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1. Introduction 

Consumer prices change every seven or eight months in the U.S.1  Yet the real effects 

of monetary shocks have been estimated to last around thirty months.2  These figures suggest 

real effects lasting roughly four times longer than nominal price stickiness – i.e., a “contract 

multiplier” of around four in Taylor’s (1980) terminology.  In contrast, research on calibrated 

DSGE models obtains much lower contract multipliers, at least in the absence of strategic 

complementarities and sticky information.  Chari, Kehoe and McGrattan (2000) report 

contract multipliers around one in a variety of time-dependent pricing models.  Caballero and 

Engel (2007) and Golosov and Lucas (2007) arrive at contract multipliers well below one in 

their state-dependent pricing models.  Dotsey, King and Wolman (1999) and Midrigan 

(2008) obtain intermediate contract multipliers in their state-dependent models. 

As has been well-known since Ball and Romer (1990) and Kimball (1995), strategic 

complementarities in the pricing decisions of individual sellers can produce large contract 

multipliers.3  A starting point for these models is that the nominal stickiness be staggered, to 

create the possibility of coordination failure among price setters.4  In response to an 

aggregate shock, strategic complementarities mute the size of price changes for those 

changing prices, as price setters wait for the average price to respond. 

                                                           
1 Klenow and Krystov (2008) and Nakamura and Steinsson (2008a).  This figure ignores price changes involving 
sale prices, otherwise the number would be about four months. 
 
2 Christiano, Eichenbaum, and Evans (1999), Romer and Romer (2004), and Bernanke, Boivin, and Eliasz 
(2005), each based on U.S. data, are a few of the many examples. 
 
3 Recent papers in this vein include Altig et al. (2005), Carvalho (2006), Blanchard and Gali (2007), Gertler and 
Leahy (2008) and Nakamura and Steinsson (2008b). 
 
4 Staggered price setting appears to describe the U.S. data well.  Klenow and Kryvstov (2008) find that the 
fraction of consumer prices changing does fluctuate but is not highly correlated with movements in inflation.  
They also find big individual price changes.  Golosov and Lucas (2007) show these facts can be explained by 
large idiosyncratic shocks that govern both the timing and size of price changes at the micro level. 
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We show that models with high contract multipliers at the macro level display slow-

moving “reset” prices at the micro level.  A reset price for an individual seller is that price it 

would choose if it implemented a price change in the current period.  Actual prices often 

differ from reset prices, of course, because of nominal price stickiness.  We define 

“theoretical reset price inflation” as the weighted average change of all reset prices, 

including those of current price changers and non-changers alike.  We denote “reset price 

inflation” as the weighted average change of reset prices for price changers only.  In the 

Calvo (1983) time-dependent pricing model, the probability of changing price is independent 

of the desired reset price change, so reset price inflation is a pure reflection of theoretical 

reset price inflation.  In state-dependent models, sellers weigh the benefits of moving to the 

reset price against the (menu) costs of doing so.  For these models reset price inflation can 

depart importantly from theoretical reset price inflation.   

Strategic complementarities should dampen the volatility of reset price inflation and 

boost its persistence.  An individual seller will move by smaller amounts, requiring multiple 

price changes to fully respond to a shock.  We confirm this intuition by simulating DSGE 

models featuring time-dependent pricing (TDP) or state-dependent pricing (SDP), with or 

without strategic complementarities.  The models feature a single aggregate shock (to money 

or productivity) plus idiosyncratic shocks to each seller’s productivity.  The 

complementarities take the form of intermediate goods, as in Basu (1995).  Intermediates can 

slow down “monetary pass-through” because price changers have not seen their intermediate 

costs fully adjust due to the sticky prices of their suppliers.  Sellers are grouped into one of 

two sectors: the flexible price sector (low menu cost, bigger idiosyncratic shocks) or the 

sticky price sector (high menu cost, smaller shocks). 
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Using the micro data on prices collected by the U.S. Bureau of Labor Statistics for the 

Consumer Price Index, we construct an empirical index of reset price inflation for the months 

January 1989 through May 2008.  We impute to all items, both those changing and not, the 

reset price changes exhibited by price changers.  To arrive at the reset price change for an 

item changing price, we compare the item’s new price to its estimated reset price the 

previous month – not the item’s last new price, set perhaps months earlier.  A useful analogy 

is to home price indices constructed from repeat sales (e.g., Shiller 1991 and Zillow.com).  

These indices estimate the value of residential homes even when they are not sold.  Once a 

home is sold, the difference between the transacted price and the previous period’s estimated 

value is used to update the estimated value of other homes that were not sold.  Our reset price 

index is the analogue for all consumer items to these home price indices. 

We compare the behavior of our empirical measure of reset price inflation to that of an 

identically-constructed measure from simulated TDP and SDP models.  As mentioned 

previously, reset price inflation is the exact counterpart to theoretical reset price inflation in 

the Calvo model.  Even though our constructed reset price inflation is not the same as 

theoretical reset price inflation for SDP models, we find that simulated SDP models yield 

clear predictions for our constructed reset price inflation. 

To delve further into the role played by price rigidity, we partition the CPI goods into 

“flexible” and “sticky” groups.  The former reflects 30 percent of consumer spending and 

displays an average monthly frequency of price changes of 1/3.  The latter constitutes 70 

percent of spending and displays an average monthly frequency of around 1/10.  Our 

simulated models feature flexible and sticky-price sectors, with each sector’s frequency and 

absolute size of price changes matching those statistics in the CPI data. 
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We find the models with big contract multipliers fundamentally at odds with the data.  

TDP models, with or without strategic complementarities, and the SDP models with strategic 

complementarities, generate unrealistically high persistence and low volatility of reset price 

inflation.  These models predict that the impact of a nominal shock on reset prices will build 

over time.  But in the data we see the opposite.  An increase in reset price inflation predicts 

lower, not higher, reset price inflation in subsequent months, so that an index of reset prices 

responds more on impact than over time.  Another model prediction is that goods with 

infrequent price changes (the sticky-price goods) will display relatively more persistent 

inflation (overall, not reset).  But we do not see this in the data.   

The SDP model with no complementarities comes closest to matching the empirical 

patterns.  It features broadly realistic volatility and persistence of reset and actual price 

inflation for all goods, flexible goods, and sticky goods.  Related, a way to rescue strategic 

complementarities might be to incorporate endogenous monetary policy.  If monetary policy 

quickly offsets the aggregate shock (to money itself or to aggregate productivity), then models 

with complementarities no longer imply outsized persistence of reset and actual inflation.  

This solution creates two problems, however.  First, endogenous monetary policy essentially 

gets rid of the contract multiplier.  Second, this solution reduces reset inflation volatility to 

around one-fifth of the observed level, and the variance of actual inflation to less than one-

tenth the observed level.  If monetary policy offsets shocks, price setters respond little to these 

shocks and inflation becomes much too smooth. 

The literature on monetary policy has coalesced on strategic complementarities in 

order to rationalize a large contract multiplier.  But our results strongly reject the predictions 
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of those sticky-price models we examine that feature sufficient complementarities to produce 

an important contract multiplier.  

The rest of the paper proceeds as follows.  Section 2 describes the dataset and the 

empirical properties of reset price inflation.  Section 3 lays out the models and compares 

statistics from the simulated models to their empirical counterparts.  Section 4 concludes.  

 

2. An empirical measure of reset price inflation  

The CPI Research Database 

We use the micro data underlying the non-shelter portion of the CPI to construct our 

measure of reset price inflation.  The BLS surveys about 85,000 items a month in its 

Commodities and Services Survey.  Individual prices are collected at around 20,000 retail 

outlets across 45 large urban areas.5  The survey covers all goods and services other than 

shelter, or about 70 percent of the CPI based on BLS consumer expenditure weights.  The 

CPI Research Database (hereafter CPI-RDB) maintained by the BLS Division of Price and 

Index Number Research contains all prices in the Commodities and Services Survey since 

January 1988.  We use the CPI-RDB through May 2008, for a sample of “1988-2008”.   

The BLS collects consumer prices monthly for food and fuel items in all areas.  The 

BLS also collects prices monthly for all items in the three largest metropolitan areas (New 

York, Los Angeles, and Chicago).  The BLS collects prices for items in other categories and 

other urban areas only bimonthly.  For our competing models, the impulse responses for reset 

price inflation differ markedly in the initial periods after a shock, making it valuable to have 

                                                           
5 The BLS selects outlets and items based on household point-of-purchase surveys, which furnish data on where 
consumers purchase commodities and services.  The price collectors have detailed checklists describing each 
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an empirical counterpart that captures the data at high frequency.  For this reason, we restrict 

our analysis to the top three areas that have monthly data on all goods. 

The BLS defines 300 or so categories of consumption as Entry Level Items (ELIs).  

