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ABSTRACT
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However, the large sample distribution of matching estimators has been derived only for particular
cases (Abadie and Imbens, 2006). This article establishes a martingale representation for matching
estimators. This representation allows the use of martingale limit theorems to derive the large sample
distribution of matching estimators. As an illustration of the applicability of the theory, we derive the
asymptotic distribution of a matching estimator when matching is carried out without replacement,
a result previously unavailable in the literature. In addition, we apply the techniques proposed in this
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the large sample distribution of matching estimators derived in this article provides an accurate approximation
to the small sample behavior of these estimators. In addition, our simulations show that standard errors
that do not take into account hot deck imputation of missing data may be severely downward biased,
while standard errors that incorporate the correction proposed in this article for hot deck imputation
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I. Introduction

Matching methods provide simple and intuitive tools for adjusting the distribution of co-

variates among samples from different populations. Probably because of their transparency

and intuitive appeal, matching methods are widely used in evaluation research to estimate

treatment effects when all treatment confounders are observed (Rubin, 1977; Dehejia and

Wahba, 1999; Rosenbaum, 2002, Hansen, 2004). Matching is also used for the analysis

of missing data, where it is often referred to as “hot deck imputation” (Little and Rubin,

2002). As a notorious example, missing weekly earnings are currently imputed using hot

deck methods for more than 30 percent of the records with weekly earnings data in the

monthly U.S. Current Population Survey (CPS) files (Bollinger and Hirsch, 2009).

In spite of the pervasiveness of matching methods, the asymptotic distribution of match-

ing estimators has been derived only for special cases (Abadie and Imbens, 2006). In the

absence of large sample approximation results to the distribution of matching estimators,

empirical researchers employing matching methods have sometimes used the bootstrap as

a basis for inference. However, recent results have shown that, in general, the bootstrap

does not provide valid large sample inference for matching estimators (Abadie and Im-

bens, 2008). Similarly, the properties of statistics based on data imputed using sequential

hot deck methods, like those employed in the CPS and other large surveys, are not well-

understood, and empirical researchers using these surveys typically ignore missing data

imputation issues when they construct standard errors. Andridge and Little (2010) pro-

vide a recent survey on hot deck imputation methods.

The main contribution of this article is to establish a martingale representation for

matching estimators. This representation allows the use of martingale limit theorems (Hall

and Heyde, 1980; Billingsley, 1995; Shorack, 2000) to derive the asymptotic distribution

of matching estimators. Because the martingale representation applies to a large class

of matching estimators, the applicability of the methods presented in this article is very

broad. Despite its simplicity and immediate implications, the martingale representation

of matching estimators described in this article seems to have been previously unnoticed
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in the literature. The use of martingale methods is attractive because the limit behavior

of martingale sequences has been extensively studied in the statistics literature (see, for

example, Hall and Heyde, 1980).

As an illustration of the usefulness of the theory, we apply the martingale methods

proposed in this paper to derive the asymptotic distribution of a matching estimator when

matching is carried out without replacement, a result previously unavailable in the litera-

ture. In addition, we apply the techniques proposed in this article to derive a correction to

the standard error of a sample mean when missing data are imputed using the hot deck.

Finally, we demonstrate the empirical relevance of our methods using two Monte Carlo

designs based on actual data sets. In these realistic Monte Carlo exercises the large sample

distribution of matching estimators derived in this article provides an accurate approxima-

tion to the small sample behavior of these estimators. In addition, our simulations show

that standard errors that do not take into account hot deck imputation of missing data may

be severely downward biased while standard errors that incorporate the correction proposed

in this article for hot deck imputation perform extremely well. This result demonstrates

the practical relevance of the standard error correction for the hot deck proposed in this

article.

The rest of the article is organized as follows. Section II describes matching estima-

tors. Section III presents the main result of the article, which establishes a martingale

representation for matching estimators. In section IV, we apply martingale techniques to

analyze the large sample properties of a matching estimator when matching is carried out

without replacement. In section V, we apply martingale techniques to study hot deck im-

putation. Section VI describes of the Monte Carlo simulation exercises and reports the

results. Section VII concludes.

II. Matching Estimators

Let W be a binary variable that indicates membership to a particular population of interest.

Empirical researchers often compare the distributions of some variable, Y , between units

with W = 1 and units with W = 0 after adjusting for the differences in a (k× 1) vector of
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observed covariates, X. For example, in discrimination litigation research, W may represent

membership in a certain demographic group, Y may represent labor wages, and X may

represent a vector of variables describing job and/or worker characteristics. In evaluation

research, W typically indicates exposure to an active treatment or intervention, Y is an

outcome of interest, and X is a vector of observed confounders. As in that literature, we

will say that units with W = 1 are “treated” and units with W = 0 are “untreated”. Let

τ = E[Y |W = 1]− E
[
E[Y |X, W = 0]

∣∣∣W = 1
]
. (1)

In evaluation research, τ is given a causal interpretation as the “average treatment effect

on the treated” under unconfoundedness assumptions (Rubin, 1977). Applied researchers

often use matching methods to estimate τ . Other parameters of interest that can be

estimated by matching methods include: (i) the “average treatment effect”, which is of

widespread interest in evaluation studies, (ii) parameters that focus on features of the

distribution of Y other than the mean, (iii) parameters estimated by hot deck imputation

methods in the presence of missing data. Rosenbaum (2002), Imbens (2004), and Rubin

(2006) provide detailed surveys of the literature. For concreteness, and to avoid tedious

repetition or unnecessary abstraction, in this section we discuss matching estimation of τ

only. However, the techniques proposed in this paper are of immediate application to the

estimation of parameters other than τ via matching (see, for example, section V).

