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A DEFENSE OF TRADITIONAL HYPOThESES ABOUT

TEE TERM STRUCTURE OF INTEREST RATES

In a well-known article, Ccx, Ingersoll and Ross (CIR) [1 re-ex-

amine and find wanting certain hypotheses about the term structure of

interest rates.

A striking feature of CIR's re-examination is that it is entirely

theoretical. dR show that different versions of the pure expecta-

tions theory of the term structure, which traditionally were regarded

as equivalent, are in fact inconsistent with one another when interest

rates are random. Furthermore, in a fairly general continuous time

arbitrage pricing framework, when interest rates are random all ver-

sions of the theory except one are incompatible with equilibrium. dIR

show that the single version which survives this test, the so-called

Local Expectations Hypothesis, does not necessarily have the proper-

ties ascribed to it in the literature. In particular, it is not asso-

ciated with risk-neutrality and it does not necessarily imply that the

long rate is linear in short rates if the short rate is linear in its

own past history.

At first sight dIRts results appear to be devastating to tradi-

tional empirical work on the term structure. They suggest that re-

searchers must specify arbitrage pricing models with a small number of

state variables before proceeding to empirical work. Such models must

restrict not only the deterministic components of interest rate move-

ments, but also the variance-covariance matrix of interest rate info-
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vations and the information set of market participants.'

The purpose of this paper is to defend traditional hypotheses

about the term structure as a starting point for empirical research.

Although these hypotheses may as a matter of fact be false, it is

meaningful to test them against the data; useful empirical work can be

done outside the confines of tightly specified arbitrage pricing mod-

els.

The defense has two parts. In the first, I argue that dR's

criticisms apply to a more restrictive type of expectations theory

than is typically studied in the empirical literature. In the second,

I show that the inconsistencies pointed out by dIR are of "second or-

der" in a precise mathematical sense, and I claim that they may often

be ignored in empirical work.

Section I of the paper presents the first part of the defense. I

begin by showing that it is natural to express a version of an expec-

tations theory of the term structure as a statement about the expected

difference between a random variable and a known one. Such an expect-

ed difference may be called a term premium or risk premium. dIR dis-

cuss versions of the 23! expectations theory of the term structure,

which states that term premia are zero.2 But much of the literature is

concerned with versions of a less restrictive theory, which states

For example, on page 790 dIR discuss a model in which the short rate
follows an elastic random walk: dr = k(m-r)dt + s(r)dz. The model
is closed by assuming that s(r) = sqrt[a + bri and that k(m-r) is
not only the best forecast of dr conditional on r, but also the best
forecast which can be made by the market.

2 This terminology is due to Lutz [9].
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merely that term premia are constant through time. These are referred

to here as versions of the expectations theory of the term structure.

CIR's basic point is that when interest rates are random differ-

ent term premia are not equivalent to one another because of Jensen's

Inequality. This is, of course) correct. But it turns out that dif-

ferent versions of the expectations theory, as opposed to the pure ex-

pectations theory, are not necessarily incompatible with each other or

with arbitrage pricing equilibrium.

In section II I argue that in any case the differences among term

premia are of second order.' I present an approximate linearized

framework for the analysis of the term structure, in which these dif-

ferences disappear. The framework has a number of advantages. It

states a linear relationship between the level and change of a bond

yield and the holding return on the bond; it can easily be applied to

coupon bonds as well as to discount bonds (bills); it suggests simple

regression tests of the expectations theory. In section III I briefly

examine the empirical accuracy of the approximation, using data from

the CRSP government bond tapes.

