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Survey. These cast further doubt on the hypothesis that the wage penalties associated with increasing
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1 Introduction

How does BMI affect wages? At first blush, the answer seems obvious. Over the last 15 years, a

large literature has established the negative correlation between obesity–the condition of having

a body mass index (BMI) greater than 30–and wages, at least for women. On average, obese

women make two to eight percent less than their normal weight counterparts. Obese men do

not make any less than men of normal weight, and heavy black men may earn slightly more.1

The question we ask is not about obesity, however, at least not obesity alone. We are

interested in the more general relationship between BMI and wages. In particular, we examine

two assumptions that characterize previous research. The first is that the BMI range above 30

is “where the action is.” Although there are good reasons to focus on obese persons, the rest

of BMI distribution has been treated as an afterthought in most of this literature. The second

is that the conditional expectation of wages is linear in BMI, or characterized by some other

relatively simple parametric relationship (such as a quadratic). While specifications based on

these assumptions are valuable because they are tractable and easily interpretable, there are

good reasons to assume they are not true ex ante. In the simplest case, if BMI really does reflect

something meaningful about health, it could be that wages are negatively associated with both

overweight and underweight. Linear models capture only the average effect–which, in this

example, might well be zero–and therefore miss important ways that BMI affects earnings.

Only recently have economists begun examine the shape of the conditional wage function.

Wada and Tekin (2007) is the first study we are aware of that allowed a measure of body

weight to enter into a wage regression as a quadratic. Even more recent has been the adoption

of semi-parametric methods to estimate fully flexible models of the relationship between wages
1Throughout, we use the conventional definitions of “underweight,” “healthy” (or normal) weight, “over-

weight” and “obese” for persons in the BMI ranges of: <18.5, 18.5-<25.0, 25.0-<30.0 and ≥30.0 (National
Heart, Lung and Blood Institute, 1998).
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and BMI. Shimokawa (2008) estimates semi-parametric models and finds that wages are lower

in the tails of the BMI distribution for Chinese men and women. Kline and Tobias (2008),

using data from the 1970 British Cohort study, shows that marginal increases in BMI are most

harmful for men who are overweight or obese and for women in the “healthy” weight range.

In addition to examining the shape of the conditional wage function, we address potential

biases resulting from endogeneity of BMI and reverse causation, whereby wages determine body

weight. We deal with endogeneity using an instrumental variables (IV) approach, where the

respondent’s BMI is instrumented with sibling BMI. To address the problem of reverse causality,

we follow previous research in using lagged body weight to rule out the effect of current wages on

weight. However, our analysis employs longer lags (at least 13 years) and BMI from relatively

early in the worklife. Both general approaches have been used before but ours is the first

application on data for U.S. subjects using semi-parametric (SPM) methods.

We also examine potential mechanisms by which BMI affects wages and, in particular, are

interested in understanding gender differences in these effects. Researchers have pursued several

possibilities in this regard. One is that body weight affects health expenditures for women in

a way that it does not for men, and that overweight and obese women pay for these expected

expenditures in the form of lower wages (Bhattacharya and Bundorf, 2005). Another is that

health differences due to obesity have disparate effects on marginal productivity (Baum and

Ford, 2004). Still another is that women working in professions requiring public interaction are

penalized more for obesity than corresponding men (Baum and Ford, 2004; Pagan and Davila,

1997). Or, finally, employers might discriminate against overweight or obese women but not

men. Although direct evidence is only provided on the first of these possibilities, we interpret

our findings in context of the growing literature examining how ”beauty” is related to earnings.

Our analysis produces three main results. First, women’s wages peak at thresholds far below

the obesity cutoff, usually at a BMI of 23 or lower. This finding is robust to specifications
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correcting for endogeneity or reverse causation and suggests that BMI does not serve as an

index of underlying health or medical costs in a wage-setting context. We test and confirm

this intuition through a non-parametric analysis of relationship between BMI and medical

expenditures. An alternative, which we believe to be more consistent with our findings, is that

BMI is a proxy for physical “attractiveness” (or “beauty”), which is known to affect earnings.

Second, the estimates for men are more dependent on the choice of preferred models. Our

primary specifications suggest that the conditional wage function is increasing in BMI through

the beginning of the range of “overweight” and remains constant or declines modestly thereafter.

Conversely, models using long-lags of BMI or instrumental variables indicate that male wages

peak at low BMI levels, suggesting that, as for women, the observed patterns are more likely

to indicate physical attractiveness than underlying health status or medical costs.

Third, there are often substantial differences for blacks and whites, with the main specifi-

cations suggesting that the conditional wage function peaks at a considerably higher BMI for

minorities and declines more slowly thereafter. Such findings might be consistent with a role

for attractiveness, if there are racial differences in perceptions of ideal body weight. However,

the IV estimates reveal smaller racial disparities, so that these interpretations require caution.

2 Data

We use data on 25-55 year olds from the 1986, 1999, 2001, 2003, and 2005 waves of the Panel

Study of Income Dynamics (PSID), a longitudinal survey that began in 1968 with 4,802 fam-

ilies.2 An additional 581 immigrant families were added in 1997 and 1999, and new families

were created from the existing ones due to the formation of new households (e.g. due to divorce
2The original sample includes a nationally representative group of 2930 families, with the complement from

a low-income sample.
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or to grown children leaving home).3 As of 2005, the PSID contained 8,041 families.

Previous related studies involving U.S. subjects have used data from the National Longitu-

dinal Survey of Youth 1979 (NLSY). We chose instead to utilize the PSID, primarily because

it has characteristics of both longitudinal and cross-sectional data. Since the NLSY provides

information for a single fairly narrow birth cohort, and covering a somewhat limited age range,

previous analyses using it have been largely restricted to relatively young workers. By contrast,

the PSID is a self-replenishing panel, that began in 1968, and so is more suitable to addressing

differences in the effects across age groups. As we argue later, such disparities point to possible

mechanisms by which BMI affects earnings. That said, we show that our results are not driven

by use of the PSID sample: similar patterns are obtained using comparable age ranges in the

PSID and NLSY.