Also, to avoid notational clutter, we consider only estimators with a fixed number

of matches, M , per unit. However, as it will be explained later, our techniques can be

immediately applied to estimators for which the number of matches may differ across units

(see, e.g., Hansen, 2004). Consider two random samples of sizes N0 and N1 of untreated

and treated units, respectively. Pooling these two samples, we obtain a sample of size

N = N0 + N1 containing both treated and untreated units. For each unit in the pooled

sample we observe the triple (Y,X, W ). For each treated unit i, let JM(i) be the indices

of M untreated units with values in the covariates similar to Xi (where M is some small

positive integer). In other words, JM(i) is a set of M matches for observation i. To simplify

notation, we will assume that at least one of the variables in the vector X has a continuous
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distribution, so perfect matches happen with probability zero. Let ‖ · ‖ be some norm in

Rk (typically the Euclidean norm). Let 1A be the indicator function for the event A. For

matching with replacement JM(i) consists of the indices of the M untreated observations

with the closest value covariate values to Xi:

JM(i) =

{
j ∈ {1, . . . , N} s.t. Wj = 0,

(
N∑

k=1

(1−Wk) 1{‖Xi−Xj‖≤‖Xi−Xk‖}

)
≤ M

}
.

For matching without replacement, the elements of {JM(i) s.t. Wi = 1} are non-overlapping

subsets of {j ∈ {1, . . . , N} s.t. Wj = 0}, chosen to minimize the sum of the matching dis-

crepancies:
N∑

i=1

Wi

 1

M

∑
j∈JM (i)

‖Xi −Xj‖

 .

In both cases, the matching estimator of τ is defined as:

τ̂ =
1

N1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈JM (i)

Yj

)
. (2)

Many other matching schemes are possible (see, e.g., Gu and Rosenbaum, 1993; Rosen-

baum, 2002; Hansen, 2004; Diamond and Sekhon, 2008; Iacus, King, and Porro, 2009), and

the results in this article are of broad generality. Notice that in this article we reserve the

term “matching” for procedures that use a small number, M , of matches. Estimators that

treat the number of matches as a function of the sample size (with M → ∞ as N → ∞)

have been proposed by Heckman, Ichimura, and Todd (1998) and others. Under certain

conditions, these estimators have asymptotically linear representations, so their large sam-

ple distributions can be derived using the standard machinery for asymptotically linear

estimators. In contrast, despite the pervasiveness of matching estimators that use a small

number of matches (e.g., hot deck imputation in the CPS), the previous literature does not

provide a general framework for establishing their large sample properties.

III. A Martingale Representation for Matching Estimators

This section derives a martingale representation for matching estimators. For w ∈ {0, 1},

let µw(x) = E[Y |X = x, W = w] and σ2
w(x) = var(Y |X = x, W = w). Assume that these
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functions are bounded. Given equation (2), we can write τ̂ − τ = DN + RN , where

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)
+

1

N1

N∑
i=1

Wi

((
Yi − µ1(Xi)

)
− 1

M

∑
j∈JM (i)

(
Yj − µ0(Xj)

)
,

and

RN =
1

N1

N∑
i=1

Wi

(
µ0(Xi)−

1

M

∑
j∈JM (i)

µ0(Xj)
)
.

The term RN is the conditional bias of matching estimator described in Abadie and Imbens

(2006). This term is zero if all matches are perfect (that is, if all matching discrepancies,

Xi − Xj for j ∈ JM(i), are zero), or if the regression µ0 is a constant function. In most

cases of interest, however, this term is different from zero, as perfect matches happen with

probability zero for continuous covariates. The order of magnitude of RN depends on the

number of continuous covariates, as well as the magnitude of N0 relative to N1. Under

appropriate conditions
√

N1RN converges in probability to zero (see section IV for the case

of matching without replacement, or Abadie and Imbens, 2006, for the case of matching

with replacement).

Next, it will be shown that the term DN is a martingale array with respect to a certain

filtration. First notice that:

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)
+

1

N1

N∑
i=1

(
Wi − (1−Wi)

KN,i

M

)(
Yi − µWi

(Xi)
)
,

where KN,i is the number of times that observation i (with Wi = 0) is used as a match:

KN,i =
N∑

j=1

1{i∈JM (j)}.

Therefore, we can write: √
N1DN =

2N∑
k=1

ξN,k,
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where

ξN,k =


1√
N1

Wk

(
µ1(Xk)− µ0(Xk)− τ

)
if 1 ≤ k ≤ N,

1√
N1

(
Wk−N − (1−Wk−N)

KN,k−N

M

)(
Yk−N − µWk−N

(Xk−N)
)

if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN} and WN = {W1, . . . ,WN}. Consider the σ-fields FN,k = σ{WN ,

X1, . . . , Xk} for 1 ≤ k ≤ N and FN,k = σ{WN ,XN , Y1, . . . , Yk−N} for N + 1 ≤ k ≤ 2N .

