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ABSTRACT

This paper concerns the problem of allocating a binary treatment among a target population based
on observed covariates. The goal is to (i) maximize the mean social welfare arising from an eventual
outcome distribution, when a budget constraint limits what fraction of the population can be treated
and (ii) to infer the dual value, i.e. the minimum resources needed to attain a specific level of mean
welfare via efficient treatment assignment. We consider a treatment allocation procedure based on
sample data from randomized treatment assignment and derive asymptotic frequentist confidence interval
for the welfare generated from it. We propose choosing the conditioning covariates through cross-validation.
The methodology is applied to the efficient provision of anti-malaria bed net subsidies, using data
from a randomized experiment conducted in Western Kenya. We find that subsidy allocation based
on wealth, presence of children and possession of bank account can lead to a rise in subsidy use by
about 9 percentage points compared to allocation based on wealth only, and by 17 percentage points
compared to a purely random allocation.
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1 Introduction

Governments of developing countries often subsidize access to key health and educational

resources for the most vulnerable sections of their populations. However, such subsidizing

efforts are typically constrained by binding budget ceilings. When budgets are such that

only a small fraction of a target population can receive a given subsidy, the eligibility

rule used to decide who will receive the subsidy can have an important effect on the

overall benefit arising from the subsidy program. In this paper, we consider the problem

of allocating a fixed amount of treatment resources to a target population with the aim

of maximizing the mean population outcome, and the dual problem of estimating the

minimum cost of achieving a given mean outcome in the population by efficient targeting

of a treatment. We set-up an econometric framework for studying this problem and apply

it to design welfare-maximizing allocation of subsidies for an effective malaria control tool

— insecticide-treated bed nets (ITNs) — among households in a malaria-endemic region of

Kenya.

Our paper contributes to a recent but steadily expanding literature in statistics and

economics on how experimental evidence on treatment effect heterogeneity may be used

to maximize gains from social programs. This problem has been analyzed in the literature

as a statistical decision problem with finite samples under ambiguity but with no budget

constraint (c.f., Dehejia (2001), Manski (2004, 2005), Stoye (2009), Hirano and Porter

(2009) and Tetenov (2008)). Our substantive contribution is to study such problems in the

presence of aggregate budget constraints — an extremely common situation in real life but

largely ignored in the treatment choice literature.1 The constraint makes the treatment

assignment problem substantively realistic, especially for developing countries, and raises

a set of unique substantive and technical issues that are absent in the unconstrained case.

On the empirical side, treatment targeting has been investigated in job-training con-

texts, c.f., Berger, Black and Smith (2001), Frolich (2008), Behnke et al (2008), Lechner

and Smith (2007). See also the papers in Eberts et al (ed., 2002) and the special issue

of the Economic Journal (Nov, 2006) on profiling. A few recent studies have used exper-

imental data to estimate the parameters of dynamic structural models of behavior and

utilized the estimates to simulate the effects of counterfactual policy interventions (c.f.

1Manski (2005) studies planning problems which satisfy ’separability’ and specifically mentions (page

10—11) budget constraints as a situation where separability is violated and, consequently, not studied by

him.



Attanasio, Meghir and Santiago (2011) and Duflo et al (2007)). Mahajan et al (2009)

discuss identification and estimation of a static structural model of ITN adoption using

observational data alone and use the estimated parameters to perform counterfactual pol-

icy analysis. Todd and Wolpin (2006, 2007) discuss the estimation of structural models of

behavior using pre-program data and compare predictions of their estimated model with

subsequent experimental data.

The rest of the paper is organized as follows. Section 2 describes the treatment assign-

ment problem under budget constraints. Section 3 describes our sample-based approach.

Section 4 introduces the estimators; section 5 develops the relevant distribution theory and

section 6 discusses the covariate choice problem when assignment is based on parametric

models of treatment effects. Section 7 presents the application to the welfare-maximizing

allocation of bed nets in Kenya and presents a Monte Carlo exercise to inform the covari-

ate choice problem. Section 8 concludes with directions for future research. The appendix

contains technical proofs.

In the text, the symbol := will mean equal by definition, the symbols  and Φ will

refer to the standard normal density and c.d.f., respectively and  | (|) will denote
the c.d.f. of the random variable  at , conditional on  = .

2 Set-up

The assignment problem: To fix ideas, let  denote a household-level outcome and let

 denote a binary treatment whose value can be affected directly by policy. Let  denote

observed covariates which includes both discrete and continuous components. In the bed-

net example, analyzed below in detail, the population of interest is rural households of

Western Kenya. We have a simple random sample drawn from two districts in Western

Kenya. Each household is an observation.  is a binary outcome which equals 1 if the

household owns and uses a bed net.  is the presence of a child under 10, the wealth

per capita and ownership of a bank account. The treatment,  = 1, is offering a highly

subsidized bed net to the household. 1 and 0 are the value of the potential outcome 

with and without the treatment, respectively:  = 1 + (1−)0. Let  () denote

the expected outcome for households with  =  when their treatment status  is set

externally at  ∈ {0 1}, i.e.,  () =  (| = ). If the observed  is independent

of (1 0) conditional on , as in a randomized trial (the case studied here), then a



nonparametric regression of  on  for households with  =  in the sample can be used

to recover this function.

First, consider an idealized version of a social planner’s problem where  () and the

marginal distribution of  with support X̄ are known to the planner. The planner faces

a budget constraint that the fraction of households who can be treated is at most . We

define the planner’s idealized problem as the choice of a map  : X̄ → [0 1] where  ()
equals the probability that a household with  =  is assigned to  = 1 with probability

 (). We will assume that the planner wants to maximize mean outcome.2 Then the

planner’s problem is

max
(·)

Z
∈X̄

[1 ()  () + 0 () {1−  ()}]  ()

subject to

 =

Z
∈X̄

 ()  () . (1)

Define  () to be 1 ()− 0 (), i.e., the conditional average treatment effect (CATE).

We allow for negative program impacts (i.e., Pr [ ()  0] ≥ 0), but to keep the present
problem substantively interesting and analytically tractable, we will maintain the follow-

ing condition throughout the paper:

Assumption Maintained (AM): (i) For some  ≥ 0, we have Pr ( ()  )  

(the constraint binds); (ii)  () has bounded support with Lebesgue density bounded

away from zero.

Condition AM (i) lets us ignore some technical complications due to (additional)

nondifferentiability which would arise if Pr ( ()  0) is close to , relative to the sample

size (c.f., Andrews (1999)). It also makes the problem more realistic in a developing

country setting by making the budget constraint bind. condition AM (ii) is not strictly

necessary for us but it simplifies the exposition and proofs.3

It is straightforward to show that under condition AM(i) and AM (ii), the solution

to the problem subject to (1) is of the form  () = 1 { () ≥ } where  satisfies:  =R
∈X̄ 1 ( () ≥ )  (). That is,  is the (1− )th quantile in the marginal distribution

2More generally, if the planner is interested in maximizing (a possibly covariate weighted) outcome

utility, then  () represents the expected value of the planner’s utility defined on outcomes for individ-

uals with  =  and  = .
3In the appendix part 3, we (a) show how a simple model of household consumption would imply

AM(ii) and (b) briefly discuss how the analysis would proceed if we were to drop AM.



of the random variable  () which is unique under assumption AM(ii). Define the

resulting "ideal" welfare as

 =

Z
∈X̄

[1 () 1 ( () ≥ ) + 0 () 1 ( ()  )]  () , (2)

which would be attainable if 1 (·), 0 (·) and the distribution of  were known exactly

to the planner. Note that  also equals 0 (), the shadow cost of the budget constraint,

i.e., the expected treatment effect on the marginal household made eligible for treatment

under our budget-constrained rationing rule.

Minimizing expenditure: The dual formulation of the problem is where the plan-

ner’s objective is to achieve an expected outcome equal to  by allocating treatment based

on covariates. The parameter of interest is the minimum amount of funds necessary to

achieve . This problem can be represented as

min
(·)

Z
∈X̄

 ()  () (3)

subject to Z
∈X̄

[1 ()  () + 0 () {1−  ()}]  () = . (4)

It is not hard to show that the optimal  (·)will again be of the form  () = 1 { () ≥  ()}
where  () is such that  (·) satisfies (4). Note that by duality, the minimum value of (3)
is simply −1 () where  (·) is defined in (2) and −1 () = inf { :  () ≥ }. Notice that
 (·) is monotone increasing and so −1 (·) is well-defined.
Some extensions: While we focus the current paper on the mean utility of outcome

as the objective, the idea applies in principle to any functional of the overall outcome

distribution. Let 1 (·|) and 0 (·|) denote the marginal C.D.F. of the outcome, con-
ditional on , under treatment and no treatment respectively. These marginals can be

identified using experimental data from randomized treatment allocation. If we fix the

treatment probability as  (·), then the C.D.F. of the overall outcome corresponding to
the choice  (·) is

 (·; ) =
Z
∈X̄

[1 (·|)×  () + 0 (·|)× {1−  ()}]  () .

If the planner wishes to maximize a functional F (·) of the C.D.F.  (· ), then the
optimization problem reduces to

max
(·)

F ( (·; )) s.t.  =
Z
∈X̄

 ()  () .