Within these categories are prices for particular items (we call a longitudinal series of 

individual price quotes at the micro level a “quote-line”).  The BLS provided us with 

unpublished ELI weights for each year from 1988-1995 and 1999-2004 based on Consumer 

Expenditure Surveys in each of those years.  We normalize the nonshelter portion of the 

weights to sum to 1 in each year.  We set the 1996 and 1997 ELI weights to the 1995 weights, 

and the 1998 weights to their 1999 level.  We set the 2005 and onward weights to their 2004 

level.  The CPI-RDB also contains weights for each price within an ELI.  We allocate each 

ELI’s weight to individual prices in each month in proportion to these item weights to arrive 

at weights it  that sum to 1 across items (i’s) in each month. 

The BLS labels each price as either a “sale” price or a “regular” price.  Sale prices are 

temporarily low prices (including clearance prices).  Golosov and Lucas (2007), Nakamura 

and Steinsson (2008a), and others filter out such sale prices on the grounds that they are 

idiosyncratic deviations from stickier regular prices.  Related, in classifying goods as 

“flexible” or “sticky” and in calibrating the model economies, we do so based on the 

frequency of regular price changes.  We adopt this treatment because it yields more 

conservative results with respect to our conclusions.  If, alternatively, we encompass the 

higher rate of price changes involving prices labeled by the BLS as sales prices, we would 

obtain an average frequency of price change of a little over 25 percent monthly rather than 22 

percent.  In turn, this would require even larger contract multipliers for our model economies 

                                                                                                                                                                                     
item to be priced  its outlet and unique identifying characteristics.  They price each item for up to five years, 
after which the item is rotated out of the sample. 
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to generate the same persistence in the impact of monetary shocks.  But we find that the data 

do not support large contract multipliers.  We use all prices, including sale prices, when 

constructing our inflation and reset price inflation series.  To the extent sales are truly 

idiosyncratic their impact on the time series for price inflation, given the large samples of 

price quotes in each sector, will average close to zero.  To the extent sales do affect aggregate 

price inflation, they are not idiosyncratic and so should not be excluded.  That said, we will 

show that our results are robust to excluding sales prices from the series for price inflation. 

Forced item substitutions occur when an item in the sample has been discontinued 

from its outlet and the price collector identifies a similar replacement item (e.g., new model) 

in the outlet to price going forward.  The monthly rate of forced item substitutions is 

consistently about 3 percent in the sample.  Essentially all item substitutions involve price 

changes.  We include these price changes at substitutions in our statistics.6  But our results are 

extremely robust to treating all price changes as zero at forced substitutions.  

About 12 percent of the prices the BLS attempts to collect are unavailable in a given 

month.  The BLS classifies roughly 5 percent of items as out-of-season.  We put zero weight 

on out-of-season items when calculating both inflation and the frequency of price changes.  

The BLS classifies the other 7 percent as temporarily unavailable.  As these items may be 

only intermittently unavailable during the month, we treat items out of stock as available at 

the previously collected price.  We employ this treatment both for calculating frequency of 

price changes and time series of inflation rates. 

Although the BLS requires its price collectors to explain large price changes to limit 

measurement errors, some price changes in the dataset appear implausibly large.  We exclude 

                                                           
6 For about half of forced substitutions the rate of price change imparted to the CPI reflects a BLS adjustment 
aimed at capturing quality change.  We employ these BLS adjustments in all price change statistics. 
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price changes that exceed a factor of five.  Such price jumps constitute less than one-tenth of 

one percent of all price changes.  

 
Defining Reset Price Inflation 

Section 3 below illustrates how models with high contract multipliers exhibit inertia 

not only in price inflation, but also in reset price inflation — so the behavior of reset price 

inflation is a barometer for lasting real effects of monetary shocks.   

Whether pricing is time-dependent or state-dependent, the desired price level for item i 

in month t, *
,i tP ,  satisfies an Euler equation taking into account effects on current and future 

prices.  Following Dotsey et al. (1999), the Euler equation is  

 , , 11
, 1* *

, ,

'( )
(1 )

'( )
i t i tt

t i t
i t t i t

Vu c
E

P u c P
  



  
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where ,i t  denotes current profits, tE refers to expectations at time t, 1'( ) / '( )t tu c u c  is the 

familiar stochastic discount factor, , 1i t  is the probability of a price change for item i in 

month 1t  , and , 1i tV   is next period’s value function.  Note that the reset price can differ from 

the optimal flexible price (the price that maximizes current period profits) because of future 

price stickiness ( , 1 1i t   ).  Related, the actual price can differ from the reset price if the 

seller does not change its price in the current period.   

Reset price inflation for a given seller is the log first difference of its reset price: 

* * *
, , , 1ln( ) ln( )i t i t i tP P  . 

This definition does not require a price change at either t or 1t  .  Aggregate reset price 

inflation is then the weighted average of micro reset price inflation: 
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(2.1) ,
* *

,i t
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where the weights ,i t  add to 1.  By comparison actual inflation is , ,i t i t
i
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, , , 1i t i t i tp p   and ,i tp  denotes the log of the actual BLS price of item i at time t. 

Whereas starred variables denote reset values, those without stars represent actual 

values.  Let ,i tI  be a price-change indicator: 
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To construct an empirical measure of aggregate reset price inflation, each month we divide 

items into those that change price ( , 1i tI  ) and those that do not change price ( , 0i tI  ).  For 

prices that change, the reset price is simply the current price.  For prices that do not change, 

we index our estimate of the reset price to the rate of reset price inflation among price 

changers in the current period.  Our estimate of the log reset price level for item i in month t is 


 ,

* *
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where ^’s denote our estimates.  In turn, our estimate of aggregate reset price inflation is 

(2.2) 
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Although the estimate  *
t  only employs time t price changers, price changes from previous 

months are captured in the base values of  , 1
*
i tp  , which are indexed to reflect prior changes.7   

In Table 1 we present a stylized example useful for contrasting the rate of reset price 

inflation ( *
t ) to actual inflation ( t ) and the average inflation of price changers (call this 


t ).  The example has two goods.  Both goods change price in period 0, establishing base 

prices for calculating reset price inflation.  Good A’s price increases by 20% in period 1, with 

Good B’s unchanged.  This yields a rate of 20% for reset price inflation, same as the average 

rate of price increase conditional on changing price, while actual inflation is 10%.  But note 

that it also kicks up the base price for calculating reset price inflation by 20%, not only for 

Good A, but also for Good B.  Thus, when B’s price increases by 20% in period 2, while A’s 

remain unchanged, B’s price just meets its updated reset price from period 1.  As a result, 

reset price inflation for period 2 equals zero, despite the same actual inflation rate and rate of 

increase for price changers, respectively 10% and 20%, as in period 1.    

Our estimated reset price inflation is equivalent to theoretical reset price inflation 

under the special case of Calvo pricing.  By contrast, under SDP the decision to change a 

price reflects selection on the idiosyncratic component in a seller’s desired price change.  For 

this reason, estimated reset price inflation  *  can differ markedly from theoretical reset price 

inflation * .  We illustrate this difference for SDP models in Section 3 as a means of 

discriminating between the TDP and SDP models.   

                                                           
7 We considered an alternative measure of reset price inflation based on regressing each price change on monthly 
dummies taking the value 1 for months spanning each price spell.  This measure parallels the Case-Shiller Home 
Price Index (Shiller, 1991), which allocates price increases for homes to the months between repeat sales.  In our 
data and model economies, this regression-based measure exhibits very similar statistics to that based on (2.2). 
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A key question for us is what extra information is contained in  *
t  that cannot be 

gleaned from t  alone.  Under Calvo, one can infer *
t  from t  if one also knows the price-

change frequency.8  But endogenous price changing, and especially selection of changers, 

breaks the simple translation from  *
t  to t .  By endogenous price changing we mean any 

response in the fraction of goods changing price to underlying shocks.  By selection of 

changers we mean that, in contrast to Calvo, the changers may be those with larger gaps 

between actual and reset prices.  Related,  *
t  should be directly revealing about strategic 

complementarities, whereas t  is also affected by any response of the fraction changing.  

Some forces for a low contract multiplier (selection) or a high contract multiplier (strategic 

complementarities) operate on  *
t  directly, whereas their effect on t  can be clouded by 

movements in frequency.  The persistence of t  may be informative about the contract 

multiplier, but does not say where it is coming from (frequency or reset price inflation). 

Similarly, we could focus on the average price change among changers (  t ) rather 

than constructing the less direct measure  *
t .  In models we simulate, however, we find that 

the volatility of  t / t  does not vary with the contract multiplier (e.g., SDP with or without 

complementarities), whereas the volatility of  *
t / t  falls sharply with the contract multiplier.  

We will revisit this issue in Section 3 below. 