Then, and this is the key insight in this article,{
i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 2N

}

is a martingale for each N ≥ 1. As a result, the asymptotic behavior of
√

N1DN can

be analyzed using martingale methods. Analogous martingale representations hold for

alternative matching estimators. Regardless of the choice of matching scheme, if matches

depend only on the covariates X, a martingale representation holds for
√

N1DN . The

reason is that no matter how matching is implemented, (i) the number of times that

unit k is used as a match, KN,k, is a deterministic function of XN and WN , and (ii)

E[Yk − µWk
(Xk) |XN ,WN , Y1, . . . , Yk−1] = 0.

So far, we have considered the case where KN,i is fixed given XN and WN , for all

1 ≤ i ≤ N . This assumption does not hold for certain matching schemes that break

matching ties using randomization. Notice, however, that any sequence of randomized

tie-breaks can be included in the set of variables that span FN,k for N + 1 ≤ k ≤ 2N to

preserve the martingale representation of DN .

IV. Application: Matching without Replacement

In this section, we illustrate the usefulness of the martingale representation of matching

estimators by deriving the asymptotic distribution of a matching estimator when matching

is done without replacement, so KN,i ∈ {0, 1} for every unit i with Wi = 0.

For 1 ≤ k ≤ N , the conditional variances of the martingale differences are given by:

E[ξ2
N,k|FN,k−1] =

1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|FN,k−1]
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=
1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|Wk = 1].

For N + 1 ≤ k ≤ 2N , the conditional variances of the martingale differences are given by:

E[ξ2
N,k|FN,k−1] =

1

N1

E

[(
Wk−N − (1−Wk−N)

KN,k−N

M

)2 (
Yk−N − µWk−N

(Xk−N)
)2∣∣∣∣∣FN,k−1

]

=
1

N1

(
Wk−Nσ2

1(Xk−N) + (1−Wk−N)
KN,k−N

M2
σ2

0(Xk−N)

)
=

1

N1

Wk−N

(
σ2

1(Xk−N) +
σ2

0(Xk−N)

M

)
+ rN,k−N ,

where

rN,k−N =
1

N1

(
(1−Wk−N)

KN,k−N

M2
σ2

0(Xk−N)−Wk−N
σ2

0(Xk−N)

M

)
.

Assume that the conditional variance function σ2
0(x) is Lipschitz-continuous, with Lipschitz

constant equal to c1. For 1 ≤ i ≤ N such that Wi = 1, let ‖U (M,m)
N0,N1,i‖ be the m-th matching

discrepancy for treated unit i when untreated units are matched without replacement to

treated units in such a way that the sum of the matching discrepancies is minimized.

That is, if unit i is a treated observation, and unit j is the m-th match for unit i, then

‖U (M,m)
N0,N1,i‖ = ‖Xi −Xj‖. Lipschitz-continuity of σ2

0(x) implies:∣∣∣∣∣
2N∑

k=N+1

rN,k−N

∣∣∣∣∣ ≤ c1

M2

1

N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i‖.

Because the average matching discrepancy converges to zero in probability (see Proposition

1 in the appendix for a stronger result), the Weak Law of Large Numbers implies

2N∑
k=1

E[ξ2
N,k|FN,k−1]

p→ σ2,

where

σ2 = E[(µ1(X)− µ0(X)− τ)2|W = 1] + E

[
σ2

1(X) +
σ2

0(X)

M

∣∣∣W = 1

]
. (3)

In view of this result, to apply a Martingale Central Limit Theorem to DN , it is sufficient

to check the Lindeberg condition,

2N∑
k=1

E[ξ2
N,k1{|ξN,k|≥ε}] → 0 for all ε > 0
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(Billingsley, 1995, see Hall and Heyde, 1980, and Shorack, 2000, for alternative conditions).

Because for all δ > 0, |ξN,k|21{|ξN,k|≥ε}ε
δ ≤ |ξN,k|2+δ, it follows that Lindeberg’s condition is

implied by Lyapounov’s condition:

2N∑
k=1

E[ξ2+δ
N,k ] → 0 for some δ > 0,

For the matching estimators considered in this section, this can be easily established under

usual regularity conditions regarding boundedness of moments. Under these conditions,

the Central Limit Theorem for Triangular Martingale Arrays implies:√
N1DN

d−→ N(0, σ2).

The proof concludes by showing that
√

N1RN
p→ 0. If µ0 is Lipschitz-continuous, then

there exists a constant c2 such that

√
N1RN ≤ c2

1√
N1

1

M

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i‖.

Proposition 1 in the appendix shows that under some conditions, and if there exists c > 0

and r > k where k is the number of (continuous) covariates, such that N r
1/N0 ≤ c, then,

1√
N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i‖

p→ 0,

so
√

N1RN vanishes asymptotically.

The conditions of Proposition 1 assume that all covariates have continuous distributions.

This is done without loss of generality. Discrete covariates with a finite number of support

points can be easily dealt with by conditioning on their values, in which case k is equal to

the number of continuous covariates in X. The proof of Proposition 1 indicates that the

support conditions in this proposition can also be relaxed. However, the requirement that

the size of the untreated group is of larger order of magnitude than the size of the treated

group is crucial to the result in the proposition. To see that r = 1 is not sufficient (even

in the one-dimensional case), consider the case with M = 1 and N0 = N1. Then, because

matching is done without replacement and all treated units are matched, the matching
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estimator is equal to the difference in sample means of Y between treated and nontreated,

regardless of the total sample size N .