Honohan [7] also argues along these lines. He points out that arbi-
trage models themselves are only approximations to reality, so re-
sults based on analysis of these models should not be treated as ex-
act.
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I. Expectations Theories: Zero versus Constant Risk ?remia

Following dR. I define P(Y,t,T) as the price at time t of a

claim to one dollar at time T.' This price is a function of t, T and

some vector of state variables Y, which summarizes the state of the

economy at time t. The corresponding yield to maturity is

(1) y(Y,t,T) = -[l/(T-t)J ln P(Y,t,T)

which can also be written as

(1)' ?{Y,t,T) = exp [-(T-t)y(Yt,T)]

The yield is that rate of continuous discount which equates the pres-

ent value of the final payment to the current price. Equivalently, it

is the continuously compounded rate of return on holding the claim to

maturity.

At any time t, and for given state Y, the term structure of in-

terest rates is the set of P(Y,t,T) considered as a function of T.

Assume that this function is differentiable. Then the instantaneous

forward rate on a loan at time T, entered into at time t, is

(2) f(Y,t,T) = — [3P(Y,t,T)/3T]/pçy,t,T)

This section considers only claims to a single payment - that is
bills or discount bonds - and not claims to a stream of payments -
that is coupon bonds. Coupon bonds are discussed in the next sec-
tion.
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= y(Y,t,T) + (T-t)[ay(Y,t,T)/aT

To understand this definition, consider buying one claim to a

dollar at T+AT for P(T+AT) and selling ?(T+AT)/P(T) claims to a dollar

at T for P(T) each. This operation incurs no costs until T, when

P(T+AT)/P(T) dollars must be paid. One dollar is then received at

T+AT. The yield is -ln[F(T+AT)/P(T)]/AT which approaches

-[3P(T)/aT]/P(T) as AT approaches zero.

Equation (2) states a relation between the instantaneous forward

rate and the yield which is analogous to the relation between marginal

and average cost. Thus, for example, when the yield is rising with

maturity the forward rate is higher than the yield.

The instantaneous ns rate of interest at time t, r(Y,t), is the

limit as T approaches t of both f(Y,t,T) and y(Y,t,T).

The instantaneous holding return at time t on a claim maturing at

T is

(3) h(Y,t,T) = dP(Y,t,T)/P(Y,t,T)

where dP is the change in P over an interval of time dt. Although it

is reasonable to assume that the term structure is a differentiable

function of maturity T, it is less reasonable to assume that bond

prices are differentiable with respect to t. Following CIR, I assume

that bond prices follow diffusion processes and hence are undifferen-

tiable with respect to time if they are random.
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I am now able to define two term premia which are the primitive

objects of expectations theories. The instantaneous holding premium

*(Y.t,T) is defined by

(4) $(Y,t,T) Eh(YitiT) - r(Y,t)

where Et denotes mathematical expectation conditional on the informa-

tion Y available at time t. The instantaneous forward premium

*(Y,t,T) is defined by

(5) q'(Y,t,T) = f(Y,t,T) -
Er(Y.T)

The instantaneous holding premium is the expected difference at t be-

tween the instantaneous holding return on a bond which matures at T

and the spot rate at t. The instantaneous forward premium is the ex-

pected difference at t between the forward rate at T and the spot rate

at T.

Equations (4) and (5) can be integrated with respect to t and T

respectively, to give expressions relating the price or yield of a

bond to expected spot rates and premia. We obtain

T
(4)' ?(Y,t,T) = E [exp (-/ [r(Y,s) + Ø(Y,s,T)]ds) It

(5)' -ln P(Y,t,T) = (T-t)y(Y,t,T)
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T
= / (Er(Ys) + 4,(Y,t,s)Jds

t

CIR also discuss a third type of premium. This is defined as the

difference between the gross, uncompounded return on holding a bond to

maturity and the expected equivalent return on receiving the spat rate

at each instant of time:

T
**(Y,t,T) = [l/P(Y,t,Tfl - E( exp I r(Y,s)ds It

I do not discuss this premium concept further here, as it seems more

natural to consider a rate of return over an interval of time in the

manner of equation (1).