 

                                                           

8 Under Calvo, 
 * 11t t

t

  



 

  where   is the frequency of price change.  
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Evidence on Reset Price Inflation 

Table 2 contains summary statistics on our constructed measure of reset price 

inflation, as well as on actual inflation for comparison.  All the monthly series are HP-filtered 

and seasonally adjusted.9  Our measure of “all goods” excludes not only shelter, which is 

missing from the CPI-RDB, but also energy, fresh fruit and vegetables, and eggs.  We exclude 

these for two reasons.  First, they are arguably subject to big “sectoral” shocks that are absent 

from our models.  If these shocks are temporary, then they artificially lower aggregate 

inflation persistence.  Second, these goods involve little or no processing, and hence lack the 

strategic complementarities through slow-moving input prices. 

In addition to the aggregate statistics, we examine actual and reset price inflation for 

two sub-aggregates: “flexible” goods and “sticky” goods.  As mentioned, the BLS places 

individual price quote-lines into one of about 300 categories (ELIs).  We calculate the average 

frequency of regular price changes within each ELI, then classify quote-lines as “flexible” or 

“sticky” based on their ELI’s frequency.  We choose a threshold frequency separating the two 

groups of 1/6, similar to the overall mean (weighted) frequency of 16.8 percent.  This 

generates a 70 percent share of spending on the sticky group compared to 30 percent on the 

flexible group.  We put more price quotes in the sticky group to mitigate sampling error there, 

given its smaller number of price changes per observed price.  The flexible goods average 

3,100 price quotes per month, compared to 8,300 for the sticky goods.  The mean frequency 

of price changes is 33.3 percent in the flexible group, while only 9.5 percent for the sticky. 

                                                           
9 The HP-filter we employ is very smooth, with a penalty parameter of one million (!).  It removes a downward 
trend in inflation during the first part of the sample, and little else. With no filtering, results for reset price 
inflation are nearly unchanged.  As an alternative, we subtracted the 10-year inflation forecast from the Survey 
of Professional Forecasters (SPF, available quarterly from 1991:Q4).  For the common sample the correlation 
between HP-filtered reset price inflation and SPF-filtered reset price inflation is 0.997, with virtually identical 
serial correlations and standard deviations.  Inflation is likewise very similar when filtered in these two ways.  
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We calculate reset price inflation using formula (2.2) for flexible goods and sticky 

goods separately.  We then calculate aggregate reset price inflation as the weighted average of 

reset price inflation for the two groups, with weights 0.3 on the flexible and 0.7 on the sticky, 

consistent with their expenditure shares.  We do the same in calculating actual inflation at the 

aggregate level.  Constructing reset price inflation at the group level first avoids 

overweighting frequent changers in calculating aggregate reset price inflation.10 

The first row of Table 2 reports a standard deviation of monthly reset price inflation of 

almost 1.0 percent.11  There is no persistence in reset price inflation as measured by its first-

order autocorrelation.  In fact this serial correlation is notably negative, at –0.44.  We provide 

more evidence on persistence below.  The third and fourth rows report the comparable 

statistics for actual inflation.  Actual inflation is much less volatile than reset price inflation, 

with a standard deviation, at 0.18%, less than one-fifth that for reset price inflation.  This 

lower volatility for actual inflation follows mechanically from its including many zero price 

changes, unless variations in the frequency of changes play a major role in inflation 

movements – but we know from Klenow and Kryvtsov (2008) that frequency changes do not 

play that role.  Actual inflation (serial correlation –0.12) is more persistent than reset price 

inflation (serial correlation –0.44).  Again, this is expected under nominal price stickiness 

unless the frequency of price changes is highly responsive to the inflation rate; in fact, all 

models in Section 3 predict this result. 

                                                           
10  We also tried finer disaggregation, namely calculating reset price inflation for each of 64 BLS Expenditure 
Classes (cereal, computers, medical services, legal services, and so on), before aggregating.  The behavior of 
reset price inflation – volatility, persistence – is similar to that with our two groups. 
 
11 Whereas our raw sample goes from January 1988 through May 2008, our constructed series run from January 
1989 through May 2008.  We dropped the first year because we require a new price to initiate a reset price series 
for a given quote-line. 
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Our serial correlation for actual inflation is lower than reported in many studies for 

several reasons.  First is our use of an HP filter (in addition to monthly dummies to capture 

seasonality).  If we do not HP-filter, the serial correlation in actual inflation is modestly 

higher (+0.06 rather than −0.12).  We also exclude energy and raw food items.  Incorporating 

these categories would noticeably raise the serial correlation of unfiltered inflation to 0.30.  

Finally, longer time series – extending back to the 1970s or earlier – exhibit much more 

persistence.   Persistence fell markedly by the time our sample began in the late 1980s.  See 

Stock and Watson (2006) or Nason (2006), for example.  Even for recent samples Stock and 

Watson find inflation has a persistent component.  When we estimate an ARMA(1,1) for 

inflation we get an AR(1) coefficient of 0.89 (s.e. 0.03) and an MA(1) coefficient of −0.99 

(.01).  We highlight the AR(1) specification in our tables to be concise and to underscore that 

transitory components dominate the variance of recent inflation, just as Stock and Watson 

find.  When estimating impulse response functions we consider less restricted specifications. 

The second and third columns of Table 2 repeat the statistics from the first column for 

the flexible and sticky groups separately.  We see that reset price inflation is volatile in both 

the flexible and sticky sectors, with standard deviations of 1.3 and 1.2 percent, respectively.  

Actual inflation is more than twice as volatile in the flexible vs. sticky sector, reflecting the 

important smoothing effect of many unchanging prices in the sticky sector. 12 

Table 2 also shows the persistence in reset and actual price inflation across the two 

sectors.  The flexible and sticky sectors have similar persistence in reset and actual price 

                                                           
12 The correlation between reset inflation rates in the flexible and sticky sectors is only 0.18.  The correlation 
between actual inflation rates in the two sectors is only 0.12.  The aggregate reset inflation rate is correlated 0.54 
with reset inflation in the flexible sector and 0.92 with reset inflation in the sticky sector.  The aggregate actual 
inflation rate is correlated 0.77 with inflation in the flexible sector and 0.73 with inflation in the sticky sector.  
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inflation as all goods.  This runs counter to the prediction of many sticky price models that 

infrequent price changes act as a force for actual inflation inertia.13 

The price series (reset and actual) described in Table 2 reflect sale prices as well as 

regular prices.  The results, however, do not hinge on this treatment.  Table 3 repeats all the 

statistics from Table 2 but treats sales prices as temporarily missing, carrying forward the 

most recent regular price as the price for that month.  The patterns highlighted from Table 2 

are nearly unchanged in Table 3.  In particular, reset price inflation continues to show a strong 

negative serial correlation of –0.43 (vs. –0.44 in Table 2), and the serial correlation of actual 

inflation increases only modestly to –0.06 (vs. –0.12 in Table 2).  This means that sale prices 

either wash out in the aggregate or mimic the movements in regular prices.  Inflation is 

modestly more persistent at 0.15 (vs. –0.09) for sticky goods under this treatment. 

To further investigate the persistence properties of these inflation rates, we next show 

impulse responses derived from univariate AR(6) regressions.  (The choice of 6 monthly lags 

is based on the Akaike criterion.)  Figure 1 gives the response of reset prices to a 1% impulse 

for all goods.  The (level) response in reset prices is much greater on impact than over time.  

The impact effect is more than double the long-run response.  This mean reversion in reset 

prices does not reflect temporarily sales, as the patterns are very similar for series purged of 

sale prices as shown in Figure 2.  The shape also holds separately for flexible and sticky 

goods, as depicted in Figures 3 and 4.14 

One concern about Figures 1-4 is that the shocks themselves may be transitory.  

Responses to permanent shocks may exhibit far greater persistence.  We therefore estimated 

                                                           
13 These results are not driven by HP filtering.  Serial correlations of reset price inflation are unaffected by the 
filter—they still equal –0.41 and –0.49 for the flexible and sticky goods without filtering.  Serial correlation is 
only modestly higher for actual inflation, absent filtering, at –0.07 for flexible goods and 0.08 for sticky. 
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the response of reset prices to a shock with a permanent 1% impact on actual prices, identified 

by imposing a long run restriction on a bivariate VAR with reset and actual price inflation. 

Reset prices overshoot their long run response just as much in this case. 

We carried out a number of data robustness checks.  Unless noted, the serial 

correlations and impulse functions were virtually unaffected.  We aggregated the monthly 

time series up to the bi-monthly, quarterly, or even annual level.  We split the monthly time 

series into two time periods, January 1989 through December 1998 and January 1999 through 

May 2008.  We split the panel to create two samples (both going from January 1989 through 

May 2008) with half as many prices in each.  The variance of reset price inflation was 

modestly higher in the two subsamples, as one would expect given greater sampling error.  