The PSID gathers information through an interview with one primary adult–usually the

male head of household, referred to as the “head”. On occasion, the spouse or cohabiting

partner, the wife/“wife,” as she is called, is the family respondent. In the waves used for this

study, the PSID collects data on height and weight of the head and wife/“wife” only. The

survey respondent gives height and weight information about themselves as well as their spouse

or cohabiting partner. In an effort to minimize reporting error, we include only observations

for which the head or wife reports his/her own height and weight.

Self-reported height and weight contain errors. We adjust for these using the regression

correction suggested by Lee and Sepanski (1995) and commonly employed in the literature

(Cawley, 2004; Chou et al., 2004; Lakdawalla and Philipson, 2007). Specifically, using data from

the National Health and Nutrition Examination Survey (NHANES) III (1986-94), NHANES

1999, NHANES 2001, and NHANES 2003, we regress measured height (weight) on self-reported
3An earlier attempt to include Latino immigrants dates to 1990, at which time 2,043 immigrant families from

the three most prevalent Latino groups in the United States were included. This sample was dropped after 1995.
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height (weight), its square and its cube. The results, for models stratified by gender and race,

are used to predict actual BMI (in the PSID) as a function of self-reported BMI.4

Hourly wages are constructed by dividing total earnings for the calendar year previous to the

interview by total hours worked in that year.5 For all but a handful of persons, total earnings

and hours refer to the main job: very few people report second jobs or overtime earnings. The

PSID imputes wages for people who report earnings but not hours or vice versa. We retain

these observations (less than 2 percent of our sample) although our results are not sensitive to

doing so. Our sample includes 25 to 55 year olds who worked at least 20 hours per week in

their main job. These restrictions limit the sample to prime-age workers. We normalize wages

to 2005 dollars using the CPI, drop observations reporting wages less than half of the federal

minimum, and trim the top one-half percent of wage observations.6 Our final analysis sample

contains 7,251 women and 5,775 men.

3 Methods

The estimates were obtained using a semiparametric (SPM) local linear regression framework

that can be usefully distinguished from both OLS and a univariate kernel regression model.

Ordinary least squares assumes that the conditional mean of the dependent variable is a linear

function of the independent variables. As a result, it is easy to make predictions and to gauge

statistical significance of the coefficients. However, the assumption of linearity is restrictive in
4We use multiple waves of NHANES so that we can restrict the age range of the prediction samples to those

relevant to our earnings study: namely, persons 25-55 years old.
5Validity of the PSID income and hours data has been repeatedly evaluated. In two of the most cited

evaluations (Bound et al., 1994; Duncan and Hill, 1985) earnings were found to be relatively free from reporting
error, but work hours were subject to significant mistakes. This induces errors into hourly earnings unlikely to
abide by textbook assumptions about correlations between these variables and key regressors. However, there is
no reason to believe that work hours in the PSID are subject to more reporting mistakes than similar measures
in other data sets such as the Current Population Survey or NLSY (Bound et al., 2001; Hill, 1992).

6This procedure drops women with a wage above $75.14 and men with a wage higher than $152.57.
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ways that can only partially be overcome through standard transformations, such as including

higher order polynomials of the explanatory variables of key interest. Kernel regression drops

the linearity assumption and models the expectation of the dependent variable as a weighted

mean at every point in the distribution of the independent variable. While this model can

produce accurate univariate estimates with relatively small samples, in multivariate settings, it

is not possible to maintain a meaningful level of accuracy without the sample size increasing

exponentially. In these contexts, we use the specification

Yi = zi ∗ β + f(BMIi) + εi, (1)

where Yi is hourly wages of person i, zi is a vector individual characteristics and year effects,

and f(BMI) is the non-parametric function transforming BMI into wages, which we refer to

as the “conditional wage function.”7 The resulting models are semi-parametric because they

assume that the covariates included in z are linearly related to wages, whereas flexibilty is

maintained in transforming BMI into earnings.

Our estimates use the stepwise “double residual” method outlined in Robinson (1988). In

the first step, we estimate Ŷi and ẑi, as predicted values from a non-parametric regression of

each of the independent and dependent variables on BMI. From these we derive ˆepsY
i = Yi− Ŷi

and ˆepsz
i = zi−ẑi, representing the portions of the dependent and explanatory variables that are

unrelated to BMI. Next we regress ˆepsY on ˆepsz to get β̂eps. Finally, we estimate the conditional

wage function, f̂(BMIi), by non-parametrically regressing the wage residual Yi − zi ∗ β̂eps on

BMIi, using the techniques detailed in the Appendix.8 The intuition behind this procedure is
7We use levels instead of logarithms of wages to make our estimates easily interpretable in the figures and

tables. Using log wages as the dependent variable yields quantitatively and qualitatively similar results.
8We also estimated f(BMI) using the first differencing procedure outlined by Yatchew (2003), and obtained

essentially the same results. However, we maintained the double residual method for our point estimates and
confidence intervals to preserve efficiency.
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to purge the dependent variable of the portion of the supplemental variables that are unrelated

to BMI and then provide a local linear regression estimate showing the relationship of this

residual to BMI itself. We estimate confidence intervals using the “wild” bootstrap algorithm

outlined by Yatchew (1998, p. 688) and Yatchew (2003, pp. 160ff).9

For our instrumental variables estimates, we use the same stepwise procedure, but add to

the first-stage the residuals of a linear regression of BMI on the instruments. Just as with the

other explanatory variables, we form a non-parametric prediction of the residual conditional

on BMI ( ˆiveps) and a residual ( ˆepsiveps). We include that residual in the second stage residual

regression and form our estimate of f̂(BMI) as above. This procedure removes the variation in

BMI not explained by the instruments from the second stage regression, so that what identifies

f̂(BMI) is what the instruments do explain (Shimokawa, 2008; Yatchew, 2003).10

We employ two strategies to address the problems that hamper estimation of the causal effect

of BMI on earnings. First, to deal with the issue of reverse causality, we estimate models in

which the independent variable of interest is lagged BMI (see Seargent and Blanchflower, 1994;