Having defined Ø(Y,t,T) and qi(Y,t,T), it is trivial to state two

versions of the pure expectations theory considered by CIR: these are

Ø(Y,t,T) = 0 for all Y, t and T (dR's "Local Expectations Hypothe-

sis't) and qi(Y,t,T) = 0 for all Y, t and T (dIR's "Yield to Maturity

Expectations Hypothesis"). Under the pure expectations theory, hold-

ing or forward premia are zero.

It is also trivial to state the corresponding versions of the ex-

pectations theory: Ø(Y,t,T) = li(T-t) and qi(Y,t,T) F(T-t). Under the

expectations theory, holding or forward prernia are constant through

time after controlling for maturity.

dIR show that the theories • = 0 and = 0 are inconsistent when

interest rates are random, by applying Jensen's Inequality to equa-
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tions (4)' and (5)'. Further, they use an arbitrage argument to show

that the theory * = C is incompatible with any rational expectations

equilibrium. The following theorem demonstrates that these results do

not carry over to the theories (Y,t,T) = H(T-t) and *(Y,t,T)

F(T-t).

Theorem. Under dR's notation and assumptions A.l through A.?,

if XCY,t) = A and â(Y,t,T) = â(T-t), then there exist functions H(T-t)

and F(T-t) such that *(Y,t,T) = H(T-t) and *(Y,t,T) = F(T-t).

Interpretation. dIR's assumptions A.l through A.? establish the

conditions for an arbitrage pricing argument. Assumptions A.l and A.2

postulate that the state of the economy is summarized by N state vari-

ables in the N-vector Y, driven by K underlying sources of uncertainty

(Wiener processes). The subsequent arbitrage pricing argument re-

quires at least K bonds to be traded. A.3 places very mild restric-

tions on investors' preferences, and A.4 through A.7 describe asset

markets as perfect and frictionless.

In dR's notation, 6(Y,t,t) is a K-vector describing the sensi-

tivity of the return on a bond maturing at T, in state Y at time t, to

the K sources of uncertainty. X(Y,t) is a K-vector describing the

market price of each of the K sources of uncertainty. The conditions

of the theorem are that market risk prices are constant, and that the

sensitivities of bond returns to each source of risk are functions

only of bond maturity and not of time or the state of the economy.

Then it is unsurprising that tent premia should be functions only of

maturity.
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The theorem shows by example that the theory * = F(T-t) is

compatible with equilibrium, and is not necessarily inconsistent with

the theory 0 = H(T-t). It might be possible to construct examples in

which $ = B(T-t) but 4' F(T-t) or vice versa. However the example

given seems to be the most natural way for 0 = H(T-t) or q, F(T-t) to

arise.

Proof. Assumptins A.l through A.7 imply that holding returns on

all bonds can be written as

(6) h(Y,t,T) = u(Y,t,T)dt + 6'(Y,t,T)dz(t)

where is the expected instantaneous return and z(t) is the K-dimen-

sional standardized Wiener process driving the economy. An arbitrage

argument shows that

(7) a(Y,t,T) r(Y,t) + X'(Y,t)ó(Y,t,T)

Substituting (7) into (6), taking expectations and using the defini-

tion of Ø(Y,t,T), we have

(8) •(Y,t,T) = X'(Yt)6(Y,t,7)

But if X(Y,t) = X and 6(Y,t,T) = ô(T-t) then

(g)t Ø(Y,t,T) = X'ó(T-t) = H(T-t)
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Next we check to see whether *(Y,t,T) = F(T-t) in this case. If this

theory holds, then equation (5)t can be written as

(5)tt -in P(Y,t,T) = (T-t)y(Y,t,T)

T
= .1 [Er(Y,s) + F(s—tflds

t

It follows that

(9) Et[d in(fl] = r(t) + F(T-t)

But by Ito's lemma,

(10) d ln(P) = (a — 6'6/2)dt + ó'dz

so combining (9) and (10) we have

(11) a(Y,t,T) — 6'(T—t)6(T—t)/2 = r(Y,t) + F(T—t)

But a(Y,t,T) - r(Y,t) = H(T-t) so we have

(12) F(T—t) = H(T—t) —

= [X' - 6'(T-t)/2]6(T-t)
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Thus we have found a solution for F(T-t) and verified that the theory

= F(T-t) holds under the conditions of the theorem.

