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1 Introduction

Two of the most prominent financial-market anomalies are momentum and reversal. Momentum

is the tendency of assets with good (bad) recent performance to continue overperforming (under-

performing) in the near future. Reversal concerns predictability based on a longer performance

history: assets that performed well (poorly) over a long period tend to subsequently underperform

(overperform). Closely related to reversal is the value effect, whereby the ratio of an asset’s price

relative to book value is negatively related to subsequent performance. Momentum and reversal

have been documented extensively and for a wide variety of assets.1

Momentum and reversal are viewed as anomalies because they are hard to explain within

the standard asset-pricing paradigm with rational agents and frictionless markets. The prevalent

explanations of these phenomena are behavioral, and assume that agents react incorrectly to in-

formation signals.2 In this paper we show that momentum and reversal can arise in markets with

rational agents. We depart from the standard paradigm by assuming that investors delegate the

management of their portfolios to financial institutions, such as mutual funds and hedge funds.

Our explanation emphasizes the role of fund flows, and is loosely as follows. Suppose that a

negative shock hits the fundamental value of some assets. Investment funds holding these assets

realize low returns, triggering outflows by investors who update negatively about the ability of the

managers running these funds. As a consequence of the outflows, funds sell assets they own, and

this depresses further the prices of the assets hit by the original shock. If, in addition, outflows

are gradual because of institutional constraints (e.g., lock-up periods, institutional decision lags),

the selling pressure causes prices to decrease gradually, leading to momentum. At the same time,

because outflows push prices below fundamental values, expected returns eventually rise, leading

to reversal.

In addition to deriving momentum and reversal with rational agents, we contribute to the liter-

ature by building an equilibrium model with delegated portfolio management that is parsimonious

and can speak to a broad range of phenomena. Delegation, to institutions such as mutual funds

1Jegadeesh and Titman (1993) document momentum for individual US stocks, predicting returns over horizons
of 3-12 months by returns over the past 3-12 months. DeBondt and Thaler (1985) document reversal, predicting
returns over horizons of up to 5 years by returns over the past 3-5 years. Fama and French (1992) document the value
effect. This evidence has been extended to stocks in other countries (Fama and French 1998, Rouwenhorst 1998),
industry-level portfolios (Grinblatt and Moskowitz 1999), country indices (Asness, Liew, and Stevens 1997, Bhojraj
and Swaminathan 2006), bonds (Asness, Moskowitz and Pedersen 2008), currencies (Bhojraj and Swaminathan 2006)
and commodities (Gorton, Hayashi and Rouwenhorst 2008). Asness, Moskowitz and Pedersen (2008) extend and unify
much of this evidence and contain additional references.

2See, for example, Barberis, Shleifer and Vishny (1998), Daniel, Hirshleifer and Subrahmanyam (1998), Hong and
Stein (1999), and Barberis and Shleifer (2003).

1



and hedge funds, is important in many markets. And while investors let fund managers invest on

their behalf, they move across funds, generating flows that are large and linked to the funds’ past

performance.3 Yet, incorporating delegation and fund flows into asset-pricing models is a daunting

task: it entails modeling multiple assets and funds, portfolio choice by fund managers (over assets)

and investors (over funds), and a motive for investors to be moving across funds, all in a dynamic

equilibrium setting. Our model includes these elements, while allowing for a tractable analysis of

fund flows and their price effects. The latter include not only momentum and reversal, but also

comovement, lead-lag effects, amplification, and the effects of managers’ concern with commercial

risk.

Section 2 presents the model. We consider an infinite-horizon continuous-time economy with

multiple risky assets, to which we refer as stocks, and one riskless asset. A competitive investor

can invest in stocks through an index fund that holds the market portfolio, and through an active

fund run by a competitive manager. The active fund can add value over the index fund because

exogenous buy-and-hold investors hold stocks in different proportions than in the market portfolio:

the active fund overweighs “large residual supply” stocks, which are in low demand by buy-and-

hold investors and thus underpriced, and underweighs “small residual supply” stocks, which are in

high demand and overpriced.4 Flows between funds occur because the investor receives the return

of the active fund net of an exogenous time-varying cost, which can be interpreted as a managerial

perk or a reduced form for managerial ability. The manager determines the active fund’s portfolio,

and can invest his personal wealth in stocks through that fund. Both investor and manager are

infinitely lived and maximize expected utility of intertemporal consumption.

Section 3 solves the model in the benchmark case of symmetric information, where the investor

observes the manager’s cost. When the cost increases, the investor flows out of the active and

into to the index fund. This amounts to a net sale of stocks in large residual supply, which the

active fund overweighs, and net purchase of stocks in small residual supply, which the active fund

underweighs. The manager takes the other side of this transaction by raising his stake in the

fund.5 Because the manager is risk-averse, stocks in large residual supply become cheaper and offer

3According to the New York Stock Exchange Factbook, the fraction of stocks held directly by individuals in 2002
was less than 40%. The importance of fund flows and the link to past performance have been documented extensively.
See, for example, Chevalier and Ellison (1997) and Sirri and Tufano (1998) for mutual funds, and Fund, Hsieh, Naik
and Ramadorai (2008) and Ding, Getmansky, Liang and Wermers (2009) for hedge funds.

4The assumption of buy-and-hold investors ensures that the “true” market portfolio, which characterizes equilib-
rium asset returns, differs from the market index tracked by the index fund. Such a difference would arise even in
the absence of buy-and-hold investors, provided that the market index is misconstructed, i.e., does not consist of one
share of each stock. For example, the index might not be including some stocks, which are instead accessible to the
active fund.

5The manager performs two roles in our model: select the active portfolio and take the other side of the investor’s
transactions. Separating the two roles would complicate the model without changing the main mechanisms. See
Section 2 for further discussion.
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higher expected return, while the opposite is true for stocks in small residual supply. Thus, the

investor’s flows generate return reversal, i.e., price changes forecast opposite changes in expected

returns. Moreover, since flows impact stocks in large and stocks in small residual supply in opposite

directions, they increase comovement within each group, while reducing comovement across groups.

The return reversal derived in Section 3 arises at any horizon. To generate momentum in the

short run and reversal in the long run, we introduce the additional assumption that fund flows

exhibit inertia. Section 4 models inertia through an exogenous convex cost that the investor incurs

when changing her holdings of the active fund. In the presence of this adjustment cost, an increase

in the manager’s cost triggers gradual outflows from the active fund. Since these outflows are

anticipated and amount to net sales of stocks in large residual supply, they cause the prices of

these stocks to drop immediately. Yet, the drop is expected to continue, leading to momentum.

This result is puzzling: why is the manager willing to hold—and even overweigh—stocks that are

expected to underperform in the short run? The intuition is that these stocks offer the manager

an attractive return over a long horizon because the anticipation of future outflows renders them

underpriced. The manager could earn an even more attractive return, on average, by not holding

the stocks until after the outflows occur. This, however, exposes him to the risk that the outflows

might not occur, in which case the stocks would cease to be underpriced.6 Thus, the short-run price

drop is possible only because of the high long-run expected return; and more generally, momentum

is possible only because of the subsequent reversal.

In addition to momentum, reversal and comovement, Sections 3 and 4 derive results on lead-lag

effects, idiosyncratic risk and commercial risk. Because changes in the manager’s cost impact the

prices and subsequent expected returns of all stocks, past returns of one stock forecast subsequent

returns of other stocks. For example, in Section 4, a price drop of a stock in high residual supply

forecasts that other stocks in high residual supply will drop in the short run but have a high return

in the long run. Momentum, reversal, comovement and lead-lag effects are larger for stocks with

high idiosyncratic risk because these stocks are more sensitive to flows between the active and the

index fund. Finally, when the manager receives a larger perk and is hence more concerned about

commercial risk (i.e., future outflows), returns become more volatile.

Section 5 extends the analysis to the case of asymmetric information, where the investor does

not observe the manager’s cost and must infer it from fund performance. Asymmetric information

6The following three-period example illustrates the point. A stock is expected to pay off at 100 in Period 2. The
stock price is 92 in Period 0, and 80 or 100 in Period 1 with equal probabilities. Buying the stock in Period 0 earns
the manager a two-period expected capital gain of 8. Buying in Period 1 earns an expected capital gain of 20 if the
price is 80 and 0 if the price is 100. A risk-averse manager might prefer earning 8 rather than 20 or 0 with equal
probabilities, even though the expected capital gain between Periods 0 and 1 is negative.
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generates a causal link from performance to flows: if, for example, the active fund underperforms

relative to the index fund, the investor infers that the cost has increased and flows out of the

active and into the index fund. Causality from performance to flows implies that the latter can be

triggered by shocks to stocks’ cashflows—in contrast to the case of symmetric information, where

flows are driven only by changes in the cost.

The fund flows triggered by cashflow shocks amplify the effect of these shocks on stock returns,

and generate momentum and reversal.7 Under asymmetric information, momentum and reversal

arise conditional not only on past returns, as under symmetric information, but also on past cashflow

shocks. Moreover, asymmetric information generates new channels of comovement and lead-lag

effects, as well as new effects of idiosyncratic and commercial risk. For example, a new channel

of comovement is that a cashflow shock to one stock induces fund flows which affect the prices

of other stocks. And a new effect of idiosyncratic risk is that cashflow shocks to stocks with

high idiosyncratic risk generate a higher discrepancy between the active and the index return, and

hence larger fund flows. Despite these new effects, the analysis of asymmetric information remains

tractable and has many formal similarities to that of symmetric information. For example, the

fund-flow-driven component of the covariance matrix of returns under asymmetric information is

equal to its symmetric-information counterpart times a multiplicative scalar—which is larger than

one because of the amplification effect of fund flows.

Momentum and reversal have mainly been derived in behavioral models.8 In Barberis, Shleifer

and Vishny (1998), momentum arises because investors view random-walk earnings as mean-

reverting and under-react to news. In Hong and Stein (1999), prices under-react to news because

information diffuses slowly across investors and those last to receive it do not infer it from prices.

In Daniel, Hirshleifer and Subrahmanyam (1998), overconfident investors over-react to news be-

cause they underestimate the noise in their signals. Over-reaction builds up over time, leading to

momentum, because the self-attribution bias makes investors gradually more overconfident.

Barberis and Shleifer (2003) is the behavioral model closest to our work. They assume that

stocks belong in styles and are traded between switchers, who over-extrapolate performance trends,

and fundamental investors. Following a stock’s bad performance, switchers become pessimistic

7The mechanism for amplification is outlined in the third paragraph of the Introduction. The explanation in that
paragraph assumes asymmetric information, while the mechanism for momentum and reversal is broader and present
even under symmetric information (Section 4).

8Rational models of momentum include Berk, Green and Naik (1999), Johnson (2002) and Shin (2006), in which
good news about a firm increase uncertainty and so raise the expected return required by investors. Albuquerque and
Miao (2010) derive both momentum and reversal in a model where some investors receive a signal about dividends
that is positively correlated with the return on a private investment technology. When the signal is high, the price goes
up, but so does the investment in the technology. Since investors bear more risk overall, expected return increases.
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about the future performance of the corresponding style, and switch to other styles. Because the

extrapolation rule involves lags, switching is gradual and leads to momentum. Momentum requires

additionally that fundamental investors are myopic and do not anticipate the switchers’ flows.

The equilibrium implications of delegated portfolio management are the subject of a growing

literature. In Shleifer and Vishny (1997), fund flows are an exogenous function of the funds’ past

performance, and amplify the effects of cashflow shocks. Amplification effects can also arise when

the equity stake of fund managers must exceed a lower bound because of optimal contracting under

moral hazard (He and Krishnamurthy 2009,2010), or when managers care about their reputation

(Guerreri and Kondor 2010).9 In Dasgupta, Prat and Verardo (2010), reputation concerns cause

managers to herd, and this generates momentum and reversal under the additional assumption

that the market makers trading with the managers are either monopolistic or myopic. In Basak

and Pavlova (2010), flows by investors benchmarked against an index cause stocks in the index to

comove.10 Besides deriving momentum and reversal with competitive and rational agents, we con-

tribute to that literature methodologically by bringing the analysis of delegation within a tractable

normal-linear framework that can address a broad range of phenomena.

Finally, our emphasis on fund flows as generators of comovement and momentum is consistent

with recent empirical findings. Coval and Stafford (2007) find that mutual funds experiencing

large outflows engage in distressed selling of their stock portfolios. Anton and Polk (2010) and

Greenwood and Thesmar (2010) find that comovement between stocks is larger when these are

held by many mutual funds in common, controlling for style characteristics. Lou (2010) predicts

flows into mutual funds by the funds’ past performance, and imputes flows into individual stocks

according to stocks’ weight in funds’ portfolios. He finds that flows into stocks can explain up to

50% of stock-level momentum, especially for large stocks and in recent data where mutual funds

are more prevalent.

9Amplification effects can also arise when agents face margin constraints or have wealth-dependent risk aversion.
See the survey by Gromb and Vayanos (2010).

10Other models exploring equilibrium implications of delegated portfolio management include Brennan (1993),
Vayanos (2004), Dasgupta and Prat (2008), Petajisto (2009), Cuoco and Kaniel (2010), Kaniel and Kondor (2010)
and Malliaris and Yan (2010). See also Berk and Green (2004), in which fund flows are driven by fund performance
because investors learn about managers’ ability, and feed back into performance because of exogenous decreasing
returns to managing a large fund.
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2 Model

Time t is continuous and goes from zero to infinity. There are N risky assets and a riskless asset.

We refer to the risky assets as stocks, but they could also be interpreted as industry-level portfolios,

asset classes, etc. The riskless asset has an exogenous, continuously compounded return r. The

stocks pay dividends over time, and their prices are determined endogenously in equilibrium. We

denote by Dnt the cumulative dividend per share of stock n = 1, ..,N , and by Snt the stock’s

price. We specify the stochastic process for dividends later in this section. By possibly redefining

dividends, we normalize the supply of each stock to one share.

A competitive investor can invest in the riskless asset and in the stocks. The investor can

access the stocks only through two investment funds. The first fund is passively managed and

tracks mechanically the market index, i.e., holds stocks according to their supplies. Since all stocks

are in supply of one share, the index fund holds an equal number of shares of each stock. The

second fund is actively managed and selects an optimal portfolio in a way specified later in this

section. We assume two investment funds, rather than only one, so that we can examine flows

between funds. The assumption that one of the funds is indexed avoids the difficulty of having to

solve for that fund’s optimal portfolio.

Flows between the two funds can occur only if the funds hold different portfolios. To generate

different portfolios, we assume that part of each stock’s supply is held by an exogenous set of agents

who do not trade. These agents could be the firm’s managers or founding families, or unmodeled

investors. We refer to them as buy-and-hold investors, and denote by 1−θn the number of shares of

stock n that they hold. The residual supply of stock n, left over from buy-and-hold investors, is θn

shares. This is absorbed by the index fund, which holds an equal number of shares of each stock,

and the active fund. If, therefore, residual supply differs across stocks, the active fund holds a

different portfolio than the index fund in equilibrium: it overweighs stocks in large residual supply

(high θn) and underweighs stocks in small residual supply (low θn). Moreover, the active portfolio

dominates the index portfolio. Indeed, since prices adjust in equilibrium so that the active fund is

induced to accommodate discrepancies in stocks’ residual supplies, stocks in large residual supply

(which are overweighed by the active fund) are cheap, while stocks in small residual supply (which

are underweighed) are expensive.

The investor determines how to allocate her wealth between the riskless asset, the index fund,

and the active fund. She maximizes expected utility of intertemporal consumption. Utility is

6



exponential, i.e.,

−E
∫ ∞

0
exp(−αct − βt)dt, (2.1)

where α is the coefficient of absolute risk aversion, ct is consumption, and β is the discount rate.

The investor’s control variables are consumption ct and the number of shares xt and yt of the index

and active fund, respectively.

The active fund is run by a competitive manager, who can also invest his personal wealth in

the fund. The manager determines the active portfolio and the allocation of his wealth between the

riskless asset and the fund. He maximizes expected utility of intertemporal consumption. Utility

is exponential, i.e.,

−E
∫ ∞

0
exp(−ᾱc̄t − β̄t)dt, (2.2)

where ᾱ is the coefficient of absolute risk aversion, c̄t is consumption, and β̄ is the discount rate.

The manager’s control variables are consumption c̄t, the number of shares ȳt of the active fund, and

the active portfolio zt ≡ (z1t, .., zNt), where znt denotes the number of shares of stock n included

in one share of the active fund.

Under the assumptions introduced so far, and in the absence of other frictions, the equilibrium

takes a simple form. As we show in Section 3, the investor holds stocks only through the active

fund since its portfolio dominates the index portfolio. As a consequence, the active fund holds

the entire residual supply of each stock, its portfolio is constant over time, and there are no flows

between the two funds.

To generate fund flows, we introduce an additional element into our model. We assume that

the investor’s return from the active fund is equal to the gross return, made of the dividends and

capital gains of the stocks held by the fund, net of a time-varying cost. We interpret this cost as a

managerial perk, and discuss additional interpretations later in this section.11 Empirical evidence

on the existence of a time-varying cost impacting the returns to fund investors is provided in a

number of papers.12 For simplicity, we assume that the index fund entails no cost, so its gross and

net returns coincide.
11An example of a managerial perk is late trading, whereby managers use their privileged access to the fund to

buy or sell fund shares at stale prices. Late trading was common in many funds and led to the 2003 mutual-fund
scandal. A related example is soft-dollar commissions, whereby funds inflate their brokerage commissions to pay for
services that mainly benefit managers, e.g., promote the fund to new investors, or facilitate managers’ late trading.

12Empirical papers measure the cost by the return gap, defined as the difference between a mutual fund’s return
over a given quarter and the return of a hypothetical portfolio invested in the stocks that the fund holds at the
beginning of the quarter. Kacperczyk, Sialm and Zhang (2008) show that the return gap varies significantly across
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We model the cost as a flow (i.e., the cost between t and t+ dt is of order dt), and assume that

the flow cost is proportional to the number of shares yt that the investor holds in the active fund.

We denote the coefficient of proportionality by Ct and assume that it follows the process

dCt = κ(C̄ − Ct)dt+ sdBC
t , (2.3)

where κ is a mean-reversion parameter, C̄ is a long-run mean, s is a positive scalar, and BC
t is a

Brownian motion. The mean-reversion of Ct is not essential for momentum and reversal, which

occur even when κ = 0.

We allow the manager to derive a benefit from the investor’s participation in the active fund.

This benefit can be interpreted as a managerial perk or a fee. We model the benefit in the same

way as the cost, i.e., a flow which is proportional to the number of shares yt that the investor holds

in the active fund. If the cost is a perk that the manager can extract efficiently, then the coefficient

of proportionality for the benefit is Ct. We allow more generally the coefficient of proportionality

to be λCt +B, where λ and B are scalars. The parameter λ can be interpreted as the efficiency of

perk extraction, while the parameter B can derive from a constant fee.13

Varying the parameters λ and B generates a rich specification of the manager’s objective.

When λ = B = 0, the manager cares about fund performance only through his personal investment

in the fund, and his objective is similar to the fund investor’s. When instead λ and B are positive,

the manager is also concerned with commercial risk, i.e., the risk that the investor might reduce her

participation in the fund. The parameters λ and B are not essential for momentum and reversal,

which occur even when λ = B = 0. As we show in later sections, λ affects the size of momentum

relative to reversal, while B affects only the average mispricing.

The cost and benefit are assumed proportional to yt for analytical convenience. At the same

time, these variables are sensitive to how shares of the active fund are defined (e.g., they change

with a stock split). We define one share of the fund by the requirement that its market value equals

the equilibrium market value of the entire fund. Under this definition, the number of fund shares

funds and over time, and is persistent with a half-life of about three years. The high persistence indicates that the
return gap is linked to underlying fund characteristics—and there is indeed a correlation with fund-specific measures
of agency costs and trading costs. Because of its significant cross-sectional variation and persistence, the return gap
a good forecaster of future returns: funds whose return gap is in the top decile outperform the market by an average
1.2% over the next year, while funds in the bottom decile underperform by 2.2%. Earlier studies that use the return
gap and link it to fund characteristics include Grinblatt and Titman (1989) and Wermers (2000).

13If, for example, the cost Ctyt is the sum of a fee Fyt and a perk (Ct − F )yt, and the manager can extract a
fraction λ of the perk, then the benefit is

[F + λ(Ct − F )] yt = [λCt + (1 − λ)F ] yt,

which has the assumed form with B = (1 − λ)F .
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held by the investor and the manager in equilibrium sum to one, i.e.,

yt + ȳt = 1. (2.4)

We define one share of the index fund to consist of one share of each stock, and refer to the

corresponding vector 1 ≡ (1, .., 1) as the market portfolio. We refer to the vector θ ≡ (θ1, .., θN ) of

the stocks’ residual supplies as the residual-supply portfolio. We define the constant

∆ ≡ θΣθ′1Σ1′ − (1Σθ′)2,

which is positive and becomes zero when the vectors 1 and θ are collinear.

The manager observes all the variables in the model. The investor observes the returns and

share prices of the index and active funds, but not the same variables for the individual stocks.

We study both the case of symmetric information, where the investor observes the cost Ct, and

that of asymmetric information, where Ct is observable only by the manager. In the asymmetric-

information case, the investor seeks to infer Ct from the returns and share prices of the index and

active funds. The symmetric-information case is simpler analytically and delivers most of our main

results, including momentum and reversal. The asymmetric-information case is more realistic and

delivers some additional results.