For the mean utility case studied in this paper, F ( (· )) ≡ R
X  ()  ( ), with

 () ≡  denoting the mean outcome case. Similarly, F ( (·; )) ≡ −1 (05; ) denotes

the median maximization case. The form of the solution and the related distribution

theory will of course change depending on the choice of F (·).
A simple extension can also be made to the case where the treatment cost varies by

. Let  () denote the per capita additional cost of treating type . This is estimable

from the experimental data when cost data are available. The original problem is now

modified to

max
(·)

Z
∈X̄

[1 ()  () + 0 () {1−  ()}]  () ,

s.t.  =

Z
∈X̄

 ()  ()  () .

The solution is of the cost-benefit form: treat if and only if  ()−  () ≥ , withZ
∈X̄

 () 1 ( ()−  () ≥ )  () = .

3 Sample-based rule

The rule 1 { () ≥ } is infeasible because  (·) (and usually also  (·)) are unknown.
But we can approximate it with sample data from an experiment where the treatment

was randomly assigned. In particular, we consider Manski (2004)’s Conditional Empirical

Success (CES, henceforth)-type rule which is the sample analog of the rule in the previous

display, viz.,

 () = 1
n
 : ̂ () ≥ ̂

o
with  =

1



X
=1

1
³
̂ () ≥ ̂

´
.

Here ̂ () an ̂ are consistent estimates of  () and .4 One can then define the expected

welfare of the feasible rule as

 :=

Z
X

h
1 () Pr

n
̂ () ≥ ̂

o
+ 0 () Pr

n
̂ ()  ̂

oi
 () , (5)

where  (·) represents the population distribution of covariate , based on which the
treatment will be allocated to new applicants. Under regularity conditions (e.g., uniform

4It is worth investigating whether the CES rule itself is optimal in a Hirano-Porter (2009) sense here

but this question is outside the scope of the present paper. It would require extension of their methods

to allow for unknown parameters, such as , which cannot be estimated at the
√
-rate.



convergence of ̂ (·) to  (·), detailed in the appendix)  will converge to  defined in (2)
as →∞.
The condition  = 1



P

=1 1
³
̂ () ≥ ̂

´
is one that holds in the sample and will

hold in the population only asymptotically. In order to have a ̂ that will make the

budget constraint hold exactly in the population, the planner needs to know the marginal

distribution of , whence ̂ may be obtained by solving

 =

Z
X
1
³
̂ () ≥ ̂

´
 () .

In our empirical application, we do not know the marginal distribution of  and so

we stick to the sample budget constraint formulation with the understanding that the

resulting choice of ̂ will satisfy the budget constraint approximately in the population.

The technical results below concern the estimation of , its inverse and the large

sample properties of these estimators. This distribution theory, which is significantly

more interesting than in the unconstrained case where  is known to be zero, is used to

(i) construct asymptotically valid confidence intervals for expected welfare  and its dual

(introduced below) and (ii) address the issue of covariate choice in treatment allocation.

Interestingly, it turns out here that the estimator ̂ of  (and thus of  in large samples)

has the parametric rate of convergence but the corresponding ̂ is not
√
-consistently

estimable in general. To see why, consider the special case where  is a scalar continuous

covariate with c.d.f.  (·) and  (·) is strictly increasing but otherwise unknown. Then

1−  = Pr ( ()  ) = Pr
¡
  −1 ()

¢
= 

¡
−1 ()

¢
.

Inverting this, we get that

 = 
¡
−1 (1− )

¢
= 

¡
1 − 0| = −1 (1− )

¢
.

Thus  is the nonparametric conditional expectation evaluated for the marginal treatment

recipient and is therefore not
√
-consistent even when the marginal of  is known.

Although the distribution theory for ̂ is not of primary interest for the rest of the paper

(it is used to get the distribution of ̂), our result is somewhat interesting from a theoretical

perspective. It shows that when  (·) is an infinite-dimensional unknown parameter and
cannot be estimated in a

√
-consistent way, then a quantile of the scalar random variable

 () is generally not
√
-consistently estimable although the mean of  () is. To our

knowledge, this result is new and appears to us to be somewhat interesting because in

most cases of interest, quantiles and means have the same rates of convergence.



Note that we can define the relevant population quantities, viz., ,  (·) and  as

solutions to the (semiparametric) moment conditions

 (1 − 0 −  () |) = 0,

 [1 ( () ≤ )− 1 + ] = 0,

 [ ()× 1 ( () ≥ )− ] = 0.

Of these, the second moment condition is differentiable in the scalar  if  () has a

density but, in general, not functionally differentiable in  (·), owing to the presence of
the indicator. This makes it infeasible to directly apply the methods of e.g., Chen, Linton

and Van Keilegom (2003) which requires (Hadamard) differentiability of all the population

moment conditions with respect to both the finite and the infinite dimensional parameters.

4 Estimation

We now formally define our estimators corresponding to the CES approach defined above.

Suppose ̂ () denotes an estimator of  () and ̂1 () an estimator of 1 (). In order to

circumvent the nonsmoothness of the population moment for  discussed above, we use

extra smoothing to construct our estimators. Suppose that  () is bounded between

[− ] on the support of . Then choose a symmetric (about zero) kernel  (·) with
bounded support, w.l.o.g. [−1 1], the corresponding C.D.F. kernel ̄ () = R −1  ()  for
each  ∈ [−1 1] and a sequence of bandwidths  converging (slowly) to zero as →∞.
The C.D.F. kernel simply converts the indicator function 1 { () ≤ } to a function that
changes smoothly from 0 to 1 as  ()−  changes sign from positive to negative in finite

samples but approaches the indicator as →∞.
Now define ̂, and ̂ by

1



X
=1

(
̄

Ã
̂ − ̂ ()



!
− {1− }

)
= 0,

̂− 1


X
=1

"
̂1 ()− ̂ () ̄

Ã
̂ − ̂ ()



!#
= 0. (6)

Notice that the solution to the first equation in the previous display is unique. Indeed,

the derivative of the LHS of the first equation w.r.t. ̂ is positive since ̄ (·) is the integral
of a (positive) kernel. Given that ̂ can be uniquely solved, the solution to the second



equation must necessarily be unique because ̂ is defined as the average of something

involving ̂ and other observed quantities. The smoothing applied in (6) is similar in

spirit to Horowitz’s (1992) analysis of the smoothed maximum score (see also Hall et

al (1999)). But in that problem, the finite-dimensional parameter of interest does not

explicitly depend on any infinite-dimensional underlying parameter. In contrast, here the

key parameters of interest,  and , are based on the infinite-dimensional component  (·)
through population moments that are not smooth in  (·). Thus the present estimators
lie at the intersection of classical 2-step semiparametric estimators and smoothing-based

estimators for countering non-differentiability. This makes both the results and the proofs

substantially different from both strands of the literature.

We now consider two cases as follows.

Parametric Case: First consider the case where we have a finitely parametrized

regression model for  giving us  () =  ( ) and 1 () = 1 ( ), where the

functional forms  and 1 are known and  is a finite dimensional parameter. The

efficient estimators of  can be constructed here either by a direct optimal minimum

distance approach or by a one-step GMM procedure. For general non-linear models with

a distributional condition, the MLE will be efficient.

Nonparametric case: Suppose  ≡ ¡ 
¢
where  contains the discrete com-

ponents of and is a -variate vector of the continuous components of  with support

X̄  and density  (·). Let  (·) be a density kernel and  a sequence of bandwidths

converging to zero at an appropriate rate, to be specified later, as →∞. Define ̂1 (),

̂0 (), ̂1 (), ̂0 () as the Nadaraya-Watson regression estimators of respectively

 , (1−) ,  and (1−) on , evaluated at  = , and calculated while leaving

out the th observation, e.g.,

̂1 () =

1
−1

P
 6=







³

−





´
1
¡


 = 


¢
1

−1
P

 6=
1




³

−





´
1
¡


 = 


¢ .
Now ̂ () can be defined in terms of the above quantities as

̂ () =
̂1 ()

̂1 ()
− ̂0 ()

̂0()
.

For a large number of discrete regressors, one can also use multi-dimensional kernels

(typically product of several unidimensional kernels) and smooth across the discrete values

as well. As is well-known, this does not affect the asymptotic distribution theory under



the same bandwidth conditions (c.f. Bierens (1994), theorem 10.4.3, Li and Racine (2007),

chapter 4). If, however, in place of a continuous regressor, we have a discrete regressor

taking infinitely many values (such as a Poisson random variable), one can simply use

cell-averages to estimate conditional means. Following the arguments of Delgado and

Mora (1995), it follows that smooth functionals of such nonparametric estimators are
√
-normal, with no bias term. In our application, all discrete variables are binary and

the key continuous variable (wealth) does appear to be continuously distributed. So we

work with the traditional Nadaraya-Watson type estimators.

Fixed Trimming: To avoid some technical issues related to boundary bias, we use

the following "fixed trimming" modification, as in Newey (1994), theorem 4.1. Let X̄
denote the support of  and let X be a compact subset of the interior of X̄ , such that

the density of  is bounded away from zero on X . Then to define our estimands, we will
simply work within X . Notice that in this problem, which ’s and what range of ’s

we want to use for conditioning treatment assignment is up to us. So the fixed trimming

condition can be interpreted as part of the problem description.5However, we will suppress

the trimming term 1 ( ∈ X ) in the rest of our exposition to prevent notational clutter.
Finite sample bias: Note that our estimator ̂ may be expressed as

1



X
=1

̂1 ()− 1


X
=1

̂ ()× ̄

Ã
̂ − ̂ ()



!
.