Comment. The third type of premium discussed by Clii is not con-

stant under the conditions of the theorem. It is easy to show that

this premium is proportional to the expected uncompounded gross return

on receiving the spot rate at each instant of time,

T
$*(Y,t,T) = G(T_t)E[ exp I r(Y,s)dsj.

t
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II. An Approximate Linearized Framework for Study

of the Term Structure

In this section I present a set of linear approximations relating

forward rates, holding returns and yields to maturity. These approxi-

mations serve a double purpose. First, they show that the inconsis-

tencies pointed out by Ccx, Ingersoll and Ross are of second order in

a precise mathematical sense. Secondly, they can be derived for cou-

pan bonds as well as discount bonds, and thus allow an easy direct ap-

proach to the study of coupon bond data5

The first step is to derive a coupon bond equivalent of equation

(2). Define the yield to maturity on a coupon bond which pays a con-

tinuous coupon stream at rate C from t to T, and then a final payment

of a dollar at time T, by the implicit function

T
(13) C I exp [-(s-t)y(Y.t,T)]ds + ex[-(T-t)y(Yt,T)J

T
= Pc(YtT) = C / P(Y,t,s)ds + P(Y,t,T)

This equation states that y(Yt,T) is that rate of return which dis-

counts the coupon and principal payments of the bond to Pc(Yt,T), its

time t price.0 The price is just the sum of those payments' present

Traditionally, researchers have followed Mcculloch 112] and trans-
formed a coupon bond yield curve into an implied discount bond yield
curve before conducting their analysis. This procedure is elaborate
and itself subject to error.

Note that when = 1 (the bond is selling at par), the yield just
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values - a coupon bond is equivalent to a portfolio of discount bonds

- so Pc(YtT) can also be written in terms of discount bond prices

P(Y,t,T) or discount bond yields y(Y,t,T).

Equation (13) expresses a complicated nonlinear relationship be-

tween y, C and the term structure of discount bond yields {y(Y,t,s)).

Write this as KEYCCi(Y(Y,tIS)}I = 0. K is a functional, since one of

its arguments is {y(Y,t,sfl, a function of s. The first-order expan-

sion of K is obtained by applying the calculus of variations, in a

manner analogous to the Taylor expansion for a function. Expanding

about the path y = C {y(Y,t,s)} = R for some R, we obtain

(14) - K[YcC,{Y(Yit,5)}] K[R,R,{R}]

+ (Y-R)aK/aY + (C-R)aK/c + cak/as

where the derivatives are evaluated at the point [R,R,(R}} and is

defined by y(Y,t,s) = R + c4(Y,t,s). (Y,t,s) is the "variation" in

the path of zero-coupon rates;to obtain the solution I set (Y,t,s) =

y(Y,t,s) - R and 1. Details of the linearization procedure are

explained in the Appendix to this paper.

Equation (14) generates a simple linear approximate relationship

between yCYt,T) and the term structure of forward rates {f(Y,t,s)).

C does not appear in this relation. We have

T

(15) Tc('1',tT) [R/(l—exp[—(T—t)R])] I exp[—R(s—t))f(Y,t,s)ds
t

equals the coupon rate C.
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This can be rearranged to express the forward rate f(Y,t,T) as a func-

tion only of the level and slope of the term structure of coupon bond

yields at the point (t,T):

(16) f(Y,t,T)

+ [l-exp[ -(T-t)R1 1/ [R(exp[-(T-t)R] ) ] 3Yc(YtT)/3T

These equations can be interpreted in a more intuitive way, and

related more closely to equation (2), by introducing the concept of

"durationt. Duration was defined by Macaulay [10) as the present-val-

ue-weighted average length of time before repayment of a loan, where

the yield to maturity on the loan is used to compute present value.'