We denote the vector of stocks’ cumulative dividends by Dt ≡ (D1t, ..,DNt)
′ and the vector of

stock prices by St ≡ (S1t, .., SNt)
′, where v′ denotes the transpose of the vector v. We assume that

Dt follows the process

dDt = Ftdt+ σdBD
t , (2.5)

where Ft ≡ (F1t, .., FNt)
′ is a time-varying drift equal to the instantaneous expected dividend, σ is a

constant matrix of diffusion coefficients, and BD
t is a d-dimensional Brownian motion independent

of BC
t . The expected dividend Ft is observable only by the manager. Time-variation in Ft is not

essential in the symmetric-information case, where momentum and reversal occur even when Ft

is a constant parameter known to the investor. Time-variation in Ft becomes essential for the

analysis of asymmetric information: with a constant Ft, the investor would infer Ct perfectly from

the share price of the active fund, and information would be symmetric. We model time-variation

in Ft through the process

dFt = κ(F̄ − Ft)dt+ φσdBF
t (2.6)
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where the mean-reversion parameter κ is the same as for Ct for simplicity, F̄ is a long-run mean, φ

is a positive scalar, and BF
t is a d-dimensional Brownian motion independent of BC

t and BD
t . The

diffusion matrices for Dt and Ft are proportional for simplicity.

We finally comment on the assumption that the manager can invest his personal wealth in

the active fund. This assumption generates a simple objective that the manager maximizes when

choosing the fund’s portfolio.14 It also ensures that the manager acts as trading counterparty to

the investor: when Ct increases and the investor reduces her holdings of the active fund, effectively

selling the stocks held by the fund, the manager takes the other side by raising his stake in the

fund. Under the alternative assumption that the manager must invest his personal wealth in the

riskless asset, we would need to introduce additional “smart-money” investors who could access

stocks directly and act as counterparty to the fund investor. This would complicate the model

without changing the basic mechanisms.

Note that in a model with smart-money investors, additional interpretations of the cost are

possible. Two interpretations not emphasized so far are an operational cost (e.g., trading cost)

and a reduced form for low managerial stock-picking ability. These additional interpretations are

not consistent with the assumption that the manager can invest his personal wealth in the active

fund. Indeed, the cost would then impact not only the investor’s holdings in the fund yt, as we

are assuming, but also the manager’s holdings ȳt. The additional interpretations, however, are

consistent with a model with smart-money investors: since these investors do not invest in the

active fund, their investments are not affected by the cost.

3 Symmetric Information

This section solves the model presented in the previous section in the case of symmetric information,

where the cost Ct is observable by both the investor and the manager. We look for an equilibrium

in which stock prices take the form

St =
F̄

r
+
Ft − F̄

r + κ
− (a0 + a1Ct), (3.1)

14Restricting the manager not to invest his personal wealth in the index fund is also in the spirit of generating a
simple objective. Indeed, in the absence of this restriction, the active portfolio would be indeterminate: the manager
could mix a given active portfolio with the index, and make that the new active portfolio, while achieving the same
personal portfolio through an offsetting short position in the index. Note that restricting the manager not to invest
in the index only weakly constrains his personal portfolio since he can always modify the portfolio of the active fund
and his stake in that fund.
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where (a0, a1) are constant vectors. The first two terms are the present value of expected dividends,

discounted at the riskless rate r, and the last term is a risk premium linear in Ct. As we show later

in this section, the risk premium moves in response to fund flows. The investor’s holdings of the

active fund in our conjectured equilibrium are

yt = b0 − b1Ct, (3.2)

where (b0, b1) are constants. We expect b1 to be positive, i.e., the investor reduces her holdings of

the fund when Ct is high. We refer to an equilibrium satisfying (3.1) and (3.2) as linear.

3.1 Manager’s Optimization

The manager chooses the active fund’s portfolio zt, the number ȳt of fund shares that he owns, and

consumption c̄t. The manager’s budget constraint is

dWt = rWtdt+ ȳtzt(dDt + dSt − rStdt) + (λCt +B)ytdt− c̄tdt. (3.3)

The first term is the return from the riskless asset, the second term is the return from the active

fund in excess of the riskless asset, the third term is the manager’s benefit from the investor’s

participation in the fund, and the fourth term is consumption. To compute the return from the

active fund, we note that since one share of the fund corresponds to zt shares of the stocks,

the manager’s effective stock holdings are ȳtzt shares. These holdings are multiplied by the vector

dRt ≡ dDt+dSt−rStdt of the stocks’ excess returns per share (referred to as returns, for simplicity).

Using (2.3), (2.5), (2.6) and (3.1), we can write the vector of returns as

dRt =
[

ra0 + (r + κ)a1Ct − κa1C̄
]

dt+ σ

(

dBD
t +

φdBF
t

r + κ

)

− sa1dB
C
t . (3.4)

Returns depend only on the cost Ct, and not on the expected dividend Ft. The covariance matrix

of returns is

Covt(dRt, dR
′
t) =

(

fΣ + s2a1a
′
1

)

dt, (3.5)

where f ≡ 1 + φ2/(r + κ)2 and Σ ≡ σσ′. The matrix fΣ represents the covariance driven purely

by dividend (i.e., cashflow) news, and we refer to it as fundamental covariance. The matrix s2a1a
′
1

represents the additional covariance introduced by fund flows, and we refer to it as non-fundamental

covariance.
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The manager’s optimization problem is to choose controls (c̄t, ȳt, zt) to maximize the expected

utility (2.2) subject to the budget constraint (3.3) and the investor’s holding policy (3.2). The

active fund’s portfolio zt satisfies, in addition, the normalization

ztSt = (θ − xt1)St. (3.6)

This is because one share of the active fund is defined so that its market value equals the equilibrium

market value of the entire fund. Moreover, the latter is (θ−xt1)St because in equilibrium the active

fund holds the residual-supply portfolio θ minus the investor’s holdings xt1 of the index fund. We

conjecture that the manager’s value function is

V̄ (Wt, Ct) ≡ − exp

[

−
(

rᾱWt + q̄0 + q̄1Ct +
1

2
q̄11C

2
t

)]

, (3.7)

where (q̄0, q̄1, q̄11) are constants. The Bellman equation is

max
c̄t,ȳt,zt

[

− exp(−ᾱc̄t) + DV̄ − β̄V̄
]

= 0, (3.8)

where DV̄ is the drift of the process V̄ under the controls (c̄t, ȳt, zt). Proposition 3.1 shows that

the value function (3.7) satisfies the Bellman equation if (q̄0, q̄1, q̄11) satisfy a system of three scalar

equations.

Proposition 3.1 The value function (3.7) satisfies the Bellman equation (3.8) if (q̄0, q̄1, q̄11) satisfy

a system of three scalar equations.

In the proof of Proposition 3.1 we show that the optimization over (c̄t, ȳt, zt) can be reduced

to optimization over the manager’s consumption c̄t and effective stock holdings ẑt ≡ ȳtzt. Given

ẑt, the decomposition between ȳt and zt is determined by the normalization (3.6). The first-order

condition with respect to ẑt is

Et(dRt) = rᾱCovt(dRt, ẑtdRt) + (q̄1 + q̄11Ct)Covt(dRt, dCt). (3.9)

Eq. (3.9) links expected stock returns to the risk faced by the manager. The expected return that

the manager requires from a stock depends on the stock’s covariance with the manager’s portfolio

ẑt (first term in the right-hand side), and on the covariance with changes to the cost Ct (second

term). The latter effect reflects a hedging demand by the manager. We derive the implications of

(3.9) for the cross section of expected returns later in this section.
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3.2 Investor’s Optimization

The investor chooses a number of shares xt in the index fund and yt in the active fund, and

consumption ct. The investor’s budget constraint is

dWt = rWtdt+ xt1dRt + yt (ztdRt − Ctdt) − ctdt. (3.10)

The first three terms are the returns from the riskless asset, the index fund, and the active fund

(net of the cost Ct), and the fourth term is consumption. The investor’s optimization problem is to

choose controls (ct, xt, yt) to maximize the expected utility (2.1) subject to the budget constraint

(3.10). The investor takes the active fund’s portfolio zt as given and equal to its equilibrium value

θ − xt1. We conjecture that the investor’s value function is

V (Wt, Ct) ≡ − exp

[

−
(

rαWt + q0 + q1Ct +
1

2
q11C

2
t

)]

, (3.11)

where (q0, q1, q11) are constants. The Bellman equation is

max
ct,xt,yt

[− exp(−αct) + DV − βV ] = 0, (3.12)

where DV is the drift of the process V under the controls (ct, xt, yt). Proposition 3.2 shows that the

value function (3.11) satisfies the Bellman equation (3.12) if (q0, q1, q11) satisfy a system of three

scalar equations. The proposition shows additionally that the optimal control yt is linear in Ct, as

conjectured in (3.2).

Proposition 3.2 The value function (3.11) satisfies the Bellman equation (3.12) if (q0, q1, q11)

satisfy a system of three scalar equations. The optimal control yt is linear in Ct.

In the proof of Proposition 3.2, we show that the first-order conditions with respect to xt and

yt are

Et(1dRt) = rαCovt [1dRt, (xt1 + ytzt)dRt] + (q1 + q11Ct)Covt(1dRt, dCt), (3.13)

Et(ztdRt) − Ctdt = rαCovt [ztdRt, (xt1 + ytzt)dRt] + (q1 + q11Ct)Covt(ztdRt, dCt), (3.14)

respectively. Eqs. (3.13) and (3.14) are analogous to the manager’s first-order condition (3.9) in that

they equate expected returns to risk. The difference with (3.9) is that the investor is constrained to

two portfolios rather than N individual stocks. Eq. (3.9) is a vector equation with N components,

while (3.13) and (3.14) are scalar equations derived by pre-multiplying expected returns with the

vectors 1 and zt of index- and active-fund weights. Note that the investor’s expected return from

the active fund in (3.14) is net of the cost Ct.
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3.3 Equilibrium

In equilibrium, the active fund’s portfolio zt is equal to θ−xt1, and the shares held by the manager

and the investor sum to one. Combining these equations with the first-order conditions (3.9),

(3.13) and (3.14), and the value-function equations (Propositions 3.1 and 3.2), yields a system

of equations characterizing a linear equilibrium. Proposition 3.3 shows that a linear equilibrium

exists, and determines a sufficient condition for uniqueness.

Proposition 3.3 There exists a linear equilibrium. The constant b1 is positive and the vector a1

is given by

a1 = γ1Σp
′
f , (3.15)

where γ1 is a positive constant and

pf ≡ θ − 1Σθ′

1Σ1′1 (3.16)

is the “flow portfolio.” There exists a unique linear equilibrium if λ < λ̄ for a constant λ̄ > 0.15

Proposition 3.3 can be specialized to the benchmark case of costless delegation, where the

investor’s cost Ct of investing in the active fund is constant and equal to zero. This case can be

derived by setting Ct, as well as its long-run mean C̄ and diffusion coefficient s, to zero.

Corollary 3.1 (Costless Delegation) When Ct = C̄ = s = 0, the investor holds yt = ᾱ/(α+ ᾱ)

shares of the active fund and xt = 0 shares of the index fund. Stocks’ expected returns are given by

the one-factor model

Et(dRt) =
rαᾱf

α+ ᾱ
Σθ′dt =

rαᾱ

α+ ᾱ
Covt(dRt, θdRt), (3.17)

with the factor being the residual-supply portfolio θ.

The investor holds only the active fund because it offers a superior portfolio than the index fund

at no cost. The relative shares of the investor and the manager in the active fund are determined

15We conjecture that uniqueness holds even if λ ≥ λ̄. Moreover, most of the properties that we derive hold in any
linear equilibrium: this applies, for example, to (3.15) and γ1 > 0, as we show in the proof of Proposition 3.3, and to
Corollaries 3.2-3.6.
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by their risk-aversion coefficients, according to optimal risk-sharing. Stocks’ expected returns are

determined by the covariance with the residual-supply portfolio. The intuition for the latter result

is that since the index fund receives zero investment, the residual-supply portfolio coincides with the

active portfolio zt, which is also the portfolio held by the manager. Since the manager determines

the cross section of expected returns through the first-order condition (3.9), and there is no hedging

demand because Ct is constant, the residual-supply portfolio is the only pricing factor. Note that

when Ct = C̄ = s = 0, expected returns are constant over time. Thus, return predictability can

arise only because of time-variation in Ct. We next allow Ct to vary over time, and determine the

effects on fund flows, prices and expected returns.

Corollary 3.2 (Fund Flows) The change in the investor’s effective stock holdings, caused by a

change in Ct, is proportional to the flow portfolio pf :

∂(xt1 + ytzt)

∂Ct
= −b1pf . (3.18)

Following an increase in the cost Ct of investing in the active fund, the investor flows out

of that fund and into the index fund. The net change in the investor’s effective stock holdings

is proportional to the flow portfolio pf , defined in (3.16). This portfolio consists of the residual-

supply portfolio θ, plus a position in the market portfolio 1 that renders the covariance with the

market equal to zero.16 The intuition why the flow portfolio characterizes fund flows is as follows.

Following an increase in Ct, the investor reduces her investment in the active fund, thus selling

a slice of the residual-supply portfolio. She also increases her investment in the index fund, thus

buying a slice of the market portfolio. Because investing in the index fund is costless, the investor

maintains a constant overall exposure to the market. Therefore, the net change in her portfolio is

uncorrelated with the market, which means that she is selling a slice of the flow portfolio.

In selling a slice of the flow portfolio, the investor is effectively selling some stocks and buying

others. The stocks being sold are in large residual supply and correspond to long positions in the

flow portfolio, while the stocks being bought are in small residual supply and correspond to short

positions. Thus, when the investor flows out of the active fund and into the index fund, she sells

stocks that the active fund overweighs relative to the index fund, and buys stocks that the active

fund underweighs.

16The zero covariance between the market and the flow portfolio follows from the more general result of Corollary
3.3: premultiply the last equality in (3.19) by 1 and note that 1ǫt = 0.
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Corollary 3.3 (Prices) The change in stock prices, caused by a change in Ct, is proportional to

stocks’ covariance with the flow portfolio pf :

∂St
∂Ct

= −γ1Σp
′
f = − γ1

f +
s2γ2

1
∆

1Σ1
′

Cov(dRt, pfdRt) = − γ1

f +
s2γ2

1
∆

1Σ1
′

Covt(dǫt, pfdǫt), (3.19)

where dǫt ≡ (dǫ1t, .., dǫNt)
′ denotes the residual from a regression of stock returns dRt on the market

return 1dRt.

An increase in Ct lowers the prices of stocks that covary positively with the flow portfolio and

raises the prices of stocks covarying negatively. This price impact arises because of two distinct

mechanisms: an intuitive mechanism involving fund flows, and a more subtle mechanism involving

the manager’s hedging demand that we discuss at the end of this section. The fund-flows mechanism

is as follows. When Ct increases, the investor sells a slice of the flow portfolio, which is acquired by

the manager. As a result, the manager requires higher expected returns from stocks that covary

positively with the flow portfolio, and the price of these stocks decreases. Conversely, the expected

returns of stocks that covary negatively with the flow portfolio decrease, and their price increases.

A stock’s covariance with the flow portfolio can be characterized in terms of idiosyncratic risk.

The last equality in Corollary 3.3 implies that the covariance is positive if the stock’s idiosyncratic

movement dǫnt (i.e., the part of its return that is orthogonal to the index) covaries positively with

the idiosyncratic movement of the flow portfolio. This is likely to occur when the stock is in large

residual supply, because it then corresponds to a long position in the flow portfolio. Thus, stocks in

large residual supply, which the active fund overweighs, are likely to drop when the investor flows

out of the active fund and into the index fund. Conversely, stocks in small residual supply, which

the active fund underweighs, are likely to rise.

While residual supply influences the sign of a stock’s covariance with the flow portfolio, idiosyn-

cratic risk influences the magnitude: stocks with high idiosyncratic risk have higher covariance with

the flow portfolio in absolute value, and are therefore more affected by changes in Ct. The intuition

can be seen from the extreme case of a stock with no idiosyncratic risk. Since changes in Ct do

not change the investor’s overall exposure to the market, they also do not change her willingness

to carry market risk. Therefore, they do not affect the price of the market portfolio, or of a stock

carrying only market risk.

Since changes in Ct, and the fund flows they trigger, affect prices, they contribute to comove-

ment between stocks. Recall from (3.5) that the covariance matrix of stock returns is the sum of a
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fundamental covariance, driven purely by cashflows, and a non-fundamental covariance, introduced

by fund flows. Using Proposition 3.3, we can compute the non-fundamental covariance.

Corollary 3.4 (Comovement) The covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(

fΣ + s2γ2
1Σp′fpfΣ

)

dt. (3.20)

The non-fundamental covariance is positive for stock pairs whose covariance with the flow portfolio

has the same sign, and is negative otherwise.

The non-fundamental covariance between a pair of stocks is proportional to the product of

the covariances between each stock in the pair and the flow portfolio. It is thus large in absolute

value when the stocks have high idiosyncratic risk, because they are more affected by changes in

Ct. Moreover, it can be positive or negative: positive for stock pairs whose covariance with the

flow portfolio has the same sign, and negative otherwise. Intuitively, two stocks move in the same

direction in response to fund flows if they are both overweighed or both underweighed by the active

fund, but move in opposite directions if one is overweighed and the other underweighed.

The effect of Ct on expected returns goes in the opposite direction than the effect on prices.

We next determine more generally the cross section of expected returns.

Corollary 3.5 (Expected Returns) Stocks’ expected returns are given by the two-factor model

Et(dRt) =
rαᾱ

α+ ᾱ

1Σθ′

1Σ1
′Covt(dRt,1dRt) + ΛtCovt(dRt, pfdRt), (3.21)

with the factors being the market and the flow portfolio. The factor risk premium Λt associated to

the flow portfolio is

Λt =
rαᾱ

α+ ᾱ
+

γ1

f +
s2γ2

1
∆

1Σ1′

[

(r + κ)Ct −
s2(αq̄1 + ᾱq1)

α+ ᾱ

]

. (3.22)

The presence of the flow portfolio as a priced factor can be viewed as a mispricing relative to a

CAPM in which the only factor is the market portfolio. The factor risk premium Λt associated to

the flow portfolio measures the severity of the mispricing. Note that the mispricing exists even when

delegation is costless (and it is because of this mispricing that the active fund is attractive to the

investor). Indeed, Corollary 3.1 shows that with costless delegation, expected returns are described
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by a one-factor model, with the factor being the residual-supply portfolio rather than the market.

This one-factor model is also implied from Corollary 3.5. Indeed, setting Ct = C̄ = s = 0 in (3.22),

we find that the risk premia associated to the two factors are constant over time, and therefore

the two factors can be reduced to one. Moreover, the factor risk premium Λt, which measures the

mispricing, is positive. When Ct varies over time, so does Λt, and the two factors cannot be reduced

to one. An increase in Ct raises Λt and renders the mispricing more severe: stocks overweighed

by the active fund become more underpriced and their expected returns increase, while stocks

underweighed by the active fund become more overpriced and their expected returns decrease.

Note that changes in Ct are the only driver of time-variation in expected returns.

The time-variation in expected returns gives rise to predictability. We examine predictability

based on past returns. As in the rest of our analysis, we evaluate returns over an infinitesimal

time period; returns thus concern a single point in time. We compute the covariance between

the vector of returns at time t and the same vector at time t′ > t. Corollary 3.6 shows that this

autocovariance matrix is equal to the non-fundamental (contemporaneous) covariance matrix times

a negative scalar.

Corollary 3.6 (Return Predictability) The covariance between stock returns at time t and

those at time t′ > t is

Covt(dRt, dR
′
t′) = −s2(r + κ)γ2

1e
−κ(t′−t)Σp′fpfΣ(dt)2. (3.23)

A stock’s return predicts negatively the stock’s subsequent return (return reversal). It predicts

negatively the subsequent return of another stock when the covariance between each stock in the pair

and the flow portfolio has the same sign (negative lead-lag effect), and positively otherwise (positive

lead-lag effect).

Since the diagonal elements of the autocovariance matrix are negative, stocks exhibit negative

autocovariance, i.e., return reversal. This is because expected returns vary over time only in

response to changes in Ct, and these changes move prices in the opposite direction. Thus, a lower-

than-expected price predicts a higher-than-expected subsequent return, and vice-versa.

The non-diagonal elements of the autocovariance matrix characterize lead-lag effects, i.e.,

whether the past return of one stock predicts the future return of another. Lead-lag effects are

negative for stock pairs whose covariance with the flow portfolio has the same sign, and are positive

otherwise. For example, when the sign is the same, changes in Ct move the prices of both stocks in
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the same direction and their expected returns in the opposite direction. Therefore, a lower-than-

expected price of one stock predicts a higher-than-expected subsequent return of the other, and

vice-versa.

We next examine how prices and expected returns depend on the manager’s concern with

commercial risk, i.e., the risk that the investor might reduce her participation in the fund. Recall

that the manager derives the benefit (λCt +B)yt from the investor’s participation, where yt is the

number of shares owned by the investor, λ is the efficiency of perk extraction, and B is a fee.

Corollary 3.7 (Commercial Risk) An increase in λ raises γ1, and thus increases the non-

fundamental volatility of stock returns and the extent of return reversal. An increase in B has

no effect on γ1, but raises Λt, and thus increases the average mispricing.

Since B raises Λt, it exacerbates the mispricing that the active fund seeks to exploit: stocks

that the active fund overweighs become more underpriced, while stocks that it underweighs become

more overpriced. Thus, a manager concerned with losing his fee is less willing to trade against

mispricings. A common intuition for this result is that the manager fears that mispricings might

worsen, in which case the fund will perform poorly and outflows will occur.17 In the symmetric-

information case, where the investor observes Ct, the causality is not from performance to flows, as

the previous intuition requires, but from flows to performance: an increase in Ct triggers outflows

from the active fund, and the negative price pressure these exert on the stocks that the fund

overweighs impairs fund performance. The intuition for the effect of B is different as well: a

manager concerned with losing his fee seeks to hedge against increases in Ct since these trigger

outflows. Hedging requires the manager to hold stocks that perform well when Ct increases. These

are the stocks that the active fund underweighs, and the manager’s hedging demand renders these

stocks more overpriced.