The second term is composed of the product of ̂ () and the term ̄
³
̂−̂()



´
and

the latter is large when ̂ () is small. Because of the local variance in ̂ (), there

is potentially a negative correlation in the estimation errors in ̂ () and ̄
³
̂−̂()



´
which would tend to introduce a positive bias in the estimate of . In order to mitigate

the bias, one option is to use a split-sample method as first suggested in Geisser (1975).

A simulation exercise using this method is reported in the appendix, part 2. Given that

the split-sample results seem to be worse to us—probably because the effective sample size

is halved— we conduct the nonparametric application using full-sample methods. We will

return to split-sample methods again when we discuss covariate selection but in that case,

we restrict attention to parametric specifications, as suggested by a referee.

5Imbens and Ridder (2009) have recently considered some alternatives to fixed trimming using a

"nearest interior point" modification to NW estimates.



5 Large sample theory

In this section, we consider the asymptotic distribution theory for our estimators. Section

5.1 outlines the simpler results for the parametric case where  () is known up to a finite-

dimensional parameter. Section 5.2 focuses on the nonparametric case. For the latter,

theorem 1 concerns asymptotic properties of ̂, theorem 2 concerns ̂. The key result is

that ̂ but not ̂ has parametric rate of convergence under regularity conditions.

5.1 Parametric Case

To get an idea for the distribution theory, consider the set-up where  () is parametrically

specified as  ( ), with  (·) known; typically  (the so-called “pseudo-true value”) is
a slope coefficient in a linear or non-linear regression and can be estimated at parametric

rates using, say, GMM or the MLE. For some specific functional forms of  (· ·), e.g., a
linear one, the function  () =

R
− 1 { ( ) ≤ }  () may be differentiable in 

and then no smoothing would be necessary; but smoothing-based methods (i.e., using )

are more generally applicable and so we focus on that. The key result is that both  and

 can be estimated at the
√
-rate. We provide an outline of proof in the appendix at the

end of part 1.

5.2 Nonparametric Case

The nonparametric case is far more involved and occupies the bulk of our technical proofs

in the appendix. It has the obvious advantage of being robust to distributional misspec-

ifications and is therefore our preferred method. We now present two results regarding

the large sample behavior of our estimators of  and . The exact conditions under which

these hold are listed in the appendix together with the proofs of the results.

The next theorem deals with the distribution of ̂ which is ultimately needed for

obtaining confidence intervals for . The key assumptions for the following theorem 1

are that for some  ≥ 2, density of  (·) has at least − 1 uniformly bounded derivatives,
the ( − 1)th one denoted by  (−1) (·), the bandwidth sequence satisfies 2+1 →  ∞,
 (·) is an th order kernel satisfying

R 1
−1 

 ()   ∞, and 2 () :=  (| = )

are finite for  = 0 1. The asymptotic bias of ̂ will be proportional to
√
 which can be

made to go to zero by choosing  to be of smaller order than −
1

2+1 but at the cost of

increasing the variance (see below for more on this).



Theorem 1 Under conditions A0-A3, A4(i), conditions B3(i) and B4(i) and B5, listed

in the appendix, we have that

̂ −  =  (1) .

Further, under conditions A0-A4 and B3-B11, detailed in the appendix, we have that

p
 (̂ − )

→ 

µ


 2 () + 2 ()

 ()

Z 1

−1
2 () 

¶
,

where

 2 () = 

½
20 ()

Pr ( = 0|) | () = 

¾
2 () = 

½
21 ()

Pr ( = 1|) | () = 

¾
 = (−1)

√


!
× 

(−1)
 ()

Z 1

−1
 () .

Proof. Appendix

Finally, we state the result for ̂, under somewhat stronger conditions than the ones

above. The  defined above now needs to be at least 4 and the kernel  is then of a

"higher-order" variety. Define

1 =  { ()− 1 ( () ≤ )} ,
2 =  ()× 1 { () ≤ }− ,

3 = 1 ( () ≤ )× 

Pr ( = 1|)
{1 − (1|)} ,

4 = 1 ( () ≤ )× 1−

Pr ( = 0|)
{0 − (0|)} ,

 = 1 + 2 + 3 − 4.

Theorem 2 Under conditions A0-A4 and B3-B11, listed in the appendix, we have that

̂−  =  (1) .

Further, under conditions A0-A5, B3-B12, listed in the appendix,

√
 (̂− ) =

1√


X
=1



1 − 1 ()

Pr ( = 1|)
− 1√



X
=1

 +  (1) . (7)



Proof. Appendix.

The proof works by using

̂ =
1



X
=1

̂1 ()− 1


X
=1

̂ ()× ̄

Ã
̂ − ̂ ()



!
.

The first term is then analyzed via lemma 3 in the appendix and a Taylor expansion cou-

pled with U-statistics results are used to show that the second term has an asymptotically

linear form. The final variance can be consistently estimated using sample cross-products,

under standard conditions for the WLLN. It may be noted here that the estimation error

in ̂ (·) affects the distribution of ̂ through the terms 3 and 4.

Bias Removal: Our proofs of the above results use bias-removal. If  (·) has bounded
derivatives up to order ( − 1), then the MSE of (̂ − ) is given by

2 ×
"

(−1)
 ()

!

Z 1

−1
 () 

#2
| {z }



+
1



∙
 2 () + 2 ()

 ()

Z 1

−1
2 () 

¸
| {z }



,

implying an MSE minimizing bandwidth choice of  = ∗−
1

2+1 , where ∗ =
¡


22

¢ 1
2+1 .

This choice of  does not work for getting a
√
-rate for ̂ because (c.f. step 6A in the

proof) it implies that
√
 = 

³


1
2(2+1)

´
which blows up to +∞. So we need to choose

 to be smaller than the one that is MSE-optimal for .

Bandwidth Conditions: The conditions in the appendix impose several restrictions

on bandwidths which are related to the dimension  of , the extent of smoothness 

of the density of  () (higher  implying faster convergence for ̂), smoothness  of the

function  (·) (higher  implying faster convergence for ̂ (·)) and the number of moments
 of the dependent variables. They imply sufficient moment and bandwidth conditions

for a rate of uniform convergence, obtained in Hansen (2008) and Newey (1994). It is

useful to have a specific choice of bandwidths which imply the conditions for (7) (which

requires the strongest conditions). We can choose the bandwidth  for estimating  (·)
as  = − and the bandwidth  = − for some    0 which satisfy the following

sufficient restrictions:  ≥ 4,  ≥ 4,  ≥ +2

, 1

6
   1

2
, 5
12

   1 and   1
4
. This

choice will satisfy all the conditions for (7) and, in particular satisfy sufficient conditions

for the result that sup
¯̄̄
̂ (·)−  (·)

¯̄̄
= 

¡
−14

¢
. In particular, for  = 1, one can assume

 = 3,  = 4, = 4 and set  = 1
7
and 5

24
   1

4
, which is what we use in the application.



Distribution theory for dual: Recall that the value function for the dual problem

 () represents the smallest fraction of households who have to be assigned to treatment

(optimally) to guarantee that the expected mean outcome is at least . In other words,

 [ ()] equals , where  () plays the role of  in the primal problem. The  () is

estimated by the sample analog ̂ () = ̂−1 (). Using a standard first-order expansion,

and noting that 0 () equals  (), one gets that

√

³
̂ ()−  ()

´
= −
√
 (̂ ( ())−  { ()})

 { ()} +  (1) ,

from which the asymptotic normality of
√

³
̂ ()−  ()

´
follows by applying the above

theorems.

6 Choosing Covariates

The above analysis has considered treatment targeting by a fixed set of covariates and

experimental estimates from large samples were used to determine CES type allocation

rules based on these covariates. The resulting expected welfare () is then approximated

in a large-sample sense by an appropriate sample analog (̂). However, one practical

consideration in designing treatment protocols is to decide which covariates to choose for

targeting. A brief outline of the problem and a practical solution based on cross-validation

is discussed below. A full-blown theoretical analysis of this question is beyond the scope

of the present paper. But in appendix subsection 4, we provide an outline of a potential

theoretical approach, based to local-to-zero type asymptotics, for analyzing the problem.

Basically, there are two considerations involved. One is the financial cost of gathering

covariate information required for implementing the desired allocations. The second is

the issue of statistical precision of covariate-conditioned treatment effects obtained in the

finite experimental sample.

For the following discussion (as recommended by a referee), we concentrate on the case

where  (·) is parametrically specified as 0,  ∈ R and let  :=  (  (·)) denote the
treatment threshold.

Finite sample accuracy: Suppose we want to choose one among a set of covariate

combinations, indexed by {1  } with  and ̂ denoting the parameter and its MLE,

respectively, corresponding to covariate set . Analogously, denote the treatment thresh-

old and its estimator by  and ̂. The case  = 0 will denote the full covariate set. Let



 denote assigning an individual to treatment and consider the loss function

L (; (  )) =
Z
(0 −  (  ))× [1 (0   (  ))− ]  () (8)

The above loss function penalizes when knowledge of the true (  ) would recommend

giving  = 1 (0) but  leads to recommendation of 0 (1). When using all covariates, the

CES rule is of the form  = 1
n
0̂  

³
̂ ̂

´o
, where

³
̂ ̂

´
denote estimates of (  ).

Now consider two rules, one where allocation is based on covariate set  (with respective

parameters  and ) and one where it is based on the full feasible set of covariates.