Averett and Korenmann, 1996; Baum and Ford, 2004; Cawley, 2004). The general argument

subtending this strategy is that current wages might influence current BMI but cannot affect

BMI in previous years. However, a statistical association may exist if body weight or wages are

correlated across time. We address this difficulty in two ways. First, where previous related

studies have used BMI lags of up to 7 years, we analyze wages in 1999-2005 as a function of

BMI in 1986, or 13-19 years earlier. Second, we limit this portion of the analysis to individuals

less than 26 years old in 1986, under the assumption that wages early in the person’s work
9This algorithm is often applied when heteroskedasticity is a concern. To form 95-percent confidence intervals,

we resample 1200 times from the residuals to form bootstrap data sets and perform the local linear regression
procedure outlined in the Appendix at between 200 and 300 points in the BMI distribution.

10Although the conditional wage function is identified flexibly, this IV strategy only addresses the covariance
of linear terms in BMI and the instruments. We also estimated models in which we instrumented for quadratic,
cubic, and quartic terms in BMI with corresponding terms in sibling BMI. The results were fundamentally
unchanged.
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career are unlikely to determine BMI during middle-adulthood.

To account for the potential endogeneity between BMI and wages, we follow an instrumental

variables strategy similar to that used by Behrman and Rosenzweig (2001) and Cawley (2004),

where sibling BMI is the instrument.11 The validity of this strategy rests on the suppositions

that sibling BMI is correlated with own BMI and that it is uncorrelated with one own earnings,

except through BMI. The first assumption is uncontroversial and can be tested. The second is

more problematic. In particular, sibling BMI could be independently related to wages if shared

traits affect both weight and wage outcomes due to environmental influences or genetics.

Until recently, much of the literature suggested that environmental influences on body weight

tend to be non-shared between siblings, and that their importance diminishes in adolescence

(Maes et al., 1997). However, recent developments suggest that environment may be more

important than once thought, and the emerging literature linking genetics to human behavior

suggests caution.12 For example, certain polymorphisms of the D4 Dopamine receptor gene are

correlated with attention-deficit hyperactivity disorder (Sunohara et al., 2000; El-Faddagh et al.,

2004).13 It is well known that the regulation of dopamine affects experiences of satiation and

therefore eating behavior.14 Research has also found that both childhood inattention and adult
11Kline and Tobias (2008) have similarly used parent BMI as an instrument; Shimokawa (2008) used sibling

BMI and lagged child weight as instruments. An alternative is to estimate fixed-effects (FE) models (Baum and
Ford, 2004), which automatically account for all time-invariant sources of heterogeneity. However, FE methods
may be problematic for this application because they assume that weight changes translate instantly (or very
rapidly) into wage changes, whereas current earnings are actually likely to be affected by both contemporaneous
and past body weight.

12Most studies attribute the effect of genetics to the difference in the covariance between monozygotic (MZ)
and dizygotic (DZ) twins’ body weight, since DZ twins share only half their genetic material with the other twin.
But in addition to having different genes, DZ twins may also have different dominant and recessive copies of
shared genes. This “non-additive” genotype variation might explain a significant amount of variation in traits
such as body weight. One recent study (Segal and Allison, 2002) identifying this variation through the use of
“virtual twins”–same-aged siblings that don’t share any genetic material–found that a 5 to 45 percent of the
variation in BMI could be due to environmental influences.

13Swanson et al. (2000) found no correlation between the presence of the genetic trait and neuro-psychological
abnormalities sometimes associated with ADHD; however, they did find a correlation between the genetic marker
and extreme behavior.

14However, at least one study failed to find a direct direct link between obesity and the D4 dopamine receptor
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obesity are correlated with the Dopamine D4 receptor gene in women with Seasonal Affective

Disorder (Levitan et al., 2004). These studies raise the possibility that child behaviors affecting

learning and subsequently wages may be correlated with genetic factors also influencing body

weight.15 Therefore, care is needed in interpreting the results of IV models (like those below)

identified by genetic variation in BMI.

4 Full Sample Results

We next summarize our semi-parametric estimates of the relationship between BMI and wages.

Throughout, we stratify by sex, since BMI could have quite different effects for men and

women.16 All models control for age, marital status, number of children, presence of a child less

than two years old in the household, level of schooling, job tenure (in months), the survey year,

and region of residence.17 Race/ethnicity are also held constant in the full sample estimates

(but not when stratifying by race). Unless otherwise noted, the y-axis of the figures indicates

the expected wage, calculated by adding f̂(BMI) to the group-specific average predicted wage;

results are displayed for BMI ranging from 20 to 40.18

gene (Poston et al., 1998).
15Holtkamp et al. (2004) found that children with ADHD were also more likely to be obese, suggesting the

plausibility of a genetic connection.
16All estimates are unweighted, in part because the PSID assigns a zero weight to persons entering the sample

through co-habitation or marriage. To ensure that our results are not driven by this choice, we estimated models
using only the nationally representative sample or limiting the analysis to observations with positive weights and
using these weights in the second-stage regression (of ˆepsY on ˆepsz). In both cases, the results are essentially
the same as those shown.

17We excluded occupation from our primary estimates, since this is one mechanism through which BMI could
affect earnings. Specifications adding controls for broad occupational categories resulted in similar estimates for
women and flatter BMI-earnings profiles for men.

18This range covers approximately the 5th through 95th percentiles of women and the 1st through 98th
percentiles of men. We exclude from the analysis persons with BMI greater than 45, as these observations exert
disproportionate influence on the semi-parametric estmates. This trimming drops 34 men and 125 women.
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4.1 Main Specifications

Figure 1 shows full sample estimates. The conditional wage function of women peaks at a BMI

of 22.8. Weight gains at lower BMI are associated with higher earnings, although the confidence

intervals are sufficiently large that we can not generally reject the null hypothesis of no effect.