The parameter B has an effect only on the average mispricing, but not on how the mispricing

varies with Ct. By contrast, λ renders the mispricing more sensitive to Ct, i.e., raises γ1. Indeed,

λ > 0 implies that when Ct increases, the manager can extract a larger perk from each share

of the fund held by the investor, and is therefore more willing to hedge against future changes

in Ct. Thus, an increase in Ct not only generates outflows, but also makes the manager more

17This is, for example, the mechanism in Shleifer and Vishny (1997), who assume that fund flows are an exogenous
function of fund performance. Causality from performance to flows is endogenous in our model, and arises in the
asymmetric-information case, where the investor does not observe Ct and seeks to infer it from fund performance. In
the asymmetric-information case, B raises Λt because of a mechanism similar to that in Shleifer and Vishny.
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concerned with future outflows.18 As a consequence, the manager’s hedging demand increases, and

this adds to the mispricing caused by current outflows. Note that since λ raises γ1, it also increases

non-fundamental volatility and comovement (Corollary 3.4), as well as return reversal (Corollary

3.6). Thus, the manager’s demand to hedge against outflows can have the perverse effect to render

returns more volatile.

4 Gradual Adjustment

Section 3 shows that returns exhibit reversal at any horizon. To generate short-run momentum

and long-run reversal, we need the additional assumption that fund flows exhibit inertia, i.e., the

investor can adjust her fund holdings to new information only gradually. Gradual adjustment can

result from contractual restrictions or institutional decision lags.19 We model these frictions as a

flow cost ψ(dyt/dt)
2/2 that the investor must incur when changing the number yt of active-fund

shares that she owns. The advantage of the quadratic cost over other formulations (such as an

upper bound on |dyt/dt|) is that it preserves the linearity of the model.

We maintain the assumption that information about Ct is symmetric, and look for an equilib-

rium in which stock prices take the form

St =
F̄

r
+
Ft − F̄

r + κ
− (a0 + a1Ct + a2yt), (4.1)

where (a0, a1, a2) are constant vectors. The number yt of active-fund shares that the investor owns

becomes a state variable and affects prices since it cannot be set instantaneously to its optimal

level. The investor’s speed of adjustment vt ≡ dyt/dt in our conjectured equilibrium is

vt = b0 − b1Ct − b2yt, (4.2)

where (b0, b1, b2) are constants. We expect (b1, b2) to be positive, i.e., the investor reduces her

investment in the active fund faster when Ct or yt are large. We refer to an equilibrium satisfying

(4.1) and (4.2) as linear.

18The same effect would arise under the non-perk interpretations of the cost, discussed at the end of Section 2, if
the manager’s benefit is assumed concave in the number of shares yt owned by the investor.

19An example of contractual restrictions is lock-up periods, often imposed by hedge funds, which require investors
not to withdraw capital for a pre-specified time period. Institutional decision lags can arise for investors such as
pension funds, foundations or endowments, where decisions are made by boards of trustees that meet infrequently.
The inertia in capital flows and its relevance for asset prices are emphasized in Duffie’s (2010) presidential address
to the American Finance Association.
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4.1 Optimization

The manager chooses controls (c̄t, ȳt, zt) to maximize the expected utility (2.2) subject to the budget

constraint (3.3), the normalization (3.6), and the investor’s holding policy (4.2). Since stock prices

depend on (Ct, yt), the same is true for the manager’s value function. We conjecture that the value

function is

V̄ (Wt, X̄t) ≡ − exp

[

−
(

rᾱWt + q̄0 + (q̄1, q̄2)X̄t +
1

2
X̄ ′
tQ̄X̄t

)]

, (4.3)

where X̄t ≡ (Ct, yt)
′, (q̄0, q̄1, q̄2) are constants, and Q̄ is a constant symmetric 2 × 2 matrix.

Proposition 4.1 The value function (4.3) satisfies the Bellman equation (3.8) if (q̄0, q̄1, q̄2, Q̄)

satisfy a system of six scalar equations.

The investor chooses controls (ct, xt, vt) to maximize the expected utility (2.1) subject to the

budget constraint

dWt = rWtdt+ xt1dRt + yt (ztdRt − Ctdt) −
1

2
ψv2

t dt− ctdt (4.4)

and the manager’s portfolio policy zt = θ − xt1. We study this optimization problem in two steps.

In a first step, we optimize over (ct, xt), assuming that vt is given by (4.2). We solve this problem

using dynamic programming, and conjecture the value function

V (Wt,Xt) ≡ − exp

[

−
(

rαWt + q0 + (q1, q2)Xt +
1

2
X ′
tQXt

)]

, (4.5)

where Xt ≡ (Ct, yt)
′, (q0, q1, q2) are constants, and Q is a constant symmetric 2 × 2 matrix. The

Bellman equation is

max
ct,xt

[− exp(−αct) + DV − βV ] = 0, (4.6)

where DV is the drift of the process V under the controls (ct, xt). In a second step, we derive

conditions under which the control vt given by (4.2) is optimal.

Proposition 4.2 The value function (4.5) satisfies the Bellman equation (4.6) if (q0, q1, q2, Q)

satisfy a system of six scalar equations. The control vt given by (4.2) is optimal if (b0, b1, b2) satisfy

a system of three scalar equations.
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4.2 Equilibrium

The system of equations characterizing a linear equilibrium is higher-dimensional than under in-

stantaneous adjustment, and so more complicated. Proposition 4.3 shows that a unique linear

equilibrium exists when the diffusion coefficient s of Ct is small. This is done by computing explic-

itly the linear equilibrium for s = 0 and applying the implicit function theorem. Our numerical

solutions for general values of s seem to generate a unique linear equilibrium. Moreover, the prop-

erties that we derive for small s in the rest of this section seem to hold for general values of s.20

Proposition 4.3 For small s, there exists a unique linear equilibrium. The constants (b1, b2) are

positive, and the vectors (a1, a2) are given by

ai = γiΣp
′
f , (4.7)

where γ1 is a positive and γ2 a negative constant. Eq. (4.7) holds in any linear equilibrium for

general values of s.

Since γ1 > 0, an increase in Ct lowers the prices of stocks that covary positively with the

flow portfolio and raises the prices of stocks covarying negatively. This effect is the same as

under instantaneous adjustment (Corollary 3.3) but the mechanism is slightly different. Under

instantaneous adjustment, an increase in Ct triggers an immediate outflow from the active fund

by the investor. In flowing out of the fund, the investor sells the stocks that the fund overweighs,

and the prices of these stocks drop so that the manager is induced to buy them. Under gradual

adjustment, the outflow is expected to occur in the future, and so are the sales of the stocks that

the fund overweighs. The prices of these stocks drop immediately in anticipation of the future sales.

We next examine how Ct impacts stocks’ expected returns. As in the case of instantaneous

adjustment, expected returns are given by a two-factor model, with the factors being the market

and the flow portfolio. The key difference with instantaneous adjustment lies in the properties of

the factor risk premium associated with the flow portfolio.

Corollary 4.1 (Expected Returns) Stocks’ expected returns are given by the two-factor model

(3.21), with the factors being the market and the flow portfolio. The factor risk premium Λt

20This applies to b1 > 0, b2 > 0, γ1 > 0, γ2 < 0, and to Corollaries 4.1 and 4.2 (with a different threshold λR).
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associated to the flow portfolio is

Λt = rᾱ+
1

f +
s2γ2

1
∆

1Σ1′

(

γR1 Ct + γR2 yt − γ1s
2q̄1
)

, (4.8)

where (γR1 , γ
R
2 ) are constants. For small s, the constant γR1 is negative if

λ < λR ≡ ᾱ

2(α + ᾱ) + ψ1Σ1
′

2f∆

[

r + (r + 2κ)
√

1 + 4(α+ᾱ)f∆
rψ1Σ1

′

] , (4.9)

and is positive otherwise, and the constant γR2 is negative.

When γR1 < 0, the effect of Ct on expected returns goes in the same direction as the effect on

prices. For example, an increase in Ct not only lowers the prices of stocks that covary positively

with the flow portfolio, but also lowers their subsequent expected returns. This seems paradoxical:

given that Ct does not affect cash flows, shouldn’t the drop in price be accompanied by an increase

in expected return? The explanation is that while expected return decreases in the short run, it

increases in the long run, in response to the gradual outflows triggered by the increase in Ct.

Figure 1 illustrates the dynamic behavior of fund flows and expected returns following a shock

to Ct at time t. We assume that the shock is positive, and trace its effects for t′ > t. We set

the realized values of all shocks occurring subsequent to time t to zero: given the linearity of our

model, this amounts to taking expectations over the future shocks. To better illustrate the main

effects, we assume no mean-reversion in Ct, i.e., κ = 0. Thus, the shock to Ct generates an equal

increase in Ct′ for all t′ > t. We assume parameter values for which the constant γR1 of Corollary

4.1 is negative. The constant γR2 is also negative for these parameter values, a result which our

numerical solutions suggest is general.

The solid line in Figure 1 plots the investor’s holdings of the active fund, yt′ . Holdings decrease

to a lower constant level, and the decrease happens gradually because of the adjustment cost.

The dashed line in Figure 1 plots the instantaneous expected return E(dRt′)/dt of a stock that

covaries positively with the flow portfolio. Immediately following the increase in Ct, expected

return decreases because γR1 < 0. Over time, however, as outflows occur, expected return increases.

This is because the manager must be induced to absorb the outflows and buy the stock—an effect

which can also be seen from Corollary 4.1 by noting that yt′ decreases over time and γR2 < 0. The

increase in expected return eventually overtakes the initial decrease, and the overall effect becomes
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Figure 1: Effect of a positive shock to Ct on the investor’s holdings of the active
fund yt′ (solid line) and on the instantaneous expected return E(dRt′)/dt of a stock
that covaries positively with the flow portfolio (dashed line) for t′ > t. Time is
measured in years. The figure is drawn for (r, κ, ᾱ/α, ψ/α, φ2,∆/(1Σ1′), s2, λ) =
(0.04, 0, 4, 4, 0.1, 0.1, 1, 0). The equations describing the dynamics of yt′ and
E(dRt′)/dt are derived in the proof of Corollary 4.2.

an increase. It is the long-run increase in expected return that causes the initial price drop at time

t.

While Figure 1 reconciles the initial price drop with the behavior of expected return, it does

not explain why expected return decreases in the short run. The latter effect is, in fact, puzzling:

why is the manager willing to hold at time t—and even overweigh—a stock that is expected to

underperform in the short run? The intuition is that the manager prefers to guarantee a “bird

in the hand.” Indeed, the anticipation of future outflows causes the stock to become underpriced

at time t and offer an attractive return over a long horizon. The manager could earn an even

more attractive return, on average, by buying the stock after the outflows occur. This, however,

exposes him to the risk that the outflows might not occur, in which case the stock would cease to

be underpriced. Thus, the manager might prefer to guarantee an attractive long-horizon return

(bird in the hand), and pass up on the opportunity to exploit an uncertain short-run price drop.

Note that in seeking to guarantee the long-horizon return, the manager is, in effect, causing the

short-run drop. Indeed, the manager’s buying pressure prevents the price at time t from dropping

to a level that fully reflects the future outflows, i.e., from which a short-run drop is not expected.
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The bird-in-the-hand effect can be seen formally in the manager’s first-order condition (3.9),

which in the case of gradual adjustment becomes

Et(dRt) = rᾱCovt(dRt, ẑtdRt) + (q̄1 + q̄11Ct + q̄12yt)Covt(dRt, dCt). (4.10)

Following an increase in Ct, the expected return of a stock that covaries positively with the flow

portfolio decreases, lowering the left-hand side of (4.10). Therefore, the manager remains willing to

hold the stock only if its risk, described by the right-hand side of (4.10), also decreases. The decrease

in risk is not caused by a lower covariance between the stock and the manager’s portfolio ẑt (first

term in the right-hand side). Indeed, since outflows are gradual, ẑt remains constant immediately

following the increase in Ct. The decrease in risk is instead driven by the manager’s hedging demand

(second term in the right-hand side), which means that a stock covarying positively with the flow

portfolio becomes a better hedge for the manager when Ct increases. The intuition is that when

Ct increases, mispricing becomes severe, and the manager has attractive investment opportunities.

Hedging against a reduction in these opportunities requires holding stocks that perform well when

Ct decreases, and these are the stocks covarying positively with the flow portfolio. Holding such

stocks guarantees the manager an attractive long-horizon return—the bird-in-the-hand effect.

The manager’s hedging demand is influenced not only by the bird-in-the-hand effect, but also

by the concern with commercial risk (Corollary 3.7). The two effects work in opposite directions

when λ > 0. Indeed, a stock covarying positively with the flow portfolio is a bad hedge for the

manager because it performs poorly when Ct increases, which is also when outflows occur. Moreover,

λ > 0 implies that the hedge tends to worsen when Ct increases because the manager becomes

more concerned with future outflows. When λ is small, the bird-in-the-hand effect dominates the

commercial-risk effect in influencing how the manager’s hedging demand depends on Ct. Thus,

when λ is small, changes in Ct impact prices and short-run expected returns in the same direction

(γR1 < 0), as Corollary 4.1 confirms in the case of small s.21

The time-variation in expected returns implied by Corollary 4.1 gives rise to predictability.

As in the case of instantaneous adjustment, the autocovariance matrix of returns is equal to the

non-fundamental covariance matrix times a scalar. But while the scalar is negative for all lags

under instantaneous adjustment, it can be positive for short lags under gradual adjustment.

Corollary 4.2 (Return Predictability) The covariance between stock returns at time t and

21Note that in a model with smart-money investors, sketched at the end of Section 2, λ would naturally be small:
since these investors invest their own wealth, their hedging demand would be influenced only by the bird-in-the-hand
effect.
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those at time t′ > t is

Covt(dRt, dR
′
t′) =

[

χ1e
−κ(t′−t) + χ2e

−b2(t′−t)
]

Σp′fpfΣ(dt)2, (4.11)

where (χ1, χ2) are constants. For small s, the term in the square bracket of (4.11) is positive if

t′ − t < û and negative if t′ − t > û, for a threshold û which is positive if λ < λR and zero if

λ > λR. A stock’s return predicts positively the stock’s subsequent return for t′ − t < û (short-run

momentum) and negatively for t′ − t > û (long-run reversal). It predicts in the same manner the

subsequent return of another stock when the covariance between each stock in the pair and the flow

portfolio has the same sign, and in the opposite manner otherwise.

When λ is small, stocks exhibit positive autocovariance for short lags and negative for long

lags, i.e., short-run momentum and long-run reversal. This is because expected returns vary over

time only in response to changes in Ct and the changes in yt that these trigger. Moreover, changes

in Ct move prices and short-run expected returns in the same direction, but long-run expected

returns in the opposite direction. When instead λ is large, autocovariance is negative for all lags

because changes in Ct move even short-run expected returns in the opposite direction to prices.22

Lead-lag effects have the same sign as autocovariance for stock pairs whose covariance with the

flow portfolio has the same sign. This is because changes in Ct influence both stocks in the same

manner.

5 Asymmetric Information

This section treats the case of asymmetric information, where the investor does not observe the

cost Ct and seeks to infer it from the returns and share prices of the index and active funds. Asym-

metric information involves the additional complexity of having to solve for the investor’s dynamic

inference problem. Yet, this complexity does not come at the expense of tractability: the equilib-

rium has a similar formal structure and many properties in common with symmetric information.

For example, the autocovariance and non-fundamental covariance matrices are identical to their

symmetric-information counterparts up to multiplicative scalars.

We maintain the adjustment cost assumed in Section 4, and look for an equilibrium with the

following characteristics. The investor’s conditional distribution of Ct is normal with mean Ĉt. The

22The result that stocks exhibit short-run momentum and long-run reversal when λ is small, but reversal for all
lags when λ is large is consistent with the implication of Corollary 3.7 that an increase in λ increases the extent of
reversal.
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variance of the conditional distribution is, in general, a deterministic function of time, but we focus

on a steady state where it is constant.23 Stock prices take the form

St =
F̄

r
+
Ft − F̄

r + κ
− (a0 + a1Ĉt + a2Ct + a3yt), (5.1)

where (a0, a1, a2, a3) are constant vectors. The conditional mean Ĉt becomes a state variable and

affects prices because it determines the investor’s target holdings of the active fund. The true

value Ct, which is observed by the manager, also affects prices because it forecasts the investor’s

target holdings in the future. We conjecture that the effects of (Ĉt, Ct, yt) on prices depend on the

covariance with the flow portfolio, as is the case for (Ct, yt) under symmetric information. That is,

there exist constants (γ1, γ2, γ3) such that for i = 1, 2, 3,

ai = γiΣp
′
f . (5.2)

The investor’s speed of adjustment vt ≡ dyt/dt in our conjectured equilibrium is

vt = b0 − b1Ĉt − b2yt, (5.3)

where (b0, b1, b2) are constants. Eq. (5.3) is identical to its symmetric-information counterpart

(4.2), except that Ct is replaced by its mean Ĉt. We refer to an equilibrium satisfying (5.1)-(5.3)

as linear.

5.1 Investor’s Inference

The investor seeks to infer the cost Ct from fund returns and share prices. The share prices of

the index and active fund are ztSt and 1St, respectively, and are informative about Ct because Ct

affects the vector of stock prices St. Prices do not reveal Ct perfectly, however, because they also

depend on the time-varying expected dividend Ft that the investor does not observe.

In addition to prices, the investor observes the net-of-cost return of the active fund, ztdRt−Ctdt,
and the return of the index fund, 1dRt. Because the investor observes prices, she also observes

capital gains, and therefore can deduce net dividends (i.e., dividends minus Ct). Net dividends are

the incremental information that returns provide to the investor.

In equilibrium, the active fund’s portfolio zt is equal to θ − xt1. Since the investor knows xt,

observing the price and net dividends of the index and active funds is informationally equivalent

23The steady state is reached in the limit when time t becomes large.
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to observing the price and net dividends of the index fund and of a hypothetical fund holding

the residual-supply portfolio θ. Therefore, we can take the investor’s information to be the net

dividends of the residual-supply portfolio θdDt − Ctdt, the dividends of the index fund 1dDt, the

price of the residual-supply portfolio θSt, and the price of the index fund 1St.
24 We solve the

investor’s inference problem using recursive (Kalman) filtering.

Proposition 5.1 The mean Ĉt of the investor’s conditional distribution of Ct evolves according to

the process

dĈt =κ(C̄ − Ĉt)dt− β1

{

pf [dDt − Et(dDt)] − (Ct − Ĉt)dt
}

− β2pf

[

dSt + a1dĈt + a3dyt − Et(dSt + a1dĈt + a3dyt)
]

, (5.4)

where

β1 ≡ T

[

1 − (r + k)
γ2∆

1Σ1
′

]

1Σ1
′

∆
, (5.5)

β2 ≡ s2γ2

φ2

(r+κ)2
+

s2γ2

2
∆

1Σ1
′

, (5.6)

and T denotes the distribution’s steady-state variance. The variance T is the unique positive solution

of the quadratic equation

T 2

[

1 − (r + κ)
γ2∆

1Σ1
′

]2
1Σ1

′

∆
+ 2κT −

s2φ2

(r+κ)2

φ2

(r+κ)2
+

s2γ2

2
∆

1Σ1
′

= 0. (5.7)

The term in β1 in (5.4) represents the investor’s learning from net dividends. Recalling the

definition (3.16) of the flow portfolio, we can write this term as

−β1

{

θdDt − Ctdt− Et (θdDt − Ctdt) −
1Σθ′

1Σ1′ [1dDt − Et(1dDt)]

}

. (5.8)

The investor lowers her estimate of the cost Ct if the net dividends of the residual-supply portfolio

θdDt − Ctdt are above expectations. Of course, net dividends can be high not only because Ct is

24We are assuming that the investor’s information is the same in and out of equilibrium, i.e., the manager cannot
manipulate the investor’s beliefs by deviating from his equilibrium strategy and choosing a portfolio zt 6= θ − xt1.
This is consistent with the assumption of a competitive manager. Indeed, one interpretation of this assumption is
that there exists a continuum of managers, each with the same Ct. A deviation by one manager would then not affect
the investors’ beliefs about Ct because these would depend on averages across managers.
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low, but also because gross dividends are high. The investor adjusts for this by comparing with the

dividends 1Dt of the index fund. The adjustment is made by computing the regression residual of

θdDt − Ctdt on 1Dt, which is the term in curly brackets in (5.8).

The term in β2 in (5.4) represents the investor’s learning from prices. The investor lowers her

estimate of Ct if the price of the residual-supply portfolio is above expectations. Indeed, the price

can be high because the manager knows privately that Ct is low, and anticipates that the investor

will increase her participation in the fund, causing the price to rise, as she learns about Ct. As with

dividends, the investor needs to account for the fact that the price of the residual-supply portfolio

can be high not only because Ct is low, but also because the manager expects future dividends to

be high (Ft small). She adjusts for this by comparing with the price of the index fund. Note that

if the expected dividend Ft is constant (φ = 0), learning from prices is perfect: (5.7) implies that

the conditional variance T is zero.

Because the investor compares the performance of the residual-supply portfolio, and hence of

the active fund, to that of the index fund, she is effectively using the index as a benchmark. Note

that benchmarking is not part of an explicit contract tying the manager’s compensation to the

index. Compensation is tied to the index only implicitly: if the active fund outperforms the index,

the investor infers that Ct is low and increases her participation in the fund.