We dropped all price changes associated with product turnover (i.e., item substitutions).  We 

looked only at services, whose prices are stickiest and whose spending exhibits little volatility 

(sectoral shocks thus being less of a concern).  In each of these deviations from our baseline 

case, our findings remain intact.  Finally, we looked at bi-monthly data for all areas (45 cities, 

as opposed to the monthly data for just New York, Los Angeles, and Chicago areas).  This 

important robustness check incorporates much more data (68,500 quotes per bi-month vs. the 

11,400 per month in our baseline dataset).  Doing so materially lowers volatility by mitigating 

sampling error.  We will return to these all-area results when comparing models to the data.  

 

3. Sticky price models and reset price inflation 

The leading TDP and SDP models have predictions for the behavior of reset price 

inflation.  We will illustrate using a Calvo TDP model and an SDP model in the spirit of 

                                                                                                                                                                                     
14 The impulse response functions for reset prices look similar from an ARMA(1,1) as from the AR(6). 
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Golosov and Lucas (2007), respectively.  They will be two-sector models with and without 

strategic complementarities, so Carvalho (2006) and Nakamura and Steinsson (2008b) are 

even closer antecedents.  We first sketch the models, then report statistics from model 

simulations for comparison with the facts documented in the previous section.  

The Models 

  Infinitely-lived households have preferences over labor supply and a composite 

consumption good, where composite consumption is a CES aggregate of individual 

consumption varieties.  They also have access to state-contingent bonds (in zero net supply) 

for transferring resources across time periods, and they choose bond holdings, consumption, 

and labor supply to maximize discounted utility subject to a lifetime budget constraint. 

 Individual varieties are supplied by a continuum of monopolistically competitive 

firms.  The production function of a particular firm (good) i  is given by 

(3.1) 1( ) ( ) ( ) ( )x x
t t t tXy i A i L i i   

where ( )A i  denotes productivity, ( )L i  labor, ( )X i  a CES aggregate of individual 

intermediate goods, and x  the share of the composite intermediate good.  Firms are grouped 

into one of two sectors distinguished by how frequently firms change price. 

Production function (3.1)  exhibits two key features commonly used in macro models 

of price stickiness.  Following Danziger (1999) and Golosov and Lucas (2007), a firm’s 

productivity is subject to idiosyncratic shocks, which will be important for capturing the 

dispersion of individual price changes seen in the data.  A second key feature is the inclusion 

of intermediate goods, following Basu (1995) and Dotsey and King (2006).  For 0x  , each 

firm uses intermediate inputs produced by all other firms in the economy.  Intermediates are a 
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way of generating strategic complementarities in price-setting, as costs fully respond to a 

shock only when other firms’ prices respond.  In an excellent survey, Mackowiak and Smets 

(2008) suggest such “macro rigidities” are promising for obtaining high contract multipliers. 

Firms hire inputs and set prices to maximize expected discounted profits subject to a 

fixed cost of changing price.  In the SDP models, the cost is constant over time for each firm, 

but does vary across firms depending on the firm’s sector.  For the TDP models, firms receive 

a menu cost draw of either 0 or   in each period, with the sector-specific probability of a 

menu cost of zero being fixed over time. 

Finally, we assume a cash-in-advance constraint on a household’s nominal spending 

 t t tPC M . 

In turn, we assume the money supply evolves as follows: 

(3.2) 1

1
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where t  is a monetary policy shock and ln M

P
 
 
 

 is steady-state aggregate real demand.  

When 0m  , the money supply evolves exogenously according to a geometric random walk 

with drift.  We will also consider an “endogenous monetary policy” case, in which 0m   

and money growth is inversely related to lagged aggregate real demand. 

An appendix provides a more thorough mathematical exposition of the model,  

including its key parameters, and describes the solution method.15 

                                                           
15 We thank Emi Nakamura and Jon Steinsson for making the solution routines for these models available on 
their website.  See Nakamura and Steinsson (2008b) for a detailed description of the solution procedure. 
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Calibration 

Table 4 reports the values of economy-wide parameters in the TDP and SDP models.  

We consider three specifications: a baseline case featuring no strategic complementarities, a 

strategic complementarities specification that generates a “contract multiplier” of 4, and a 

specification with strategic complementarities and “endogenous monetary policy.”  Most 

parameters remain constant across the three specifications.  The monthly discount factor is 

1/120.96  .  We consider log utility in consumption ( 1  ) and linear labor supply ( 0  ), 

while the parameter governing the disutility of labor supply ( ) is set so that steady state 

labor supply is 1/3.  The elasticity of demand for consumption varieties is 4  , within the 

range of values estimated in the trade and IO literatures, e.g., Broda and Weinstein (2006) and 

Hendel and Nevo (2006).16  We set the parameters for the money growth process ( , ,m m   ) 

to match the mean growth rate of inflation (0.2%), the standard deviation of nominal non-

shelter PCE growth (0.48%), and, for the “endogenous monetary policy” case, the serial 

correlation of nominal PCE growth (–0.31) over our sample period.17  The serial correlation 

of the idiosyncratic productivity shock is set to 0.7  , based on estimates in Klenow and 

Willis (2006) using the serial correlation of new relative prices in the CPI-RDB. 

Table 4 also presents parameter values determining the degree of strategic 

complementarity in pricing.  Following Ball and Romer (1990), we define strong real 

rigidities (more strategic complementarities in this model) as low responsiveness of a firm’s 

                                                           
16 It is also in the range used by other sticky price papers; Midrigan (2008) uses 3  , Nakamura and Steinsson 
(2008b) use 4  , and Golosov and Lucas (2007) set 7  .  
 
17 We deliberately do not calibrate the money supply process to data on money supply as our money supply 
process is a stand-in for monetary policy shocks, not actual money growth.  
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real price to changes in aggregate real demand.  The firm’s optimal price in the absence of 

menu costs can be expressed (ignoring constants) as 

(3.3)          ln ( ) 1 ln( ) 1 1 ln( ) ln ( )t x t x t tp i M P A i               . 

As in Woodford (2003), we define strategic complementarity as a positive weight on the 

aggregate price, rather than having all weight on the aggregate money stock.  Thus, 

when   1 x    is small, prices exhibit greater complementarity.  Our baseline model has 

log utility in consumption ( 1  ), linear labor supply ( 0  ), and no intermediate goods 

( 0x  ), so that    1 1x     .  This baseline case has no strategic complementarity 

(the coefficient is 0 on the aggregate price level).  In our “strategic complementarities” case, 

we choose the intermediate input share to generate a contract multiplier of 4, where the 

contract multiplier is calculated as the ratio of the duration of real effects of a monetary policy 

shock to the number of periods in a typical contract.18  This requires an intermediate share of 

.95x   in the SDP model ( .67x   for TDP) and yields    1 0.05x     , or strong 

strategic complementarities (a coefficient of 0.95 on the aggregate price level).19  As 

emphasized by Basu (1995), more intensive use of intermediate inputs makes the response of 

marginal cost to monetary shocks a function of not only the nominal wage but the extent of 

price adjustment at other firms – a strategic complementarity. 

 Table 5 reports the values of sector-specific parameters in our models.  In the SDP 

model, we calibrate the standard deviation of each sector’s idiosyncratic productivity shock 

                                                           
18 Specifically, we follow Christiano et al. (2005) by calculating the amount of time it takes the expansion in 
aggregate real demand caused by a positive policy shock to drop below 10% of its initial response.  We then 
multiply this number by the aggregate frequency of price changes. 
 
19 A realistic share based on BEA Input-Output Tables would be around 0.7 (Nakamura and Steinsson, 2008b).  
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and each sector’s menu costs to generate frequencies of price change by sector of 0.33 

(flexible) and 0.10 (sticky), as well as an average size of price change of 8% and 9.5% in the 

respective sectors.  These figures correspond closely to the frequency and average size of 

price changes in the BLS data by sector, excluding energy and raw food.  The required shocks 

have standard deviations of 4.94% for the flexible sector and 4.75% for the sticky sector.  

Expended menu costs average about 0.20% of revenue, somewhat lower than the estimates of 

Levy et al. (1997) and Zbaracki et al. (2004).  Finally, 30% of firms are in the flexible sector 

and 70% are in the sticky, to match the BLS expenditure shares on these two groups. 

For the TDP model, only the menu cost parameters differ from the SDP model.  We 

actually embed Calvo in an SDP model with time-varying menu costs.  Each period, the menu 

cost is zero for a fraction s  of firms, while prohibitively large for a fraction1 s  of firms. 