Using an Edgeworth expansion, the risk difference between using the full set versus the

set  = 1, say, up to first order is given by

 ((  )  0 (·))−1 ((  )  1 (·))
: = 1 − 

=

Z
(0 −  (  ))×

∙
Φ

µ
01 −  (1  )

1 () 
√


¶
−Φ

µ
0 −  (  )

 () 
√


¶¸
 () ,

where 1 () and  () denote respectively the asymptotic standard deviation of 
0̂1− ̂1

and 0̂ − ̂. This expression sheds light on the role of estimation precision. Note that

whenever 0 −  (  ) and 01 − 
¡
1 

¢
have different signs, the integrand will

be negative irrespective of the values of 1 () and  (). When they have the same

sign, however, the integrand will tend to be positive whenever 1 () is small relative to

 (). This suggests that the narrower model will yield higher welfare in finite samples if

covariates not included in it have small impact on the treatment effect and/or there is a

large amount of variation in these covariates in the sample (leading to smaller 1 ()).

Financial costs: Using a larger number of conditioning covariates can yield bet-

ter (at least, no worse) targeting if our estimates come from large samples. However,

measuring more covariates is also financially expensive. These measurement costs are

incurred for everyone in the population during the actual treatment assignment and not

just for individuals getting the treatment. Furthermore, unlike statistical precision costs,

the measurement costs do not disappear with increasing sample size. Suppose we are

choosing whether to condition treatment on a larger set 0 or a smaller subset 1 where

gathering information about  entails a per capita expenditure of ,  = 1 2. Suppose

these two conditioning sets yield expected welfare functions 0 (·) and 1 (·), respec-
tively. Also suppose  is the average welfare we want to attain. Then the expected per

capita cost of using 1 is the sum of the treatment cost plus the cost of measuring 1,



i.e., −11 ()+ 1.
6 Similarly for 0. Therefore, we should choose 0 if 

−1
1 ()+ 1 is large

relative to −10 () + 0.

6.1 Feasible Rules

Note, however, that since the ’s are unknown, they cannot be used directly in choosing

 and feasible sample-based rules are warranted. This problem is a somewhat complicated

version of classic model selection problems, on which there is a large literature in statistics

and time-series econometrics. The complication arises here because the underlying con-

strained optimization problem makes the welfare function depend on both the conditional

mean of 1, 0, and the marginal distribution function of the covariates in a complicated

way.7

In the frequentist approaches to model selection in simpler settings, one aims to esti-

mate the risk arising from the use of estimates in place of true values, i.e., in the present

context, estimate . See, for instance, Claeskens and Hjort (2008, CH hereafter) for a

comprehensive textbook treatment. For reasons of brevity, we concentrate on the method

cross-validation for the present paper but note that other frequentist approaches, e.g.,

resampling based methods and Bayesian approaches could be potentially used here, as

well.

Cross-validation (CV): The CV idea is to split the sample into a training part

(containing − 1 observations) and a validation part (containing 1 observations). For

a given covariate choice , for each such split, the parameters  and  are estimated

using the training part —call these ̂ and ̂. Then these estimates are used to make

allocations for the validation part and the welfare for that particular split is calculated

as:

̃ :=
1

1

1X
=1

"


1
1

P1
=1

1
n
0̂ ≥ ̂

o
+

 (1−)
1
1

P1
=1 (1−)

1
n
0̂  ̂

o#
. (9)

The overall welfare is calculated by averaging the per-split welfare across all possible

splits of the sample. A particularly popular split in statistics is the leave-one-out version.

6Notice that in this case,  and −1 are both measured in monetary units and are thus directly

comparable.
7Constructing Manski (2004)-style bounds on exact finite sample risk for different covariate choice

is difficult here owing to the complicated nature of the probabilities which involve, among other things,

finite sample Lorenz shares for the finite sample conditional mean function.



The idea here is to predict welfare from using estimates from samples of size  − 1 to
design the allocation for for the remaining observation. Averaging across the sample

observations then mimics the average welfare of the CES rule across samples drawn from

the population.8 A modification of the above is provided by  -fold CV (c.f., Geisser

(1975)) — where the sample is split into  disjoint subsamples randomly; then each of the

 subsamples is used for validation and the result averaged across them.

In order to compare the accuracies of the cross-validated and the naive sample-based

estimates of welfare in finite samples, we performed a small Monte Carlo exercise based

on our sample data, which is reported in the next section. In the actual application, we

complement our results based on the asymptotic approach of section 4 with a leave-one-

out CV approach (which gave the best results in the Monte Carlo for small samples) to

see how covariate choice in the parametric specification may be dictated by sample size.

One issue we do not address here, though, is that of post model-selection inference,

which may be relevant in practice, especially when one model is chosen over many com-

peting ones. In the appendix subsection 4, we briefly outline an (local-to-zero type)

asymptotic framework that seems appropriate for the covariate choice problem for finite

samples and describe how that would relate to the post-model selection inference issue.

7 Application to bednet provision

7.1 Background

We now consider a substantive application —viz, the allocation of subsidies for long-lasting

insecticide-treated nets (ITNs) to households, using experimental evidence from Kenya.

Our treatment of interest is making subsidized ITNs available to a section of this popu-

lation.

ITNs have been shown to reduce overall child mortality by up to 38 percent in regions

of Africa where malaria is the leading cause of death among children under 5.9 In addition,

ITN use can help avert some of the substantial direct costs of treatment and the indirect

8It is possible to show that ̃ is first-order equivalent to the naive ̂ minus a penalty term that is

related to the variance of ̂ (see appendix part 4, last sub-section).
9See Lengeler (2004) for a review. Earlier estimates of ITN use on reductions in child mortality from

a randomized trial in Gambia were as high as 60 percent, but most estimates from randomized trials in

Africa are closer to 20 percent.



costs of malaria infection on lost income.10 Lucas (2007) estimates that, alone, the gains

to education of a malaria-free environment more than compensate for the cost of an ITN.

Costing $5 - $7 a net, however, ITNs are not affordable to most families (Cohen and

Dupas, 2010; Dupas, 2010). For this reason, there is a large consensus that ITNs should

be fully subsidized (WHO, 2007; Sachs, 2005).

Teklehaimanot et al (2007) estimate that providing one free long-lasting ITN for every

two at-risk persons in sub-Saharan Africa would amount to 2.5 billion dollars. The funds

committed by governments and donor agencies for ITNs have not yet reached that amount,

however. For example, the Government of Kenya estimates that around 1 million pregnant

women are in need of an ITN every year, but their budget will allow them to provide only

0.5 million nets per year to pregnant women over the next 5 years (Kenya Round 7

Proposal, 2007).

Under such a budget constraint, the question of how to allocate the available ITNs

among households becomes an important policy question. If the treatment effect (the

health impact of getting a subsidized ITN) is exactly the same for everyone in the pop-

ulation, then all possible allocations will lead to the same overall gains. However, when

there is heterogeneity in the treatment effect (e.g. the health impact of getting a sub-

sidized ITN varies with observed covariates, such as socioeconomic status, presence of

children in the household, etc.), the gains can be maximized by a covariate-based alloca-

tion. While the health impact of using an ITN might be homogenous, the health impact

of getting a highly subsidized ITN might vary across covariates since usage rates (con-

ditional on having a net) are likely to vary across covariates. For example, households

who can afford to purchase an ITN in the absence of any subsidy (because they have

access to credit or are wealthy enough) will not benefit from the treatment very much

(i.e. their 0 () will be large and thus for them the difference 1 ()−0 () is likely to be
small). Likewise, since young children are the most vulnerable to the disease, households

without young children might not benefit much from the treatment (i.e. their 1 () will

be small and thus the difference 1 ()− 0 () is likely to be small). For these reasons,

the treatment effect is likely to vary across observed covariates such as wealth, access to

financial services, and the presence of young children. An allocation rule that takes into

account such heterogeneity could potentially generate important welfare gains.

10Ettling et al. (1994) find that poor households in a malaria-endemic area of Malawi spend roughly

28 percent of their cash income treating malaria episodes.



7.2 Design

For this application we use data from a randomized experiment conducted with rural

households in Western Kenya in 2007 (Dupas, 2009). The price at which a household

could purchase an ITN varied from $0 (a free ITN) to $4, in steps of $0.50. Households

were randomly assigned to a price. People had three months to redeem the voucher

entitling them to an ITN at the assigned price. In this application, we consider two

groups: households that faced a very low (highly subsidized) price ($0 or $0.50) and

households that faced a high price of $2 or more. Table 1 presents summary statistics on

the 1007 households that form the sample used in the analysis.

The take-up rate of the ITN subsidy was 84% in the low price group and 13% in the

high price group. Conditional on take-up, the usage rate was slightly higher in the low

price group than in the high price group (70% versus 58%), leading to coverage rates

of 60% and 8%, respectively. In what follows, we consider the low price group as the

treatment group and the high price group constitutes the control. The treatment is thus

“having access to a low-price ITN”.11

The welfare measure we consider is the fraction of households covered by an ITN (i.e.,

the fraction that owns and uses an ITN). While incidence of malaria, health levels, wages

lost due to malaria, or even consumption foregone due to wages lost due to malaria, could

be the “ultimate” outcomes of interest, we concentrate on the ITN coverage rate for two

reasons. First, as discussed above, multiple trials have established that ITN coverage leads

to significant reductions in morbidity and mortality, especially among young children (see

Lengeler (2004) for a review), and therefore the coverage rate is a good proxy for those

ultimate outcomes. Second, in our data, coverage was observed directly (through surprise

home visits during which enumerators checked whether the ITN was hung above a bed),

and therefore is not subject to reporting biases, in contrast with self-reported health

measures.