5.2 Optimization

The manager chooses controls (c̄t, ȳt, zt) to maximize the expected utility (2.2) subject to the budget

constraint (3.3), the normalization (3.6), and the investor’s holding policy (5.3). Since stock prices

depend on (Ĉt, Ct, yt), the same is true for the manager’s value function. We conjecture that the

value function is

V̄ (Wt, X̄t) ≡ − exp

[

−
(

rᾱWt + q̄0 + (q̄1, q̄2, q̄3)X̄t +
1

2
X̄ ′
tQ̄X̄t

)]

, (5.9)

where X̄t ≡ (Ĉt, Ct, yt)
′, (q̄0, q̄1, q̄2, q̄3) are constants, and Q̄ is a constant symmetric 3 × 3 matrix.

Proposition 5.2 The value function (5.9) satisfies the Bellman equation (3.8) if (q̄0, q̄1, q̄2, q̄3, Q̄)

satisfy a system of ten scalar equations.
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The investor chooses controls (ct, xt, vt) to maximize the expected utility (2.1) subject to the

budget constraint (4.4) and the manager’s portfolio policy zt = θ−xt1. As in the case of symmetric

information, we study this optimization problem in two steps: first optimize over (ct, xt), assuming

that vt is given by (5.3), and then derive conditions under which (5.3) is optimal. We solve the first

problem using dynamic programming, and conjecture the value function (4.5), where Xt ≡ (Ĉt, yt)
′,

(q0, q1, q2) are constants, and Q is a constant symmetric 2 × 2 matrix.

Proposition 5.3 The value function (4.5) satisfies the Bellman equation (4.6) if (q0, q1, q2, Q)

satisfy a system of six scalar equations. The control vt given by (5.3) is optimal if (b0, b1, b2) satisfy

a system of three scalar equations.

5.3 Equilibrium

Proposition 5.4 shows that a unique linear equilibrium exists when the diffusion coefficient s of Ct is

small. Our numerical solutions for general values of s seem to generate a unique linear equilibrium,

with properties similar to those derived in the rest of this section for small s.25

Proposition 5.4 For small s, there exists a unique linear equilibrium. The constants (b1, b2, γ1)

are positive, and the constant γ3 is negative. The constant γ2 is positive if λ ≥ 0.

When information is asymmetric, cashflow news affect the investor’s estimate of the cost Ct,

and so trigger fund flows. These flows, in turn, impact stock returns. We refer to the effect that

cashflow news have on returns through fund flows as an indirect effect, to distinguish from the direct

effect computed by holding flows constant. To illustrate the two effects, consider the dividend shock

dDt at time t. The shock’s direct effect is to add dDt to returns dRt = dDt + dSt − rStdt. The

shock’s indirect effect is to trigger fund flows which impact returns dRt through the price change

dSt. Eqs. (5.1), (5.2) and (5.4) imply that the indirect effect is β1γ1Σp
′
fpfdDt.

The indirect effect amplifies the direct effect. Suppose, for example, that a stock experiences

a negative cashflow shock. If the stock is in large residual supply, and so overweighed by the

active fund, then the shock lowers the return of the active fund more than of the index fund. As

a consequence, the investor infers that Ct has increased, and flows out of the active and into the

index fund. Since the active fund overweighs the stock, the investor’s flows cause the stock to be

25This applies to b1 > 0, b2 > 0, γ1 > 0, γ2 > 0, γ3 < 0, and to Corollaries 5.1, 5.2 and 5.3.
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sold and push its price down. Conversely, if the stock is in small residual supply, then the investor

infers that Ct has decreased, and flows out of the index and into the active fund. Since the active

fund underweighs the stock, the investor’s flows cause again the stock to be sold and push its price

down. Thus, in both cases, fund flows amplify the direct effect that the cashflow shock has on

returns.

Amplification is related to comovement. Recall that under symmetric information fund flows

generate comovement between a pair of stocks because they affect the expected return of each

stock in the pair. This channel of comovement, to which we refer as ER/ER (where ER stands for

expected return) is also present under asymmetric information. Asymmetric information introduces

an additional channel involving fund flows, to which we refer as CF/ER (where CF stands for

cashflow). This is that cashflow news of one stock in a pair trigger fund flows which affect the

expected return of the other stock. The CF/ER channel is the one related to amplification.

While the ER/ER and CF/ER channels are conceptually distinct, their effects are formally

similar: the covariance matrix generated by CF/ER is equal to that generated by ER/ER times a

positive scalar (Corollary 5.1). Thus, if ER/ER generates a positive covariance between a pair of

stocks, so does CF/ER, and if the former covariance is large, so is the latter. Consider, for example,

two stocks that are in large residual supply. Since outflows from the active fund (triggered by, e.g.,

a cashflow shock to a third stock) push down the prices of both stocks, ER/ER generates a positive

covariance. Moreover, since a negative cashflow shock to one stock triggers outflows from the active

fund and this pushes down the price of the other stock, CF/ER also generates a positive covariance.

The former covariance is large if the two stocks have high idiosyncratic risk since this makes them

more sensitive to fund flows. But high idiosyncratic risk also renders the latter covariance large:

cashflow shocks to stocks having low correlation with the index generate a large discrepancy between

the active and the index return, hence triggering large fund flows.

Corollary 5.1 computes the covariance matrix of stock returns. The fundamental covariance

is identical to that under symmetric information, while the non-fundamental covariance is propor-

tional. The intuition for proportionality is that the covariance matrices generated by ER/ER and

CF/ER are proportional, the non-fundamental covariance under symmetric information is gener-

ated by ER/ER, and that under asymmetric information is generated by ER/ER and CF/ER.

Corollary 5.1 shows, in addition, that for small s the non-fundamental covariance matrix is larger

under asymmetric information, i.e., the proportionality coefficient with the symmetric-information

matrix is larger than one. This result, which our numerical solutions suggest is general, implies
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that the non-fundamental volatility of each stock is larger under asymmetric information, and so is

the absolute value of the non-fundamental covariance between any pair of stocks. Intuitively, these

quantities are larger under asymmetric information because the amplification channel CF/ER is

present only in that case.

Corollary 5.1 (Comovement and Amplification) The covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(

fΣ + kΣp′fpfΣ
)

dt, (5.10)

where k is a positive constant. The fundamental covariance is identical to that under symmetric

information, while the non-fundamental covariance is proportional. Moreover, for small s, the

proportionality coefficient is larger than one.

The cross section of expected returns is explained by the same two factors as under symmetric

information.

Corollary 5.2 (Expected Returns) Stocks’ expected returns are given by the two-factor model

(3.21), with the factors being the market and the flow portfolio. The factor risk premium Λt

associated to the flow portfolio is

Λt = rᾱ+
1

f + k∆

1Σ1′

(

γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)

, (5.11)

where (γR1 , γ
R
2 , γ

R
3 , k1, k2) are constants. For small s, the constants (γR1 , γ

R
3 ) are negative and the

constant γR2 has the same sign as λ.

Using Corollary 5.2, we can examine how expected returns respond to shocks. Consider a

cashflow shock, which we assume is negative and hits a stock in large residual supply. The shock

raises Ĉt, the investor’s estimate of Ct. The increase in Ĉt lowers the prices of stocks covarying

positively with the flow portfolio (including the stock hit by the cashflow shock) since γ1 > 0, and

lowers the subsequent expected returns of these stocks since γR1 < 0. The simultaneous decrease

in prices and expected returns is consistent because expected returns increase in the long run.

Expected returns decrease in the short run because of the bird-in-the-hand effect.

The time-variation in expected returns following cashflow shocks can be characterized in terms

of the covariance between cashflow shocks and subsequent returns. Corollary 5.3 computes the
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covariance between the vectors (dDt, dFt) of cashflow shocks at time t and the vector of returns at

time t′ > t. Both covariance matrices are equal to the non-fundamental covariance matrix times a

scalar which is positive for short lags and negative for long lags. Thus, cashflow shocks generate

short-run momentum and long-run reversal in returns, consistent with the discussion in the previous

paragraph. Note that predictability based on cashflows arises only under asymmetric information

because only then cashflow shocks trigger fund flows.

Corollary 5.3 (Return Predictability Based on Cashflows) The covariance between cash-

flow shocks (dDt, dFt) at time t and returns at time t′ > t is given by

Covt(dDt, dR
′
t′) =

β1(r + κ)Covt(dFt, dR
′
t′)

β2φ2
=
[

χD1 e
−(κ+ρ)(t′−t) + χD2 e

−b2(t′−t)
]

Σp′fpfΣ(dt)2,

(5.12)

where (χD1 , χ
D
2 ) are constants. For small s, the term in the square bracket of (4.11) is positive if

t′ − t < ûD and negative if t′ − t > ûD, for a threshold ûD > 0. A stock’s cashflow shocks predict

positively the stock’s subsequent return for t′ − t < ûD (short-run momentum) and negatively for

t′ − t > ûD (long-run reversal). They predict in the same manner the subsequent return of another

stock when the covariance between each stock in the pair and the flow portfolio has the same sign,

and in the opposite manner otherwise.

We finally examine predictability based on past returns rather than cashflows. This predictabil-

ity is driven both by cashflow shocks and by shocks to Ct. Predictability based on past returns has

the same form as under symmetric information (Corollary 4.2), except that short-run momentum

arises even for large λ.26

Corollary 5.4 (Return Predictability) The covariance between stock returns at time t and

those at time t′ > t is

Covt(dRt, dR
′
t′) =

[

χ1e
−(κ+ρ)(t′−t) + χ2e

−κ(t′−t) + χ3e
−b2(t′−t)

]

Σp′fpfΣ(dt)2, (5.13)

26The latter result relies on the assumption that s is small. Recall that when information is symmetric, short-
run momentum does not arise for large λ because of commercial risk. Indeed, an increase in Ct lowers the prices
of stocks covarying positively with the flow portfolio because of the anticipation of future outflows from the active
fund. Moreover, the subsequent expected returns of these shocks increase, even in the short run, because the manager
becomes more concerned with commercial risk (and this effect dominates the bird-in-the-hand effect for large λ). Both
effects are also present when information is asymmetric. Under asymmetric information, however, predictability is
driven not only by shocks to Ct but also by cashflow shocks. Moreover, the latter have a dominating effect when
shocks to Ct have small variance (small s). Indeed, for small s, shocks to Ct are not only small but also trigger a
small price reaction holding size constant. This is because the price reaction is driven by the anticipation of future
flows as the investor learns about Ct, and learning is limited for small s.
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where (χ1, χ2, χ3, ρ) are constants. For λ ≥ 0 and small s, the term in the square bracket of (5.13)

is positive if t′ − t < û and negative if t′ − t > û, for a threshold û > 0. Given û, predictability is

as in Corollary 4.2.

6 Conclusion

This paper proposes a rational theory of momentum and reversal based on delegated portfolio

management. Momentum arises because prices do not fully adjust to reflect future fund flows, and

reversal arises because these flows push prices away from fundamental values. Besides momentum

and reversal, fund flows generate comovement, lead-lag effects and amplification, with all effects

being larger for assets with high idiosyncratic risk. Moreover, managers’ concern with commercial

risk makes prices more volatile. Our model provides a parsimonious and tractable framework to

study the price effects of fund flows.

In focusing on flows between investment funds as a driver of momentum, we do not intend to

suggest that they are the only driver. Indeed, momentum could be also generated by gradual and

anticipated changes in leverage or irrational sentiment. At the same time, flows between investment

funds seem to be a relevant driver of momentum as recent empirical findings indicate, and can be

modeled in a manner that might be more tractable than alternatives. Moreover, the basic intuitions

identified in this paper, e.g., momentum is driven by the bird-in-the-hand effect and is possible only

because of the subsequent reversal, seem general and could carry over to other settings.

Our emphasis in this paper is to develop a framework that allows for a general analysis of

the price effects of fund flows. An important next step, left for future work, is to examine more

systematically the empirical implications of our analysis, both to confront existing empirical facts

and to suggest new tests. For example, is momentum larger for individual assets or asset classes?

Are momentum winners correlated and is there a momentum factor? If so, how do momentum and

value factors correlate?
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Appendix

A Symmetric Information

Proof of Proposition 3.1: Eqs. (2.3), (3.2), (3.3) and (3.4) imply that

d

(

rᾱWt + q̄0 + q̄1Ct +
1

2
q̄11C

2
t

)

= Ḡdt+rᾱẑtσ

(

dBD
t +

φdBF
t

r + κ

)

−s
[

rᾱẑta1 − f̄1(Ct)
]

dBC
t , (A.1)

where

Ḡ ≡rᾱ
{

rWt + ẑt
[

ra0 + (r + κ)a1Ct − κa1C̄
]

+ (λCt +B)(b0 − b1Ct) − c̄t
}

+ f̄1(Ct)κ(C̄ − Ct) +
1

2
s2q̄11,

f̄1(Ct) ≡ q̄1 + q̄11Ct.

Eqs. (3.7) and (A.1) imply that

DV̄ = −V̄
{

Ḡ− 1

2
(rᾱ)2f ẑtΣẑ

′
t −

1

2
s2
[

rᾱẑta1 − f̄1(Ct)
]2
}

. (A.2)

Substituting (A.2) into (3.8), we can write the first-order conditions with respect to c̄t and ẑt as

ᾱ exp(−ᾱc̄t) + rᾱV̄ = 0, (A.3)

h̄(Ct) = rᾱ(fΣ + s2a1a
′
1)ẑ

′
t, (A.4)

respectively, where

h̄(Ct) ≡ ra0 + (r + κ)a1Ct − κa1C̄ + s2a1f̄1(Ct). (A.5)

Eq. (A.4) is equivalent to (3.9) because of (2.3), (3.4) and (3.5). Using (A.2) and (A.3), we can

simplify (3.8) to

Ḡ− 1

2
(rᾱ)2ẑt(fΣ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(Ct) −

1

2
s2f̄1(Ct)

2 + β̄ − r = 0. (A.6)

Eqs. (3.7) and (A.3) imply that

c̄t = rWt +
1

ᾱ

[

q̄0 + q̄1Ct +
1

2
q̄11C

2
t − log(r)

]

. (A.7)
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Substituting (A.7) into (A.6) the terms in Wt cancel, and we are left with

rᾱẑt
[

ra0 + (r + κ)a1Ct − κa1C̄
]

+ rᾱ(λCt +B)(b0 − b1Ct) − r

(

q̄0 + q̄1Ct +
1

2
q̄11C

2
t

)

+ f̄1(Ct)κ(C̄ − Ct) +
1

2
s2q̄11 + β̄ − r + r log(r)

− 1

2
(rᾱ)2ẑt(fΣ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(Ct) −

1

2
s2f̄1(Ct)

2 = 0. (A.8)

The terms in (A.8) that involve ẑt can be written as

rᾱẑt
[

ra0 + (r + κ)a1Ct − κa1C̄
]

− 1

2
(rᾱ)2ẑt(fΣ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(Ct)

= rᾱẑth̄(Ct) −
1

2
(rᾱ)2ẑt(fΣ + s2a1a

′
1)ẑ

′
t

=
1

2
rᾱẑth̄(Ct)

=
1

2
h̄(Ct)

′(fΣ + s2a1a
′
1)

−1h̄(Ct), (A.9)

where the first step follows from (A.5) and the last two from (A.4). Substituting (A.9) into (A.8),

we find

1

2
h̄(Ct)

′(fΣ + s2a1a
′
1)

−1h̄(Ct) + rᾱ(λCt +B)(b0 − b1Ct) − r

(

q̄0 + q̄1Ct +
1

2
q̄11C

2
t

)

+ f̄1(Ct)κ(C̄ − Ct) +
1

2
s2
[

q̄11 − f̄1(Ct)
2
]

+ β̄ − r + r log(r) = 0. (A.10)

Eq. (A.10) is quadratic in Ct. Identifying terms in C2
t , Ct, and constants, yields three scalar

equations in (q̄0, q̄1, q̄11). We defer the derivation of these equations until the proof of Proposition

3.3 (see (A.40) and (A.41)).

Proof of Proposition 3.2: Eqs. (2.3), (3.4) and (3.10) imply that

d

(

rαWt + q0 + q1Ct +
1

2
q11C

2
t

)

=Gdt+ rα(xt1 + ytzt)σ

(

dBD
t +

φdBF
t

r + κ

)

− s [rα(xt1 + ytzt)a1 − f1(Ct)] dB
C
t , (A.11)

where

G ≡ rα
{

rWt + (xt1 + ytzt)
[

ra0 + (r + κ)a1Ct − κa1C̄
]

− ytCt − ct
}

+f1(Ct)κ(C̄−Ct)+
1

2
s2q11,
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f1(Ct) ≡ q1 + q11Ct.

Eqs. (3.11) and (A.11) imply that

DV = −V
{

G− 1

2
(rα)2f(xt1 + ytzt)Σ(xt1 + ytzt)

′ − 1

2
s2 [rα(xt1 + ytzt)a1 − f1(Ct)]

2

}

. (A.12)

Substituting (A.12) into (3.12), we can write the first-order conditions with respect to ct, xt and yt

as

α exp(−αct) + rαV = 0, (A.13)

1h(Ct) = rα1(fΣ + s2a1a
′
1)(xt1 + ytzt)

′, (A.14)

zth(Ct) − Ct = rαzt(fΣ + s2a1a
′
1)(xt1 + ytzt)

′, (A.15)

respectively, where

h(Ct) ≡ ra0 + (r + κ)a1Ct − κa1C̄ + s2a1f1(Ct). (A.16)

Eqs. (A.14) and (A.15) are equivalent to (3.13) and (3.14) because of (2.3), (3.4) and (3.5). Solving

for ct, and proceeding as in the proof of Proposition 3.1, we can simplify (3.12) to

rα(xt1 + ytzt)
[

ra0 + (r + κ)a1Ct − κa1C̄
]

− rαytCt − r

(

q0 + q1Ct +
1

2
q11C

2
t

)

+ f1(Ct)κ(C̄ − Ct) +
1

2
s2q11 + β − r + r log(r)

− 1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′ + rαs2(xt1 + ytzt)a1f1(Ct) −
1

2
s2f1(Ct)

2 = 0.

(A.17)

Eq. (A.17) is the counterpart of (A.8) for the investor. The terms in (A.17) that involve (xt, yt)

can be written as

rα(xt1 + ytzt)
[

ra0 + (r + κ)a1Ct − κa1C̄
]

− rαytCt

− 1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′ + rαs2(xt1 + ytzt)a1f1(Ct)

= rα(xt1 + ytzt)h(Ct) − rαytCt −
1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′

=
1

2
rα(xt1 + ytzt)h(Ct) −

1

2
rαytCt, (A.18)

where the first step follows from (A.16) and the second from

(xt1 + ytzt)h(Ct) − ytCt = rα(xt1 + ytzt)(fΣ + s2a1a
′
1)(xt1 + ytzt)

′, (A.19)
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which in turn follows by multiplying (A.14) by xt, (A.15) by yt, and adding up. To eliminate xt

and yt in (A.18), we use (A.14) and (A.15). Noting that in equilibrium zt = θ − xt1, we can write

(A.14) as

1h(Ct) = rα1(fΣ + s2a1a
′
1) [xt(1 − yt)1 + ytθ]

′ . (A.20)

Multiplying (A.14) by xt and adding to (A.15), we similarly find

θh(Ct) − Ct = rαθ(fΣ + s2a1a
′
1) [xt(1 − yt)1 + ytθ]

′ . (A.21)

Eqs. (A.20) and (A.21) form a linear system in xt(1 − yt) and yt. Solving the system, we find

xt(1 − yt) =
1

rαD

{

1h(Ct)θ(fΣ + s2a1a
′
1)θ

′ − [θh(Ct) − Ct]1(fΣ + s2a1a
′
1)θ

′
}

, (A.22)

yt =
1

rαD

{

[θh(Ct) − Ct] 1(fΣ + s2a1a
′
1)1

′ − 1h(Ct)1(fΣ + s2a1a
′
1)θ

′
}

, (A.23)

where

D ≡ θ(fΣ + s2a1a
′
1)θ

′1(fΣ + s2a1a
′
1)1

′ −
[

1(fΣ + s2a1a
′
1)θ

′
]2
.

Eq. (A.23) implies that the optimal control yt is linear in Ct. Using (A.22) and (A.23), we can

write (A.18) as

1

2
rα(xt1 + ytzt)h(Ct) −

1

2
rαytCt

=
1

2
rα [xt1 + yt(θ − xt1)] h(Ct) −

1

2
rαytCt

=
1

2D

{

[1h(Ct)]
2 θ(fΣ + s2a1a

′
1)θ

′ − 2 [θh(Ct) − Ct]1h(Ct)1(fΣ + s2a1a
′
1)θ

′

+ [θh(Ct) − Ct]
2 1(fΣ + s2a1a

′
1)1

′
}

. (A.24)

Substituting (A.24) into (A.17), we find

1

2D

{

[1h(Ct)]
2 θ(fΣ + s2a1a

′
1)θ

′ − 2 [θh(Ct) − Ct] 1h(Ct)1(fΣ + s2a1a
′
1)θ

′

+ [θh(Ct) − Ct]
2 1(fΣ + s2a1a

′
1)1

′
}

− r

(

q0 + q1Ct +
1

2
q11C

2
t

)

+ f1(Ct)κ(C̄ − Ct) +
1

2
s2
[

q11 − f1(Ct)
2
]

+ β − r + r log(r) = 0. (A.25)
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Eq. (A.25) is quadratic in Ct. Identifying terms in C2
t , Ct, and constants, yields three scalar

equations in (q0, q1, q11). We defer the derivation of these equations until the proof of Proposition

3.3 (see (A.44) and (A.45)).

Proof of Proposition 3.3: We first impose market clearing and derive the constants (a0, a1, b0, b1)

as functions of (q̄1, q̄11, q1, q11). For these derivations, as well as for later proofs, we use the following

properties of the flow portfolio:

1Σp′f = 0,

θΣp′f = pfΣp
′
f =

∆

1Σ1′ .