Results and Interpretation 

 We now compare statistics from model simulations to the data statistics.  To match the  

data sample, we simulate economies with 3,100 firms in the flexible sector and 8,300 firms in 

the sticky sector for 233 periods.  We run 100 such simulations and report the average and 

standard deviation of the statistics across the simulations.  We find that models generating 

large contract multipliers, either through the use of TDP or strategic complementarities, 

display unrealistically high persistence and low volatility of reset price inflation.  Compared 

to the empirical data, reset price inflation in the models is way too persistent and stable.   
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In Table 6 we present statistics for the Calvo TDP model without strategic 

complementarities.  This model has a contract multiplier around two.20  Model reset inflation 

rates are too smooth relative to the data, exhibiting only one-fourth the observed variance.  

Reset price inflation is also too persistent (–0.04 in the model vs. –0.44 in the data), and the 

discrepancy is even greater for actual inflation (0.73 in the model vs. –0.12 in the data).  

Figure 5 presents the univariate IRF for model reset prices for all goods.  The model IRF is 

flat, meaning the average desired price fully responds on impact.  Equation (3.3) shows why: 

the average desired price, washing out idiosyncratic shocks ( )tA i , moves one-for-one with a 

change in money supply in the absence of strategic complementarities.  Because money 

growth follows a random walk, the result is a flat impulse response function.  Figure 5 also 

shows the confidence intervals from the data for comparison; the empirical IRFs are, in 

contrast, highly transitory.  The model and empirical bands do not overlap despite each 

representing +/- two standard deviations.  The contrast is similarly stark for flexible and 

sticky goods separately (not shown). 

 Table 7 presents results from a Calvo TDP model with strategic complementarities.  

The contract multiplier here is approximately four.  The complementarities further depress the 

volatility of reset price inflation, so that the model variance is now more than an order of 

magnitude smaller than the empirical variance.  The excess persistence problems seen in 

Table 6 (TDP without strategic complementarities) remain.  Figure 6 shows that, if anything, 

the univariate IRF for reset prices builds because of the strategic complementarities, in 

                                                           
20 Chari et al. (2000) obtain a contract multiplier near one in a Taylor model.  Using their definition (the half-life 
of real effects relative to the half-life of a price), we obtain a multiplier near one in our Calvo TDP model.  We 
report higher numbers in the text using the Christiano et al. (2005) definition of the duration of real effects 
relative to the duration of prices.  The difference stems from slower-than-exponential decay of real effects. 
 



 23

contrast to the falling empirical IRF.  The model IRF would build more briskly if not for the 

sampling error from the finite sample of firms, as in the data.  

 Table 8 presents the SDP model without strategic complementarities.  As in Golosov 

and Lucas (2007), the contract multiplier in this model is well below one at 0.4.  Inflation 

persistence is markedly reduced relative to the TDP models—a result anticipated by Caballero 

and Engel (2007).  The persistence of reset price inflation is now within striking distance of 

the data (–0.31 model vs. –0.44 data).  And Figure 7 shows that the model impulse response 

function for reset prices is much closer to the empirical pattern.  The selection effect stressed 

by Golosov and Lucas means first-responders actually overshoot the long run response after 

selection effects have faded.  But the persistence of actual inflation is still too high (0.38 

model vs. –0.12 data for actual inflation).  The gap is even larger for sticky goods (0.53 model 

vs. −0.15 data).  Finally, the volatility of reset price inflation is too high in this model relative 

to the data, with variances more than double the actual ones for all goods and sticky goods.  

Still, the discrepancies are notably smaller than for the TDP models. 

The reduced persistence and greater volatility of actual inflation for the SDP model do 

not reflect important fluctuations in the frequency of price changes under the SDP model.  

The standard deviation of the frequency of price changes is very low for the SDP model, 

equaling about 0.2 and 0.4 percentage points, respectively, for flexible and sticky goods.  

Directly related, the average rate of price increase conditional on changing, t , provides little 

information beyond that in actual inflation.  For instance, for sticky goods under TDP the 

standard deviation of  t is exactly 10 times the standard deviation of actual inflation with or 

without complementarities.  For the SDP models this ratio remains very similar, equaling 9.4.  

Reset price inflation, in contrast, is much more volatile for the SDP model than under TDP, 
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making it a more discriminating statistic.  In particular, for the TDP model with strategic 

complements, the standard deviation of reset inflation for sticky goods is only 4.6 times its 

standard deviation for actual inflation, whereas for the SDP model without complementarities 

this ratio is 8.0.  Based on the CPI data (Table 2), the observed ratio is 7.6. 

 In Table 9 we add strategic complementarities (intermediate share 0.95x  ) to 

produce a contract multiplier of around four.  Doing so makes reset inflation much smoother, 

to the point that empirical reset price inflation is almost four times as volatile as reset price 

inflation in the model.  Model inflation rates become more persistent as well, moving away 

from the data (e.g., serial correlation −0.24 in the model vs. −0.44 in the data).  Model 

inflation becomes too stable; for flexible goods the model variance is less than one-eighth its 

empirical counterpart.  Perhaps most problematic, inflation persistence is 0.73 in the model, 

about 16 standard errors from the empirical counterparts of −0.12.  In short, a big contract 

multiplier makes reset and actual inflation rates way too stable and persistent. 

 Figure 8 plots the IRF for reset prices in the SDP model with strategic 

complementarities.  The trajectory is largely flat, in sharp contrast to the plunging profiles in 

the SDP model without complementarities (Figure 7) and in the data (Figures 1-4). 

Because we can produce time series for theoretical reset price inflation in model 

economies, we can use its IRF to document the impact of the “selection effect” and sampling 

error on our estimated reset price inflation in the model.  Figure 9 displays the response of the 

theoretical reset price in the SDP model with complementarities.  Note its upward sloping 

trajectory.  Strategic complementarities mute the size of price changes for those changing 

prices, as price setters wait for the average price to respond.  Thus, theoretical reset price 

inflation is small on impact but accumulates over time as more firms change price. 
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Constructed reset price inflation in Figure 8 differs sharply from theoretical reset price 

inflation in Figure 9 in part because of a strong “selection effect” (see Caballero and Engel, 

2007, and Golosov and Lucas, 2007).   The firms changing price in a given period are not an 

unbiased sample of the population, but rather those who most benefit from a price change.  

The response of reset price inflation is much greater on impact because only firms in the tails 

of the distribution change price.  For example, in response to a positive monetary shock, the 

average productivity of the price changers is below the average productivity of all firms, 

causing the measured reset price inflation (which depends only on price changers) to be much 

higher than theoretical reset price inflation.  In the long-run, the response of these two 

measures is the same.  As a result the selection effect also explains much of the greater 

volatility found in the SDP models relative to the TDP models. 

Sampling error is another reason the IRF for measured reset price inflation is flatter 

than that for theoretical reset price inflation.  Our theoretical plot (Figure 9) is for the 

population (continuum) of firms in the model economy, whereas Figure 8 is from simulations 

with a finite sample of firms to mimic the data.  Our idiosyncratic shocks (serial correlation 

0.7) are less persistent than our aggregate shocks, which follow a random walk.  In finite 

samples the idiosyncratic shocks do not wash out, imparting less persistence to reset price 

inflation.21  Below we present results with bi-monthly data from all cities, a much larger  

sample with correspondingly lesser sampling error. 

                                                           
21 We believe our simulations are more affected by sampling error than is the actual data.  As mentioned earlier, 
split empirical samples with half as many items have only modestly higher variance of reset price inflation than 
the whole sample.  Split simulation samples, in contrast, have much higher variance than the whole sample.  
Note that the models appear to understate inflation’s true volatility.  Therefore, the sampling error captured by 
the models, calibrated to correspond to the data measures, will exert an exaggerated impact on model statistics 
relative to its impact on the actual data. 
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A potential explanation for our negative findings (too persistent IRFs in models with 

big contract multipliers) is that we have neglected endogenous monetary policy, which can 

reduce persistence in the presence of permanent shocks.  The literature has estimated big 

contract multipliers over long periods (such as 1950 to 2000), but the Fed may have reduced 

inflation persistence and volatility dramatically in the 20 years covered by our sample (1988-

2008).  Authors have documented regime changes in U.S. inflation over the past two decades 

(e.g., Nason, 2006), as well as for many inflation targeting countries (e.g., Benati, 2008). 

In this spirit, we simulate the SDP model with complementarities and a version of 

endogenous monetary policy.  Specifically, we set 0.6m    (the response of money growth 

to lagged real money balances) in equation (3.2) to match the serial correlation of nominal 

PCE growth (–0.31) over our sample period.  Here money growth offsets movements in the 

real money stock.  As shown in Table 10 (summary statistics) and Figure 10 (univariate IRFs 

for flexible and sticky groups), this specification succeeds in driving down the persistence of 

reset price inflation to levels observed in the data (e.g., −0.43 in the model vs. −0.44 in the 

data for all goods).  Moreover, Figure 10 depicts a model IRF for reset prices that is spot on 

with the empirical estimates.  The required endogenous monetary policy involves price level 

targeting rather than more conventional inflation targeting.  Gorodnichenko and Shapiro 

(2007) argue that the Greenspan Fed did target the price level. 