To test for heterogeneity in the treatment effect, we run an OLS regression of ITN

coverage on the treatment, three covariates, and the interactions between the treatment

11One may note that the short-run take-up in the low price group was not 100%, since some of the

“treated” had to pay a small fee (i.e., $0.50) to access the net. In the analysis below, however, we assume

that take-up was 100% in the treatment group. In other words, we consider that those who did not

take-up the subsidy cost as much to the government as those who took-up the subsidy but didn’t use

their net. This is because the take-up would potentially have reached 100% if people had had more than

three months to redeem their voucher.



and the covariates. The covariates are: a binary variable equal to 1 if the household

includes at least one child under 10; the natural log of the value of the household’s wealth

per capita; and a binary variable equal to 1 if the household owns a bank account. The

first covariate (presence of a child) was chosen as an indicator of the private returns to

using a bed net (since young children are the most vulnerable to malaria). The two other

covariates were chosen as proxies for socioeconomic status and ability to pay. They were

measured through a baseline survey administered through household visits. In particular,

wealth per capita was measured as follows: households were asked to list all their assets

(including animal assets) and to estimate their resale value. The combined value of all

assets was then divided by household size to obtain the “wealth per capita” indicator.

Such wealth is typically held in relatively illiquid assets, however. For this reason, we

include “ownership of a bank account” as a second ability-to-pay measure. Savings held

in a bank are perfectly liquid, and in our study area, access to formal financial services

has been shown to be an important determinant of households’ ability to save and acquire

lumpy durables (Dupas and Robinson, 2009). Of the three covariates we use, the most

costly one to measure is wealth, which typically requires a lengthy home visit by an

enumerator. Conditional on making this visit, asking respondents about their household

composition and their ownership of a bank account would not be onerous. One issue

though is that of the reliability of such self-reported information, once people know the

allocation rule. This is not a concern in our dataset since the respondents were explicitly

told (through the informed consent process) that their answers would have no bearing on

what treatment they would be eligible for in the future, but in an actual program, once

the allocation rule is well-known, collecting reliable information on the covariates that

determine eligibility might be quite costly. This cost would then need to be accounted for

in choosing covariates, as discussed above.

The results are presented in Table 2. The treatment was randomized at the household-

level so no clustering correction is needed. We find that the treatment effect appears

significantly higher for households with a child under 10 and significantly lower for house-

holds that own a bank account. The treatment effect is also lower for those with greater

wealth, but the standard error is also large and the interaction term is not significant. An

F-test of the joint significance of the three interaction terms is significant at 5%.12

12Two commonly used covariates are age and education level. They do not appear to affect the

treatment effect in our sample, possibly because the sample is relatively homogeneous in terms of those



7.3 Analysis

7.3.1 Non-Parametric Analysis: Choice of Kernels and Bandwidths

For bias-removal, we use the kernels13

() = 05× ¡3− 2
¢×  () ,

̄() =
15

32

µ
7

5
5 − 10

3
3 + 3+

16

15

¶
× 1 (−1 ≤  ≤ 1) + 1 (  1) ,

where  (·) is the standard normal density. Two bandwidths are needed for the non-
parametric estimation: the bandwidth  in the estimation of the conditional ATE  (),

and the bandwidth  in the smoothing correction. Figure 1 graphs how the estimated

treatment threshold ̂ (Panel A) and value function ̂ (Panel B) vary with  for a range

of possible . We find that both estimates are insensitive to the choice of . In Figure

2, we present ̂ and ̂ for two budget constraint levels:  = 05 (Panel A) and  = 025

(Panel B). The stability of ̂ over a reasonable range of bandwidths suggests that the

choice of bandwidths should have little effect on the nonparametric estimates of the value

function.

Figure 3 graphs a leave-one-out cross validation criterion function for  (). The

function is plotted over the range  ∈ [03 04], which correspond roughly to −16

and −18, respectively. The function seems to dip around  = 033. Given the small

sensitivity of our estimates of  and, to a certain extent,  to the choice of , we show

the results for both  = 03 and  = 04. We use  = 035; recall that the results

seem very insensitive to the choice of  for a given choice of .

7.3.2 Conditional ATE

The nonparametric estimate of the CATE ̂ () was computed corresponding to two band-

widths  = 03 and  = 04. The parametric estimator of  () was computed as

̂ () = (̂0 + 0̂01), where ̂0 and ̂01 are OLS estimates in the regression (presented in

Table 2):

 = 0 + 0
1 + 0 + 0

1 × + . (10)

two characteristics.
13To see how our results are affected by choice of a higher order kernel, we repeated the analysis for a

standard normal kernel instead of  (). The results are numerically very similar and do not imply any

substantively different conclusion (results available upon request).



Figure 4, Panel A graphs the kernel density of the conditional ATE  () computed

with the two proposed bandwidths, as well as the parametric estimate for comparison

purposes. Observations with such that  () is below−02 or above 09 were discarded
in accordance with appendix condition A2. These cutoffs were the 1 and 99 percentile

values in the empirical distribution of  ().

Figure 4, Panel B presents the c.d.f. of the conditional ATE  () computed both

parametrically and nonparametrically. The stepwise shape for the c.d.f. in the parametric

model is essentially due to the binary nature of two of the three covariates since the

interaction of the treatment with wealth appears to be close to zero in the parametric

case. Finally, Panel C of Figure 4 presents the estimates of 1() and 0() as a function

of the continuous regressor (wealth), for each cell defined by the discrete regressors.

7.3.3 Unrestricted and Restricted Value Functions

In what follows, we compare the “first best” allocation (the unrestricted case, in which

the allocation is based on all three covariates) with two “restricted” cases: (i) means-

testing where the allocation is based only on wealth— which is extremely common in

both developed and developing countries, and (ii) purely random allocation which is not

covariate-based at all (this is totally uncommon as far as we know, but makes for a

convenient benchmark). Notice that in the random allocation case, the estimated value

function is linear in :

̂() =
1



X
=1

n
× ̂1 () + (1− )× ̂0 ()

o
.

Figure 5 graphs the parametric and nonparametric estimates for the treatment thresh-

old  () and the value function  () in the unrestricted case. The nonparametric estimates

seem very stable over the two choices of bandwidth. The nonparametric estimates of the

unrestricted value function are higher than the parametric estimates.

7.3.4 Welfare Losses

Figure 6 combines the estimates of the value function  () for all three cases: allocation

based on all three covariates (called unrestricted), allocation based on wealth only, and

random allocation. Panel A presents the parametric estimates and Panel B presents the

nonparametric estimates. Presenting all three cases on the same graph helps visualize



the welfare loss when the optimal allocation is not implementable. In contrast to the

parametric estimates, the non-parametric estimates suggest that means-testing is a clear

“second best”, generating a higher mean outcome than random allocation does. The

standard errors of the welfare losses generated by the two suboptimal allocations are

shown in Table A1 for two budget constraints ( = 25% and  = 50%).

7.3.5 Dual Problem

In Table 3 we report the minimum resources needed to attain a certain expected outcome:

we compute the share of the population that needs to be treated in order to achieve a

given target value function by allocating treatment based on all three covariates (column

2). We then calculate the additional resources that are needed when the optimal, un-

restricted allocation is not possible, and the allocation is instead based on wealth only

(column 3) or the allocation is purely random (column 4). The nonparametric estimates

with the bandwidth  = 04 suggest that, compared to the unrestricted allocation, an

allocation based on wealth only requires treating an additional 65 percentage points of

the population compared to the optimal allocation (Panel B2, column 3). The additional

spending is higher when the allocation is purely random: an extra 137 percentage points

of the population need to be treated to reach the target usage rate, compared to the

optimal allocation (Panel B2, column 4).

7.4 Estimating welfare in finite samples

The application above was based on the large sample approximation to welfare  gen-

erated from using a fixed set of covariates. The approximation is provided by ̂, the

sample-based estimate of the welfare. This approximation may be inaccurate in finite

samples if the number of conditioning covariates is large, relative to the sample size. In

order to compare the accuracies of ̂, the naive sample-based estimate with that of ̃,

the cross-validated estimate of finite sample risk, we perform a small Monte Carlo exercise

on a parametric specification, as follows.

7.4.1 Monte-Carlo

Making random draws from the sample of interest, we create an artificial dataset of 1008

observations and remove the outcomes. We generate outcomes 1 and 0 through the



probit equation

 = 1 (0 + 1 + 02 + 03 ⊗ +   0) ,

where the  coefficients are chosen equal to the estimates from a probit regression of 

on the regressors, the treatment and the interaction of the regressors and the treatment,

in the original sample. The error  is chosen to be 3 times a standard normal. This is

used as our population. From this population, we draw samples of varying size. For each

sample, we estimate  and  through a linear (as opposed to probit) regression, calculate

the implied allocations and, by averaging over many samples draws from the population,

compute for each sample size (i) the actual welfare (), (ii) the estimated welfare (̂)

and the cross-validated welfare (̃) where we use both a leave-one-out and a 2-fold CV.
14

The results are reported in Table 4A (estimated and true welfare), B (Bias and standard

deviation of welfare estimator) and C (MSE of welfare estimator). We see in table 4A

that as the sample size increases, s are generally increasing as expected but ̂ and ̃

are not. Table 4A also shows that for smaller sample sizes, the welfare from using fewer

covariates is larger and in this case, the leave-one-out CV criterion favours the smaller

model while ̂ always favors the larger model.