Setting zt = θ − xt1 and ȳt = 1 − yt, we can write (A.4) as

h̄(Ct) = rᾱ(fΣ + s2a1a
′
1)(1 − yt)(θ − xt1)′. (A.26)

Premultiplying (A.26) by 1, dividing by rᾱ, and adding to (A.20) divided by rα, we find

1

[

h(Ct)

rα
+
h̄(Ct)

rᾱ

]

= 1(fΣ + s2a1a
′
1)θ

′. (A.27)

Eq. (A.27) is linear in Ct. Identifying terms in Ct, we find

(

r + κ+ s2q11
rα

+
r + κ+ s2q̄11

rᾱ

)

1a1 = 0 ⇒ 1a1 = 0. (A.28)

Identifying constant terms, and using (A.28), we find

1a0 =
αᾱf

α+ ᾱ
1Σθ′. (A.29)

Substituting (A.28) and (A.29) into (A.20), we find

rαᾱf

α+ ᾱ
1Σθ′ = rαf1Σ [xt(1 − yt)1 + ytθ]

′ ⇒ xt =
ᾱ

α+ᾱ − yt

1 − yt

1Σθ′

1Σ1′ . (A.30)

Substituting (A.30) into (A.26), we find

h̄(Ct) = rᾱ(fΣ + s2a1a
′
1)

[

α

α+ ᾱ

1Σθ′

1Σ1′1 + (1 − yt)pf

]′

= rᾱ(fΣ + s2a1a
′
1)

[

α

α+ ᾱ

1Σθ′

1Σ1′1 + (1 − b0 + b1Ct)pf

]′

, (A.31)
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where the second step follows from (3.2). Eq. (A.31) is linear in Ct. Identifying terms in Ct, we

find

(r + κ+ s2q̄11)a1 = rᾱb1
(

fΣp′f + s2a′1p
′
fa1

)

. (A.32)

Therefore, a1 is collinear to the vector Σp′f , as in (3.15). Substituting (3.15) into (A.32), we find

(r + κ+ s2q̄11)γ1 = rᾱb1

(

f +
s2γ2

1∆

1Σ1′

)

. (A.33)

Identifying constant terms in (A.31), and using (3.15), we find

a0 =
αᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +

[

γ1(κC̄ − s2q̄1)

r
+ ᾱ(1 − b0)

(

f +
s2γ2

1∆

1Σ1′

)]

Σp′f . (A.34)

Using (3.2) and (A.30), we can write (A.21) as

θh(Ct) − Ct = rαθ(fΣ + s2a1a
′
1)

[

ᾱ

α+ ᾱ

1Σθ′

1Σ1′1 + (b0 − b1Ct)pf

]′

=
rαᾱf

α+ ᾱ

(1Σθ′)2

1Σ1′ + rα(b0 − b1Ct)

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ , (A.35)

where the second step follows from (3.15). Eq. (A.35) is linear in Ct. Identifying terms in Ct, and

using (3.15), we find

(r + κ+ s2q11)
γ1∆

1Σ1′ − 1 = −rαb1
(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ . (A.36)

Identifying constant terms, and using (3.15) and (A.34), we find

b0 =
ᾱ

α+ ᾱ
+

s2γ1(q1 − q̄1)

r(α+ ᾱ)
(

f +
s2γ2

1
∆

1Σ1′

) . (A.37)

Substituting b0 from (A.37) into (A.34), we find

a0 =
αᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +





γ1κC̄

r
− s2γ1(αq̄1 + ᾱq1)

r(α+ ᾱ)
+
αᾱ
(

f +
s2γ2

1
∆

1Σ1
′

)

α+ ᾱ



Σp′f . (A.38)

The system of equations characterizing equilibrium is as follows. The endogenous variables are

(a0, a1, b0, b1, γ1, q̄0, q̄1, q̄11, q0, q1, q11). The equations linking them are (3.15), (A.33), (A.36), (A.37),
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(A.38), the three equations derived from (A.10) by identifying terms in C2
t , Ct, and constants, and

the three equations derived from (A.25) through the same procedure. To simplify the system,

we note that the variables (q̄0, q0) enter only in the equations derived from (A.10) and (A.25) by

identifying constants. Therefore they can be determined separately, and we need to consider only

the equations derived from (A.10) and (A.25) by identifying linear and quadratic terms. We next

simplify these equations, using implications of market clearing.

Using (A.31), we find

1

2
h̄(Ct)

′(fΣ + s2a1a
′
1)

−1h̄(Ct)

=
r2α2ᾱ2f(1Σθ′)2

2(α+ ᾱ)21Σ1′ +
1

2
r2ᾱ2(1 − b0 + b1Ct)

2

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′

=
r2α2ᾱ2f(1Σθ′)2

2(α+ ᾱ)21Σ1′ +
1

2
r2ᾱ2





α

α+ ᾱ
+

s2γ1(q̄1 − q1)

r(α+ ᾱ)
(

f +
s2γ2

1
∆

1Σ1′

) + b1Ct





2
(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ ,

(A.39)

where the second step follows from (A.37). Substituting (A.39) into (A.10), and identifying terms

in C2
t and Ct, we find

(r + 2κ)q̄11 + s2q̄211 − r2ᾱ2b21

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ + rᾱλb1 = 0, (A.40)

(r + κ)q̄1 + s2q̄1q̄11 − rᾱb1





rαᾱ
(

f +
s2γ2

1
∆

1Σ1
′

)

α+ ᾱ
+
ᾱs2γ1(q̄1 − q1)

α+ ᾱ





∆

1Σ1′ − κC̄q̄11 + rᾱ(Bb1 − λb0) = 0,

(A.41)

respectively. Using (3.15) and (A.30), we can write (A.20) as

1h(Ct) =
rαᾱf

α+ ᾱ
1Σθ′. (A.42)

Eq. (3.15) implies that the denominator D in (A.25) is

D = f∆

(

f +
s2γ2

1∆

1Σ1′

)

. (A.43)

Using (3.15), (A.35), (A.37), (A.42) and (A.43), we find that the equations derived from (A.25) by
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identifying terms in C2
t and Ct are

(r + 2κ)q11 + s2q211 − r2α2b21

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ = 0, (A.44)

(r + κ)q1 + s2q1q11 + rαb1





rαᾱ
(

f +
s2γ2

1
∆

1Σ1
′

)

α+ ᾱ
+
αs2γ1(q1 − q̄1)

α+ ᾱ





∆

1Σ1′ − κC̄q11 = 0, (A.45)

respectively.

Solving for equilibrium amounts to solving the system of (3.15), (A.33), (A.36), (A.37), (A.38),

(A.40), (A.41), (A.44) and (A.45) in the unknowns (a0, a1, b0, b1, γ1, q̄1, q̄11, q1, q11). This reduces

to solving the system of (A.33), (A.36), (A.40) and (A.44) in the unknowns (b1, γ1, q̄11, q11): given

(b1, γ1, q̄11, q11), a1 can be determined from (3.15), (q̄1, q1) from the linear system of (A.41) and

(A.45), and (a0, b0) from (A.38) and (A.37). Replacing the unknown b1 by

b̂1 ≡ rᾱb1

√

f +
s2γ2

1∆

1Σ1′ ,

we can write the system of (A.33), (A.36), (A.40) and (A.44) as

(r + κ+ s2q̄11)γ1 = b̂1

√

f +
s2γ2

1∆

1Σ1′ , (A.46)

r + κ+ s2q11
rα

γ1∆

1Σ1′ +
b̂1

√

f +
s2γ2

1
∆

1Σ1
′

rᾱ

∆

1Σ1′ =
1

rα
, (A.47)

(r + 2κ)q̄11 + s2q̄211 −
b̂21∆

1Σ1′ +
λb̂1

√

f +
s2γ2

1
∆

1Σ1
′

= 0, (A.48)

(r + 2κ)q11 + s2q211 −
α2b̂21∆

ᾱ21Σ1′ = 0. (A.49)

To show that the system of (A.46)-(A.49) has a solution, we reduce it to a single equation in b̂1.

Eq. (A.49) is quadratic in q11 and has a unique positive solution q11(b̂1), which is increasing in

b̂1 ∈ (0,∞), and is equal to zero for b̂1 = 0 and to ∞ for b̂1 = ∞.27 Substituting q11(b̂1) into

(A.47), we find

r + κ+ s2q11(b̂1)

rα

γ1∆

1Σ1′ +
b̂1

√

f +
s2γ2

1
∆

1Σ1
′

rᾱ

∆

1Σ1′ =
1

rα
. (A.50)

27The positive solution of (A.49) is the relevant one. Indeed, under the negative solution, the investor’s certainty
equivalent would converge to −∞ when |Ct| goes to ∞. The investor can, however, achieve a certainty equivalent
converging to ∞ by holding a large short position in the active fund when Ct goes to ∞, or a large long position
when Ct goes to −∞.
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The left-hand side of (A.50) is increasing in γ1 ∈ (0,∞), and is equal to b̂1
√
f∆/(rᾱ1Σ1′) for

γ1 = 0 and to ∞ for γ1 = ∞. Therefore, (A.50) has a unique positive solution γ1(b̂1) if b̂1 ∈ (0, b̂∗1),

where b̂∗1 ≡ ᾱ1Σ1′/(α
√
f∆), and no solution if b̂1 ∈ (b̂∗1,∞). The solution is decreasing in b̂1 since

the left-hand side of (A.50) is increasing in b̂1, and is equal to 1Σ1′/[(r + κ)∆] for b̂1 = 0 and to

zero for b̂1 = b̂∗1. Substituting γ1(b̂1), and q̄11 from (A.46), into (A.48), we find

−(r + κ)κ

s2
−
rb̂1

√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

γ1(b̂1)s2
+

b̂21f

γ2
1(b̂1)s2

+
λb̂1

√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

= 0. (A.51)

Eq. (A.51) is the single equation in b̂1 to which the system of (A.46)-(A.49) reduces. Since the

left-hand side of (A.51) is equal to −(r + κ)κ/s2 for b̂1 = 0 and to ∞ for b̂1 = b̂∗1, (A.51) has a

solution b̂1 ∈ (0, b̂∗1). Therefore, a linear equilibrium exists. The equilibrium is unique if the solution

b̂1 of (A.51) is unique, which is the case if the derivative of the left-hand side with respect to b̂1

and evaluated at the solution is positive. The derivative is

1

b̂1



−
rb̂1

√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

γ1(b̂1)s2
+

2b̂21f

γ2
1(b̂1)s2

+
λb̂1

√

f +
s2γ2

1
(b̂1)∆

1Σ1
′





+
dγ1(b̂1)

db̂1

1

γ1(b̂1)









rb̂1

√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

γ1(b̂1)s2
− rb̂1

s2γ2

1
(b̂1)∆

1Σ1
′

γ1(b̂1)s2
√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

− 2b̂21f

γ2
1(b̂1)s2

− λb̂1
s2γ2

1
(b̂1)∆

1Σ1
′

(

f +
s2γ2

1
(b̂1)∆

1Σ1
′

)

3

2









.

(A.52)

If b̂1 solves (A.51), we can write (A.52) as

1

b̂1

[

(r + κ)κ

s2
+

b̂21f

γ2
1(b̂1)s2

]

+
dγ1(b̂1)

db̂1

1

γ1(b̂1)









−(r + κ)κ

s2
−

rb̂1
s2γ2

1
(b̂1)∆

1Σ1
′

γ1(b̂1)s2
√

f +
s2γ2

1
(b̂1)∆

1Σ1
′

− b̂21f

γ2
1(b̂1)s2

+
λb̂1f

(

f +
s2γ2

1
(b̂1)∆

1Σ1
′

)

3

2









.

(A.53)

The term inside the first squared bracket is positive. The term inside the second squared bracket is

negative for λ = 0 and by continuity for λ < λ̄ for a λ̄ > 0. Since γ1(b̂1) is decreasing in b̂1, (A.53)

is positive for λ < λ̄.
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Proof of Corollary 3.1: Eq. yt = ᾱ(α + ᾱ) follows from (3.2) and (A.37). Eq. xt = 0 follows

from (A.30) and yt = ᾱ(α+ ᾱ). The first equality in (3.17) follows from (3.4) and (A.38), and the

second equality follows from (3.5).

Proof of Corollary 3.2: The investor’s effective stock holdings are

xt1 + ytzt = x11 + yt(θ − xt1)

= ytpf +
ᾱ

α+ ᾱ

1Σθ′

1Σ1′ , (A.54)

where the second step follows from (A.30). Eq. (3.18) follows from (3.2) and (A.54).

Proof of Corollary 3.3: The first equality in (3.19) follows from (3.1) and (3.15). The second

equality follows from (3.5) and (3.15). To derive the third equality, we note from (3.5) and (3.15)

that

Covt(1dRt, pfdRt) = 0.

Therefore, if β denotes the regression coefficient of dRt on 1dRt, then

Covt(dRt, pfdRt) = Covt (dRt − β1dRt, pfdRt)

= Covt (dǫt, pfdRt)

= Covt [dǫt, pf (dRt − β1dRt)]

= Covt (dǫt, pfdǫt) ,

where the second and fourth steps follow from the definition of dǫt, and the third step follows

because dǫt is independent of 1dRt.

Proof of Corollary 3.4: The corollary follows by substituting (3.15) into (3.5).

Proof of Corollary 3.5: Stocks’ expected returns are

Et(dRt) =
[

ra0 + (r + κ)a1Ct − κa1C̄
]

dt

=







rαᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +



(r + κ)γ1Ct −
s2γ1(αq̄1 + ᾱq1)

α+ ᾱ
+
rαᾱ

(

f +
s2γ2

1
∆

1Σ1
′

)

α+ ᾱ



Σp′f







dt

=

[

rαᾱ

α+ ᾱ

1Σθ′

1Σ1′ (fΣ + s2a1a
′
1)1

′ + Λt(fΣ + s2a1a
′
1)p

′
f

]

dt, (A.55)

where the first step follows from (3.4), the second from (3.15) and (A.38), and the third from (3.15)

and (3.22). Eq. (A.55) is equivalent to (3.21) because of (3.5).

44



Proof of Corollary 3.6: The autocovariance matrix is

Covt(dRt, dR
′
t′)

= Covt

{

σ

(

dBD
t +

φdBF
t

r + κ

)

− sa1dB
C
t ,

[

(r + κ)a1Ct′dt+ σ

(

dBD
t′ +

φdBF
t′

r + κ

)

− sa1dB
C
t′

]′
}

= Covt

[

σ

(

dBD
t +

φdBF
t

r + κ

)

− sa1dB
C
t , (r + κ)a′1Ct′dt

]

= Covt
[

−sa1dB
C
t , (r + κ)a′1Ct′dt

]

= −s(r + κ)γ2
1Covt

(

dBC
t , Ct′

)

Σpfp
′
fΣdt, (A.56)

where the first step follows by using (3.4) and omitting quantities known at time t, the second step

follows because the increments (dBD
t′ , dB

F
t′ , dB

C
t′ ) are independent of information up to time t′, the

third step follows because BC
t is independent of (BD

t , B
F
t ), and the fourth step follows from (3.15).

Eq. (2.3) implies that

Ct′ = e−κ(t′−t)Ct +
[

1 − e−κ(t′−t)
]

C̄ + s

∫ t′

t

e−κ(t′−u)dBC
u . (A.57)

Substituting (A.57) into (A.56), and noting that the only non-zero covariance is between dBC
t and

dBC
t , we find (3.23).

Proof of Corollary 3.7: The left-hand side of (A.48) is increasing in λ. Since, in addition, the

derivative (A.53) is positive, the solution b̂1 of (A.48) is decreasing in λ. Since γ1(b̂1) is decreasing

in b̂1, it is increasing in λ.

Since B does not enter into the system of (A.46)-(A.49), it does not affect (b1, γ1, q̄11, q11).

Therefore, its effect on Λt is only through (q̄1, q1). Differentiating (A.41) and (A.45) with respect

to B, we find

(r + κ+ s2q̄11)
∂q̄1
∂B

− rᾱb1
ᾱs2γ1

(

∂q̄1
∂B

− ∂q1
∂B

)

α+ ᾱ

∆

1Σ1′ + rᾱb1 = 0, (A.58)

(r + κ+ s2q11)
∂q1
∂B

+ rαb1
αs2γ1

(

∂q1
∂B

− ∂q̄1
∂B

)

α+ ᾱ

∆

1Σ1′ = 0. (A.59)

The system of (A.58) and (A.59) is linear in (∂q̄1/∂B, ∂q1/∂B). Its solution satisfies

α
∂q̄1
∂B

+ ᾱ
∂q1
∂B

= −Y
Z
, (A.60)
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where

Y ≡ rαᾱb1

(

r + κ+ s2q11 +
rαs2b1γ1∆

1Σ1′

)

,

Z ≡ (r + κ+ s2q̄11)(r + κ+ s2q11) +
rα2s2b1γ1∆(r + κ+ s2q̄11)

(α+ ᾱ)1Σ1′ − rᾱ2s2b1γ1∆(r + κ+ s2q11)

(α + ᾱ)1Σ1′

= rᾱb1

[

f

γ1
+

αs2γ1∆

(α+ ᾱ)1Σ1′

]

(r + κ+ s2q11) +
r2α2ᾱs2b21

(

f +
s2γ2

1
∆

1Σ1
′

)

(α+ ᾱ)1Σ1′ ,

and where the second equation for Z follows from (A.33). Since (b1, γ1, q11) are positive, so are

(Y,Z). Therefore, αq̄1 + ᾱq1 is decreasing in B, and (3.22) implies that Λt is increasing in B.

B Gradual Adjustment

Proof of Proposition 4.1: Eqs. (2.3), (2.5), (2.6), (4.1) and (4.2) imply that the vector of returns

is

dRt =
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

dt+ σ

(

dBD
t +

φdBF
t

r + κ

)

− sa1dB
C
t , (B.1)

where

aR1 ≡ (r + κ)a1 + b1a2,

aR2 ≡ (r + b2)a2.

Eqs. (2.3), (3.3), (4.2), (4.3) and (B.1) imply the following counterpart of (A.2):

DV̄ = −V̄
{

Ḡ− 1

2
(rᾱ)2f ẑtΣẑ

′
t −

1

2
s2
[

rᾱẑta1 − f̄1(X̄t)
]2
}

, (B.2)

where

Ḡ ≡rᾱ
[

rWt + ẑt
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

+ (λCt +B)yt − c̄t
]

+ f̄1(X̄t)κ(C̄ − Ct) + f̄2(X̄t)vt +
1

2
s2q̄11,

f̄1(X̄t) ≡ q̄1 + q̄11Ct + q̄12yt,

f̄2(X̄t) ≡ q̄2 + q̄12Ct + q̄22yt,
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and q̄ij denotes the (i, j)’th element of Q̄. Substituting (B.2) into (3.8), we can write the first-order

conditions with respect to c̄t and ẑt as (A.3) and

h̄(X̄t) = rᾱ(fΣ + s2a1a
′
1)ẑ

′
t, (B.3)

respectively, where

h̄(X̄t) ≡ ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2 + s2a1f̄(X̄t). (B.4)

Proceeding as in the proof of Proposition 3.1, we find the following counterpart of (A.10):

1

2
h̄(X̄t)

′(fΣ + s2a1a
′
1)

−1h̄(X̄t) + rᾱ(λCt +B)yt − r

[

q̄0 + (q̄1, q̄2)X̄t +
1

2
X̄ ′
tQ̄X̄t

]

+ f̄1(X̄t)κ(C̄ − Ct) + f̄2(X̄t)vt +
1

2
s2
[

q̄11 − f̄1(X̄t)
2
]

+ β̄ − r + r log(r) = 0. (B.5)

Eq. (B.5) is quadratic in X̄t. Identifying quadratic, linear and constant terms yields six scalar

equations in (q̄0, q̄1, q̄2, Q̄). We defer the derivation of these equations until the proof of Proposition

4.3 (see (B.38)-(B.40)).

Proof of Proposition 4.2: Suppose that the investor optimizes over (ct, xt) but follows the control

vt given by (4.2). Eqs. (2.3), (4.2), (4.4), (4.5) and (B.1) imply the following counterpart of (A.12):

DV = −V
{

G− 1

2
(rα)2f(xt1 + ytzt)Σ(xt1 + ytzt)

′ − 1

2
s2 [rα(xt1 + ytzt)a1 − f1(Xt)]

2

}

, (B.6)

where

G ≡rα
[

rWt + (xt1 + ytzt)
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

− ytCt −
1

2
ψv2

t − ct

]

+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2q11,

f1(Xt) ≡ q1 + q11Ct + q12yt,

f2(Xt) ≡ q2 + q12Ct + q22yt,

and qij denotes the (i, j)’th element of Q. Substituting (B.6) into (4.6), we can write the first-order

conditions with respect to ct and xt as (A.13) and

1h(Xt) = rα1(fΣ + s2a1a
′
1)(xt1 + ytzt)

′, (B.7)
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respectively, where

h(Xt) ≡ ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2 + s2a1f1(Xt). (B.8)

The counterpart of (A.17) is

rα(xt1 + ytzt)
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

− rαytCt −
1

2
rαψv2

t

− r

[

q0 + (q1, q2)Xt +
1

2
X ′
tQXt

]

+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2q11 + β − r + r log(r)

− 1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′ + rαs2(xt1 + ytzt)a1f1(Xt) −
1

2
s2f1(Xt)

2 = 0.

(B.9)

The terms in (B.9) that involve xt1 + ytzt can be written as

rα(xt1 + ytzt)
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

− 1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′ + rαs2(xt1 + ytzt)a1f1(Xt)

= rα(xt1 + ytzt)h(Xt) −
1

2
(rα)2(xt1 + ytzt)(fΣ + s2a1a

′
1)(xt1 + ytzt)

′

= rαytθh(Xt) −
1

2
(rα)2y2

t θ(fΣ + s2a1a
′
1)θ

′

+ rαxt(1 − yt)

{

1h(Xt) −
1

2
rα1(fΣ + s2a1a

′
1) [xt(1 − yt)1 + 2ytθ]

′

}′

, (B.10)

where the first step follows from (B.8) and the second from the equilibrium condition zt = θ− xt1.