Still, there are two problems with this endogenous monetary policy scenario.  First, 

there is no longer a contract multiplier above one.22  Second and more problematic, 

                                                           
22 This is what one structural VAR shows for the last twenty years.  We re-ran the structural quarterly VAR of 
Altig et al. (2005) on our 1988-2008 sample.  The estimated IRF to a monetary shock exhibits no contract 
multiplier for output and a very transitory inflation response.  But the point estimates are not at all precise given 
the short sample.  The 20 years afford only 33 degrees of freedom (dropping the first 4 quarters to accommodate 
4 lags of 11 variables), so we do not systematically explore structural VARs with many variables. 
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endogenous money growth saps inflation of most of its volatility.  Empirical reset price 

inflation has six times the variance in the endogenous money model, and empirical inflation 

has thirteen times the variance in the model.  The intuition is this:  if endogenous monetary 

policy undoes the impact of complementarities on inflation persistence, then there is little 

reason for reset and actual prices to respond.  If prices are sticky, one will not want to 

incorporate very transitory shocks into new prices.  Thus we are left with the problem of 

reconciling a model with strong complementarities simultaneously with the observed 

persistence and volatility of empirical inflation rates.  This “excess smoothness” problem is 

even worse for the population of prices than for finite samples presented in Table 10.  

Sampling error dominates the variances in finite simulations, whereas it appears to account 

for a much smaller fraction of the empirical variances. 

Another robustness check we perform is to replace the aggregate monetary shock with 

an aggregate productivity shock.  Indeed, Altig et al. (2005) argue that shocks to aggregate 

productivity are more important for inflation movements than are monetary policy shocks.  

With random walk aggregate productivity, instead of random walk money, our results are 

virtually identical (e.g., for SDP with complementarities, with or without endogenous money). 

Finally, one could argue that we failed to entertain large, temporary sectoral shocks 

that do not wash out in the aggregate.  Boivin, Giannoni and Mihov (2009) provide evidence 

that disaggregated inflation rates are much more volatile and transitory than aggregate 

inflation.  But strong strategic complementarities make it hard to explain large responses to 

transitory shocks, whether they be aggregate or sectoral.  And we calibrated our aggregate 

shocks to generate the observed variability of nominal consumption growth.  Thus adding 

sectoral shocks (or more aggregate shocks) to generate more realistic volatility of reset price 
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inflation may require unrealistically high volatility of real consumption growth and/or its 

covariance with inflation. 

We now recap some of our key findings.  Figure 11 contains bar charts of data 

moments vs. moments from finite sample simulations of the SDP model with strong 

complementarities.  The top panel contains serial correlations, and the bottom panel standard 

deviations.  Without endogenous monetary policy (“SDP Comps”), the model seriously 

overstates the persistence and understates the volatility of reset and actual inflation.  

Endogenous monetary policy (“SDP Endo M”) largely closes the persistence gaps, but widens 

the volatility gaps. 

In Figure 12 we provide the same model vs. data statistics, only for much larger bi-

monthly samples.  Recall that we have roughly six times the prices per bi-month from all 

cities as we have monthly prices per month from the top three cities.  (So this greatly reduces 

the impact of sampling error for both the data and model statistics.)  The bi-monthly serial 

correlations (top panel of Figure 12) are similar to those in the monthly samples.  Without 

endogenous monetary policy the SDP model with strong complementarities exhibits excessive 

persistence, with endogenous monetary policy it does not.23  But, again, endogenous monetary 

policy drains most of the volatility out of both reset and actual inflation rates (bottom panel of 

Figure 12).  We are unable to reconcile strong complementarities with both the transitory and 

volatile behavior we observe in reset price inflation.  

Although not shown, a model that comes closest to fitting all the empirical moments in 

Table 2 is an SDP model with endogenous monetary policy and an intermediate goods share 

                                                           
23 In the case of the SDP model without endogenous money, the serial correlation of reset price inflation rises 
(from -0.32 monthly to +0.30 bi-monthly) because sampling error is so diminished. 
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of only 1/3.  This degree of complementarities is not sufficient to produce a contract 

multiplier above 1, however, even in the absence of endogenous monetary policy. 

 

4. Conclusion 

A large empirical literature has estimated that monetary policy shocks affect real 

variables for several years, much longer than the duration of nominal prices.  A popular 

explanation for this contract multiplier combines sticky prices and strategic 

complementarities.  The complementarities make reset prices build slowly after permanent 

shocks, prolonging the real effects beyond the duration of nominal prices.  That is, strategic 

complementarities impart persistence to reset price inflation.  We do not see persistence in 

reset price inflation using data underlying the U.S. CPI from 1988-2008. 

Temporary shocks (or endogenous monetary policy) might explain the low persistence 

of reset price inflation, but at the expense of failing to generate as much volatility as seen in 

reset price inflation in the U.S. from 1988-2008.  Strong strategic complementarities severely 

dampen the volatility of reset price inflation when shocks are transitory.  In short, we fail to 

find a model specification with strong complementarities that fits both the low persistence and 

nontrivial volatility of observed reset price inflation.  This is true whether we entertain 

monetary or productivity shocks, and even accounting for how sampling error and temporary 

sales affect the persistence and volatility of reset price inflation.  

Models of complementarities not explored here might be able to reconcile low 

persistence of reset price inflation with a high contract multiplier.  But our intuition is that 

other complementarities (e.g., sticky wages rather than sticky intermediates) have similar 

predictions for the persistence of reset price inflation.  A more promising reconciliation may 
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involve sticky information rather than strategic complementarities.  The contract multiplier 

might be high in response to a subset of shocks about which firms have sticky information.  

Meanwhile, the variance and persistence of reset price inflation may be dominated by shocks 

about which firms have more flexible information.  Mackowiak and Wiederholt (2008) 

present a DSGE model in which this is precisely the case.24 

Alternatively, the contract multiplier may not be so high after all.  Perhaps the high 

inflation persistence over longer samples reflects the persistence of monetary shocks rather 

than complementarities.  The low inflation persistence of recent decades could be because the 

Fed stopped adding persistence, revealing low endogenous persistence.   

Our conclusions overlap with those of several recent studies.  Cogley and Sargent 

(2001), Primiceri (2006), and Cogley and Sbordone (2008) all argue that U.S. inflation 

persistence over long samples stems from changes in trend inflation (i.e., monetary regime 

changes).  They do not rely on a high contract multiplier per se.  Klenow and Willis (2006) 

and Kryvtsov and Midrigan (2008) find it difficult to reconcile specific types of strategic 

complementarities with, respectively, large idiosyncratic price changes and countercyclical 

inventories/sales.  Gopinath, Itskhoki and Rigobon (2007) and Gopinath and Itskhoki (2008), 

in contrast, see strategic complementarities behind the incomplete pass-through of exchange 

rates to import prices. 

                                                           
24 Klenow and Willis (2007) find slow responses of individual price changes to the previous price changes of 
other items.  This evidence is in line with sticky information (more so than strategic complementarities). 
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Appendix 

This appendix provides a more detailed exposition of the price-setting models and 

discusses the solution method we used. 

A representative household has discounted utility 

 
1 1

0 0
0 1 1

t

t

t tU E
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 
 

 



  
   

   

where C is composite consumption and L is labor supply.  Composite consumption is a CES 

aggregate of individual consumption varieties ( )c i : 

(A1) 
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1 1/
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1

( )C c i di





 
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  
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The household’s budget constraint is 

 
1

1
0

(1 ) ( )tt t t t t t ttPC B r B W L P i di       

where P is the nominal price of a unit of composite consumption, W is the nominal wage, tB  

denotes holdings of state-contingent bonds (in zero net supply) that pay off in period t  at 

(gross) nominal interest rate (1 )tr , and ( )i are the (real) profits of firm i .25 

 The household chooses bond holdings, labor supply, and consumption of individual 

varieties to satisfy the following first-order conditions: 

(A2)   1
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(A3) t
t t

t

W
L C

P
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(A4) 
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C P
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 

 . 

 
 Turning to production, there are a continuum of monopolistically competitive firms 

indexed by i , which denotes the one variety each produces.  Firm i has productivity ( )A i  and 

combines labor ( )L i  and a composite intermediate good ( )X i  to produce good i : 

(A5) 1( ) ( ) ( ) ( )x x
t t t tXy i A i L i i   

where x denotes the share of the composite intermediate good.  The intermediate composite 

is a CES aggregate of individual intermediate goods: 

(A6) 
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   

where ( , )x i j is the quantity of intermediate good j used by firm i.  Note that symmetry 

between (A6) and the consumption aggregator (A1) means that the unit price of X is equal to 

P, the unit price of the consumption composite.  Firms are grouped into one of two sectors, to 

be indexed by s , with the main difference between sectors being how frequently firms change 

price.  A firm’s productivity is subject to idiosyncratic shocks of the following form: 

 1ln ( ) ln ( ) ( )t ttA i A i i    

where  2
,( ) iid 0,t A si N  . 