By contrast, predicted wages decline rapidly at higher BMI levels, and monotonically, expect

for a statistically insignificant upwards tick just below the obesity threshold.

These findings suggest that female wages begin to fall well before conventional cutoffs for

“obesity” or “overweight”, and even well within the “healthy” weight range. Thus, there is little

evidence of an obesity penalty per se. Instead, the data suggest that earnings are reduced for

women whose weight rises above a low threshold. Of course, BMI does not perfectly measure

obesity and some women in the “normal” BMI range may be clinically obese.19 However, even if

there are classification errors, the very low BMI at which the wage function peaks makes it likley

that we are observing the effects of appearance or beauty, rather than obesity or poor health.

A growing literature suggests that attractive individuals earn more than their counterparts

(Biddle and Hamermesh, 1994; Hamermesh and Biddle, 1998; Harper, 2000; French, 2002),

although the mechanisms for this are not fully understood. Consistent with the possibility that

females are considered most attractive at low levels of BMI, Maynard et al. (2006) provide

evidence that the desired BMI of adult women is between 22 and 23, or almost exactly where

the conditional wage function peaks.

The pattern for men differs substantially. Predicted wages are maximized at a BMI of 26.7

– in the “overweight” range – with lower and higher bodyweight associated with substantial

but imprecisely estimated decreases. Yet these results provide little evidence of a sizeable

“obesity penalty”, except perhaps at extremely high BMI and, instead, raise the possibility of
19However, Burkhauser and Cawley (2008) provide evidence that BMI is more likely to understate than to

overstate obesity prevalence.
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wage reductions from being too light. For instance, the predicted hourly wage of a man with

a BMI of 35 is just $0.81 per hour below that of his peer with a BMI of 27, while a BMI of

20 is associated with hourly earnings that are $3.19 less. Such results are consistent with the

possibility, supported by previous evidence (DiGioachino et al., 2001; Maynard et al., 2006),

that males are held to a different appearance standard than females, with “thin” women viewed

as attractive while corresponding men are considered “scrawny.” However, as discussed below,

we obtain considerably different estimates for men (but not women) when using instrumental

variables techniques, so these results should be interpreted with caution.

4.2 Are Semi-Parametric Estimates Worth the Effort?

Are the benefits from using the semi-parametric models worth the added complexity (and

computational time) need to estimate them? Our answer is a qualified “yes.” To illustrate the

potential gains, Figure 2 plots the results from modeling wages as linear or quadratic in BMI,

alongside the SPM estimates that are novel to this analysis. The conditional wage function of

women is monotonically decreasing in BMI for the linear and quadratic specifications, which

provide essentially identical estimates. While generally reasonable, the parametric models miss

the increase in the wages occuring below a BMI of 23 (although the differences are small and

often not significant), and understate the drop in earnings predicted immediately thereafter.

At the very least, the SPM estimates suggest that the conditional wage function is flat until a

BMI of 23, and decreasing nearly monotonically thereafter.

For men, the gains to flexible models are larger. In Figure 2, it is clear that the linear specifi-

cation fares the worst. The quadratic model better approximates the conditional wage function,

and is sensible if we think that health effects or costs of obesity drive the BMI-wage relation-

ship and begin to bind the wage function at some point in the BMI distribution. However, this

specification is restrictive – overestimating wages at low BMI and in the “overweight” range,
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and indicating that the conditional wage function is maximized at a considerably higher BMI

than the semi-parametric model. These differences are non-trivial since the quadratic model

suggests an “obesity penalty,” while the more flexible estimates indicate that wages begin to

decline much earlier, indicating that other factors may be at work.

Potentially useful, and computationally cheaper, alternatives to our SPM procedure might

involve estimating models with higher order polynomials in BMI or linear splines.20 Indeed,

we would recommend these as time-efficient and relatively simple procedures for much future

research. However, the preferred parametric specification may not be obvious a priori. The

semi-parametric procedures employed here may help to guide that choice and provide a more

complete understanding of the conditional earnings function.

4.3 PSID vs. NLSY

Previous related U.S. research has generally used data from the NLSY, rather than the PSID.

Although we view the PSID to be preferable in several respects, most importantly because

it is not limited to a single cohort or narrow age range, we checked whether the results were

sensitive to its use. To do so, we obtained NSLY data for 1998 through 2004 (approximating

the years of our main PSID analysis), during which time NLSY respondents were 33 to 47

years old. We constructed a sample of correspondingly aged individuals from the PSID and

performed two analyses. First, we estimated simple OLS models for the two data sets.21 For

women, the estimates were quite similar: for instance, the coefficient (standard error) on BMI
20For example, Stata has a pre-programmed routine (the lpoly command) that will estimate local polynomial

fits with usable confidence intervals.
21The NLSY data include only persons in the representative sample and we use similar sample restrictions

as in the PSID. The regressions are not weighted. Since we cannot easily identify pregnant women in the PSID,
we run specifications for the NLSY data with pregnant women included. Separate NLSY models that exclude
pregnant women yield similar results.
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was -0.122 (0.017) in the PSID and -.168 (.024) in the NLSY.22 The findings for men were more

varied: using the PSID, we obtained a coefficient (standard error) of 0.017 (0.044) versus -.192

(.043) for the NLSY. The PSID findings are consistent with those shown in Figure 2. The NLSY

estimates for males run counter to some prior research, which does not uncover an obesity effect

on wages. This is likely due to the young age range of the men previously examined. Gregory

(2007) has recently shown that the negative correlation between BMI and wages strengthens

as men age, consistent with our results.

Second, we ran semi-parametric models for the PSID and NLSY subsamples. These esti-

mates, summarized in Figure 3, reveal generally similar patterns.23 However, there is evidence

of greater non-linearities for women in the PSID than the NLSY, while the male wage function

reaches a maximum at a lower BMI in the NLSY. Overall, it seems likely that we would find

even less evidence of a pure “obesity effect” in the NLSY, since the conditional wage function

is maximized at a lower BMI. However, since the female wage function is approcximately linear

in the NLSY, there might be less gain from the flexible SPM estimates.