Using zt = θ − xt1, we can write (B.7) as

1h(Xt) = rα1(fΣ + s2a1a
′
1) [xt(1 − yt)1 + ytθ]

′ (B.11)

⇒xt(1 − yt) =
1h(Xt) − rαyt1(fΣ + s2a1a

′
1)θ

′

rα1(fΣ + s2a1a′1)1
′ . (B.12)

Eqs. (B.11) and (B.12) imply that

rαxt(1 − yt)

{

1h(Xt) −
1

2
rα1(fΣ + s2a1a

′
1) [xt(1 − yt)1 + 2ytθ]

′

}′

=
1

2
[rαxt(1 − yt)]

21(fΣ + s2a1a
′
1)1

′

=
1

2

[

1h(Xt) − rαyt1(fΣ + s2a1a
′
1)θ

′
]2

1(fΣ + s2a1a
′
1)1

′ . (B.13)
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Substituting (B.10) and (B.13) into (B.9), we find

rαytθh(Xt) −
1

2
(rα)2y2

t θ(fΣ + s2a1a
′
1)θ

′ +
1

2

[

1h(Xt) − rαyt1(fΣ + s2a1a
′
1)θ

′
]2

1(fΣ + s2a1a
′
1)1

′ − rαytCt −
1

2
rαψv2

t

− r

[

q0 + (q1, q2)Xt +
1

2
X ′
tQXt

]

+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2
[

q11 − f1(Xt)
2
]

+ β − r + r log(r) = 0. (B.14)

Since vt in (4.2) is linear in Xt, (B.14) is quadratic in Xt. Identifying quadratic, linear and constant

terms yields six scalar equations in (q0, q1, q2, Q). We defer the derivation of these equations until

the proof of Proposition 4.3 (see (B.42)-(B.44)).

We next study optimization over vt, and derive a first-order condition under which the control

(4.2) is optimal. We use a perturbation argument, which consists in assuming that the investor fol-

lows the control (4.2) except for an infinitesimal deviation over an infinitesimal internal.28 Suppose

that the investor adds ωdǫ to the control (4.2) over the interval [t, t+dǫ] and subtracts ωdǫ over the

interval [t+ dt− dǫ, t+ dt], where the infinitesimal dǫ > 0 is o(dt). The increase in adjustment cost

over the first interval is ψvtω(dǫ)2 and over the second interval is −ψvt+dtω(dǫ)2. These changes

reduce the investor’s wealth at time t+ dt by

ψvtω(dǫ)2(1 + rdt) − ψvt+dtω(dǫ)2

= ψω(dǫ)2(rvtdt− dvt)

= ψω(dǫ)2(rvtdt+ b1dCt + b2dyt)

= ψω(dǫ)2
{

(r + b2)vtdt+ b1
[

κ(C̄ − Ct)dt+ sdBC
t

]}

, (B.15)

where the second step follows from (4.2) and the third from (2.3). The change in the investor’s

wealth between t and t+ dt is derived from (4.4) and (B.1), by subtracting (B.15) and replacing yt

by yt + ω(dǫ)2:

dWt =Gωdt− ψω(dǫ)2b1
[

κ(C̄ − Ct)dt+ sdBC
t

]

+
{

xt1 +
[

yt + ω(dǫ)2
]

zt
}

[

σ

(

dBD
t +

φdBF
t

r + κ

)

− sa1dB
C
t

]

, (B.16)

28The perturbation argument is simpler than the dynamic programming approach, which assumes that the investor
can follow any control vt over the entire history. Indeed, under the dynamic programming approach, the state variable
yt which describes the investor’s holdings in the active fund must be replaced by two state variables: the holdings
out of equilibrium, and the holdings in equilibrium. This is because the latter affect the equilibrium price, which the
investor takes as given.
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where

Gω ≡rWt +
{

xt1 +
[

yt + ω(dǫ)2
]

zt
} (

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

−
[

yt + ω(dǫ)2
]

Ct

− ψv2
t

2
− ct − ψω(dǫ)2(r + b2)vt.

The investor’s position in the active fund at t + dt is the same under the deviation as under no

deviation. Therefore, the investor’s expected utility at t + dt is given by the value function (4.5)

with the wealth Wt+dt determined by (B.16). The drift DV corresponding to the change in the

value function between t and t+ dt is given by the following counterpart of (B.6):

DV = − V

{

G− 1

2
(rα)2f

{

xt1 +
[

yt + ω(dǫ)2
]

zt
}

Σ
{

xt1 +
[

yt + ω(dǫ)2
]

zt
}′

−1

2
s2
[

rα
{

xt1 +
[

yt + ω(dǫ)2
]

zt
}

a1 − f1ω(Xt)
]2
}

, (B.17)

where

G ≡ rαGω + f1ω(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2q11,

f1ω(Xt) ≡ f1(Xt) − rαψω(dǫ)2b1.

The drift is maximum for ω = 0, and this yields the first-order condition

zth(Xt) − rαψb1s
2(xt1 + ytzt)a1 − Ct = rαzt(fΣ + s2a1a

′
1)(xt1 + ytzt)

′ + ψhψ(Xt), (B.18)

where

hψ(Xt) ≡ (r + b2)vt + b1κ(C̄ − Ct) − b1s
2f1(Xt).

Using (B.7) and the equilibrium condition zt = θ − xt1, we can write (B.18) as

θh(Xt)− rαψb1s2 [xt(1 − yt)1 + ytθ]a1 −Ct = rαθ(fΣ+ s2a1a
′
1) [xt(1 − yt)1 + ytθ]

′ +ψhψ(Xt).

(B.19)

Using (B.12), we can write (B.19) as

θ
[

h(Xt) − rαψb1s
2yta1

]

− rαψb1s
21h(Xt) − rαyt1(fΣ + s2a1a

′
1)θ

′

rα1(fΣ + s2a1a′1)1
′

1a1 − Ct

= rαθ(fΣ + s2a1a
′
1)

[

ytθ +
1h(Xt) − rαyt1(fΣ + s2a1a

′
1)θ

′

rα1(fΣ + s2a1a
′
1)1

′ 1

]′

+ ψhψ(Xt). (B.20)
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Eq. (B.20) is linear in Xt. Identifying linear and constant terms, yields three scalar equations

in (b0, b1, b2). We defer the derivation of these equations until the proof of Proposition 4.3 (see

(B.29)-(B.35)).

Proof of Proposition 4.3: We first impose market clearing and follow similar steps as in the proof

of Proposition 3.3 to derive the constants (a0, a1, a2, b0, b1, b2) as functions of (q̄1, q̄2, Q̄, q1, q2, Q).

Setting zt = θ − xt1 and ȳt = 1 − yt, we can write (B.3) as

h̄(X̄t) = rᾱ(fΣ + s2a1a
′
1)(1 − yt)(θ − xt1)′. (B.21)

Premultiplying (B.21) by 1, dividing by rᾱ, and adding to (B.11) divided by rα, we find

1

[

h(Xt)

rα
+
h̄(X̄t)

rᾱ

]

= 1(fΣ + s2a1a
′
1)θ

′. (B.22)

Eq. (B.22) is linear in (Ct, yt). Identifying terms in Ct and yt, we find

(

r + κ+ s2q11
rα

+
r + κ+ s2q̄11

rᾱ

)

1a1 +
b1(α+ ᾱ)

rαᾱ
1a2 = 0, (B.23)

(

s2q12
rα

+
s2q̄12
rᾱ

)

1a1 +
(r + b2)(α + ᾱ)

rαᾱ
1a2 = 0, (B.24)

respectively. Eqs. (B.23) and (B.24) imply

1a1 = 1a2 = 0. (B.25)

Identifying constant terms in (B.22), and using (B.25), we find (A.29). Substituting (A.29) and

(B.25) into (B.11), we find (A.30).

Substituting (A.30) into (B.21), we find

h̄(X̄t) = rᾱ(fΣ + s2a1a
′
1)

[

α

α+ ᾱ

1Σθ′

1Σ1′
1 + (1 − yt)pf

]′

. (B.26)

Eq. (A.31) is linear in X̄t. Identifying terms in Ct and yt, we find

(r + κ+ s2q̄11)a1 + b1a2 = 0, (B.27)

s2q̄12a1 + (r + b2)a2 = −rᾱ
(

fΣp′f + s2a′1p
′
fa1

)

, (B.28)
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respectively. Therefore, (a1, a2) are collinear to the vector Σp′f , as in (4.7). Substituting (4.7) into

(B.27) and (B.28), we find

(r + κ+ s2q̄11)γ1 + b1γ2 = 0, (B.29)

s2q̄12γ1 + (r + b2)γ2 = −rᾱ
(

f +
s2γ2

1∆

1Σ1′

)

, (B.30)

respectively. Identifying constant terms in (B.26), and using (4.7), we find

a0 =
αᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +

[

γ1(κC̄ − s2q̄1) + b0γ2

r
+ ᾱ

(

f +
s2γ2

1∆

1Σ1′

)]

Σp′f . (B.31)

Using (A.30), we can write (B.19) as

θh(Xt) − rαψb1s
2

(

ᾱ

α+ ᾱ

1Σθ′

1Σ1′1 + ytpf

)

a1 − Ct

= rαθ(fΣ + s2a1a
′
1)

(

ᾱ

α+ ᾱ

1Σθ′

1Σ1′1 + ytpf

)′

+ ψhψ(Xt)

⇒ θh(Xt) − rαψb1s
2γ1

∆

1Σ1′ yt − Ct =
rαᾱf

α+ ᾱ

(1Σθ′)2

1Σ1′ + rα

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ yt + ψhψ(Xt),

(B.32)

where the second step follows from (4.7). Eq. (B.32) is linear in (Ct, yt). Identifying terms in Ct

and yt, and using (4.2) and (4.7), we find

[

(r + κ+ s2q11)γ1 + b1γ2

] ∆

1Σ1′ − 1 = −ψb1(r + κ+ b2 + s2q11), (B.33)

[

(r + b2)γ2 + (q12 − rαψb1)s
2γ1

] ∆

1Σ1′ = rα

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ − ψ
[

(r + b2)b2 + b1s
2q12

]

,

(B.34)

respectively. Identifying constant terms, and using (4.2), (4.7) and (B.31), we find

[

s2γ1(q1 − q̄1) + rᾱ

(

f +
s2γ2

1∆

1Σ1′

)]

∆

1Σ1′ = ψ
[

(r + b2)b0 + b1(κC̄ − s2q1)
]

. (B.35)

The system of equations characterizing equilibrium is as follows. The endogenous variables

are (a0, a1, a2, b0, b1, b2, γ1, γ2, q̄1, q̄2, Q̄, q1, q2, Q). (As in Proposition 3.3, we can drop (q̄0, q0).) The

equations linking them are (4.7), (B.29)-(B.31), (B.33)-(B.35), the five equations derived from (B.5)
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by identifying linear and quadratic terms, and the five equations derived from (B.14) through the

same procedure. We next simplify the latter two sets of equations, using implications of market

clearing.

Using (B.26), we find

1

2
h̄(X̄t)

′(fΣ+ s2a1a
′
1)

−1h̄(X̄t) =
r2α2ᾱ2f(1Σθ′)2

2(α+ ᾱ)21Σ1′ +
1

2
r2ᾱ2(1−yt)2

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ . (B.36)

We next substitute (B.36) into (B.5), and identify terms. Identifying terms in C2
t , Ctyt and y2

t , we

find

1

2
X̄ ′
t

(

Q̄R̄2Q̄+ Q̄R̄1 + R̄′
1Q̄− R̄0

)

X̄t = 0, (B.37)

where

R̄2 ≡
(

s2 0
0 0

)

,

R̄1 ≡
(

r
2 + κ 0
b1

r
2 + b2

)

,

R̄0 ≡
(

0 rᾱλ

rᾱλ r2ᾱ2
(

f +
s2γ2

1
∆

1Σ1
′

)

∆
1Σ1

′

)

.

Eq. (B.37) must hold for all X̄t. Since the square matrix in (B.37) is symmetric, it must equal zero,

and this yields the algebraic Riccati equation

Q̄R̄2Q̄+ Q̄R̄1 + R̄′
1Q̄− R̄0 = 0. (B.38)

We next identify terms in Ct and yt, which yield

(r + κ+ s2q̄11)q̄1 + b1q̄2 − κC̄q̄11 − b0q̄12 = 0, (B.39)

(r + b2)q̄2 + s2q̄1q̄12 + r2ᾱ2

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ − rᾱB − κC̄q̄12 − b0q̄22 = 0, (B.40)

respectively. Using (3.15) and (A.30), we can write (B.11) as

1h(Xt) =
rαᾱf

α+ ᾱ
1Σθ′. (B.41)

53



Using (4.2), (4.7), (B.32) and (B.41), we find that the equation derived from (B.14) by identifying

terms in C2
t , Ctyt and y2

t is

QR2Q+QR1 + R′
1Q−R0 = 0, (B.42)

where

R2 ≡
(

s2 0
0 0

)

,

R1 ≡
(

r
2 + κ rαψb1s

2

b1
r
2 + b2

)

,

R0 ≡
(

−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2
(

f +
s2γ2

1
∆

1Σ1
′

)

∆
1Σ1

′ + 2r2α2ψb1s
2γ1

∆
1Σ1

′ − rαψb2(2r + 3b2)

)

,

and the equations derived by identifying terms in Ct and yt are

(r + κ+ s2q11)q1 + b1q2 − rαψb0b1 − κC̄q11 − b0q12 = 0, (B.43)

(r + b2)q2 + s2(q12 + rαψb1)q1 − rαψ
[

(r + 2b2)b0 + b1κC̄
]

− κC̄q12 − b0q22 = 0, (B.44)

respectively.

Solving for equilibrium amounts to solving the system of (4.7), (B.29)-(B.31), (B.33)-(B.35),

(B.38)-(B.40) and (B.42)-(B.44) in the unknowns (a0, a1, a2, b0, b1, b2, γ1, γ2, q̄1, q̄2, Q̄, q1, q2, Q). This

reduces to solving the system of (B.29), (B.30), (B.33), (B.34), (B.38) and (B.42) in the unknowns

(b1, b2, γ1, γ2, Q̄,Q): given (b1, b2, γ1, γ2, Q̄,Q), (a1, a2) can be determined from (4.7), (b0, q̄1, q̄2, q1, q2)

from the linear system of (B.35), (B.39), (B.40), (B.43) and (B.44), and a0 from (B.31). We replace

the system of (B.29), (B.30), (B.33), (B.34), (B.38) and (B.42) by the equivalent system of (B.29),

(B.30), (B.38), (B.42),

ψb1(r + κ+ b2 + s2q11) = 1 + s2γ1(q̄11 − q11)
∆

1Σ1′ , (B.45)

ψ
[

(r + b2)b2 + b1s
2q12

]

− rαψb1s
2γ1

∆

1Σ1′ = r(α+ ᾱ)

(

f +
s2γ2

1∆

1Σ1′

)

∆

1Σ1′ + s2γ1(q̄12 − q12)
∆

1Σ1′ .

(B.46)
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For s = 0, (B.29), (B.30), (B.38), (B.42), (B.45) and (B.46) become

(r + κ)γ1 + b1γ2 = 0, (B.47)

(r + b2)γ2 = −rᾱf, (B.48)

Q̄R̄0
1 + R̄0′

1 Q̄− R̄0
0 = 0, (B.49)

QR0
1 + R0′

1 Q−R0
0 = 0, (B.50)

ψb1(r + κ+ b2) = 1, (B.51)

ψ(r + b2)b2 = r(α+ ᾱ)f
∆

1Σ1′
, (B.52)

respectively, where

R̄0
1 = R0

1 ≡
(

r
2 + κ 0
b1

r
2 + b2

)

,

R̄0
0 ≡

(

0 rᾱλ

rᾱλ r2ᾱ2f ∆
1Σ1

′

)

,

R0
0 ≡

(

−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2f ∆
1Σ1

′ − rαψb2(2r + 3b2)

)

.

Eq. (B.52) is quadratic and has a unique positive solution b2.
29 Given b2, b1 is determined uniquely

from (B.51), γ2 from (B.48), γ1 from (B.47), Q̄ from (B.49) (which is linear in Q̄), and Q from

(B.50) (which is linear in Q). We denote this solution by (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0).

To show that the system of (B.29), (B.30), (B.38), (B.42), (B.45) and (B.46) has a solution for

small s, we apply the implicit function theorem. We move all terms in each equation to the left-

hand side, and stack all left-hand sides into a vector F , in the order (B.46), (B.45), (B.30), (B.29),

(B.38), (B.42). Treated as a function of (b1, b2, γ1, γ2, Q̄,Q, s), F is continuously differentiable

around the point A ≡ (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0, 0) and is equal to zero at A. To show that the Jacobian

matrix of F with respect to (b1, b2, γ1, γ2, Q̄,Q) has non-zero determinant at A, we note that F has

a triangular structure for s = 0: F1 depends only on b2, F2 only on (b1, b2), F3 only on (b2, γ2),

F4 only on (b1, γ1, γ2), F5 only on (b1, b2, Q̄), and F6 only on (b1, b2, Q). Therefore, the Jacobian

matrix of F has non-zero determinant at A if the derivatives of F1 with respect to b2, F2 with

29The positive solution is the relevant one. Indeed, since the negative solution satisfies r + 2b2 < 0, (B.49) implies
that q̄22 < 0. Therefore, the manager’s certainty equivalent would converge to −∞ at the rate y2

t when |yt| goes to
∞ and Ct is held constant. The manager can, however, achieve higher certainty equivalent by not investing in the
active fund.
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respect to b1, F3 with respect to γ2, and F4 with respect to γ1 are non-zero, and the Jacobian

matrices of F5 with respect to Q̄ and F6 with respect to Q have non-zero determinants. These

results follow from (B.47)-(B.52) and the positivity of (b01, b
0
2). Therefore, the implicit function

theorem applies, and the system of (B.29), (B.30), (B.38), (B.42), (B.45) and (B.46) has a solution

for small s. This solution is unique in a neighborhood of (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0), which corresponds

to the unique equilibrium for s = 0. Since b01 > 0, b02 > 0, γ0
1 > 0, γ0

2 < 0, continuity implies that

b1 > 0, b2 > 0, γ1 > 0, γ2 < 0 for small s.

Proof of Corollary 4.1: Stocks’ expected returns are

Et(dRt) =
(

ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)

dt

=

{

rαᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +

[

γR1 Ct + γR2 yt + rᾱ

(

f +
s2γ2

1∆

1Σ1′

)

− γ1s
2q̄1

]

Σp′f

}

dt

=

[

rαᾱ

α+ ᾱ

1Σθ′

1Σ1′ (fΣ + s2a1a
′
1)1

′ + Λt(fΣ + s2a1a
′
1)p

′
f

]

dt, (B.53)

where

γR1 ≡ (r + κ)γ1 + b1γ2,

γR2 ≡ (r + b2)γ2.

The first step in (B.53) follows from (B.1), the second from (4.7) and (B.31), and the third from

(4.7) and (4.8). Eq. (B.53) is equivalent to (3.21) because of (3.5).

Eq. (B.29) implies that γR1 has the opposite sign of γ1q̄11. For small s, γ1 > 0 and q̄11 has the

same sign as its value q̄011 for s = 0. Eq. (B.49) implies that

q̄011 = − 2b01q̄
0
12

r + 2κ

= − 2b01
(r + 2κ)(r + κ+ b02)

(

rᾱλ− b01q̄
0
22

)

,

= − 2rᾱb01
(r + 2κ)(r + κ+ b02)

[

λ− rᾱb01f∆

(r + 2b02)1Σ1′

]

,

= − 2rᾱb01
(r + 2κ)(r + κ+ b02)

[

λ− rᾱf∆

ψ(r + κ+ b02)(r + 2b02)1Σ1′

]

, (B.54)

56



where the last step follows from (B.51). Using (B.52), we find

ψ(r + κ+ b02)(r + 2b02) = 2r(α+ ᾱ)f
∆

1Σ1′ + ψ
[

(r + 2κ)b02 + r(r + κ)
]

= 2r(α+ ᾱ)f
∆

1Σ1′ +
ψr

2

[

r + (r + 2κ)

√

1 +
4(α+ ᾱ)f∆

rψ1Σ1′

]

. (B.55)

Eqs. (B.54) and (B.55) imply that q̄011 is positive if (4.9) holds, and is negative otherwise. Therefore,

for small s, γR1 is negative if (4.9) holds, and is positive otherwise. Moreover, γR2 < 0 since b2 > 0

and γ2 < 0.

Proof of Corollary 4.2: Using (B.1) and proceeding as in the derivation of (A.56), we find

Covt(dRt, dR
′
t′) = Covt

[

−sa1dB
C
t ,
(

aR1 Ct′ + aR2 yt′
)′
dt
]

= −sγ1Covt
(

dBC
t , γ

R
1 Ct′ + γR2 yt′

)

Σp′fpfΣdt, (B.56)

where the last step follows from (4.7). Using the dynamics (2.3) and (4.2), we can express (Ct′ , yt′)

as a function of their time t values and the Brownian shocks dBC
u for u ∈ [t, t′]. The covariance

(B.56) depends only on how the Brownian shock dBC
t impacts (Ct′ , yt′). (See the proof of Corollary

3.6.) To compute this impact, we solve the “impulse-response” dynamics

dCt = −κCtdt,

dyt = −(b1Ct + b2yt)dt,

with the initial conditions

Ct = sdBC
t ,

yt = 0.