Proposition 1 provides conditions under which matching discrepancies are negligible in

large samples. In practical terms, Proposition 1 demonstrates the benefits of having a large

“donor pool” of control units for matching estimators. Notice however that, for particular

applications, researchers can assess the quality of the matches directly from the data. When

matching discrepancies are large the resulting bias can be eliminated or reduced using the

bias correction techniques in Rubin (1973b), Quade (1982), and Abadie and Imbens (2009).

These authors propose a bias-corrected matching estimator that adjusts each matched pair

for its contribution to the conditional bias term:

τ̂bc =
1

N1

N∑
i=1

Wi

(
(Yi − µ̂0(Xi))−

1

M

∑
j∈JM (i)

(Yj − µ̂0(Xj(i)))
)
, (4)

where µ̂0(·) is an estimator of µ0(·). Abadie and Imbens (2009) show that under cer-

tain conditions this bias-correction technique eliminates the asymptotic bias of matching

estimators without affecting the asymptotic variance.

Under the conditions of Proposition 1, the conditional bias term,
√

N1RN , is asymp-

totically negligible, so we obtain:

√
N1

(
τ̂ − τ

) d→ N(0, σ2),

where σ2 is given in equation (3). Straightforward calculations show that the variance

estimator

σ̂2 =
1

N1 − 1

N∑
i=1

Wi

(
Yi −

1

M

∑
j∈JM (i)

Yj − τ̂
)2

(5)

is consistent for σ2.

Despite the simplicity of this result, to our knowledge the validity of σ̂2/N1 as an

estimator of the variance of τ̂ when matching is done without replacement has not been

established previously. Conversely, it is known that σ̂2/N1 is not a valid estimator of the

variance of τ̂ when matching is done with replacement (Abadie and Imbens, 2006).
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V. Application: Hot Deck Imputation

In this section, we consider a “cell hot deck” imputation scheme where incomplete records

of Y are imputed using complete observations within the same “cell” of the covariates,

X. That is, the support of the covariates is partitioned into T cells, C1, . . . CT , and each

incomplete record of Y is filled using a complete record from the same cell. Other hot deck

imputation procedures are possible (see, for example, Little and Rubin, 2002). However,

the cell hot deck methods is probably the most widely used in practice, as it is the one

used by the US Census Bureau to impute missing data in the Current Population Survey

(CPS), the decennial census, the Survey of Income and Program Participation (SIPP), and

other large surveys. Derivations similar to the ones presented in this section can be applied

to alternative hot deck imputation schemes.

Cell hot deck imputation methods like the one employed in the CPS can be justified by

a “Missing and Coarsening at Random” assumption. Let W be an indicator for complete

record, that is W = 1 indicates that Y is observed. A missing and coarsening at random

assumption states that Y is independent of (X, W ) conditional on X ∈ Ct, for 1 ≤ t ≤ T .

Missing and coarsening at random may be a strong assumption in many contexts where

data are imputed using the cell hot deck. However, without this assumption, or a similar

one, the cell hot deck will produce inconsistent estimators in general. Therefore, in our

analysis we assume missing and coarsening at random. Let µ = E[Y ], µ(x) = E[Y |X = x],

µt = E[Y |X ∈ Ct] and σ2
t = var(Y |X ∈ Ct). Let j(i) be the index of the observation used

to impute Y for observation i (if Wi = 1, then j(i) = i). Let

Ȳ =
1

N

N∑
i=1

Yj(i)

=
1

N

N∑
i=1

Wi(1 + KN,i)Yi, (6)

where now KN,i is the number of times that observation i is used to impute an incomplete

record. The variables KN,i depend on how imputations are chosen from the complete

records within a cell. One possibility is the random cell hot deck, which imputes missing

records using a record chosen at random among the complete observation in the same cell.

10



The CPS and other large surveys use a more complicated procedure called the sequential

cell hot deck. The sequential cell hot deck imputes missing records using the last complete

record in the same cell. That is, unlike the random cell hot deck, the sequential cell hot

deck uses information about the order of the observations in the sample.

Notice that

Ȳ − µ =
1

N

N∑
i=1

(µ(Xi)− µ)

+
1

N

N∑
i=1

Wi(1 + KN,i)(Yi − µ(Xi))

+
1

N

N∑
i=1

(µ(Xj(i))− µ(Xi)).

By the Missing and Coarsening at Random assumption, µ(Xj(i)) − µ(Xi) = 0 for all i.

Assume that the second moment of KN,i exists, and that for each cell, t, we have:∣∣∣∣∣ 1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 + KN,i)
2 − E

[
1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 + KN,i)
2

]∣∣∣∣∣ p−→ 0, (7)

which can be usually established using negative association properties of {KN,i s.t. Wi =

1, Xi ∈ Ct} (Joag-Dev and Proschan, 1983). We can write:

Ȳ − µ

σ/
√

N
=

2N∑
k=1

ξN,k,

where

σ2 = E

[
T∑

t=1

(
Nt

N

)
(µt − µ)2

]
+ E

[
T∑

t=1

(
Nt

N

)
σ2

t

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 + KN,i)
2

]
,

and

ξN,k =


1

σ
√

N
(µ(Xk)− µ) if 1 ≤ k ≤ N,

1

σ
√

N
Wk−N(1 + KN,k−N)

(
Yk−N − µ(Xk−N)

)
if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN}, WN = {W1, . . . ,WN} and JN = {j(1), . . . , j(N)}. Con-

sider the σ-fields FN,k = σ{WN , X1, . . . , Xk} for 1 ≤ k ≤ N and FN,k = σ{WN ,XN ,
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JN , Y1, . . . , Yk−N} for N + 1 ≤ k ≤ 2N . Then,{
i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 2N

}

is a martingale for each N ≥ 1. Equation (7) along with the Central Limit Theorem for

martingale arrays (e.g., Theorem 3.2 in Hall and Heyde, 1980) imply:

Ȳ − µ

σ/
√

N

d−→ N(0, 1).