4.4 Reverse Causation

The preceeding findings could be biased due to reverse causation, where higher wages lead to

lower BMI. For example, this might occur because high-earners can more easily afford expensive

foods, such as fruits and produce, that are healthy and low in calories. Alternatively, such

individuals may have greater flexibility in their jobs to find time to exercise and could more

often join health clubs. We examine this issue in Figure 4, which shows how lagged BMI

is related to wages. Specifically, we measure BMI in 1986 and wages during 1999-2005. To

reduce the possibility that lagged BMI itself is strongly influenced by (prior) earnings, we
22Our results are also similar to those obtained by Cawley (2004), when we estimate models using the log

(rather than level) of earnings, as he did.
23The smoothing estimates were normed to address some differences in scaling between the two data sets.
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restrict this analysis to persons less than 26 years old in 1986, and so at the beginning of their

worklives. Since BMI typically rises with age, the distribution of lagged BMI is to the left of

the contemporaneous distribution. Therefore, Figure 4 displays BMI (in 1986) over the range

18 to 37, rather than 20 to 40.24

The results for long-lags of BMI and are fairly similar to those using contemporaneous

weight (and the full sample), once we account for the lower average BMI of young adults,

and they again provide scant evidence of an “obesity penalty.” Specifically, the female wage

function peaks at a very low BMI level (below 18) that is actually in the “underweight” category,

although the earnings penalties thereafter are not always monotonic or statistically significant.

For men, lagged BMI is essentially unrelated to contemporaneous wages, but with the peak

predicted at a very low (18.6) BMI. These patterns are similar to those of women and suggest

that being “thinner” is (almost always) better for males as well as females. We return to this

result when examining our instrumental variables estimates.

4.5 Instrumental Variables

BMI could be correlated with unobserved factors also affecting wages. For example, persons

earning high wages because they are motivated at work might similarly be motivated to exercise

and consume healthy diets. The same might be true for individuals with low discount rates. In

both cases, BMI will be correlated with the error term in our wage equation. We address this

possibility through instrumental variables estimates, using sibling BMI as the instrument.25

The results are shown in Figure 5.

For women, the IV estimates are similar to those obtained in the main models. Specifically,
24This corresponds to approximately the 5th to 96th percentile of the female BMI distribution in 1986.
25In a standard linear model, first-stage F-statistics on the instruments are 29.5 for women and 16.2 for

men, well in excess of the level of 10 recommended by Staiger and Stock (1997) to avoid problems with weak
instruments.
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the conditional wage function is maximized at an even lower level of BMI (21.4), with a rapid

decline in earnings predicted from the middle of the “healthy” weight range to just beyond

the threshold for “overweight”. However, the wage function is flat after a BMI of 26, further

suggesting that we are not observing the effects of obesity.

IV estimation makes a larger difference for men. Where the main specifications indicated

that the wage function increased into the “overweight” range, and then declined relatively

slowly, the IV models suggest essentially no effect through a BMI of 25 or so but with wages

predicted to fall rapidly thereafter. Such results could indicate a role of poor health or medical

costs but only if the effects begin to bind at the beginning of the “overweight” category. This

seems unlikely, since most available research (Quesenberry et al., 1998; Andreyeva et al., 2004;

Arterburn et al., 2005), suggests that health costs are similar for “healthy” weight and “over-

weight” individuals but substantially higher for obese and, especially, severely obese persons.

5 Race

The wage functions of white and black females differ markedly (see Figure 6). As in the

full sample, the earnings of white women are predicted to peak well below the “overweight”

threshold (at a BMI of 22.5), to decline markedly immediately thereafter, but then to be

relatively flat beyond the middle of the “overweight” catgory. By contrast, the pattern for

black women is consistent with a true “obesity penalty,” since the maximum predicted wage

occurs at a BMI of 26.1 and nearly all of the economically or statistically significant reduction

takes place at or beyond the obesity threshold. However, these results probably do not indicate

that the obesity effect is due to higher medical costs or health problems. Were this the case,

we would expect the wages of severely obese individuals to be substantially below those of

their mildly obese counterparts (since severe obesity has by far the most deleterious health
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consequences). Instead, there is no evidence that the wage function declines beyond a BMI of

35.

The results for men are even more interesting. The wage function of white males reaches

a maximum at a BMI of 26 but remains relatively flat subsequently, with even severely obese

men predicted to earn only modestly less. Conversely, the expected earnings of black males rise

well past the obesity threshold (to a BMI of 32.1) and then remain flat or decline modestly.

These findings suggest substantial race differences in the BMI-wage profile, with greater

and more binding weight penalties for whites than blacks that, except for black men, begin

well before the obesity threshold.26 Assuming that the relationship between BMI and health

or medical costs is similar for blacks and whites, the racial disparities make it unlikely that the

results in Figures 6 and 7 reflect underlying effects of BMI on health conditions or expenditures.

Instead, we think it more probable that these reflect appearance effects, combined with different

standards of “desired weight” being applied to blacks and whites (and males and females).27

6 Simulations

Table 1 displays semi-parametric estimates of the difference in predicted wages at specified

BMI levels, relative to a reference group of females with a BMI of 23 or males with a BMI of

27.28 The results are presented for subsamples, stratified by race and sex, for both our main

SPM specifications (using actual BMI) as well as from semi-parametric instrumental variables

(SPM-IV) models. Standard errors are estimated from bootstrap replications, with p-values

assigned using the percentile method. Coefficient estimates for the supplementary regressors
26Instrumental variables suggest that this may also be the case for black males, as discussed below.
27For example, college students report higher “desired BMI” for African-American than white females (Di-

Gioachino et al., 2001).
28The reference category is chosen to approximate the BMI level maximizing the conditional wage function

in the main full sample specifications.
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are contained in Appendix Tables A-1 and A-2.