The solution to these dynamics is

Ct′ = e−κ(t′−t)sdBC
t , (B.57)

yt′ = −
b1

[

e−κ(t′−t) − e−b2(t′−t)
]

b2 − κ
sdBC

t , (B.58)

and the implied dynamics of expected return are

E(dRt′)

dt
=







γR1 e
−κ(t′−t) − γR2

b1

[

e−κ(t′−t) − e−b2(t′−t)
]

b2 − κ







sΣp′fdB
C
t . (B.59)
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Eqs. (B.58) and (B.59) are used to plot the solid and dashed lines, respectively, in Figure 1.

Substituting (B.57) and (B.58) into (B.56), we find (4.11) with

χ1 ≡ s2γ1

(

b1γ
R
2

b2 − κ
− γR1

)

= s2(r + κ)γ1

(

b1γ2

b2 − κ
− γ1

)

, (B.60)

χ2 ≡ −s
2b1γ1γ

R
2

b2 − κ
= −s

2(r + b2)b1γ1γ2

b2 − κ
. (B.61)

The function χ(u) ≡ χ1e
−κu+χ2e

−b2u can change sign only once, is equal to −s2γ1γ
R
1 when u = 0,

and has the sign of χ1 if b2 > κ and of χ2 if b2 < κ when u goes to ∞. For small s, γR1 is negative if

(4.9) holds, and is positive otherwise. The opposite is true for χ(0) since γ1 > 0. Since, in addition,

b1 > 0, b2 > 0 and γ2 < 0, (B.60) and (B.61) imply that χ1 < 0 if b2 > κ and χ2 < 0 if b2 < κ.

Therefore, there exists a threshold û ≥ 0, which is positive if (4.9) holds and is zero otherwise, such

that χ(u) > 0 for 0 < u < û and χ(u) < 0 for u > û.

C Asymmetric Information

Proof of Proposition 5.1: We use Theorem 10.3 of Liptser and Shiryaev (LS 2000). The investor

learns about Ct, which follows the process (2.3). She observes the following information:

• The net dividends of the residual-supply portfolio θDt−Ctdt. This corresponds to the process

ξ1t ≡ θDt −
∫ t

0 Csds.

• The dividends of the index fund 1dDt. This corresponds to the process ξ2t ≡ 1Dt.

• The price of the residual-supply portfolio θSt. Given the conjecture (5.1) for stock prices,

this is equivalent to observing the process ξ3t ≡ θ(St + a1Ĉt + a3yt).

• The price of the index portfolio 1St. This is equivalent to observing the process ξ4t ≡

1(St + a1Ĉt + a3yt).
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The dynamics of ξ1t are

dξ1t = θ(Ftdt+ σdBD
t ) − Ctdt

=

[

(r + κ)θa0 −
κθF̄

r
+ (r + κ)ξ3t + (r + κ)θa2Ct − Ct

]

dt+ θσdBD
t

=

[

(r + κ)θa0 −
κθF̄

r
+ (r + κ)ξ3t −

(

1 − (r + κ)γ2∆

1Σ1′

)

Ct

]

dt+ θσdBD
t , (C.1)

where the first step follows from (2.5), the second from (5.1), and the third from (5.2). Likewise,

the dynamics of ξ2t are

dξ2t =

[

(r + κ)1a0 −
κ1F̄

r
+ (r + κ)ξ4t

]

dt+ 1σdBD
t . (C.2)

The dynamics of ξ3t are

dξ3t = d

{

θ

[

F̄

r
+
Ft − F̄

r + κ
− (a0 + a2Ct)

]}

= θ

[

κ(F̄ − Ft)dt+ φσdBF
t

r + κ
− a2

[

κ(C̄ − Ct)dt+ sdBC
t

]

]

= κ

[

θ

(

F̄

r
− a0 − a2C̄

)

− ξ3t

]

dt+
φθσdBF

t

r + κ
− sθa2dB

C
t

= κ

(

θF̄

r
− θa0 −

γ2∆C̄

1Σ1′ − ξ3t

)

dt+
φθσdBF

t

r + κ
− sγ2∆dB

C
t

1Σ1′ , (C.3)

where the first step follows from (5.1), the second from (2.6) and (2.3), and the fourth from (5.2).

Likewise, the dynamics of ξ4t are

dξ4t = κ

(

1F̄

r
− 1a0 − ξ4t

)

dt+
φ1σdBF

t

r + κ
. (C.4)

The dynamics (2.3) and (C.1)-(C.4) map into the dynamics (10.62) and (10.63) of LS by setting

θt ≡ Ct, ξt ≡ (ξ1t, ξ2t, ξ3t, ξ4t)
′, W1t ≡

(

BD
t

BF
t

)

, W2t ≡ BC
t , a0(t) ≡ κC̄, a1(t) ≡ −κ, a2(t) ≡ 0,

b1(t) ≡ 0, b2(t) ≡ s, γt ≡ R,

A0(t) ≡













(r + κ)θa0 − κθF̄
r

(r + κ)1a0 − κ1F̄
r

κ
(

θF̄
r

− θa0 − γ2∆C̄
1Σ1

′

)

κ
(

1F̄
r

− 1a0

)













,
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A1(t) ≡ −









1 − (r+κ)γ2∆
1Σ1

′

0
0
0









,

A2(t) ≡









0 0 r + κ 0
0 0 0 r + κ
0 0 −κ 0
0 0 0 −κ









,

B1(t) ≡









θσ 0
1σ 0

0 φθσ
r+κ

0 φ1σ
r+κ









,

B2(t) ≡ −









0
0

sγ2∆
1Σ1

′

0









.

The quantities (b ◦ b)(t), (b ◦B)(t), and (B ◦B)(t), defined in LS (10.80) are

(b ◦ b)(t) = s2,

(b ◦B)(t) = −
(

0 0 s2γ2∆
1Σ1

′ 0
)

,

(B ◦B)(t) =











θΣθ′ 1Σθ′ 0 0
1Σθ′ 1Σ1′ 0 0

0 0 φ2θΣθ′

(r+κ)2 +
s2γ2

2
∆2

(1Σ1
′)2

φ2
1Σθ′

(r+κ)2

0 0 φ2
1Σθ′

(r+κ)2
φ2

1Σ1
′

(r+κ)2











.

Theorem 10.3 of LS (first subequation of (10.81)) implies that

dĈt =κ(C̄ − Ĉt)dt− β1

{

dξ1t −
[

(r + κ)θa0 −
κθF̄

r
+ (r + κ)ξ3t −

(

1 − (r + κ)γ2∆

1Σ1′

)

Ĉt

]

dt

−1Σθ′

1Σ1′

[

dξ2t −
[

(r + κ)1a0 −
κ1F̄

r
+ (r + κ)ξ4t

]

dt

]}

− β2

{

dξ3t − κ

(

θF̄

r
− θa0 −

γ2∆C̄

1Σ1′ − ξ3t

)

dt

−1Σθ′

1Σ1′

[

dξ4t − κ

(

1F̄

r
− 1a0 − ξ4t

)

dt

]}

. (C.5)
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Eq. (5.4) follows from (C.5) by noting that the term in dt after each dξit, i = 1, 2, 3, 4, is Et(dξit).

In subsequent proofs we use a different form of (5.4), where we replace each dξit, i = 1, 2, 3, 4, by

its value in (C.1)-(C.4):

dĈt = κ(C̄−Ĉt)dt−β1

[

pfσdB
D
t −

(

1 − (r + κ)γ2∆

1Σ1′

)

(Ct − Ĉt)dt

]

−β2

(

φpfσdB
F
t

r + κ
− sγ2∆dB

C
t

1Σ1′

)

.

(C.6)

Eq. (5.7) follows from Theorem 10.3 of LS (second subequation of (10.81)).

Proof of Proposition 5.2: Eqs. (2.3), (2.5), (2.6), (5.1)-(5.3) and (C.6) imply that the vector of

returns is

dRt =
{

ra0 +
[

γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

dt+
(

σ + β1γ1Σp
′
fpfσ

)

dBD
t

+
φ

r + κ

(

σ + β2γ1Σp
′
fpfσ

)

dBF
t − sγ2

(

1 +
β2γ1∆

1Σ1′

)

Σp′fdB
C
t , (C.7)

where

γR1 ≡ (r + κ+ ρ)γ1 + b1γ3,

γR2 ≡ (r + κ)γ2 − ργ1,

γR3 ≡ (r + b2)γ3,

and

ρ ≡ β1

(

1 − (r + κ)γ2∆

1Σ1′

)

. (C.8)

Eqs. (2.3), (3.3), (5.3), (C.6) and (C.7) imply that

d

(

rᾱWt + q̄0 + (q̄1, q̄2, q̄3)X̄t +
1

2
X̄ ′
tQ̄X̄t

)

= Ḡdt+
[

rᾱẑt
(

σ + β1γ1Σp
′
fpfσ

)

− β1f̄1(X̄t)pfσ
]

dBD
t

+
φ

r + κ

[

rᾱẑt
(

σ + β2γ1Σp
′
fpfσ

)

− β2f̄1(X̄t)pfσ
]

dBF
t

− s

[

rᾱγ2

(

1 +
β2γ1∆

1Σ1′

)

ẑtΣp
′
f −

β2γ2∆f̄1(X̄t)

1Σ1′ − f̄2(X̄t)

]

dBC
t , (C.9)

61



where

Ḡ ≡rᾱ
(

rWt + ẑt

{

ra0 +
[

γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

+ (λCt +B)yt − c̄t

)

+ f̄1(X̄t)
[

κ(C̄ − Ĉt) + ρ(Ct − Ĉt)
]

+ f̄2(X̄t)κ(C̄ − Ct) + f̄3(X̄t)vt

+
1

2

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q̄11
1Σ1′ +

s2β2γ2∆q̄12
1Σ1′ +

1

2
s2q̄22,

f̄1(X̄t) ≡ q̄1 + q̄11Ĉt + q̄12Ct + q̄13yt,

f̄2(X̄t) ≡ q̄2 + q̄12Ĉt + q̄22Ct + q̄23yt,

f̄3(X̄t) ≡ q̄3 + q̄13Ĉt + q̄23Ct + q̄33yt.

Eqs. (5.9) and (C.9) imply that

DV̄ = − V̄

{

Ḡ− 1

2
(rᾱ)2f ẑtΣẑ

′
t

− 1

2
β1

[

rᾱγ1ẑtΣp
′
f − f̄1(X̄t)

]

[

rᾱ

(

2 +
β1γ1∆

1Σ1′

)

ẑtΣp
′
f −

β1∆f̄1(X̄t)

1Σ1′

]

− 1

2

φ2β2

(r + κ)2
[

rᾱγ1ẑtΣp
′
f − f̄1(X̄t)

]

[

rᾱ

(

2 +
β2γ1∆

1Σ1′

)

ẑtΣp
′
f −

β2∆f̄1(X̄t)

1Σ1′

]

−1

2
s2
[

rᾱγ2

(

1 +
β2γ1∆

1Σ1′

)

ẑtΣp
′
f −

β2γ2∆f̄1(X̄t)

1Σ1′ − f̄2(X̄t)

]2
}

. (C.10)

Substituting (C.10) into (3.8), we can write the first-order conditions with respect to c̄t and ẑt as

(A.3) and

h̄(X̄t) = rᾱ(fΣ + kΣp′fpfΣ)ẑ′t, (C.11)

respectively, where

h̄(X̄t) ≡ ra0 +
[

γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3 + k1f̄1(X̄t) + k2f̄2(X̄t)
]

Σp′f ,

(C.12)

k ≡ β1γ1

(

2 +
β1γ1∆

1Σ1′

)

+
φ2β2γ1

(r + κ)2

(

2 +
β2γ1∆

1Σ1′

)

+ s2γ2
2

(

1 +
β2γ1∆

1Σ1′

)2

, (C.13)

k1 ≡ β1

(

1 +
β1γ1∆

1Σ1′

)

+
φ2β2

(r + κ)2

(

1 +
β2γ1∆

1Σ1′

)

+
s2β2γ

2
2∆

1Σ1′

(

1 +
β2γ1∆

1Σ1′

)

, (C.14)

k2 ≡ s2γ2

(

1 +
β2γ1∆

1Σ1′

)

. (C.15)
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Proceeding as in the proof of Proposition 3.1, we find the following counterpart of (A.10):

1

2
h̄(X̄t)

′(fΣ + kΣp′fpfΣ)−1h̄(X̄t) + rᾱ(λCt +B)yt − r

[

q̄0 + (q̄1, q̄2, q̄3)X̄t +
1

2
X̄ ′
tQ̄X̄t

]

+ f̄1(X̄t)
[

κ(C̄ − Ĉt) + ρ(Ct − Ĉt)
]

+ f̄2(X̄t)κ(C̄ −Ct) + f̄3(X̄t)vt

+
1

2

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q̄11
1Σ1′ +

s2β2γ2∆q̄12
1Σ1′ +

1

2
s2q̄22 + β̄ − r + r log(r)

− 1

2

[

β2
1 +

φ2β2
2

(r + κ)2

]

∆f̄1(X̄t)
2

1Σ1′ − 1

2
s2
[

β2γ2∆f̄1(X̄t)

1Σ1′ + f̄2(X̄t)

]2

= 0. (C.16)

Eq. (C.16) is quadratic in X̄t. Identifying quadratic, linear and constant terms yields ten scalar

equations in (q̄0, q̄1, q̄2, q̄3, Q̄). We defer the derivation of these equations until the proof of Propo-

sition 5.4 (see (C.40)-(C.43)).

Proof of Proposition 5.3: Dynamics under the investor’s filtration can be deduced from those

under the manager’s by replacing Ct by the investor’s expectation Ĉt. Eq. (C.6) implies that the

dynamics of Ĉt are

dĈt = κ(C̄ − Ĉt)dt− β1pfσdB̂
D
t − β2

(

φpfσdB
F
t

r + κ
− sγ2∆dB

C
t

1Σ1′

)

, (C.17)

where B̂D
t is a Brownian motion under the investor’s filtration. Eq. (C.7) implies that the net-of-cost

return of the active fund is

ztdRt − Ctdt = zt

{

ra0 +
[

(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

dt− Ĉtdt

+zt
(

σ + β1γ1Σp
′
fpfσ

)

dB̂D
t +zt

φ

r + κ

(

σ + β2γ1Σp
′
fpfσ

)

dBF
t −sγ2

(

1 +
β2γ1∆

1Σ1′

)

ztΣp
′
fdB

C
t ,

(C.18)

and the return of the index fund is

1dRt = 1
{

ra0 +
[

(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

dt

+1
(

σ + β1γ1Σp
′
fpfσ

)

dB̂D
t +1

φ

r + κ

(

σ + β2γ1Σp
′
fpfσ

)

dBF
t −sγ2

(

1 +
β2γ1∆

1Σ1′

)

1Σp′fdB
C
t .

(C.19)
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Suppose that the investor optimizes over (ct, xt) but follows the control vt given by (5.3). Eqs.

(4.4), (5.3), (C.17), (C.18) and (C.19) imply that

d

(

rαWt + q0 + (q1, q2)Xt +
1

2
X ′
tQXt

)

= Gdt+
[

rα(xt1 + ytzt)
(

σ + β1γ1Σp
′
fpfσ

)

− β1f1(Xt)pfσ
]

dB̂D
t

+
φ

r + κ

[

rα(xt1 + ytzt)
(

σ + β2γ1Σp
′
fpfσ

)

− β2f1(Xt)pfσ
]

dBF
t

− s

[

rᾱγ2

(

1 +
β2γ1∆

1Σ1′

)

(xt1 + ytzt)Σp
′
f −

β2γ2∆f1(Xt)

1Σ1′

]

dBC
t , (C.20)

where

G ≡rα
[

rWt + (xt1 + ytzt)
{

ra0 +
[

(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

− ytĈt

−ψv
2
t

2
− ct

]

+ f1(Xt)κ(C̄ − Ĉt) + f2(Xt)vt +
1

2

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q11
1Σ1′ ,

f1(Xt) ≡ q1 + q11Ĉt + q12yt,

f2(Xt) ≡ q2 + q12Ĉt + q22yt.

Eqs. (4.5) and (C.20) imply that

DV = − V

{

G− 1

2
(rα)2f(xt1 + ytzt)Σ(xt1 + ytzt)

′

− 1

2
β1

[

rαγ1(xt1 + ytzt)Σp
′
f − f1(Xt)

]

[

rα

(

2 +
β1γ1∆

1Σ1′

)

(xt1 + ytzt)Σp
′
f −

β1∆f1(Xt)

1Σ1′

]

− 1

2

φ2β2

(r + κ)2
[

rαγ1(xt1 + ytzt)Σp
′
f − f1(Xt)

]

[

rα

(

2 +
β2γ1∆

1Σ1′

)

(xt1 + ytzt)Σp
′
f −

β2∆f1(Xt)

1Σ1′

]

−1

2
s2
[

rαγ2

(

1 +
β2γ1∆

1Σ1′

)

(xt1 + ytzt)Σp
′
f −

β2γ2∆f1(Xt)

1Σ1′

]2
}

. (C.21)

Substituting (C.21) into (4.6), we can write the first-order conditions with respect to ct and xt as

(A.13) and

1h(Xt) = rα1(fΣ + kΣp′fpfΣ)(xt1 + ytzt)
′, (C.22)

respectively, where

h(Xt) ≡ ra0 +
[

(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3 + k1f1(Xt)
]

Σp′f . (C.23)
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Proceeding as in the proof of Proposition 4.2, we find the following counterpart of (B.14):

rαytθh(Xt) −
1

2
(rα)2y2

t θ(fΣ + kΣp′fpfΣ)θ′ +
[1h(Xt) − rαfyt1Σθ′]2

2f1Σ1′ − rαytĈt −
1

2
rαψv2

t

− r

[

q0 + (q1, q2)Xt +
1

2
X ′
tQXt

]

+ f1(Xt)κ(C̄ − Ĉt) + f2(Xt)vt

+
1

2

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆[q11 − f1(Xt)
2]

1Σ1′ + β − r + r log(r) = 0. (C.24)

Since vt in (4.2) is linear in Xt, (C.24) is quadratic in Xt. Identifying quadratic, linear and constant

terms yields six scalar equations in (q0, q1, q2, Q). We defer the derivation of these equations until

the proof of Proposition 5.4 (see (C.44)-(C.46)).

We next study optimization over vt, using the same perturbation argument as in the proof of

Proposition 4.2. The counterparts of (B.19) and (B.20) are

θ
[

h(Xt) − rαψb1k1ytΣp
′
f

]

− Ĉt = rαθ(fΣ + kΣp′fpfΣ) [xt(1 − yt)1 + ytθ]
′ + ψhψ(Xt),

(C.25)

θ
[

h(Xt) − rαψb1k1ytΣp
′
f

]

− Ĉt = rαθ(fΣ + kΣp′fpfΣ)

[

ytθ +
1h(Xt) − rαytf1Σθ′

rαf1Σ1′ 1

]′

+ ψhψ(Xt),

(C.26)

respectively, where

hψ(Xt) ≡ (r + b2)vt + b1κ(C̄ − Ĉt) − b1

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆f1(Xt)

1Σ1′ .

Eq. (C.26) is linear in Xt. Identifying linear and constant terms, yields three scalar equations

in (b0, b1, b2). We defer the derivation of these equations until the proof of Proposition 5.4 (see

(C.36)-(C.38)).

Proof of Proposition 5.4: We first impose market clearing and derive the constants (a0, b0, b1, b2, γ1, γ2, γ3)

as functions of (q̄1, q̄2, q̄3, Q̄, q1, q2, Q). Setting zt = θ − xt1 and ȳt = 1 − yt, we can write (C.11)

and (C.22) as

h̄(X̄t) = rᾱ(fΣ + kΣp′fpfΣ)(1 − yt)(θ − xt1)′, (C.27)

1h(Xt) = rα1(fΣ + kΣp′fpfΣ) [xt(1 − yt)1 + ytθ]
′ , (C.28)
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respectively. Premultiplying (C.27) by 1, dividing by rᾱ, and adding to (C.28) divided by rα, we

find

1

[

h(Xt)

rα
+
h̄(X̄t)

rᾱ

]

= 1(fΣ + kΣp′fpfΣ)θ′. (C.29)

Eq. (C.29) is linear in (Ĉt, Ct, yt). The terms in Ĉt, Ct and yt are zero because 1Σp′f = 0. Identifying

constant terms, we find (A.29). Substituting (A.29) into (C.28), we find (A.30).

Substituting (A.30) into (C.27), we find

h̄(X̄t) = rᾱ(fΣ + kΣp′fpfΣ)

[

α

α+ ᾱ

1Σθ′

1Σ1′1 + (1 − yt)pf

]′

. (C.30)

Eq. (C.30) is linear in X̄t. Identifying terms in Ĉt, Ct and yt, we find

(r + κ+ ρ)γ1 + b1γ3 + k1q̄11 + k2q̄12 = 0, (C.31)

(r + κ)γ2 − ργ1 + k1q̄12 + k2q̄22 = 0, (C.32)

(r + b2)γ3 + k1q̄13 + k2q̄23 = −rᾱ
(

f +
k∆

1Σ1′

)

, (C.33)

respectively. Identifying constant terms, we find

a0 =
αᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +

[

κ(γ1 + γ2)C̄ + b0γ3 − k1q̄1 − k2q̄2
r

+ ᾱ

(

f +
k∆

1Σ1′

)]

Σp′f . (C.34)

Using (A.30), we can write (C.26) as

θh(Xt) − rαψb1k1
∆

1Σ1′ yt − Ĉt = rαθ(fΣ + kΣp′fpfΣ)

(

ᾱ

α+ ᾱ

1Σθ′

1Σ1′1 + ytpf

)′

+ ψhψ(Xt)

⇒ θh(Xt) − rαψb1k1
∆

1Σ1′ yt − Ĉt =
rαᾱf

α+ ᾱ

(1Σθ′)2

1Σ1′ + rα

(

f +
k∆

1Σ1′

)

∆

1Σ1′ yt + ψhψ(Xt).