Consider now the usual variance estimator that ignores missing data imputation:

σ̂2 =
1

N − 1

N∑
i=1

(Yj(i) − Ȳ )2. (8)

Notice that ∣∣∣∣∣σ̂2 −
T∑

t=1

(
Nt

N

)
(µt − µ)2 −

T∑
t=1

(
Nt

N

)
σ2

t

∣∣∣∣∣ p−→ 0.

In addition, because
∑N

i=1 1{Xi∈Ct}Wi(1 + KN,i) = Nt, then

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(1 + KN,i)
2 = 1 +

1

Nt

N∑
i=1

1{Xi∈Ct}Wi(K
2
N,i + KN,i).

This suggests using the following estimator of the variance of the re-scaled estimator:

σ̂2
adj = σ̂2 +

1

N

T∑
t=1

(
N∑

i=1

1{Xi∈Ct}Wi(K
2
N,i + KN,i)

)
σ̂2

t

= σ̂2 +
T∑

t=1

(
Nt

N

)(
1

Nt

N∑
i=1

1{Xi∈Ct}Wi(K
2
N,i + KN,i)

)
σ̂2

t . (9)

where σ̂2
t is the sample variance of Y calculated from the complete observations in cell Ct.

Notice that this formula applies no matter how imputation is done within the cells (for

example, randomized or based on the order of the observations in the sample) as long as

equation (7) holds.

VI. Monte Carlo Analysis

This section reports the results of two Monte Carlo simulations based on actual data.

Section VI.A uses the Boston HMDA data set, a data set collected by the Federal Reserve
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Bank of Boston to investigate racial discrimination in mortgage credit markets, to assess

the quality of the large sample approximation to the distribution of matching estimators

derived in section IV. Section VI.B uses CPS data to investigate the performance of the

standard error correction for missing data imputation derived in section V.

A. Matching without Replacement in the Boston HMDA Dataset

In order to detect potential discriminatory practices of mortgage credit lenders against

minority applicants, the U.S. Home Mortgage Disclosure Act (HMDA) of 1975 requires

lenders to routinely disclose information on mortgage applications, including the race and

ethnicity of the applicants. The information collected under the HMDA does not include,

however, data on the credit histories of the applicants, and other loan and applicant char-

acteristics that are considered to be important factors in determining the approval or denial

of mortgage loans. The absence of such information has generated some skepticism about

whether the HMDA data can effectively be used to detect discrimination in the mortgage

credit market. To overcome this criticism, the Federal Reserve Bank of Boston collected an

additional set of 38 variables included in mortgage applications for a sample of applications

in the Boston metropolitan area in 1990. The Boston HMDA data set includes all mortgage

applications by black and Hispanic applicants in the Boston metropolitan area in 1990, as

well as a random sample of mortgage applications by white applicants in the same year and

geographical area. Regression analysis of the Boston HMDA data indicated that minority

applicants were more likely to be denied mortgage than white applicants with the same

characteristics (Munnell et al., 1996).

In this section, we use the Boston HMDA data set to evaluate the empirical performance

of the large sample approximation to the distribution of matching estimators derived in

section IV. The HMDA data provides a relevant context for this evaluation because the

Federal Reserve System employs matching in the HMDA data as an screening device for

fair lending regulation compliance (Avery, Beeson, and Calem, 1997, Avery, Canner, and

Cook, 2005). We restrict our sample to single-family residences and male applicants who

are white non-Hispanic or black non-Hispanic, not self-employed, who were approved for
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private mortgage insurance, and who do not have a public record of default or bankruptcy

at the time of the application. This leaves us with a sample of 148 black applicants and

1336 white applicants, for a total of 1484 applicants.

In the context of this application, the outcome variable, Y , is an indicator variable that

takes value one if the mortgage application was denied, and zero if the mortgage application

was approved, W is a binary indicator that takes value one for black applicants, and X is

a vector of six applicant and loan characteristics used in Munnell et al. (1996): housing

expense to income ratio, total debt payments to income ratio, consumer credit history,

mortgage credit history, regional unemployment rate in the applicant’s industry, and loan

amount to appraised value ratio (see Munnell et al., 1996, for a precise definition of these

variables).

To run our simulations for samples sizes of N1 black observations and N0 white obser-

vations we proceed in five steps. First, for the entire sample, we estimate a logistic model

of the mortgage denial indicator on the black indicator and the covariates in X. Second,

we draw (with replacement) N1 observations from the empirical distribution of X for black

applicants and N0 observations from the empirical distribution of X for white applicants.