The duration Dc(ycitT) of a bond maturing at T with coupon C and

yield y is

(17) Dc(Yc.tT) C / (s_t)exp[_(s_t)yc]ds + (T_t)exp[(Tt)Yc)

At the point of linearization, the duration is

T
(17)t DR(T_t) = R I (s-t)exp[-(s-t)R]ds 4- (T-t)exp[-(T-t)R]

t

[l-exp[-(T-t)RI/R

Macaulay also mentions that the true discount function could be used
to compute present value. These two definitions are equivalent at
the point of linearization.
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It follows that 3DR(T_t)/aT = exp[-(T-t)R], and we can rewrite (15)

and (16) as

T

(15)' Yc('hltT) = [l/DR(T_t)] J 3DR(s_t)/3s f(Y,t,s) ds
t

(16) f(Y,t,T) y0ç,t,T) + [DR(T_t)/(DR(T-t)/3T)1 ay0(Y,t,T)/&T

Equation (16)' is directly analogous to equation (2). expressing

a marginal-average relation between the forward rate and the coupon

bond yield. The concept of duration also applies to discount bonds,

for which DR(T_t) = (T-t) and 3O/T = 1. Then equation (16)' reduces

to equation (2) and holds exactly.

Next I apply the method of linear approximation to the holding

return on a coupon bond. In a straightforward modification of equa-

tion (3), this holding return is defined as

(18) hc(YtT) = LdPc(YitT) + CdtJ/Pc(Y.tiT)

A coupon bond yields a direct return from its coupon payment even if

there is no capital gain dPc.

Recall that is a function of and C: from equation (13),

PC = (C/yc)Il_exp[_(T_t)YcJl + exp[—(T-t)y

- 15 -



I now assume that the coupon bond yield y follows an Ito pro-

cess' with parameters ji and 0:

(19) dy(Y,t,T) = p(Y,t,T)dt + o(Y,t,T)dz

Now I can apply Ito's lemma to (18). and obtain

(20) hc = {[a?c/yc]dyc + [C + PcI3t + (2Pc/Yc2)a2/2]dt}/Pc

= {[Pc/aYc]dYc + ftcPc + (a2P/3y2)a2/2]dt)/P

where the second step uses the fact that = C + P/9t. The intui-

tion here is that when p = a = 0, h = YcitTt the rate of hold-

ing return is just the yield. Some of this return comes from price

change, which makes up the difference between the yield and the coupon

return: if the yield is higher than the coupon, the bond sells for

less than par and appreciates towards par as it nears maturity. When

a > 0 the expected holding return exceeds the yield even when p 0

and there is no expected change in the yield. However , we shall see

that this effect is of "second order" in that it does not appear in

the linearized holding return.

• This assumption is perfectly consistent with the assumption of CIR
that the bond price follows an Ito process with parameters a? and 6?
(equation (6)). Equation (10) expresses the yield on a discount
bond as an Ito process, and gives the parameters of this process as
functions of a and 6. An equivalent solution for the yield on a
coupon bond cannot be calculated explicitly, but it will have the
form stated in the text.
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point c = = It, p = C = 0:

(21) hc Rdt + (C_R)3h/aC +
(yc_R)Thc/3Yc

+
wBhc/3P + oah/3a

The details of the calculation are given in the Appendix to this pa-

per: the linear approximation which results is

(22) hc(YitT) Yc(1'.tT)dt - DR(T_t)dYc(YtJT)

Equation (21) says that, ceteris paribus, a high bond yield means a

high instantaneous holding return. However, an increase in the yield

causes a capital loss proportional to the duration of the bond, and

lowers the holding return accordingly.

The proportional relationship between duration and the response

of holding return to yield is easier to understand when one notes that

duration as defined in equation (17) is just (-l/) tioes the elas-

ticity of PC with respect to y. Duration is constructed to measure

the response of price, and therefore holding return, to changes in

yield.