From table 4B, we see that the bias of ̂ in estimating  is larger in almost all cases

than the bias in ̃s and this is more pronounced as the sample size falls. This is to be

expected, given that CV is generically equivalent to a higher-order bias removal. It is

also instructive that the bias of ̂ is positive, which is consistent with the point made

just before section 5. In terms of the MSE, reported in table 4C, the leave-one-out CV

performs the best except when the sample size is relatively large and consequently ̂ is at

least as good as a leave-one-out CV. However, given that the leave-one-out CV criterion

performs best in small samples and almost as well in larger samples as the naive estimator

̂, we propose using it to choose between alternative subsets of targeting covariates, in

the application. Those results are reported in table 5 and discussed next.

7.4.2 Cross-Validation Results for Application

We consider the parametric model (10) and two subsets of covariates — (i) household wealth

— the most popular targeting criterion in both developed and developing countries and (ii)

the combination of wealth, number of children under 10 and possession of a bank account.

14Results are indistinguishable between the nonsmooth and the smoothed version of (9) with  varying

between −15 to −18.



We calculate the leave-one-out welfare estimate using three samples of different sizes.

These samples were chosen by randomly sorting the original data of 1008 observations

(with a specific seed) and choosing the top 500, 800 and 1008 observations. The welfare

from using different subsets of regressors and different sample sizes are displayed in table

5.

The table can be read as follows. For the first panel with c=0.50, sample size=500,

the number 0.3540 was obtained as follows. Choose the first 500 households, as described

above. Then (i) regress the outcome for individuals randomized into treatment on wealth

only and (ii) regress the outcome for individuals randomized out of treatment on wealth,

bank account and child. For each individual in the data, predict their outcomes with the

subsidy (1) using the first set of estimated coefficients and their outcome without the

subsidy (0) using the second set of estimates. Calculate the difference and its median in

the sample which is ̂. Then calculate the cross-validated welfare estimate as described

in the previous section. Repeat for the other sample sizes. The highlighted values indi-

cate the highest number among the four cells. The naive estimates (̂) are reported in

parentheses.

From table 5 it is apparent that CV recommends using wealth only to target the

subsidy when the sample size is less than 800. For sample size 800, the two conditioning

sets yield similar levels of welfare and for the full sample, it is advisable to use all three

covariates for both 0 and 1. Further, for the smaller sample sizes, it is nearly as effective

to predict 1 using wealth only and 0 using all three covariates as it is to use wealth

only for both 1 and 0. The reverse conditioning produces significantly lower welfare.

This asymmetry arises most likely because there are many more observations with no

treatment and so the additional covariates —children and bank account— have relatively

low explanatory power for treatment effects when the household actually receives the

subsidy and relatively high explanatory power when it does not. In contrast, the naive

estimate, which ignores the finite sample inaccuracy, suggests using all 3 covariates for 0

for all sample sizes.

8 Conclusion

In this paper, we have considered a social planner’s problem of allocating a binary treat-

ment among a target population based on observed covariates in the presence of budget



constraints. The paper proposes a simple covariate-conditioned allocation rule based on

sample data from a randomized experiment. The paper then derives and uses large-

sample frequentist properties of these rules to infer the expected welfare from the rule

and the minimum cost of attaining a specific average welfare— i.e., the dual problem.

These methods are applied to data on the provision of anti-malaria bed nets in Western

Kenya. The empirical findings are that a government which can afford to distribute bed

net subsidies to only 50% of its target population can, if using an allocation rule based on

multiple covariates, increase actual bed-net coverage by 17 to 20 percentage points rela-

tive to random allocation. These conclusions are based on large sample approximations

and we investigate, using leave-one-out and 2-fold cross-validation and in both a Monte

Carlo and the actual application data, their robustness to small sample inaccuracy. Our

findings suggest that under parametric specifications and when using evidence from small

experimental samples (under 800 in our application), it is better to condition the subsidy

solely on household wealth; however, for our full sample of size 1008, the expected subsidy

use increases by about 9 percent when we condition on two discrete household charac-

teristics, viz. presence of small children and possession of a bank account, in addition to

wealth.

This paper has left several topics to future research. A formal analysis of covariate-

selection and post model-selection inference in treatment choice problems is being pursued

by the present authors. This analysis uses tools from the frequentist literature on model

selection, paying specific attention to bias-variance trade-offs implicit in various forms of

cross-validation or resampling-based techniques. A particularly challenging task is to con-

sider this problem when treatment responses are not assumed to have specific parametric

forms. On the substantive front, one possible extension is to the design of conditional cash-

transfer programs, which have gained popularity in a large number of central and south

American countries. A second extension would be to incorporate treatment externalities

into an analysis of efficient treatment assignment. Extension to multiple treatments would

also be a theoretically interesting and practically relevant exercise.

A caveat to our analysis is the implicit condition that the covariate distributions are

not affected by the targeting strategy used. This may be violated if the population com-

position changes in response to changes in the targeting rule, e.g., switching subsidy

eligibility towards families with children in a district may see an influx of families with

children from neighboring districts, thereby altering the marginal distribution of covari-



ates. Such migration is plausible only when the size of the transfer is high enough relative

to migration costs and thus quite unlikely at the usual scale of in-kind transfer schemes

present in the developing world today. But for larger sized transfers, this caveat can

potentially be an important one.

The methods proposed here have wider applicability, beyond subsidy targeting in

developing countries, to nearly any situation of constrained treatment assignment such as

deciding eligibility rules for access to credit under aggregate fund constraints or allocating

the unemployed to subsidized job-training programs when subsidy totals are limited by

the government’s budget outlay.

We would like to end with the observation that in development circles, there has been

a recent push for more experimental evidence on the impact of social programs, as part of

a general effort to improve the effectiveness of aid (Duflo, Kremer and Glennerster, 2008).

For example, the World Bank recently launched the DIME initiative, an effort to increase

the number of Bank-funded projects with impact evaluation components. We believe that

as randomized trials of social programs, e.g., Oportunidades (PROGRESA) in Mexico,

become more common in both developed and developing countries, our methodology will

become increasingly relevant in helping governments and aid-agencies roll out positive-

impact programs via efficient allocation rules.
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9 Appendix

9.1 Proofs of theorems

In the proofs below, CMTwill denote continuous mapping theorem and DCT the Lebesgue

dominated convergence theorem. The discrete regressors will not play any substantive

roles in our analysis; so we will drop them in our proofs and put them back into our final

results at the end. In our proofs, the notation ̃ () and ̃ will be used to denote values

intermediate between ̂ () and  () and ̂ and , respectively;  1 and  () will

denote a finite number, a bounded positive constant and a uniformly bounded positive

function respectively, whose actual values may be different in different places. The latter

will be used in the expressions for upper bounds for various quantities which appear in

the proof. We first state a set of conditions under which the following results will hold.

A0(i) ()  = 1 2  is a random sample; A0(ii)  is randomly allocated;

A1. Conditional on every value  assumed by the discrete regressors, X  is a -

dimensional compact subset of the support of the continuous components ; the density

of  satisfies that  () ≥   0 for all  ∈ X ; furthermore, 1 (·), 0 (·) and thus
 (·) and their th order derivatives are uniformly bounded on X  for some   . Also,

 || and  (|| | = )×  () are bounded for some  ≥ 4.
A2. For some   0,  () ∈ [− ] for every  ∈ X ; A3.  (·) is a th order

-dimensional bounded kernel, with    and the bandwidth sequence  satisfies (i)

 → 0 (ii)
√


 → 0; A4. The kernel ̄ (·) is uniformly bounded with a bandwidth
sequence  → 0 and  →∞.
A1 and A2 are standard. X  corresponds to the fixed trimming. condition A3 part

(i) is standard. condition A3 part (ii) is an “undersmoothing” requirement, which is

commonly used in semiparametric problems for bias removal; it is also a key condition for

condition B11 below (c.f. NM, lemma 8.10).

Let ̂ () and  () denote respectively the estimated and the true density of  ()

at . Under conditions A1 and A2, we can apply lemma B.1 of Newey (1994) to conclude

B1. sup∈X
¯̄̄
̂ ()−  ()

¯̄̄
= 

½³
ln





´12
+ 



¾
and apply theorem 7 of Hansen

(2008) specialized to bounded  (given fixed trimming), iid data and  = 0, to conclude:

B2. sup∈[− ]

¯̄̄
̂ ()−  ()

¯̄̄
=  (1). Although these are consequences, rather than

primitive conditions, we refer to these as conditions B1 and B2 for easy reference in

subsequent use.



Introduce the following additional conditions:

B3(i) The first derivative of kernel ̄ (·), denoted by , is uniformly bounded; addi-

tionally  (·) satisfies a uniform Lipschitz condition: | ()−  (0)| ≤ |− 0|Λ for some
Λ  ∞ for all  0; B4.(i)  → 0, 4 →  ∈ (0∞] and 14

½³
ln





´12
+ 



¾
→ 0;

B5. The density of  () is strictly positive on an open set containing 

Most standard kernels with polynomial structure and with bounded support will satisfy

B3.

