 10

1CCCCA
13This could be modi�ed so that at the bargaining stage�in the spirit of Myerson (1984)�each player has

a 50% chance of making a take-it-or-leave-it o¤er, using the information she has at that time. If B gets to
make the o¤er she always o¤ers zero, and if S gets to make the o¤er she o¤ers a price equal to the posterior
expectation of the value of the good conditional on her signal �S :
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=
" (1� ")

p"2 + (1� p)(1� ")2 + "(1� ")

0B@ (1� �0S) (p(14� 9� 6) + (1� p)(10� 9� 5))

+�0S (p14 + (1� p) 10)� 10

1CA

+
p"2 + (1� p)(1� ")2

p"2 + (1� p)(1� ")2 + "(1� ")

0BBBBBBBB@
�00S

0B@
�

p"2

p"2+(1�p)(1�")2

�
(14� 9� 6)

+
�
1� p"2

p"2+(1�p)(1�")2

�
(10� 9� 5

1CA
+(1� �00S)

0B@
�

p"2

p"2+(1�p)(1�")2

�
14

+
�
1� p"2

p"2+(1�p)(1�")2

�
1CA 10

1CCCCCCCCA
:

7.3 Seller�s ex post payo¤s

The payo¤ to player S conditional on �S = �0S and B announcing �high�is

VS (�S = �0S; H) = VS (�S = �00S; H) = 14:

since the mechanism speci�es that B gets the good for 14 when she announces �high�.

In the equilibria that we consider in the text, the buyer is either exactly or approximately

truthful, so there is positive probability that the buyer announces �low�, and we can thus

compute conditional payo¤s on this event using Bayes rule.

The payo¤ for player S conditional on challenging when �S = �0S and B announcing �low�

is

VS (Cj�S = �0S; L) = Pr (�B = �0Bj�S = �0S; L)

0B@
0B@ Pr (v = 10j�0B; �0S) (5� 9)

+Pr (v = 14j�0B; �0S) (9 + 6)

1CA
1CA

+Pr (�B = �00Bj�S = �0S; L)

0B@
0B@ Pr (v = 10j�00B; �0S) (5� 9)

+Pr (v = 14j�00B; �0S) (9 + 6)

1CA
1CA

=
(p(1� ")2 + (1� p)"2) (�0B)

(p(1� ")2 + (1� p)"2) (�0B) + "(1� ") (1� �00B)

0B@
0B@
�
1� p(1�")2

p(1�")2+(1�p)"2

�
(5� 9)

+
�

p(1�")2
p(1�")2+(1�p)"2

�
(9 + 6)

1CA
1CA

+
"(1� ") (1� �00B)

"(1� ") (1� �00B) + (p(1� ")2 + (1� p)"2) (�0B)
(((1� p) (5� 9) + p (9 + 6))) :
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The payo¤ for player S conditional on not challenging when �S = �0S and B announcing

�low�is

VS (DCj�S = �0S; L) = 10

The payo¤ for player S conditional on challenging when �S = �00S and B announces �low�

is

VS (Cj�S = �00S; L) = Pr (�B = �0Bj�S = �00S; L)

0B@
0B@ Pr (v = 10j�0B; �00S) (5� 9)

+Pr (v = 14j�0B; �00S) (9 + 6)

1CA
1CA

+Pr (�B = �00Bj�S = �00S; L)

0B@
0B@ Pr (v = 10j�00B; �00S) (5� 9)

+Pr (v = 14j�00B; �00S) (9 + 6)

1CA
1CA

=
"(1� ") (�0B)

"(1� ") (�0B) + (p"
2 + (1� p)(1� ")2) (1� �00B)

(((1� p) (5� 9) + p (9 + 6)))

+
(p"2 + (1� p)(1� ")2) (1� �00B)

(p"2 + (1� p)(1� ")2) (1� �00B) + "(1� ") (�0B)

0B@
0B@
�
1� p"2

p"2+(1�p)(1�")2

�
(5� 9)

+
�

p"2

p"2+(1�p)(1�")2

�
(9 + 6)

1CA
1CA :

The payo¤ for player S conditional on not challenging when �S = �00S and B announces �low�

is

VS (DCj�S = �00S; L) = 10

7.4 Proof of Theorem 2

Suppose, by way of contradiction, that as " ! 0; we have �jj ! 1 and �jj ! 1: Now

consider player 2�s decision whether or not to challenge at stage 1.2, when player 1 announces

something other than �j1: By Bayes Rule, player 2�s posterior belief that player 1 saw signal

�j1 given that player 2 saw signal �
j
1 and that player 1 announced something other than �

j
1 is
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� (") � Pr
�
�1 = �j1

�� �2 = �j2; �̂1 = �k1

�
=
Pr
�
�1 = �j1; �2 = �j2; �̂1 = �k1

�
Pr
�
�2 = �j2; �̂1 = �k1

�
=

Pr
�
!̂1 = !k1

�� �1 = �j1; �2 = �j2
�
Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

Pr
�
!̂1 = !k1

�� �1 = �j1; �2 = �j2
�
Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �2 = �j2; �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj Pr
�
�1 = �j1; �2 = �j2

�Pn
`=1 Pr

�
!̂1 = !k1

�� �1 = �`1
�
Pr
�
�1 = �`1; �2 = �j2

�
=

�kj

h
1
n

�
(1� ")2 + (n� 1)

�
"

n�1
�2�i

�kj

h
1
n

�
(1� ")2 + (n� 1)

�
"

n�1
�2�i

+
P

` 6=j �
k
`

h
1
n

�
(1� ") "

n�1 +
"

n�1 (1� ") + (n� 2)
�

"
n�1
�2�i

:

Also, let

�k (") = Pr
�
!1 = !k1j�1 = �j1; �2 = �j2

�
; for k 6= j

= 1� (1� ")2

(1� ")2 + (n� 1) "2

(n�1)2
:

Finally let � (") =
P

k 6=j �k (") : Note that if player 1 indeed saw signal �
j
1 then at stage

1.3 with probability 1� � (") she will choose fy; ty +�g and with probability � (") she will

choose fx; tx +�g : Under the former choice player 2 receives a transfer of ty+� and under

the latter choice she receives a transfer of tx ��:
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The payo¤ to player 2 from challenging is therefore

V C
2 = � (")

264 � (")
�
1
n

Pn
i=m (u2 (x; !

m
2 )) + tx ��

�
+
�
1� � (")

�
1
n

Pn
i=m u2 (y; !

m
2 ) + ty +�

��
375

+
X
z 6=j

Pr
�
�1 = �z1j�2 = �j2; �̂1 = �k1

�

�

0B@ Pr
�
!1 = !z1j�1 = �z1; �2 = �j2

� �
1
n

Pn
i=1 u2 (y; !

i
2) + ty +�

�
+
�
1� Pr

�
!1 = !z1j�1 = �z1; �2 = �j2

�� �
1
n

Pn
i=1 (u2 (x; !

i
2)) + tx ��

�
1CA

Note that as "! 0; � (")! 1; and that given the supposition that �jj ! 1 as "! 0 we

have � (") ! 0 as " ! 0; unless �kj is of the order of ": If it is then for a mixed strategy

equilibrium to exist requires �jj and �
j
k such that player 1 is indi¤erent between announcing

truthfully and not. This requires �jj 6= 1; which is a contradiction. For if �
j
j = 1 (i.e. player

2 announces truthfully) then player 1�s preference is accepted, but then player 1 plainly

cannot be indi¤erent for all social choice functions f = (D;T1; T2) :

We thus return to the case where � (")! 0 as "! 0; and note that

Pr
�
!1 = !z1j �1 = �z1; �2 = �j2

�
=

Pr
�
�1 = �z1; �2 = �j2; !1 = !z1

�
Pr
�
�1 = �z1; �2 = �j2

�
=

Pr
�
�1 = �z1; �2 = �j2

��!1 = !z1
�
Pr (!1 = !z1)

Pr
�
�1 = �z1; �2 = �j2

�
=

1
n
(1� ") "

n�1
1
n

�
2 (1� ") "

n�1 + (n� 2)
�

"
n�1
�2�

=
1� "

2 (1� ") + n�2
n�1"

;

where the third equality holds by conditional independence of �1 and �2; and the fourth
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equality is derived as follows.

Pr
�
�1 = �z1; �2 = �j2

�
=

nX
k=1

Pr
�
�1 = �z1; �2 = �j2

��!1 = !k1
�
Pr
�
!1 = !k1

�
=

1

n

nX
k=1

Pr
�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�

=
1

n

0B@ P
k2f`;jg Pr

�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�

+
P

k 62f`;jg Pr
�
�1 = �z1j!1 = !k1

�
Pr
�
�2 = �j2

��!1 = !k1
�
1CA

=
1

n

 
(1� ")

"

n� 1 +
"

n� 1 (1� ") + (n� 2)
�

"

n� 1

�2!

=
1

n

 
2 (1� ")

"

n� 1 + (n� 2)
�

"

n� 1

�2!
;

so that

lim
"!0

Pr
�
!1 = !z1j �1 = �z1; �2 = �j2

�
= lim

"!0

1� "

2 (1� ") + n�2
n�1"

=
1

2
.

Therefore the payo¤ as "! 0 to player 2 from challenging is

0B@ 1
2

�
1
n

Pn
i=i u2 (y; !

i
2) + ty +�

�
+1
2

�
1
n

Pn
i=i (u2 (x; !

i
2)) + tx ��

�
1CA :

Note that the �s cancel out which means we can no longer conclude that player 2 will be

willing to challenge for all social choice functions f: That is, there exists an f such that the

payo¤ from challenging is smaller than the payo¤ from not challenging, that being

1

n

nX
i=1

�
u2
�
D
�
!̂1; !

i
2

�
; !i2
�
+ t2

�
:

Thus, player 2 will not necessarily challenge if she sees signal �j2 and player 1 announces

!k1; k 6= j:

Now consider other signals that player 2 could observe. Note that by the construction
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of the signal structure

Pr
�
�1 = �j1j�2 = �k2; �̂1 = �k1

�
; k 6= j =

1

n� 1 Pr
�
�1 = �j1j�2 6= �j2; !̂1 = !k1

�
;

which goes to zero as " ! 0: Applying the same reasoning as above player 2 will not

challenge in this case either.

Now let us consider player 1�s choice when �1 = �j1: Given that player 2 will not challenge

when "! 0; we have for " su¢ ciently small that the payo¤ to announcing �̂1 = �j1 is

V j
1 =

1

n

 
nX
i=1

u1
�
D
�
!j1; !

i
2

�
; !i2
�
� tj1

!
:

The payo¤ to announcing some other state �̂1 = �k1; k 6= j is

V k
1 =

1

n

 
nX
i=i

u1
�
D
�
!k1; !

i
2

�
; !i2
�
� tk1

!
:

But there clearly exist social choice functions f = (D;T1; T2) such that V k
1 > V j

1 ; and without

further restrictions on preferences we cannot rule out that these social choice functions also

lead player 2 not to challenge at stage 1:2:

Identical reasoning establishes a contradiction for �jj ! 1 and �jk ! 0 for all k 6= j in

phase 2 of the mechanism where the players�roles are reversed.
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