Equation (22) can be used to express the yield on a coupon bond

as a function of future holding returns. We have, by construction of
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(23) Yc.tT) (l/DR(T_t)) I DR(s_t)/Bs
-

DRCT)U(sT)] ds

+ (l/DR(T_t)) / aDR(s_t)Ias [DR(T_s)0(sIT)J dz(s)

Substituting equation (19) into equation (22), we can simplify equa-

tion (23):

(23) Yc(YitT) (u/DR(Tt)) / 3DR(s_t)/3s hc(YST) ds

The coupon bond yield is an approximate weighted sum of future holding

returns. Note that this equation holds in realization, and not just

in expectation.

Equations (15)' and (16)', and (22) and (23)', make up a complete

linearized framework for analysis of the term structure. It is easy

to see that within this framework there are no inconsistencies between

expectations theories. Taking expectations of (23)' substituting

equations (5) and (4) into (15)' and (23)', and equating the right

hand sides of (15)' and (23)', we have

T
(24) (l/DR(T_t)) I (aD(s-t)/s)P(Yt.s)ds

t

T

(l/DR(T_t)) / (3DR(s—t)/as)#(YIs.T)ds
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Within the linearized system, if Ø(Y,t,T) = 0 for all 1, t and T, then

*(Y,t,T) 0 for all Y, t and T: these two forms of the pure expecta-

tions theory imply one another. A fortiori, the corresponding forms

of the expectations theory imply each other.

The linearized system also suggests a simple test of the expecta-

tions theory. Taking expectations of equation (22). and substituting

in equation (4), we have

(25) EdYc(Y.t.T) = (l/D(T-tfl[y(Y.tT) - r(Y,t)]

+ (l/DR(T_t))(YItT)

Under the pure expectations theory the second term on the right hand

side of (25) is zero, while under the expectations theory it is con-

stant. (25) states that when the long rate is (unusually far)

above the short rate r, the long rate is expected to rise. This caus-

es an expected capital loss which offsets the higher yield on long

bonds. (25) can be tested by regressing the change in the long rate

on the long-short spread, and testing for equality of the estimated

coefficient with (l/DR(T_t)). This was the approach of Shiller, Camp-

bell and Schoenholtz [13], who derived a discrete-time equivalent of

the linearized system of this paper, and of Nankiw and Summers [11].

A closely related test is to regress realized excess returns on

long bonds, h_r. on the long-short spread y-r. Under the expecta-

tions hypothesis, no variable known in advance predicts h0-r beyond a

constant term; but under the alternative of a time-varying risk premi-

— 19 —



urn, proxies for • should predict hc_r. Equation (25) shows why the

spread is a good proxy. It states that y0-r = 0 + DgEtdYc so if ex-

pected changes in long rates vary little, the spread moves close to

one for one with the risk premium. Campbell and Shiller ja], Fama [5]

and Huizinga and Mishkin [6] have conducted tests of this sort.

One final implication of equation (25) with a constant risk pre-

mium is that long and short rates are "co-integrated" in the sense of

Granger [6]. That is, if long rates follow an ARIMA process of inte-

grated order d, then the long-short spread, being related to the ex-

pected change in long rates, is integrated of order (d-l). Further-

more the long rate is linear in current and lagged short rates if the

short rate is linear in lagged short rates. The linearized system

lends itself to time series analysis of interest rates, as in Campbell

[2].
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III. The Accuracy of the Linearized Framework

In this seètion I present some tests of the empirical accuracy of

the linear approximations of this paper. I focus on the approximate

expression for the holding return on a long bond.'