Let ̂̂ () ≡ 1


P

=1 ̄
³
−̂()



´
.

Lemma 1 Under conditions A0-A3, A4(i), B1, B2, B3(i) and B4(i),

sup
∈[− ]

¯̄̄
̂̂ ()−  ()

¯̄̄
→ 0.

Proof. Observe that

̂̂ ()−  ()

=
1



X
=1

̄

Ã
− ̂ ()



!
− 1



X
=1

̄

µ
−  ()



¶
+
1
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½
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¶
− 1 ( () ≤ )
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+
1



X
=1
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=
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X
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+
1



X
=1

½
̄

µ
−  ()



¶
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+
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{1 ( () ≤ )−  ()} .

Therefore,

sup
∈[− ]

¯̄̄
̂̂ ()−  ()

¯̄̄
≤ sup

∈[− ]

¯̄̄̄
¯1

X
=1

{1 ( () ≤ )−  ()}
¯̄̄̄
¯

+ sup
∈[− ]
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X
=1

½
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+
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14
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− ̃ ()
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×
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14 sup
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By condition B3(i) (i.e.  (·) is uniformly bounded), condition B4(i) and condition B1,
the third term is  (1). The first term is  (1) by the standard Glivenko-Cantelli theo-

rem. Under the stated conditions on ̄ and that  () has a Lebesgue density uniformly

bounded above, we can apply lemma 4 of Horowitz (1992) to conclude that the sec-

ond term in the previous display is  (1). (This is analogous to Horowitz’s proof that

lim→0 Pr (|0|  ); here we have that

lim
→0

Pr (|−  ()|  ) = lim
→0

[ (+ )−  (− )]

≤ 2 lim
→0

½
× sup

∈R
[ ()]

¾
= 0,

and the rest of the proof is identical to Horowitz lemma 4).

Theorem 1 (Consistency of ̂):

Proof. Fix   0. Then  ( + )−1+  0 and 1−− ( − )  0, by condition

(B5). Therefore, we have that

Pr (|̂ − |  ) ≤ Pr (̂   + ) + Pr (̂   − )

≤ Pr
³
̂̂ (̂)  ̂̂ ( + )

´
+Pr
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both of which converge to zero by lemma 1.

Now, define

̂̂ () =
1



X
=1



Ã
− ̂ ()



!
.

The following lemma shows that ̂̂ (·) converges to  (·) in probability, uniformly on the
support of  ().



Lemma 2 Under conditions A0-A4 and B3-B5,

sup
∈[− ]

¯̄̄
̂̂ ()−  ()

¯̄̄
=  (1) .

Proof. Observe that

̂̂ ()−  () =
1



X
=1
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!
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By triangle inequality,
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The first term is  (1) due to B2. As for the second term, notice that¯̄̄
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by conclusion B2 and assumption B3. Therefore by condition B4, we get the conclusion.

Additional conditions:

A4 (ii) The kernel ̄ (·) has two derivatives which are also uniformly bounded. For
some  ≥ 2, we have B7. the density of  () is ( − 1) times continuously differentiable,
the ( − 1)th derivative  (−1) (·) is bounded and Lipschitz in a neighborhood of ; B8.
2+1 →   ∞; B9.  (·) is symmetric around zero and has bounded support [−1 1],
is of order  and

R 1
−1 

2 ()  ∞. Also assume that B10. 2 () =  (| = ) for

 = 1 2 are finite; B11. For  = 0 1,

√
 sup
∈X

°°©̂ ()− ()
ª {̂ ()− ()}

°° =  (1) ,

√
 sup



k{̂ ()− ()}k2 =  (1) .

Condition B11 is basically the same as B4 with  and  replacing  and hold under

exactly the same conditions as B4. These are well-known requirement for
√
 -normality

for semiparametric estimators (c.f. Newey and McFadden (1994), section 8.3).



Theorem 1 (Distribution of ̂):

To derive the distribution theory for ̂, we will use the following first-order approxi-

mation

 () = 1−  = ̂̂ (̂) = ̂̂ () + (̂ − )̂̂ (̃)

where ̃ is between ̂ and . This gives us the following first-order expansion for ̂:
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The proof will proceed in three steps: step 1 is that the multiplier
n
̂̂ (̃)

o−1
converges

in probability to { ()}−1. Step 2 is that the term 1 will be 

³
1√


´
. Finally in

step 3 we will show, using U-statistic type decompositions, that the term 2 will be



³
1√


´
. These will eventually lead to the result that

√
 (̂ − ) converges to a

normal distribution, as required.

Proof. Step 1. We first show that
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→ 0 (12)¯̄̄
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and both of the terms in the previous display converge to zero by the DCT since lim→∞ ̄ () =

1 = 1− lim→−∞ ̄ ().
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Now, (18) and (19) imply (15) and thus (16).

Step 3: We will now analyze the second term in (11):
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where the triangular arrays 1 (), 2 () and the constant 
2  0 will be specified

below.

To that end observe thatp
 =

√
√


X
=1

"
̄

µ
 −  ()



¶
− ̄

Ã
 − ̂ ()



!#

=

√
√


X
=1

n
̂ ()−  ()

o


µ
 −  ()



¶

+

√


2
√
2

X
=1

n
̂ ()−  ()

o2
0
Ã
̃ ()− 



!
.



The second term in absolute value has an expectation which is of the order of

sup
∈X
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We will simply work with the first term because the proof is exactly analogous for the

second term and show that

1√


X
=1

n
̂ ()−  ()

o


µ
 −  ()



¶
=  (1) .

Step 3A: Now,

1√


X
=1

½
̂1 ()

̂1 ()
− 1()

1 ()

¾
1




µ
 ()− 



¶
=

1√


X
=1

½
̂1 ()− 1()

 ()

¾
1




µ
 ()− 



¶
− 1√



X
=1

½
 ()

 ()

̂1 ()− 1()

1 ()

¾
1




µ
 ()− 



¶
− 1√



X
=1

{̂1 ()− ()} {̂1 ()− 1()}
1 () ̂1 ()

1




µ
 ()− 



¶
+
1√


X
=1

() {̂1 ()− 1()}2
21 () ̂1 ()

1




µ
 ()− 



¶
. (22)

The last two terms in absolute value have expectations that are bounded above by a posi-

tive scalar times
√
 sup k{̂1 ()− 1()} {̂1 ()− 1()}k and

√
 sup k{̂1 ()− ()}k2.

Condition B11 above then implies that these are both  (1).
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Step 3B: We first show that
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for some uniformly bounded function  by condition. Therefore,
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by condition B4.



Step 3C: The term
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The key step is to show that
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Step 3D: Now consider the term
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Notice that
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Now we will apply the Liapunov condition and use the Lindeberg CLT for triangular

arrays. Consider the array
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Putting together (24), (25), (26) and (27), we get thatr
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Similarly, we will get thatr
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Thus we get that
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To get the expression for 2, note by direct multiplication that since  (1−) = 0
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Using the definitions of 1 (·)  0 (·)   (·) and 1 (·), the above expressions simply to
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Lemma 3 Under conditions A0-A4 and B1-B11,

1√


X
=1

h
̂1 ()− 1 ()

i
=

1√


X
=1



1 − 1 ()

Pr ( = 1|)
+  (1) .

Proof. Note that

1√


X
=1

h
̂1 ()− 1 ()

i
=

1√


X
=1

½
̂1 ()− 1()

1 ()

¾
− 1√



X
=1

½
1 ()

1 ()

̂1 ()− ()

1 ()

¾
+
1√


X
=1

{̂1 ()− 1()} {̂1 ()− ()}
1 () ̂1 ()

− 1√


X
=1

̂1() {̂1 ()− ()}2
21 () ̂1 ()

. (31)

The last two terms are both  (1) under condition B11 above.



Now, the first two terms in (31) add up to
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We will show that
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for some uniformly bounded function  by condition A1. Therefore, 3 =  (
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Next observe that
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by a dominated convergence theorem, given the uniform boundedness of 1 (·). Together
with condition A3, we get (33).

One can establish (32) by essentially repeating the proof of Powell, Stoker and Stock

(1989) lemma 3.1.

Combining (32), (33) and (34), we get that
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Theorem 2 (consistency of ̂)
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Since  ̄ are uniformly bounded, the above display is of the form
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Now, theorem 2 implies that  (̂ − )
2
=  (1), conclusion B1 and condition B4 (i)

imply that
sup|̂()−()|


=  (1) and that 

3
 →∞. Thus we have that 1 =  (1).

As for 2, observe that since  (·) is uniformly bounded, by using steps exactly anal-
ogous to step 2 in the proof of theorem 2 (leading to (13)), we will get by the DCT that

2 =  (1).



Now combine with lemma 3 to conclude that |̂− | =  (1). The proof of | − | =
 (1) is just a simpler version of (45) which is proved below.

Additional conditions:

The following additional conditions will be used to prove theorem 2.
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Step 4: Under conclusion B1 and condition B4, the fourth term in (35) will be 

³
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´
since 0 (·) is assumed to be uniformly bounded in absolute value. As for the fifth term,
observe by the previous theorem, that
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which follows from the standard consistency proof for e.g. kernel density estimates.
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The third term in (36) in absolute value is dominated by
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Step 6A: Consider the first term in (36)
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We will show that 4 =  (1) using the arguments similar to the ones used for showing

(16).
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From (38) and (39), we get that  (4)
2 → 0 and thus 4 =  (1).