Table 1 highlights several points made previously, as well as some new ones. First, the wage

function for females begins to decline at a relatively low bodyweight. Compared to women with

a BMI of 23, BMIs of 25, 30 and 35 predict statistically significant penalties of $0.96, $1.51 and

$2.62 per hour. This pattern is driven by white females, where the conditional wage function

indicates larger (but less precisely estimated) gaps of $1.02, $1.93 and $3.51 per hour. The IV

models reveal a similar pattern for white women, although with somewhat weaker predicted

wage declines and standard errors that “blow up” at BMIs above 35. Conversely, the findings

for black females are more dependent on the choice of estimation techniques. Using actual BMI,

predicted earnings reach a maximum at a BMI slightly above 26 and then decline relatively

slowly. However, the IV estimates suggest a flatter conditional wage function prior to an earlier

peak (at a BMI of 21.6), and with a more rapid decline thereafter. Thus, the IV estimates for

black females look relatively similar to the patterns for white women.

For men, the primary SPM estimates suggest that only a small wage penalty is associated

with high BMI, except perhaps for severe obesity. Thus, a BMI of 30 or 35 predicts hourly

wages that are a statistically insignificant $0.21 and and $0.81 lower than expected at a BMI

of 27, with larger gaps for white males but positive predicted effects for blacks. On the other

hand, hourly earnings are anticipated to be two to four dollars lower at a BMI of 20 than for

the reference group.

The IV results for males are quite different: the wage function is monotonomically downward

sloping beginning at low levels of BMI, with very large penalties associated with excess weight.

Thus, men at the obesity threshold (BMI=30) are anticipated to earn over four dollars per hour

less than their counterparts with a BMI of 20; those with a BMI of 35 are predicted to receive

about eight dollars less. These differences are of similar size for white and black men, with

the most important disparity being that the conditional wage function declines substantially
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between a BMI of 20 and 25 for blacks, and then flattens temporarily, whereas the pattern is

reversed for whites.

7 BMI and Medical Expenses

Obese individuals might suffer a wage penalty because they have high medical costs that are

partially paid by employers, through the health insurance system, rather than because of any

“beauty premium” or “appearance penalty”.29 We are doubtful of such a mechanism for the

simple reason that the conditional wage function for women turns downwards so early – at a

BMI of under 23 – far below either the obesity threshold or the level at which health costs might

be expected to increase. Nevertheless, we directly test the possibility that health expenditures

explain our results in two ways.

First, we use Medical Expenditure Panel Survey (MEPS) data to produce a univariate

non-parametric estimate of the log of total health expenditures (in 2005 dollars) as a function

of BMI.30 If our previous results are explained by employers using body weight to risk-rate

employees, we would expect the pattern of medical expenditures to approximately track that

for earnings. In particular, the medical costs of women should begin to rise at low BMI, starting

at around 23. The health expenditures for men should either not increase much prior to the

obesity threshold (if we believe the results based on actual BMI), or show a similar pattern as

for women, although starting to rise slightly later (if we place greater trust in the IV estimates).

Figure 8 displays the estimated (non-parametric) relationship.31 For women, predicted health
29Bhattacharya and Bundorf (2005) provide evidence from the Medical Expenditure Panel Survey that the

wage effects of obesity, for women, are borne entirely by those with employer-provided health insurance and that
the expected health costs of obesity are significantly higher for women than men. Based on this, they claim that
the effect of obesity on female wages is due to employers who offer insurance trading off wages against expected
health expenditures. Somewhat contradictory findings are obtained by Baum and Ford (2004).

30We used data from the MEPS 1999, 2001, 2003 and 2005 samples and trimmed the top 1% of BMI obser-
vations. Using levels, rather than logs, of expenditures gives similar results.

31Our analysis does not account for two important characteristics of the expenditure data. First, there are
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expenditures change little prior to the the obesity threshold but increase rapidly thereafter.

This pattern is quite plausible but almost certainly indicates that medical costs do not explain

the observed conditional wage function, since earnings begin to fall much earlier – in a region

where body weight is essentially unrelated to health costs. By contrast, the BMI-medical cost

gradient is monotonically increasing for men, which has some potential for explaining the wage

function obtained from the IV estimates (but less so when using actual BMI).

Second, we examine how the conditional wage function varies with BMI, for subgroups

stratified by age and gender. The medical costs of obesity are likely to increase with age

(Finkelstein et al., 2007). If such expenditures are the source of the fall-off in wages, we should

therefore expect, ceteris paribus, a steeper BMI-wage gradient for older than younger persons.

Instead, figure 9 shows that the conditional wage function declines from its peak much more

rapidly for 35-44 than for 45-55 year old women. Similarly, wages are essentially unrelated to

BMI for the oldest (45-55 year old) males, whereas the data suggest earnings penalties at high

(and low) BMI for younger men (see figure 10). Finally, female wages are predicted to reach

a maximum at a BMI of around 22 or 23 for all three age groups, well below the “obesity” or

“overweight” thresholds. This seems inconsistent with the possibility that health expenditures

are the primary determinant of the relationship between earnings and BMI.32

a lot of zeros: in our sample, accounting for roughly 12% (29%) of women (men). Second, the distribution is
extremely skewed. A more appropriate specification, in a semi-parametric context, would be a partial general
linear model using a gamma distribution and a log link (e.g. see Müller (2001)). Such models are computationally
expensive, even for parsimonious specifications, and we leave it to future research to explore the benefits of using
them.

32It is less clear what age-pattern is expected if “beauty” play a key role. If BMI becomes less closely tied to
perceptions of beauty at higher ages, or if appearance itself becomes a less important determinant of earnings,
we would expect a steeper wage function for younger than older women. Conversely, appearance at young ages
could have long-lasting consequences by directly influencing future productivity through, for example, its effects
on self-esteem (Mobius and Rosenblat, 2006; Mocan and Tekin, 2006), or if initial labor market opportunities
establish a path for future outcomes.
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8 Discussion

The preceding analysis used semi-parametric regression methods to examine how body weight is

related to wages. Compared to previous research, these specifications allow great flexibility on

the role of BMI, while imposing standard parametric restrictions on the other included controls.