In section 2 an approximation was derived only for the instanta-

neous holding return. This is easily extended to the return on hold-

ing a bond from time t to time t', h(YttT):

(26) hc(Ytt'iT) (1/DR(t'_t)) I 3D(s-t)/3s hc(Y.sT)dS

This equation is analogous to the expression (23)' for the yield on a

coupon bond: but here the integral runs from t to t' rather than from

t to T. It follows from (23)t and (26) that the yield on a bond ma-

turin& at T can be expressed as an approximate weighted sum of period

holding returns:

n
(27) Yc(LtT) = (l/DR(T_t)) I [DR(5i+l_t)R(5it)l
hc(Ys.,s.+i,T) 10

where ts0 <
s1

C C s = T. Also the period holding return is a

simple linear function of the yields at times t and t' on a bond ma-

turing at time T:

Berger [1] examined a similar approximation for returns on consols;
his test assumed that 20 and 30 year government bonds are effective-
ly consols. Shiller, Campbell and Schoenholtz [13] tested an ap-
proximation for forward rates.
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(28) hc(Y,tit'.T)

[DR(T_t)YC(Yt.T)_(flR(T_t)_DR(t'_tflyC(Y.t'.T)]/Dp(t'_t)

In the empirical work of this section I use the discrete time version

of (28), developed by Shiller, Campbell and Schoenholtz [13], in which

s-t

DR(s_t) = (1-i )/(1—r) and 31/C1+R).

The Center for Research in Securities Prices (CRSP) at the Uni-

versity of Chicago has a complete set of monthly data on individual

government bonds from 1925. This offers an opportunity to evaluate

the linear approximation (28) because the data set contains both

yields and exact monthly holding returns on long bonds.

In Tables I and II I present summary statistics for exact holding

returns and two different approximate holding returns on 24 bonds.

Table I covers 8 10-year bonds and 4 20-year bonds, while Table II

covers 12 bonds of at least 30 years maturity at issue. All summary

statistics are for the first 5 years (60 observations) after the bond

was issued.

The two approximations in the tables, (1) and (2), differ only in

the point of linearization. Approximation Cl) takes the own coupon

rate on the bond as the linearization point, while approximation (2)

uses a coimnon linearization point of 5.5% for all bonds. 5.5% was
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chosen because it is close to the average coupon rate of all bonds in

Table II, and to the average long bond rate in the 1959-79 period.

Shiller, Campbell and Schoenholtz [13] and Campbell and Shiller [I

linearized around similar points.

Three summary statistics are presented for each approximation.

These are the mean error, the mean difference between the approximate

holding return and the exact holding return; the correlation between

the approximate and exact holding returns; and the ratio of the vari-

ance of the approximation error to the variance of the exact holding

return.

The summary statistics of Tables I and II indicate that the lin-

ear approximations of this paper are reliable if used judiciously.

Consider first the 10-year bonds in rows 1 through B of Table I. One

would expect that the approximation (1) performs well so long as the

interest rate remains close to its level at the issue date. The ap-

proximation (2) should perform well if in addition the bond coupon

rate is fairly close to 3.5%. In rows 1 through 8 of Table I the

worst mean error is in row 8, for a bond with an 8% coupon in the

period 1976:8 to 1981:7. 8% is further from 5.5% than any other cou-

pon rate in the table, and the period was one of rapidly rising and

volatile interest rates. The other mean errors never exceed absolute

values of 0.196% for approximation Cl) and 0.073% for approximation

(2)

The correlations of exact and approximate holding returns are ex-

traordinarily high. They exceed 0.999 for all 10-year bonds except
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row 8, where the correlations are 0.9987 for both approximations. The

ratio of the error variance to the variance of the true return is very

low, never exceeding 0.003 for (1) or 0.007 for (2) except in row 8,

where the ratios are 0.008 and 0.027.

When we examine the 4 20-year bonds in rows 9 through 12 of Table

I, we see a similar pattern. The correlations and mean errors are

comparable to those in the first part of Table I. For bond 12, the

error variance ratio reaches 0.015 for approximation (1) and 0.076 for

approximation (2), but all other statistics are favorable.