Third, for each individual in the simulated sample, we generate the mortgage denial indica-

tor, Y , using the logistic model estimated in the first step. Fourth, for the simulated sample,

we compute τ̂ , the matching estimator in equation (2), matching without replacement, the

bias-corrected version of this estimator, τ̂bc, in equation (4), and the variance estimator, σ̂2,

in equation (5). All covariates are normalized to have unit variance prior to matching, and

a logistic model is employed to calculate the bias correction. Finally, we repeat steps two

to four for a total number of 10000 simulations. That is, in this simulation we sample from

a population distribution of the covariates that is equal to the distribution of the covariates

in the HMDA sample of 1484 applicants. The distribution of Y conditional W and X in

our simulation is given by a logistic model with parameters equal to those estimated in the

HMDA sample of 1484 applicants. In this Monte Carlo design, the parameter τ in equation

(1) is equal to 0.099, which represents the difference in the probability of denial between
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black applicants and white applicants of the same characteristics in our simulation.

Table I reports the results of the simulation, for different sample sizes, N1 and N0.

Column (1) reports the bias of τ̂ relative to τ . As suggested by the results in section

IV, our simulation results indicate that for a fixed N1 the bias of τ̂ decreases when N0

increases. For small samples, however, the bias of τ̂ may be substantial, reflecting the

high dimensionality of the vector of matching variables. The bias-corrected estimator in

column (2) generates much smaller biases. Columns (3) and (4) report the variance of τ̂

across simulations and the average, also across simulations, of the variance estimator of τ̂

in equation (5). Even in fairly small samples (N1 = 25 and N0 = 250), σ̂2/N1 provides

a very precise approximation to the variance of τ̂ . Finally, columns (5) and (6) report

coverage rates of nominal 95% confidence intervals constructed with (τ̂ , σ̂2) and (τ̂bc, σ̂
2),

respectively. The results indicate that, in this simulation, the Normal approximation to

the distribution of matching estimators derived in section IV is very accurate, especially

when the bias of the matching estimator is corrected using the bias correction techniques

in Rubin (1973b), Quade (1982), and Abadie and Imbens (2009).

B. Hot Deck Imputation in the Current Population Survey

Hot deck methods have long been used to impute missing data in large surveys (see, for

example, Andridge and Little, 2010). However, the sampling properties of complex hot deck

imputation methods, like the sequential hot deck used by the Census Bureau in the CPS,

are largely unknown. This void in the literature has become an object of serious concern

in recent years, because the proportion of observations in the CPS with imputed values

of weekly earnings has increased steadily: from around 16 percent in 1979, when weekly

earnings were included in the monthly survey questionnaire, to more than 30 percent in

recent years (Hirsch and Schumacher, 2004; Bollinger and Hirsch, 2009).

In this section we investigate the performance of the approximation to the distribution

of a sample mean proposed in section V, when data are imputed using a sequential hot

deck like in the CPS. In order to make our exercise as realistic as possible we base our

Monte Carlo design on actual CPS data.
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Hot deck imputation in the CPS Outgoing Rotation Groups is done through a series of

steps, each one imputing a specific survey item. Here, we focus on imputation of missing

earnings, because earnings are affected by imputation rates that are much higher than for

other survey items. As for other missing survey items, imputation of weekly earnings for

non-hourly workers is implemented through a cell hot deck procedure. Observations are

assigned to cells defined by age, race, gender, education, occupation, hours worked, and

receipt of overtime wages, tips, or commissions, for a total of 11,520 cells (see Bollinger and

Hirsch, 2006, for details). Then each missing record is imputed using the value of weekly

earnings of last complete record in the same cell.

The imputation of weekly earnings in the CPS Outgoing Rotation Groups cannot be

perfectly reproduced with the CPS public use data files. The main reason is that the

race variable used by the imputation algorithm is different from the one included in the

public use data release. Nevertheless, the Monte Carlo exercise carried out in this section is

designed to reproduce as closely as possible the imputation algorithm used by the Census

Bureau for weekly earnings. In our simulation we use data from the CPS monthly file

of August 2009. In order to simplify the analysis, we first restrict our sample to male

individuals working for a pay, who are white, aged 25 to 64, have a high school diploma or

equivalent, hold one job only, have a tertiary occupation, do not receive overtime wages,

tips, or commissions, and work 40 hours/week. In addition, we discard four observations

with zero recorded weekly earnings. This leaves us with 856 observations in 30 of the 11,520

original hot deck cells. The 30 hot deck cells are defined by three categories of age, two

of education, and five of occupation. The average number of observations per cell is 28.53,

the minimum is 2, and the maximum is 149. In this sample the percentage of observations

with missing weekly earnings is 32.83, and each cell has at least two complete observations.

For a fixed number of observations, N , the simulation proceeds as follows. First, for

each cell t we simulate two observations of log weekly earnings, Y ∗
t,1 and Y ∗

t,2, from a normal

distribution with the same mean and variance as in the distribution of log weekly earnings

for complete the CPS observations in the same cell. In our simulation, Y ∗
t,1 and Y ∗

t,2 represent
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the last two complete observations in cell t in previous CPS waves. Second, we sample N

observation from the multinomial distribution of cell frequencies in the CPS sample. For

each of these N observations, we simulate log weekly earnings using a normal distribution

with the same mean and variance as log weekly earnings for complete CPS observations

in the same cell. Then, for each observation we mark weekly earnings as unrecorded with

probability equal to the proportion of missing weekly earnings in the same cell of the CPS

sample. Third, in our simulated sample of N observations, we impute missing log weekly

earnings using the last complete observation in the cell (which may possibly be Y ∗
t,2). This

creates a partially imputed sample with N values of log weekly earnings. Four, we calculate

the sample average, Ȳ in equation (6), as well as the usual and adjusted variance estimators:

σ̂2 and σ̂2
adj in equations (8) and (9), respectively. To compute the intra-cell variances, σ̂2

t

of equation (9), we use all the complete simulated observations in the cell plus Y ∗
t,1 and Y ∗

t,2.