A particularly striking finding is that increased BMI is associated with wage reductions for

white females, beginning at low levels of weight – considerably below conventional thresholds

for “obesity” or “overweight”. These results are robust to accounting for reverse causation or

endogeneity and indicate that the conditional wage function is probably not being driven by

the health effects of BMI or by obesity per se. Instead they suggest that, over most of the BMI

distribution, being “thinner is better”, possibly due to social perceptions of beauty or desired

appearance. The evidence for black females is more ambiguous. Our main specifications (con-

ditioning on actual BMI) indicate that the earnings profile is flat prior to a BMI of around 26

but then begins to decline fairly rapidly. This could reflect a different appearance standard for

nonwhites but also raises the possibility of an “obesity penalty”.33 However, instrumental vari-

ables estimates show a pattern more similar to that for white females, with earnings predicted

peak at a low BMI (21.8) and to decline rapidly thereafter.

The results for men are more dependent on the estimation technique. In our main speci-

fications, earnings increase through a BMI of around 27 and then fall modestly. Conversely,

the IV findings look similar to those for women, in predicting that wages decrease with BMI

throughout virtually the entire range of the latter. Controlling for reverse causation (by in-

cluding long-lags of BMI) similarly yields a conditional wage function that is maximized at a

low BMI level and is fairly flat thereafter. The findings for black males differ in that the main

(non-instrumented) specifications show an increase in the conditional wage function well into
33For example, Stearns (1997) and Averett and Korenmann (1996) provide evidence that obesity has more

deleterious effects on the self-esteem of white than black or Hispanic females.
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the “obesity” range but with a more or less monotonic negative relationship between BMI and

earnings predicted from the IV estimates.

Much can be done to clarify the interpretation of our results. Although health expenditures

do not appear to drive the patterns, it is unclear whether the findings for women reflect labor

market discrimination or some other cause. For example, females working in occupations re-

quiring physical interaction might be subject to particular physical scrutiny. Adding controls

for broad occupational categories slightly reduces the gradient of the female wage function,

consistent with occupational sorting; however, such covariates do not explicitly measure the

level of public interaction. Some results, particularly for males, are sensitive to the choice of

specifications and we poorly understand why the results differ for whites and blacks. It would

also be desirable to model medical expenditures simultaneously with earnings, using data from

a single source, to get a better sense of the extent to which employers trade-off wages for health

expenditures.

These caveats notwithstanding, our analysis provides useful guidance for interpreting prior

studies and conducting future research. First, when examining how BMI is related to earnings

(and probably other outcomes), it is important to allow for a variety of possible patterns rather

than initially assuming that obesity is “where the action is.” Indeed, we find little evidence

of an “obesity penalty” per se but instead show that the conditional wage function is often

maximized at low levels of BMI, where excess weight is almost certainly not a key factor. We

suspect that these results provide evidence of “beauty” or “appearance” effects, but additional

examination of these possibilities is needed. Second, the relationships are often highly non-linear

and benefit from models that permit considerable flexibility. We obtain this using our semi-

parametric specifications but at the cost of considerable computational complexity. Simpler,

although somewhat less flexible, modeling techniques might involve the use of higher order

polynomials or linear splines. One possibility is to employ univariate non-parametric methods
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(without controls other than for body weight) to establish the basic pattern, which then would

guide the choice of parametric models containing the full set of covariates.
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Figure 1: BMI and Expected Wages, Full Sample
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Figure 2: Comparison of Three Estimation Models
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Figure 3: BMI and Estimated Wage Differentials, PSID - NLSY Comparisons
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Figure 4: Lagged BMI and Expected Wages
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Figure 5: Instrumental Variables Estimates
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Figure 6: BMI and Expected Wages of Women, by Race
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Figure 7: BMI and Expected Wages of Men, by Race
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Figure 8: BMI and Expected Medical Care Expenditures
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Figure 9: BMI and Expected Wages, Females by Age
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Figure 10: BMI and Expected Wages, Males by Age
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Appendix: Non-parametric Smoothing Methods and Additional
Econometric Estimates

Kernel regression drops the assumption of linearity and models the expectation of the de-
pendent variable as a weighted mean at every point in the distribution of the independent
variable. For example, the oft-used Nadarya-Watson kernel estimator can be defined as

r̂n(x) =
n∑

i=1

`i(x)Yi (A-1)

where r̂n(x) is the predicted value of y at a given value x, and the weights are defined by the
kernel function:

K(x) =
70
81

(1− |x|3)3I(x) (A-2)

where

I =
{

1 if |x| ≤ 0
0 otherwise.

The choice of the kernel function–Gaussian, uniform, Epanechnikov–generally does not affect
the result. The weighting function, `(x) is defined as

`i(x) =
K(

x− xi

h
)

n∑
j=1

K(
x− xi

h
)

(A-3)

where h is the bandwidth or smoothing parameter. This kind of estimator has the advantage
of allowing for highly non-linear relationships that are frequently missed even with linear
estimators that include quadratic, cubic, and higher order terms.

In our analysis, we use local linear regression, which is similar in spirit to kernel regression,
but instead of modeling the data with a locally weighted average, it uses a locally weighted
linear regression. Local linear regression relaxes the linearity assumption of OLS and mini-
mizes both boundary bias and design bias introduced by the kernel framework.33 In general,
we define the estimator and kernel as in equation A-1, but define `(x), Xx, and Wx as follows.

`(x) = eT
1 (XT

x WxXx)−1XT
x Wx

e1 = (1, 0, 0, ...)T

Xx =


1 x1 − x
1 x2 − x
1 x3 − x
...

...
1 xn − x


33On this point, see Wasserman (2006), 73ff., Fan and Gijbels, pp.17-18, 60ff.

37



Wx =


w1(x) 0 · · · 0

0 w2(x)
...

... · · · . . .
0 · · · · · · wn(x)


wi(x) = K(

x− xi

h
) (A-4)

This formulation implies that the predicted value for a given value of x is the inner product
of the first row of `(x) with Y.