In Table II, the first 7 bonds were issued with low coupons in

the relatively stable 1950's and 1960's; the last 5 bonds were issued

with high coupons in the turbulent 1970's. The summary statistics re-

flect this distinction. The first 7 rows are comparable to those of

Table I, but in the last 5 rows the linear approximations begin to

break down. There are high mean errors, reaching 3.366% for (1) and

6.174% for (2) in row 9. The correlations remain very high, falling

just below 0995 in only one ctse, but the error variance ratios rise

to more than 10% for approximation (1) and more than 50% for approxi-

mation (2).

In conclusion, linear approximations should be used with caution

in describing the period of high and volatile interest rates in the

late 1970's and 1980's, and in studying extremely long-term bonds.

Even here, however, the high correlations of Table II show that the

approximations capture the movements of returns well. The approxima-

tions (1) and (2) behave like the exact returns, but amplified and
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damped respectively. For periods with less extreme interest rate

movements, and for somewhat shorter bond maturities, the approxima-

tions are extremely accurate.
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IV. Conclusions

In this paper I have tried to rehabilitate a unified view of the

expectations theory of the term structure. It is true that Jensen's

Inequality places a wedge between different concepts of risk premia in

the term structure; but under plausible circumstances, if holding

period risk premia are constant this wedge is constant also. Further-

more the differences among risk premia disappear in a framework of

linear approximations to term structure concepts. These approxima-

tions track monthly movements in bond returns quite accurately in

postwar U.S. data.
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Appendix: Linearizing a Continuous Time Model Calculus of

tions

To obtain a linearized expression relating yields and forward

rates, we start from equation (13) in the text, which states that

(C/Yc)[l_exP[_(T_t)Yc]] + exp[_(T_t)ycJ = PC

T
= C / P(Y,t,s)ds + P(Y,t,T)

t

The first step is to rewrite the right hand side of this expression as

a function of y(Y,t,s), in a form suitable for linearization by calcu-

lus of variations:

T
(A.1) C / P(Y,t,s)ds + P(Y,t,T)t

T
= 1 + .1 [P(Y,t,s)C + &P(Y,t,s)/s]ds

t

T
= 1 + / P(Y,t,s)[C - f(Y,t,s)]ds

t

T
= 1 + / exp[—(s-t)y(Y,t,s)][C — y(Y,t,s) — (s—t)ay(Y,t,s)/asJds

t

7
1 + I JjC,y(Y,t,s),By(Y,t,s)/3s]ds

t
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Thus we have

(A.2) KEYcC{Y(YtS)}] = 0

=
(C/yc)[1_exp(_(T_t)Yc]]

+ exp(_(T_t)ycJ

T
- 1 — .1 J[C,y(Y,t,s),ay(Y,t,s)/as]ds

t

The partial derivatives of K with respect to its first two arguments

are as follows at the point of linearization: 3K/3C = 0, and OK/ayc =

(l-expf-(T-t)R)/R. To evaluate K/3c, I use the calculus of varia-

tions:.

T

(A.3) K/3E = I f(3J/ay)(ay/as) + (3J/a[ay/asJ)(a[ay/as]/as)]ds
t

At the point of linearization,

T

(A.4) aK/as = I exp[—(s-t)RJ[f(Y,t,s)—R]ds
t

Substituting the derivatives into equation (14) in the text yields

equation (15).

Linearization of holding returns is somewhat easier since we have

an explicit formula for holding returns in equation (20) of the text.

Evaluating the derivatives in equation (21), 3h/aC = 0 and ahc/ayc =

dt. (This follows immediately from the observation that hc = Ycdt
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when p = a = 0). ah/aP = = dt/DR(T_t) at the linear-

ization point. Finally, ah/aa = {(aP/3y)dz + (a2Pc/3Y2)adt}/Pc
=

_dz/DR(T_t)
at the linearization point, Substituting into equation

(21) yields equation (22) in the text.
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