Simulating two complete observations per cell, Y ∗
t,1 and Y ∗

t,2, that correspond to the last two

complete observations in the cell in previous CPS waves allows us to compute σ̂2
t even for

cells with no other complete observations in the simulation. Finally, we repeat steps one

to four for a total number of 50000 simulations.

The results are reported on Table II for sample sizes 50, 100, 200, and 856, the actual

number of observations in the CPS sample. The average of our adjusted variance estimator

across simulations, in column (2), closely approximates the variance of Ȳ , in column (1),

even for fairly small sample sizes. In contrast, columns (3) and (4) show that the usual

variance estimator is severely downward biased, and that the bias of this estimator (as

a percentage of the true variance) increases with the sample size. For 856 observations,

that is the actual size of the CPS data sample used in the simulation, the usual variance

estimator is only 58 percent of the true variance of Ȳ . Large sample sizes make possible that

some observations are repeatedly used for imputation, increasing the difference between the

adjusted and unadjusted variances in equation (9). This happens when missing observations

arrive consecutively to a cell, without the observation used for imputation being “refreshed”

by another complete observation. Columns (5) and (6) report coverage rates of nominal 95%
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confidence intervals constructed with σ̂2
adj and σ̂2, respectively. The results show coverage

rates close to nominal coverage in column (5), when the adjusted variance estimator is used

to construct confidence interval. In contrast, confidence intervals calculated with the usual

variance estimator suffer from severe under-coverage, as reported in column (6).

VII. Conclusion

This article establishes a martingale array representation for matching estimators. This

representation allows the use of well-known martingale limit theorems to determine the

large sample distribution of matching estimators. Because the martingale representation

applies to a large class of matching estimators, the applicability of the methods presented

in this article is very broad. Specific applications include matching estimators of average

treatment effects as well as “hot deck” imputation methods for missing data. Two realistic

simulations demonstrate the empirical relevance of the results of this article.
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Appendix

Proposition 1: Let F0 and F1 be the distributions of X given W = 0 and X given W = 1,
respectively. Assume that F0 and F1 have a common support that is a Cartesian product of
intervals, and that the densities f0(x) and f1(x) are bounded and bounded away from zero: f ≤
f0 ≤ f̄ and f ≤ f1 ≤ f̄ . Assume that there exists c > 0 and r > k where k is the number of
(continuous) covariates, such that N r

1/N0 ≤ c. Then,

1√
N1

N∑
i=1

M∑
m=1

Wi‖U (M,m)
N0,N1,i‖

p→ 0.

Proof of Proposition 1: By changing units of measurement, we can always make the support
of the covariates equal to the unit k-cube. (This only adds a multiplicative constant to our
bounds.) Notice that we can always divide a unit k-cube into Nk

1 identical cubes, for N1 =
1, 2, 3, . . ..

Divide the support of F0 and F1 into Nk
1 identical cubes. Let ZM,N0,N1 be the number of such

cells where the number of untreated observation is less than M times the number of observations
from the treated sample. Let MN1 be the maximum number of observations from the treated
sample in a single cell. Let mN0,N1 be the minimum number of untreated observations in a single
cell. Notice that for any series, f(N1), such that 1 ≤ f(N1) < N1, we have:

Pr(ZM,N0,N1 > 0) ≤
N1∑
n=1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

≤
bf(N1)c∑

n=1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

+
N1∑

n=bf(N1)c+1

Pr(mN0,N1 < Mn) Pr(MN1 = n)

≤ f(N1) Pr(mN0,N1 < Mf(N1))
+ (N1 − f(N1)) Pr(MN1 > f(N1)).

Let DN1,n be the number of cells where the number of treated observations is larger than n. Let
0 < α < min{r−k, 1}. Consider f(N1) = Nα

1 . For N1 large enough, f̄/Nk
1 < 1. Using Bonferroni

Inequality we obtain for N1 large enough:

Pr(MN1 > f(N1)) = Pr(DN1,Nα
1
≥ 1)

≤ Nk
1 Pr

(
B(N1, f̄/Nk

1 ) > Nα
1

)
,

where B(N, p) denotes a Binomial random variable with parameters (N, p). Using Bennett’s
bound for binomial tails (e.g., Shorack and Wellner, 1996, p. 440), we obtain:

Pr
(
B(N1, f̄/Nk

1 ) > Nα
1

)
= Pr

(
B(N1, f̄/Nk

1 )− f̄/Nk−1
1√

N1
>

Nα
1 − f̄/Nk−1

1√
N1

)
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≤ exp

{
− f̄/Nk−1

1

1− f̄/Nk
1

[
Nα+k−1

1

f̄

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+ 1

]}

= exp

{
− 1

1− f̄/Nk
1

[
Nα

1

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+

f̄

Nk−1
1

]}
.