The choice of smoothing parameter, h, involves the tradeoff between bias and variance,
as h defines the window of observations that will be used in local regression. For non-linear
functions, small windows of observations give high variance and low bias, whereas large win-
dows offer the converse. We choose the bandwidth by selecting the span, k, the fraction of the
data to include in the linear estimate, to minimize mean squared error (bias2 + variance) for
the estimator. This implies that for each realization of x the bandwidth changes according to
the distance to the observation (k ∗N)/2 observations away. In particular, we minimize the
leave-one-out cross-validation score over the range of the span. The cross validation score is
defined as

CV (k) =
1
n

n∑
i=1

(Yi − r̂(−i)(xi))2 (A-5)

where r̂(−i) is the estimator derived from leaving out the the ith observation.34

34When smoothing the dependent variables, we execute least-squares cross validation at the roughly 500
points .2 percentile points apart in the middle 95 percent of the distribution of BMI.
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Table A-1: Semi-Parametric Regression Results for Women
Full Sample Whites Blacks Age<26 in 1986 IV

Black -1.149*** -1.597 -1.986**
(0.269) (0.978) (0.766)

Hispanic -2.865*** 3.532*
(0.537) (1.588)

Age 0.054*** 0.106*** -0.005 -0.404* 0.032
(0.014) (0.020) (0.021) (0.190) (0.031)

Year 2001 0.214 0.298 0.151 0.989 -0.059
(0.340) (0.474) (0.498) (1.168) (0.696)

Year 2003 1.184*** 1.323** 0.988* 3.173* 0.318
(0.332) (0.462) (0.497) (1.352) (0.673)

Year 2005 0.585* 0.660 0.104 2.866* 0.518
(0.271) (0.409) (0.352) (1.414) (0.527)

Number of Kids -0.055 0.317* -0.269* -0.540 -0.025
(0.099) (0.151) (0.130) (0.368) (0.193)

Married 0.638* 0.174 0.708* -0.156 0.534
(0.261) (0.397) (0.349) (0.905) (0.489)

Child Under 2 2.253*** 3.472*** 0.661 2.429 2.263**
(0.381) (0.570) (0.502) (1.389) (0.734)

Northeast 3.284*** 2.313*** 4.768*** 5.040*** 3.506***
(0.343) (0.462) (0.570) (1.329) (0.651)

Midwest 0.382 -0.108 0.795 -0.154 1.320*
(0.283) (0.391) (0.411) (1.089) (0.552)

West 2.372*** 1.817*** 3.893*** 1.246 3.361***
(0.338) (0.455) (0.679) (1.166) (0.667)

HS Dropout -3.008*** -3.482*** -1.786*** -2.624* -3.597***
(0.364) (0.621) (0.447) (1.158) (0.784)

Some College 1.386*** 1.367*** 1.520*** 3.430*** 0.350
(0.269) (0.395) (0.352) (0.942) (0.531)

College Graduate 7.677*** 7.235*** 8.140*** 11.803*** 7.266***
(0.297) (0.396) (0.477) (1.517) (0.594)

Job Tenure (Mos) 0.024*** 0.025*** 0.025*** 0.034*** 0.027***
(0.001) (0.002) (0.002) (0.006) (0.003)

IV Residual -0.015
(0.162)

Constant 0.010 0.069 0.043 -0.111 0.014
(0.107) (0.155) (0.147) (0.354) (0.206)

N 7251 4047 2638 544 2369
Note: Regression coefficients for supplementary covariates. Standard errors in
parenthesis. ***p<.001, **p<.01, *p<.05
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Table A-2: Semi-Parametric Regression Results for Men
Full Sample Whites Blacks Age<26 in 1986 IV

Black -5.310*** -3.833* -5.171***
(0.580) (1.824) (1.143)

Hispanic -7.346*** -1.536
(0.968) (3.082)

Age 0.240*** 0.303*** 0.085* -0.102 0.375***
(0.028) (0.037) (0.041) (0.379) (0.051)

Year 2001 0.570 0.756 -0.258 0.814 1.602
(0.635) (0.825) (0.936) (2.124) (1.140)

Year 2003 0.662 0.846 -0.470 -1.708 1.320
(0.625) (0.822) (0.902) (2.538) (1.141)

Year 2005 0.541 0.844 -0.896 0.559 0.618
(0.550) (0.745) (0.718) (2.919) (0.919)

Number of Kids 1.142*** 1.945*** -0.317 -0.719 1.783***
(0.206) (0.289) (0.282) (0.691) (0.368)

Married 2.641*** 3.222*** 2.613*** 4.011* 3.501***
(0.561) (0.788) (0.699) (1.768) (0.973)

Child Under 2 0.482 0.330 -0.466 8.792*** -0.075
(0.762) (1.051) (1.063) (2.646) (1.296)

Northeast 4.951*** 5.772*** 2.360* 5.169 5.590***
(0.660) (0.838) (1.122) (2.648) (1.135)

Midwest 0.776 0.769 1.534 1.495 0.698
(0.561) (0.734) (0.791) (1.794) (1.028)

West 1.335* 1.795* 2.325* -1.126 1.254
(0.614) (0.820) (1.045) (2.216) (1.120)

HS Dropout -3.942*** -4.056*** -2.050* -6.972** -5.171***
(0.739) (1.147) (0.875) (2.686) (1.357)

Some College 3.286*** 3.380*** 3.498*** 4.101* 3.371***
(0.568) (0.761) (0.726) (1.920) (0.962)

College Graduate 11.720*** 12.349*** 7.031*** 26.354*** 11.987***
(0.549) (0.703) (0.872) (2.325) (1.132)

Job Tenure (Mos) 0.013*** 0.009** 0.021*** 0.020* 0.001
(0.002) (0.003) (0.003) (0.009) (0.004)

IV Residual 0.735
(0.434)

Constant 0.322 0.037 0.341 -0.259 -0.004
(0.212) (0.282) (0.291) (0.676) (0.360)

N 5775 3924 1262 427 2333
Note: Table shows regression coefficients for supplementary covariates. Standard errors in
parenthesis. ***p<.001, **p<.01, *p<.05
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