Replacing in (36), we get that
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The final step is to analyze the third term in (40), using U-statistic type decompositions.

First notice that analogous to (23) above, we have here that up to  (1) terms:
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It is straightforward (replace the kernel involving terms) to verify that we will get the

same conclusion as (25) and (24) here. So we only perform the analysis for 2.
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Now, we will show that the second term in the previous display is  (1). Letting 
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and both of the terms in the previous display converge to zero by the DCT since lim→∞ ̄ () =
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lim→±∞ 22 () = 0. The third integral in (42) also converges to zero by lim→±∞  () =
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So it follows that the second term in (41) is  (1).

Thus we have that
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Using exactly analogous steps, we will also get that
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since the covariances will be zero (as can be easily seen from the asymptotic linear ex-

pansions because  (1−) = 0).

Replacing in (40), and noticing that
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we finally arrive at
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Lemma 3 describes the behavior of 1, and 2 is a standard empirical process which

yields that
√
 (̂− ) tends to a zero-mean normal. The final step is to show
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Derivation of (45): Let  (·) denote the asymptotic variance of 
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Consequently,  −  = 
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and hence a

√
-consistent CI for  is also a valid

√
-consistent CI for .

Outline of proof for parametric  (·): Suppose  () is parametrically specified
as  ( ), where  (·) is known; typically  (the so-called “pseudo-true value”) can be

estimated at parametric rates using, say, GMM. For estimation of  and  resulting from

the plug-in approach, we will still use smoothing with the c.d.f. kernel ̄ (·) to handle the
nonsmoothness, since smoothing-based methods are more generally applicable.

The key result is that both  and  can be estimated at the
√
-rate. To see this,

recall the asymptotic expansion for ̂:
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Using similar steps as in the proof of theorem 2 in the appendix, the first term is asymp-

totically normal with mean equal to
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As for the second term, (and this is what makes ̂ a
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parametric case) notice that
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with  a fixed positive constant and 1 () a uniformly bounded function. Since
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=  (1), by conditions B4(i) and A4 (ii), the RHS of the previous display

goes to zero if 4 →∞. Then we have that
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This implies that
√
 (̂ − ) will converge to a zero mean normal if 2 → 0 and

34 → ∞ and when the density of  ( ) has uniformly bounded derivatives up to

order ( − 1) where  ≥ 3. The result for ̂ will follow.

9.2 Part 2: Split sample simulation

Here we describe and perform a simulation exercise, using a split sample method in order

to address the potential positive bias alluded to in section 4. Divide the sample randomly

into 2 parts: call the first group  = 1  and call 2nd group  = + 1 . Then for

each  =  + 1 , calculate ̂
(1)
() using only observations  = 1 . Then use the

second half to calculate a second independent estimate ̂
(2)
() at the same set of values

 as before. Then ̂
(1)
() and ̂

(2)
() are functions of distinct Y observations which

are independent. Finally, calculate ̂ and ̂ via:
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Such split-sample methods were previously suggested in Altonji and Segal (1996) to reduce

finite sample bias of GMM estimates. While this split-sample method does not change

the asymptotic distribution of ̂ or ̂, we investigate its potential finite sample superiority

in a small Monte Carlo study as follows.

Take =wealth and take the population to be our sample. Generate ˜ (0 1),

0˜ (0 1), 1 = 0 +  +  ∗ . Then  (1|) =  () = . Set  = 05, find

median of wealth which equals  and then

 =
1



X
=1

 × 1 (  ) .

This  and  are the “true” parameter values. Finally, generate  as a random Bernoulli

variable and set  = 1 + (1−)0.

Now we will do the simulations as follows. For each draw from this population, first

estimate  and  with the full sample and then split the sample into two equal halves and

repeat the estimation in the split-sample way, as described above. In both cases, we vary

 between −16 and −18 and  between −524 and −624. We present the results

graphically in Figure A1. From the graphs, it appears that the full-sample estimates of

 are generally closer to the true value and the bias for  = −18 is in fact negative.

Given these results, we use the full-sample estimation in our application.

9.3 Part 3: Discussion of condition AM

Part A: We first present a very simple model of bednet use, which would imply AM(ii).

Suppose a representative household has utility function defined on consumption and bed-

net adoption  ( ),  ∈ {0 1} where  (· ) is continuous, strictly increasing and strictly
concave for  = 0 1. Suppose nonsubsidized price of bednet is  in terms of the consump-

tion good and the subsidized bednet costs 0. Let  denote unobserved heterogeneity in

household preference, distributed with c.d.f.  . Ignore other covariates (or condition on

them), suppose household budget is  and assume for simplicity that  ⊥ . Then one

can show that

 () = Pr (use net with subsidy| = )− Pr (use net without subsidy| = )

= Pr ( ( 1)−  ( 0)  )− Pr ( (−  1)−  ( 0)  )

=  { ( 1)−  ( 0)}−  { (−  1)−  ( 0)} .



If  is uniform, we get  () =  ( 1)− (−  1). For fixed   0, 0 () = 

 ( 1)−



 (−  1)  0 if  is strictly concave in its first argument. If  is continuously

distributed on a bounded support, then  ()—a strictly monotone continuous function

of —will also be continuously distributed with a bounded support. For other choices of

 , we can get piecewise monotone  (·). An intuitive interpretation of  0  0 is simply

that individual demand for bednets is less price-sensitive when individuals are wealthier.

Part B: If we do not assume AM, then the following generalizations are appropriate.

Define
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and write
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¸
+(1− 2)× {1 ()}
+(1− 1) 2 × [ {1 () 1 { ()  }}+ {1 () 1 { ()} = } × (− Pr ( () ≥ ))] .

When 1 = 1 and 2 = 1, then we have the case discussed in the paper. When 2 = 0,

everyone with positive treatment effect will be treated and hence the second term in the

previous display. When 2 = 1 and 1 = 0, everyone with CATE above  is treated but

this leaves a surplus equal to (− Pr ( ()  )), which is then randomly distributed

among those with the "next highest" value of  (), which is the third term. So if  ()

has a point mass at  with () (−)  1−   () (), for some , then the surplus

may then be randomly distributed among the those with  () = .

As is clear from the expressions, the sample analog of  will have discontinuities in

its asymptotic distribution, depending on what values the nuisance parameters 1 and

2 take and methods analogous to Andrews and Guggenberger would be warranted for

constructing uniformly valid confidence intervals for . These issues are outside the scope

of the present paper and we leave them to future research. condition AM guarantees that

1 = 1 = 2. Strengthening AM (i) to ln () × {Pr ( ()  0)− }   for some   0

would let us assume away AG type situations.



9.4 Part 4: Asymptotic framework for covariate choice

Suppose  = (12) and we want to decide whether to condition allocation on 2 in

addition to conditioning on 1. For a fixed  = (1 2), as  → ∞, the wider model
is obviously better. Therefore, to keep the covariate choice problem non-trivial in the

asymptotics, we consider a sequence of models  with

 (1 − 0| = ) := 0 := 011 + 02
√
,

for some  ∈ . Let ̂ and ̃1 be the MLE of  in the unrestricted (labeled ur) model

and of 1 in the restricted (labeled r) model respectively with ̂ and ̃ the respective

estimates of . Within this "limit of experiment" framework, Le Cam type convergence

theorems can be invoked under appropriate regularity conditions to show that the differ-

ence in welfare functions resulting from the larger and smaller set of covariates satisfies
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where  () and  () represent the asymptotic std deviation of ̂
0
 − ̂ and ̃

0
 − ̃

respectively, −111 12 represents the projection matrix from regressing 2 on 1 and 

and  represent the true thresholds corresponding to the wider and narrower models,

respectively. −111 12 corresponds to the familiar "omitted variable bias" formula.

Since these parameters are unknown, potential feasible rules may be based on:
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where the subscript (−) denotes the leave-one-out estimate. The formal task is to show
that under the sequence of models , the sequences

√
 ( − ( − )) converge to

an appropriate limiting random variable (see below for how to handle CV based estimates

in the asymptotics). The quantiles of this latter random variable can be used to decide

on the tolerance threshold  for  above which the wider model will be preferred. Two

other issues of interest are those of post-model selection inference, i.e., estimating

 Pr

µ
 

√


¶
+  Pr

µ
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¶
;



and generalizing the above analysis to the case where  (1 − 0| = ) is not necessarily

linear in  and yet we are considering two linear models to make treatment allocation. In

this case, ̂ and ̃1 can be interpreted as pseudo-MLEs and 1 replaced by

1
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where ̂ = 1



P

=1. An appropriate local to zero asymptotic analysis in this case seems

to be an interesting task worth pursuing.

Cross-validation (heuristics for the claim in footnote 8): Using the smoothed

estimates and the parametric version of theorems 1 and 2 in the main text, it follows that

the difference between the naive estimate and the CV estimate of welfare is given by
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for some vector 
³
  ̂

´
. Now, using an influence functions approach, it can be

shown (c.f., CH page 52) that when ̂ is the MLE with − the Hessian and  (·) the
score, then

̂(−) − ̂ = −−1̂−1 () + 

µ
1



¶
and the term ̂−1 is related to the estimated asymptotic variance of ̂. Replacing ̂(−)−̂
in the previous display, we get the feasible form of the penalization term.