Similarly, let CN0,N1,m be the number of cells with less than m untreated observations. Then,
using Bonferroni Inequality:

Pr(mN0,N1 < m) = Pr(CN0,N1,m ≥ 1)

≤
Nk

1∑
n=1

Pr
(
B(N0, pn) < m

)
,

where pn is the probability that an untreated observation falls in cell n. Then, because for all n,
pn ≥ f/Nk

1 , we obtain:

Pr(mN0,N1 < m) ≤ Nk
1 Pr

(
B(N0, f/Nk

1 ) < m
)
.

Also, for large enough N1, there exists δ such that (Mc/f)/N r−α−k
1 < δ < 1. Using Chernoff’s

bound for the lower tail of a sum of independent Poisson trials (e.g., Motwani and Raghavan,
1995, p. 70), we obtain that for large enough N1:

Pr
(
B(N0, f/Nk

1 ) < MNα
1

)
= Pr

(
B(N0, f/Nk

1 ) < f
N0

Nk
1

MNα+k
1

fN0

)

≤ Pr

(
B(N0, f/Nk

1 ) < f
N0

Nk
1

Mc/f

N r−α−k
1

)
≤ exp

(
−(fN0/N

k
1 )
(
1− (Mc/f)/N r−α−k

1

)2
/2
)

≤ exp
(
−fN r−k

1 (1− δ)2/2c
)

.

This proves an exponential bound for Pr(ZM,N0,N1 > 0).
Rearrange the observations so the first N1 observations in the sample are the treated obser-

vations. For 1 ≤ i ≤ N1, let ‖U (M,m)
N0,N1,i‖ be the m-th matching discrepancy for treated unit i when

untreated units are matched without replacement to treated units in such a way that the sum of
the matching discrepancies is minimized. For 1 ≤ i ≤ N1, let ‖V (M,m)

N0,N1,i‖ be the m-th matching
discrepancy for treated unit i when untreated units are matched without replacement to treated
units in such a way that the matches are first done within cells and, after all possible within-cell
matches are exhausted, untreated units that were not previously used as a match are matched
without replacement to previously unmatched treated units in other cells. Notice that:

N1∑
i=1

M∑
m=1

‖U (M,m)
N0,N1,i‖ ≤

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i‖.

Let dN1,k be the diameter of the cells. Let Ck be the diameter of the unit k-cube. Notice that if
the unit k-cube is divided in Nk

1 identical cells, then Ck = N1dN1,k. For 1 ≤ n ≤ Nk
1 , let AN1,n
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be the n-th cell. Then,

E
[
‖V (M,m)

N0,N1,i‖
∣∣ZM,N0,N1 = 0

]
≤

Nk
1∑

n=1

dN1,k Pr(X1,i ∈ AN1,n|ZN0,N1 = 0)

≤ dN1,k

=
Ck

N1
.

Now,

E

[
1√
N1

N1∑
i=1

M∑
m=1

‖U (M,m)
N0,N1,i‖

]
≤ E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i‖

]

= E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i‖

∣∣∣ZM,N0,N1 = 0

]
Pr(ZM,N0,N1 = 0)

+ E

[
1√
N1

N1∑
i=1

M∑
m=1

‖V (M,m)
N0,N1,i‖

∣∣∣ZM,N0,N1 > 0

]
Pr(ZM,N0,N1 > 0)

≤ M
Ck√
N1

+
√

N1MCk Pr(ZM,N0,N1 > 0) −→ 0.

Markov’s Inequality produces the desired result. �
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Table I – Boston HMDA Data, Simulation Results
Black-White Difference in Mortgage Denial Probability for Matched Pairs

(Number of simulations = 10000)
Sample sizes Bias Variance Coverage of 95% C.I.

(1) (2) (3) (4) (5) (6)
|E[τ̂ ]− τ | |E[τ̂bc]− τ | var(τ̂) E[σ̂2/N1] τ̂±1.96 σ̂/

√
N1 τ̂bc±1.96 σ̂/

√
N1

N1 = 25 N0 = 250 0.0143 0.0012 0.0091 0.0091 0.9225 0.9348
N0 = 500 0.0106 0.0001 0.0092 0.0091 0.9244 0.9394
N0 = 1000 0.0077 0.0002 0.0090 0.0091 0.9263 0.9430

N1 = 50 N0 = 500 0.0106 0.0011 0.0045 0.0045 0.9427 0.9458
N0 = 1000 0.0073 0.0009 0.0044 0.0046 0.9427 0.9456

N1 = 100 N0 = 1000 0.0090 0.0001 0.0023 0.0023 0.9436 0.9468
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Table II – Current Population Survey Data, Simulation Results
Average Log Weekly Earnings

(Number of simulations = 50000)
Sample size Variance Ratio Coverage of 95% C.I.

(1) (2) (3) (4) (5) (6)
N var(Ȳ ) E[σ̂2

adj/N ] E[σ̂2/N ] (3)/(1) Ȳ ±1.96 σ̂adj/
√

N Ȳ ±1.96 σ̂/
√

N

50 0.0072 0.0071 0.0052 0.7262 0.9436 0.8973
100 0.0039 0.0039 0.0026 0.6701 0.9476 0.8888
200 0.0021 0.0021 0.0013 0.6342 0.9492 0.8799
856 0.0005 0.0005 0.0003 0.5834 0.9482 0.8661
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