                                                                                                                                                                                     

25 The unit price of composite consumption is the dual of consumption aggregator (A1): 
1

1

0

1

1

( )t tP p i di






 
  
 . 
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 Firm i in sector s maximizes its discounted (real) profits 

 
0

0 0, ( )
t

ttE i



   

where 0,
0
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C
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 

  is the stochastic discount factor and current profits are given by 

(A7) 
( )( ) ( ) ( ) ( ) ( ) ( )
t
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X
p i W Wi y i L i i k i I i
P P P
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A firm’s profits equal revenue less input costs, including the cost of changing prices (the last 

term).  ( )tI i  is an indicator function for whether firm i changes its price in period t at a cost of 

( )tk i  units of labor.  For the SDP models, we set ( )t sk i k .  That is, in the SDP models the 

menu cost is fixed over time for each firm, but does vary across firms depending on the firm’s 

sector.  For the TDP models, ( ) {0, }tk i   .  Specifically, we mimic the Calvo model by 

having firms in sector s face a menu cost of 0 with probability s  and a menu cost of ¥ with 

probability 1 s .  These Calvo menu cost realizations are independent both across firms 

within sectors and over time. 

 Firm choices of intermediates satisfy a first-order condition comparable to consumer 

choices of final consumption varieties: 

(A8) 
( , ) ( )
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x
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Setting production equal to total demand (from consumers and others firms) for firm i yields 
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(A9)  
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where 
1

0

( )t tX X i di  .  The aggregate resource constraints for output and labor are then 
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Finally, we assume a cash-in-advance constraint on a consumer’s nominal spending 

 t t tPC M . 

In turn, we assume the money supply evolves as follows: 

 1

1
1 ln lnln ln t
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where  20,t mN  , and ln M

P
 
 
 

 is steady-state aggregate real demand. 

For setting up the firm’s value function, it is useful to substitute a few variables out of 

the firm’s profit function.  This (along with one assumption described below) will allow us to 

express the firm’s value as a function of only three states: 1( ) / , ( ), and  /t t t t tp i P A i M P .  First, 

we use firm cost-minimization to substitute ( )tX i  out of profits (A7) using 

(A11) 
( )

( )
1

t tX
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X t

W L i
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

. 

Second, we use the firm’s production function to substitute ( )tL i out of profits: 

  ( )
( ) 1
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. 
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We next substitute ( )ty i out of profits using the demand curve (A9) and aggregate resource 

constraint t t tY C X  , and substitute /t tW P  out of profits using labor supply (A3).  Thus, 

(real) profits are given by 

(A12) 
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We then log-linearize the production function (A5), labor supply (A3), resource constraints 

(A10), and equation (A11) around the flexible-price steady state to express  tY  and ˆ
tL  as 

linear functions of ˆ
tC , where ^’s denote log deviations from steady state values.  Specifically, 
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where C , X  and Y denote steady state values, and  

    ˆˆ1t x t x tY L C    . 

Finally, the cash-in-advance constraint implies /t t tC M P .  Thus, profits – equation (A12) – 

can be expressed as a function of just the three state variables 1( ) / , ( ), and  /t t t t tp i P A i M P .  

(In the Calvo case, the menu cost ( )tk i is a fourth state variable.) 

 To write the firm’s value function in terms of these same three state variables, we 

must make one more simplifying assumption.  The state space of the firm’s problem is 

actually infinite dimensional since the evolution of the price level depends on the entire 

distribution of all firms’ prices and productivity levels.  In the spirit of Krusell and Smith  

(1998), we assume that firms perceive the evolution of the price level as being a function of a  
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single moment of this distribution.  Specifically, 
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Nakamura and Steinsson (2008b) show that this assumption makes the model tractable while 

still providing highly accurate forecasts of the price level. 

 In the end, the firm’s value function takes the recursive form 
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where , 1t t 
  is the stochastic discount factor between periods t  and 1t  .  The model is then 

solved using value function iteration, with the additional requirement that the forecast rule 

 be consistent with the aggregation of firm pricing decisions. 
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Table 1 

Constructing Reset Price Inflation: A Simple Example 
 

 
 

Period 0 Period 1 Period 2 

    

Price of Good A 1 1.22 1.22 

Inflation for Good A  20% 0% 

Reset price for Good A 1 1.22 1.22 

Reset Inflation for Good A  20% 0% 

    

Price of Good B 1 1 1.22 

Inflation for Good B  0% 20% 

Reset price for Good B 1 1.22 1.22 

Reset Inflation for Good B  20% 0% 

    

Inflation ( t )  10% 10% 

    

Inflation for changers ( t )  20% 20% 

    

Reset inflation ( *
t )  20% 0% 

    
 

Note:  The example assumes equal expenditure shares, equaling one half, for both goods.  It also assumes that 
both Good A and Good B exhibited a price change in period 0, establishing the base price for calculating reset 
price inflation for period 1.  The number 1.22 in the table represents exp(0.2) to two decimal places. 
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Table 2 

Summary Statistics for Reset and Actual Price Inflation 
 

 
 

          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x   
 

 

  Standard deviation of *  
 

 0.99% 
(0.05) 

 1.30% 
(0.06) 

 1.21% 
(0.06) 

    
  Serial correlation of *  −0.47 

 (0.05) 
−0.41 
 (0.05) 

−0.49 
 (0.06) 

    
  Standard deviation of    0.18% 

(0.01) 
 0.41% 
(0.02) 

 0.16% 
(0.01) 

    
  Serial correlation of   
 

−0.12 
 (0.06) 

−0.10 
 (0.06) 

−0.15 
 (0.08) 

 
 

   

 
Notes:  All data are from the CPI-RDB.  Samples run from January 1989 through May 2008.  The threshold 
frequency of regular price changes is one-sixth per month: quote-lines in ELIs with average frequency higher 
than one-sixth are in the flexible group, and those with lower frequency are in the sticky group.  All series are 
monthly, are HP-filtered with smoothing parameter 1,000,000, and are seasonally adjusted. Standard errors 
are in parentheses. 
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Table 3 

Summary Statistics Excluding Sale Prices 
 

 
 
 

          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x   
 

 

  Standard deviation of *  
 

 0.95% 
(0.04) 

 1.38% 
(0.06) 

 1.13% 
(0.05) 

    
  Serial correlation of *  −0.41 

 (0.05) 
−0.42 
 (0.05) 

−0.40 
 (0.04) 

    
  Standard deviation of    0.14% 

(0.01) 
 0.39% 
(0.02)  

 0.10% 
(0.01) 

    
  Serial correlation of   
 

−0.05 
 (0.06) 

−0.05 
 (0.06) 

0.09 
(0.08) 

 
 

   

 
Notes:  All data are from the CPI-RDB.  Samples run from January 1989 through May 2008.  The threshold 
frequency of regular price changes is one-sixth per month: quote-lines in ELIs with average frequency higher 
than one-sixth are in the flexible group, and those with lower frequency are in the sticky group.  All series are 
monthly, are HP-filtered with smoothing parameter 1,000,000, and are seasonally adjusted. Standard errors 
are in parentheses. 
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Table 4 

Economy-Wide Model Parameters 
 
 

 
 
          Parameter 
 

 
 

Baseline 

 
Strategic 

Complements 

 
Endogenous 

Monetary 
Policy 

 
 

   

  Monthly Discount Factor ( ) 0.961/12 Same Same 

    
  Coefficient of Relative Risk Aversion ( ) 1 Same Same 

    
  Inverse of Frisch elasticity of labor supply ( ) 0 Same Same 

    
  Steady-state Labor Supply ( L ) 0.333 Same Same 
    
  Elasticity of demand ( ) 4 Same Same 

      

  Intermediate Input Share ( x ) 

    SDP 
    TDP 

 
0 
0 

 
0.95 
0.67 

 
0.95 

- 

    
  Persistence of Idio. Productivity Shock ( ) 0.7 Same Same 

    
  Mean Growth Rate of Money ( ) 0.2% Same Same 

    

  S.D. of Innovation to Money Growth ( m ) 0.48% 0.48% 0.41% 

    

  Money Growth’s reaction to M/P ( m ) 0 0 -0.6 

    
 
Notes:  Parameter values apply to both the TDP and SDP models, unless otherwise noted.  As shown in the text, 

prices are strategic complements if    1 1x     .  The target steady state labor supply is obtained by 

varying the utility function parameter .  The intermediate input share in the non-baseline cases is chosen to 
generate a contract multiplier of 4.  The parameters for the money growth process are chosen to match the mean 
growth rate of inflation, the standard deviation of nominal non-shelter PCE, and, for the “endogenous monetary 
policy” case, the serial correlation of nominal PCE. 
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Table 5 

Sector-Specific Model Parameters 
 
 

 
 
          Parameter 
 

 
 

Baseline 

 
Strategic 

Complements 

 
Endogenous 

Monetary 
Policy 

 
 

   

  Menu Costs (SDP Only)   
     Flexible  0.168% Same Same 
     Sticky  0.218% Same Same 
    
  S.D. of Idiosyncratic Productivity Shocks    

     Flexible ( ,A f )  4.93% 4.94% 4.94% 

     Sticky ( ,A s ) 4.70% 4.75% 4.75% 

    
  Probability of Zero Menu Cost (TDP Only)    

     Flexible ( f )  0.333 Same - 

     Sticky ( s ) 0.100 Same - 

    
  Sector Weights    
     Flexible 0.3000 Same Same 
     Sticky 0.7000 Same Same 
 
 

   

 

Notes:  Expended menu costs are evaluated at the steady state wage and scaled by steady state revenue, s s SS

SS SS

k W

P Y


.  