(C.35)
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Eq. (C.35) is linear in (Ĉt, yt). Identifying terms in Ĉt and yt, and using (5.3), we find

[(r + κ)(γ1 + γ2) + b1γ3 + k1q11]
∆

1Σ1′ − 1

= −ψb1
{

r + κ+ b2 +

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q11
1Σ1′

}

, (C.36)

[(r + b2)γ3 + (q12 − rαψb1)k1]
∆

1Σ1′

= rα

(

f +
k∆

1Σ1′

)

∆

1Σ1′ − ψ

{

(r + b2)b2 + b1

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q12
1Σ1′

}

, (C.37)

respectively. Identifying constant terms, and using (5.3) and (C.34), we find

[

k1(q1 − q̄1) − k2q̄2 + rᾱ

(

f +
k∆

1Σ1′

)]

∆

1Σ1′

= ψ

{

(r + b2)b0 + b1κC̄ − b1

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q1
1Σ1′

}

. (C.38)

The system of equations characterizing equilibrium is as follows. The endogenous variables

are (a0, b0, b1, b2, γ1, γ2, γ3, β1, β2, T, q̄1, q̄2, q̄3, Q̄, q1, q2, Q). (As in Propositions 3.3 and 4.3, we can

drop (q̄0, q0).) The equations linking them are (5.5)-(5.7), (C.31)-(C.34), (C.36)-(C.38), the nine

equations derived from (C.16) by identifying linear and quadratic terms, and the five equations

derived from (C.24) by identifying linear and quadratic terms. We next simplify the latter two sets

of equations, using implications of market clearing.

Using (C.30), we find

1

2
h̄(X̄t)

′(fΣ+kΣpfp
′
fΣ)−1h̄(X̄t) =

r2α2ᾱ2f(1Σθ′)2

2(α+ ᾱ)21Σ1′ +
1

2
r2ᾱ2(1−yt)2

(

f +
k∆

1Σ1′

)

∆

1Σ1′ . (C.39)

We next substitute (C.39) into (C.16), and identify terms. Quadratic terms yield the algebraic

Riccati equation

Q̄R̄2Q̄+ Q̄R̄1 + R̄′
1Q̄− R̄0 = 0, (C.40)

where

R̄2 ≡







[

β2
1 +

φ2β2

2

(r+κ)2
+

s2β2

2
γ2

2
∆

1Σ1
′

]

∆
1Σ1

′
s2β2γ2∆

1Σ1
′ 0

s2β2γ2∆
1Σ1

′ s2 0
0 0 0






,
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R̄1 ≡





r
2 + κ+ ρ −ρ 0

0 r
2 + κ 0

b1 0 r
2 + b2



 ,

R̄0 ≡





0 0 0
0 0 rᾱλ

0 rᾱλ r2ᾱ2
(

f + k∆
1Σ1

′

)

∆
1Σ1

′



 .

Terms in Ĉt, Ct and yt yield

(r + κ+ ρ) q̄1 + b1q̄3 +

[

β2
1 +

φ2β2
2

(r + κ)2

]

∆q̄1q̄11
1Σ1′ + s2

(

β2γ2∆q̄1
1Σ1′ + q̄2

)(

β2γ2∆q̄11
1Σ1′ + q̄12

)

− κC̄(q̄11 + q̄12) − b0q̄13 = 0, (C.41)

(r + κ)q̄2 − ρq̄1 +

[

β2
1 +

φ2β2
2

(r + κ)2

]

∆q̄1q̄12
1Σ1′ + s2

(

β2γ2∆q̄1
1Σ1′ + q̄2

)(

β2γ2∆q̄12
1Σ1′ + q̄22

)

− κC̄(q̄12 + q̄22) − b0q̄23 = 0, (C.42)

(r + b2)q̄3 +

[

β2
1 +

φ2β2
2

(r + κ)2

]

∆q̄1q̄13
1Σ1′ + s2

(

β2γ2∆q̄1
1Σ1′ + q̄2

)(

β2γ2∆q̄13
1Σ1′ + q̄23

)

+ r2ᾱ2

(

f +
k∆

1Σ1′

)

∆

1Σ1′ − rᾱB − κC̄(q̄13 + q̄23) − b0q̄33 = 0, (C.43)

respectively. Using (A.30), we can write (C.28) as (B.41). Using (5.3), (B.41) and (C.35), we find

that the equation derived from (C.24) by identifying quadratic terms is

QR2Q+QR1 + R′
1Q−R0 = 0, (C.44)

where

R2 ≡
( [

β2
1 +

φ2β2

2

(r+κ)2 +
s2β2

2
γ2

2
∆

1Σ1
′

]

∆
1Σ1

′ 0

0 0

)

,

R1 ≡
(

r
2 + κ rαψb1

[

β2
1 +

φ2β2

2

(r+κ)2
+

s2β2

2
γ2

2
∆

1Σ1
′

]

∆
1Σ1

′

b1
r
2 + b2

)

,

R0 ≡
(

−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2
(

f + k∆
1Σ1

′

)

∆
1Σ1

′ + 2r2α2ψb1k1
∆

1Σ1
′ − rαψb2(2r + 3b2)

)

,
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and the equations derived by identifying terms Ĉt and yt are

(r + κ)q1 + b1q2 +

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q1q11
1Σ1′ − κC̄q11 − b0q12 − rαψb0b2 = 0,

(C.45)

(r + b2)q2 +

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆(q12 + rαψb1)q1
1Σ1′ − κC̄q12 − b0q22

− rαψ
[

b0(r + 2b2) + b1κC̄
]

= 0, (C.46)

respectively.

Solving for equilibrium amounts to solving the system of (5.5)-(5.7), (C.31)-(C.34), (C.36)-

(C.38), (C.40)-(C.43), (C.44)-(C.46) in the unknowns (a0, b0, b1, b2, γ1, γ2, γ3, β1, β2, T, q̄1, q̄2, q̄3, Q̄, q1, q2, Q).

This reduces to solving the system of (5.5)-(5.7), (C.31)-(C.33), (C.36), (C.37), (C.40), (C.44) in the

unknowns (b1, b2, γ1, γ2, γ3, β1, β2, T, Q̄,Q): given (b1, b2, γ1, γ2, γ3, β1, β2, T, Q̄,Q), (b0, q̄1, q̄2, q̄3, q1, q2)

can be determined from the linear system of (C.38), (C.41)-(C.43), (C.45), (C.46), and a0 from

(C.34). We replace the system of (5.5)-(5.7), (C.31)-(C.33), (C.36), (C.37), (C.40), (C.44) by the

equivalent system of (5.5)-(5.7), (C.31)-(C.33), (C.40), (C.44),

ψb1

{

r + κ+ b2 +

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q11
1Σ1′

}

= 1 + [k1(q̄11 + q̄12) + k2(q̄12 + q̄22) − k1q11]
∆

1Σ1′ , (C.47)

ψ

{

(r + b2)b2 + b1

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆q12
1Σ1′

}

− rαψb1k1
∆

1Σ1′

= r(α+ ᾱ)

(

f +
k∆

1Σ1′

)

∆

1Σ1′ + (k1q̄13 + k2q̄23 − k1q12)
∆

1Σ1′ . (C.48)

For s = 0, the unique non-negative solution of (5.7) is T = 0. Eqs. (5.5), (5.6), (C.8) and (C.13)-

(C.15) imply that β1 = β2 = ρ = k = k1 = k2 = 0. Eqs. (C.31)-(C.33), (C.40), (C.44), (C.47) and

(C.48) become

(r + κ)γ1 + b1γ3 = 0, (C.49)

(r + κ)γ2 = 0, (C.50)

(r + b2)γ3 = −rᾱf, (C.51)
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(B.49), (B.50), (B.51) and (B.52), respectively, where

R̄0
1 ≡





r
2 + κ 0 0

0 r
2 + κ 0

b1 0 r
2 + b2



 ,

R̄0 ≡





0 0 0
0 0 rᾱλ

0 rᾱλ r2ᾱ2f ∆
1Σ1

′



 ,

and (R0
1,R0

0) are as under symmetric information (Proposition 4.3). Given the unique positive

solution b2 of (B.52), (b1, γ3, γ1, Q̄,Q) are determined uniquely from (B.51), (C.51), (C.49), (B.49)

and (B.50), respectively, and (C.50) implies that γ2 = 0. We denote the solution for s = 0 by

(b01, b
0
2, γ

0
1 , γ

0
2 , γ

0
3 , β

0
1 , β

0
2 , T

0, Q̄0, Q0). The variables (b01, b
0
2, γ

0
1 , γ

0
3 , Q

0) coincide with (b01, b
0
2, γ

0
1 , γ

0
2 , Q

0)

under symmetric information. Proceeding as in the proof of Proposition 4.3, we can apply the im-

plicit function theorem and show that the system of (5.5)-(5.7), (C.31)-(C.33), (C.40), (C.44),

(C.47), (C.48) has a solution for small s. Moreover, this solution is unique in a neighborhood of

(b01, b
0
2, γ

0
1 , γ

0
2 , γ

0
3 , β

0
1 , β

0
2 , T

0, Q̄0, Q0), which corresponds to the unique equilibrium for s = 0. Since

b01 > 0, b02 > 0, γ0
1 > 0, γ0

3 < 0, continuity implies that b1 > 0, b2 > 0, γ1 > 0, γ3 < 0 for small

s. Since γ0
2 = 0, continuity does not establish the sign of γ2 for small s, so we need to study the

asymptotic behavior of the solution. Eqs. (5.7), (5.5) and (5.6) imply that

T =
s2

2κ
+ o(s2), (C.52)

β1 =
1∆1′

2κ∆
s2 + o(s2) ≡ β̂0

1s
2 + o(s2), (C.53)

β2 = o(s2), (C.54)

respectively, where o(s2)
s2

converges to zero when s goes to zero. Eqs. (C.8) and (C.13)-(C.15) imply

that

ρ = β̂0
1s

2 + o(s2), (C.55)

k = 2β̂0
1γ

0
1s

2 + o(s2), (C.56)

k1 = β̂0
1s

2 + o(s2), (C.57)

k2 = o(s2), (C.58)
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respectively, and (C.40) implies that

Q̄0 =











2r2ᾱ2(b0
1
)2f∆

(r+2κ)(r+κ+b0
2
)(r+2b0

2
)1Σ1

′ − rᾱb0
1
λ

(r+2κ)(r+κ+b0
2
)

− r2ᾱ2b0
1
f∆

(r+κ+b0
2
)(r+2b0

2
)1Σ1

′

− rᾱb0
1
λ

(r+2κ)(r+κ+b0
2
)

0 rᾱλ
r+κ+b0

2

− r2ᾱ2b0
1
f∆

(r+κ+b0
2
)(r+2b0

2
)1Σ1

′
rᾱλ

r+κ+b0
2

r2ᾱ2f∆
(r+2b0

2
)1Σ1

′











. (C.59)

Eqs. (C.32), (C.55), (C.57), (C.58) and (C.59) imply that

γ2 = β̂0
1

[

γ0
1 +

rᾱb01λ

(r + 2κ)(r + κ+ b02)

]

s2 + o(s2).

Therefore, γ2 > 0 if λ ≥ 0.

Proof of Corollary 5.1: Eq. (C.7) implies that the covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(

σ + β1γ1Σp
′
fpfσ

) (

σ + β1γ1Σp
′
fpfσ

)′

+
φ2

(r + κ)2
(

σ + β2γ1Σp
′
fpfσ

) (

σ + β2γ1Σp
′
fpfσ

)′

+ s2γ2
2

(

1 +
β2γ1∆

1Σ1′

)2

Σp′fpfΣ,

which is equal to (5.10) because of (C.13). Eqs. (3.20) (which is also valid under gradual adjust-

ment) and (5.10) imply that the proportionality coefficient between the non-fundamental covariance

matrices under asymmetric and symmetric information is larger than one if k > s2γ2
1sym, where

γ1sym denotes the value of γ1 under symmetric information. Rearranging (C.13), we find

k = 2

{

β1 + β2

[

φ2

(r + κ)2
+
s2γ2

2∆

1Σ1′

]}

γ1 + s2γ2
2 +

[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

γ2
1∆

1Σ1′ . (C.60)

Rearranging (5.6), we find

β2

[

φ2

(r + κ)2
+
s2γ2

2∆

1Σ1′

]

= s2γ2, (C.61)

and rearranging (5.7), we find

T 2

[

1 − (r + k)
γ2∆

1Σ1′

]2 1Σ1′

∆
+

s4γ2

2
∆

1Σ1
′

φ2

(r+κ)2
+

s2γ2

2
∆

1Σ1
′

= s2 − 2κT

⇒
[

β2
1 +

φ2β2
2

(r + κ)2
+
s2β2

2γ
2
2∆

1Σ1′

]

∆

1Σ1′ = s2 − 2κT, (C.62)
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where the second step follows from (5.5) and (5.6). Substituting (C.61) and (C.62) into (C.60), we

find

k = 2β1γ1 + s2(γ1 + γ2)
2 − 2κTγ2

1

= s2(γ1 + γ2)
2 + 2Tγ1

[

1Σ1′

∆
− κγ1 − (r + κ)γ2

]

, (C.63)

where the second step follows from (5.5).

Eqs. (C.52), (C.63) and γ0
2 = 0 imply that for small s,

k = s2(γ0
1)2 +

s2γ0
1

κ

(

1Σ1′

∆
− κγ0

1

)

+ o(s2). (C.64)

The variables (b01, b
0
2) are identical under symmetric and asymmetric information. Moreover, (B.47),

(B.48), (C.49) and (C.51) imply that the same is true for γ0
1 . Therefore, k > s2γ2

1sym for small s if

1Σ1′

∆
− κγ0

1 > 0

⇔ 1Σ1′

∆
− κrᾱfb01

(r + κ)(r + b02)
> 0

⇔ 1Σ1′

∆

[

1 − κᾱb02
(r + κ)(α + ᾱ)(r + κ+ b02)

]

> 0, (C.65)

where the second step follows from (C.49) and (C.51), and the third from (B.51) and (B.52). Since

b02 > 0, (C.65) holds.

Proof of Corollary 5.2: Stocks’ expected returns are

Et(dRt) =
{

ra0 +
[

γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]

Σp′f

}

dt

=

{

rαᾱf

α+ ᾱ

1Σθ′

1Σ1′Σ1′ +

[

γR1 Ĉt + γR2 Ct + γR3 yt + rᾱ

(

f +
k∆

1Σ1′

)

− k1q̄1 − k2q̄2

]

Σp′f

}

dt

=

[

rαᾱ

α+ ᾱ

1Σθ′

1Σ1′

(

fΣ + kΣp′fpfΣ
)

1′ + Λt
(

fΣ + kΣp′fpfΣ
)

p′f

]

dt, (C.66)

where the first step follows from (C.7), the second from (C.34), and the third from (5.11). Eq.

(C.66) is equivalent to (3.21) because of (5.10).

Eqs. (C.31) and (C.32) imply that γR1 and γR2 have the opposite sign of k1q̄11 + k2q̄12 and

k1q̄12 + k2q̄22, respectively. Eqs. (C.57) and (C.58) imply that for small s, the latter variables have
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the same sign as q̄011 and q̄012, respectively. Since b01 > 0 and b02 > 0, (C.59) implies that q̄011 > 0

and q̄012 has the same sign as −λ. Therefore, for small s, γR1 < 0 and γR2 has the same sign as λ.

Moreover, γR3 < 0 since b2 > 0 and γ3 < 0.

Proof of Corollary 5.3: Using (C.7) and proceeding as in the derivation of (A.56), we find

Covt(dDt, dR
′
t′) = σCovt

(

dBD
t , γ

R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)

pfΣdt, (C.67)

Covt(dFt, dR
′
t′) = φσCovt

(

dBF
t , γ

R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)

pfΣdt. (C.68)

The covariances (C.67) and (C.68) depend only on how the Brownian shocks dBD
t and dBF

t , re-

spectively, impact (Ĉt′ , Ct′ , yt′). To compute the impact of these shocks, as well as of dBC
t for the

next corollary, we solve the impulse-response dynamics

dCt = −κCtdt,

dĈt =
[

−κĈt + ρ(Ct − Ĉt)
]

dt,

dyt = −
(

b1Ĉt + b2yt

)

dt,

with the initial conditions

Ct = sdBC
t ,

Ĉt = −β1pfσdB
D
t − β2

(

φpfσdB
F
t

r + κ
− sγ2∆dB

C
t

1Σ1′

)

,

yt = 0.

The solution to these dynamics is (B.57),

Ĉt′ = e−κ(t′−t)sdBC
t − e−(κ+ρ)(t′−t)

[

β1pfσdB
D
t +

φβ2pfσdB
F
t

r + κ
+ s

(

1 − β2γ2∆

1Σ1′

)

dBC
t

]

(C.69)

yt′ = − b1
b2 − κ

[

e−κ(t′−t) − e−b2(t′−t)
]

sdBC
t

+
b1

b2 − κ− ρ

[

e−(κ+ρ)(t′−t) − e−b2(t′−t)
]

[

β1pfσdB
D
t +

φβ2pfσdB
F
t

r + κ
+ s

(

1 − β2γ2∆

1Σ1′

)

dBC
t

]

.

(C.70)
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Substituting (B.57), (C.69) and (C.70) into (C.67) and (C.68), and using the mutual independence

of (dBD
t , dB

F
t , dB

C
t ), we find (5.12) with

χD1 ≡ β1

(

b1γ
R
3

b2 − κ− ρ
− γR1

)

= (r + κ+ ρ)β1

(

b1γ3

b2 − κ− ρ
− γ1

)

, (C.71)

χD2 ≡ − b1β1γ
R
3

b2 − κ− ρ
= −(r + b2)b1β1γ3

b2 − κ− ρ
. (C.72)

The function χD(u) ≡ χD1 e
−(κ+ρ)u + χD2 e

−b2u can change sign only once, is equal to −β1γ
R
1 when

u = 0, and has the sign of χ1 if b2 > κ+ ρ and of χ2 if b2 < κ+ ρ when u goes to ∞. For small s,

χ(0) > 0 since γR1 < 0. Since, in addition, b1 > 0, b2 > 0, γ1 > 0, γ3 < 0 and ρ > 0, (C.71) and

(C.72) imply that χ1 < 0 if b2 > κ+ ρ and χ2 < 0 if b2 < κ+ ρ. Therefore, there exists a threshold

ûD > 0 such that χ(u) > 0 for 0 < u < ûD and χ(u) < 0 for u > ûD.

Proof of Corollary 5.4: Using (C.7) and proceeding as in the derivation of (A.56), we find

Covt(dRt, dR
′
t′) =

(

σ + β1γ1Σp
′
fpfσ

)

Covt

(

dBD
t , γ

R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)

pfΣdt

+
φ

r + κ

(

σ + β2γ1Σp
′
fpfσ

)

Covt

(

dBF
t , γ

R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)

pfΣdt

− sγ2

(

1 +
β2γ1∆

1Σ1′

)

Covt

(

dBC
t , γ

R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)

Σp′fpfΣdt.

(C.73)

Substituting (B.57), (C.69) and (C.70) into (C.73), and using (5.6) and the mutual independence

of (dBD
t , dB

F
t , dB

C
t ), we find (5.13) with

χ1 ≡ χD1

(

1 +
β1γ1∆

1Σ1′

)

, (C.74)

χ2 ≡ s2γ2

(

b1γ
R
3

b2 − κ
− γR1 − γR2

)(

1 +
β2γ1∆

1Σ1′

)

= s2(r + κ)γ2

(

b1γ3

b2 − κ
− γ1 − γ2

)(

1 +
β2γ1∆

1Σ1′

)

, (C.75)

χ3 ≡ −b1γR3
[

β1

b2 − κ− ρ

(

1 +
β1γ1∆

1Σ1′

)

+
s2γ2

b2 − κ

(

1 +
β2γ1∆

1Σ1′

)]

= −(r + b2)b1γ3

[

β1

b2 − κ− ρ

(

1 +
β1γ1∆

1Σ1′

)

+
s2γ2

b2 − κ

(

1 +
β2γ1∆

1Σ1′

)]

. (C.76)
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The function χ(u) ≡ χ1e
−(κ+ρ)u + χ2e

−κu + χ3e
−b2u has the same sign as χ̂(u) ≡ χ1e

−ρu + χ2 +

χ3e
−(b2−κ)u. The latter function is equal to

−β1γ
R
1

(

1 +
β1γ1∆

1Σ1′

)

− s2γ2(γ
R
1 + γR2 )

(

1 +
β2γ1∆

1Σ1′

)

when u = 0, and has the sign of χ2 if b2 > κ and ρ > 0 and of χ3 if b2 < κ and ρ > 0 when u goes

to ∞. Moreover, its derivative χ̂′(u) = −χ1ρe
−ρu − χ3(b2 − κ)e−(b2−κ)u is equal to

−χ1ρ− χ3(b2 − κ) = β1(ργ
R
1 + b1γ

R
3 )

(

1 +
β1γ1∆

1Σ1′

)

+ s2b1γ2γ
R
3

(

1 +
β2γ1∆

1Σ1′

)

(C.77)

when u = 0. For small s, χ(0) > 0 since γR1 < 0 and s2γ2/β1 = o(1). Since, in addition, b1 > 0,

b2 > 0, γ1 > 0, γ2 > 0, γ3 < 0, γR3 < 0 and ρ > 0, (C.75) and (C.76) imply that χ2 < 0 if b2 > κ

and χ3 < 0 if b2 < κ, and (C.77) implies that χ̂′(0) < 0. Since χ̂′(u) can change sign only once,

it is either negative or negative and then positive. Therefore, χ̂(u) is positive and then negative.

The same is true for χ(u), which means that there exists a threshold û > 0 such that χ(u) > 0 for

0 < u < û and χ(u) < 0 for u > û.
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