Although the expended menu costs are similar across sectors, the labor cost ( )sk  of changing prices is actually 

more than four times greater in the sticky sector because the frequency of price change ( )s is 3/10 as large in the 

sticky sector.  The labor cost of changing prices also varies greatly across the model specifications.  One can show 

expended menu costs are proportional to (1 )s s xk  , so specifications with higher intermediate input shares 

have larger labor costs of changing prices. 
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Table 6 

Summary Statistics on Reset and Actual Price Inflation 
 

TDP Model (no strategic complementarities) 
 
 

 
 
          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x 
 

 

  Standard deviation of *  
 

  0.49% 
(0.03) 

 0.51% 
(0.03) 

 0.49% 
(0.03) 

    
  Serial correlation of *  −0.04 

 (0.07) 
−0.07 
 (0.07) 

−0.04 
 (0.07) 

    
  Standard deviation of    0.12% 

(0.01) 
0.21% 
(0.02) 

0.10% 
(0.01) 

    
  Serial correlation of   
 

0.73 
(0.05) 

0.60 
(0.05) 

0.84 
(0.04) 

 
 

   

 
Notes:  Statistics are averages across 100 model simulations, each of 233 periods.  Standard deviations across 
simulations are in parentheses.  Each simulation consists of 3,100 firms in the flexible sector and 8,300 firms in 
the sticky sector.  
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Table 7 

Summary Statistics on Reset and Actual Price Inflation 
 

TDP Model (strategic complementarities) 
 
 

 
 
          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x 
 

 

  Standard deviation of *  
 

 0.29% 
(0.02) 

 0.28% 
(0.01) 

 0.32% 
(0.02) 

    
  Serial correlation of *  −0.02 

 (0.07) 
−0.12 
 (0.07) 

−0.04 
 (0.07) 

    
  Standard deviation of    0.08% 

(0.01) 
 0.12% 
(0.01) 

 0.07% 
(0.01) 

    
  Serial correlation of   
 

0.80 
(0.05) 

0.62 
(0.06) 

 0.87 
(0.04) 

 
 

   

 
Notes:  Statistics are averages across 100 model simulations, each of 233 periods.  Standard deviations across 
simulations are in parentheses. Each simulation consists of 3,100 firms in the flexible sector and 8,300 firms in 
the sticky sector. 
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Table 8 

Summary Statistics on Reset and Actual Price Inflation 
 

SDP Model (no strategic complementarities) 
 
 

 
 
          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x   
 

 

  Standard deviation of *  
 

 1.79% 
(0.08) 

 1.34% 
(0.07) 

 2.01% 
(0.10) 

    
  Serial correlation of *  −0.31 

 (0.06) 
−0.38 
 (0.06) 

−0.29 
 (0.06) 

    
  Standard deviation of    0.28% 

(0.02) 
 0.40% 
(0.02) 

 0.25% 
(0.02) 

    
  Serial correlation of   
 

0.38 
(0.07) 

0.16 
(0.07) 

0.53 
(0.06) 

 
 

   

 
Notes:  Statistics are averages across 100 model simulations, each of 233 periods.  Standard deviations across 
simulations are in parentheses. Each simulation consists of 3,100 firms in the flexible sector and 8,300 firms in 
the sticky sector. 
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Table 9 

Summary Statistics on Reset and Actual Price Inflation 
 

SDP Model (strategic complementarities) 
 
 

 
 
          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x   
 

 

Standard deviation of *  
 

 0.52% 
(0.02) 

 0.40% 
(0.02) 

 0.67% 
(0.03) 

    
Serial correlation of *  −0.24 

 (0.06) 
−0.34 
 (0.05) 

−0.27 
 (0.06) 

    
Standard deviation of    0.11% 

(0.01) 
 0.14% 
(0.01) 

 0.11% 
(0.01) 

    
Serial correlation of   

 
0.73 

(0.05) 
0.43 

(0.08) 
0.76 

(0.05) 
 
 

   

 
Notes:  Statistics are averages across 100 model simulations, each of 233 periods.  Standard deviations across 
simulations are in parentheses. Each simulation consists of 3,100 firms in the flexible sector and 8,300 firms in 
the sticky sector. 
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Table 10 

Summary Statistics on Reset and Actual Price Inflation 
 

SDP Model (endogenous monetary policy) 
 
 

 
 
          Statistic 
 

 
All 

Goods 

 
Flexible 
Goods 

 
Sticky 
Goods 

 
 

 x 
 

 

  Standard deviation of *  
 

 0.41% 
(0.02) 

 0.37% 
(0.02) 

 0.53% 
(0.03) 

    
  Serial correlation of *  −0.43 

 (0.05) 
−0.46 
 (0.05) 

−0.45 
 (0.04) 

    
  Standard deviation of    0.05% 

(0.002) 
0.10% 
(0.004) 

 0.04% 
(0.002) 

    
  Serial correlation of   
 

0.12 
(0.06) 

−0.04 
 (0.06) 

0.17 
(0.07) 

 
 

   

 
Notes:  Statistics are averages across 100 model simulations, each of 233 periods.  Standard deviations across 
simulations are in parentheses. Each simulation consists of 3,100 firms in the flexible sector and 8,300 firms in 
the sticky sector. 
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Figure 1 
Empirical Impulse Response of Reset Prices, All Goods 

 
 
 
 

Figure 2 
Empirical Impulse Response of Reset Prices, All Goods, Excluding Sale Prices 

 
 

Notes for Figures 1 and 2:  Dashed lines denote 95% confidence interval.  Estimates reflect 
accumulated responses to a univariate VAR for reset price inflation with 6 monthly lags.  
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Figure 3 
Empirical Impulse Response of Reset Prices, Flexible Goods 

 
 
 

 

Figure 4 
Empirical Impulse Response of Reset Prices, Sticky Goods 

 
 
 
Notes for Figures 3 and 4:  Dashed lines denote 95% confidence interval.  Estimates reflect accumulated 
responses to a univariate VAR for reset price inflation with 6 monthly lags. 
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Figure 5  
Impulse Response of Reset Prices, All Goods  
(TDP Model, No Strategic Complementarities) 

 
 

Figure 6 
Impulse Response of Reset Prices, All Goods  

(TDP Model, Strategic Complementarities) 

 
 
Notes for Figures 5 and 6:  Dashed lines denote 95% confidence interval. Estimates reflect accumulated 
responses to a univariate VAR for reset price inflation with 6 monthly lags.  Shaded area denotes the 95% 
confidence interval for estimates based on CPI-RDB data. 
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Figure 7  
Impulse Response of Reset Prices, All Goods 
(SDP Model, no Strategic Complementarities) 

 
 
 

Figure 8  
Impulse Response of Reset Prices, All Goods 
(SDP Model with Strategic Complementarities) 

 
Notes for Figures 7 and 8:  Dashed lines denote 95% confidence interval.  Estimates reflect accumulated 
responses to a univariate VAR for reset price inflation with 6 monthly lags.  Shaded area denotes the 95% 
confidence interval for estimates based on CPI-RDB data. 
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Figure 9 
Impulse Response of Theoretical Reset Prices, All Goods 

(SDP Model with Strategic Complementarities) 

 
Note for Figure 9:  Estimates reflect accumulated responses to a univariate VAR for reset price inflation with 6 
monthly lags. 
 

Figure 10 
Impulse Response of Reset Prices, All Goods 

(SDP Model, Strategic Complementarities, Endogenous Money) 

 
Notes for Figure 10:  Dashed lines denote 95% confidence interval. Estimates reflect accumulated responses to a 
univariate VAR for reset price inflation with 6 monthly lags.  Shaded area denotes the 95% confidence interval 
for estimates based on CPI-RDB data. 
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Figure 11 
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Figure 12 
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