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1 Introduction

Financial crises, such as the hedge fund crisis of 1998 or the 2007/2008 subprime crisis, have
several common characteristics: risk premia rise, interest rates fall, conditional volatilities of
asset prices rise, correlations between assets rise, and investors “fly to the quality” of a riskless
liquid bond. This paper offers an account of a financial crisis in which intermediaries play the
central role. Intermediaries are the marginal investors in our model. The crisis occurs because
shocks to the capital of intermediaries reduce their risk-bearing capacity, leading to a dynamic
that replicates each of the afore-mentioned regularities.

Our model builds on the liquidity models common in the banking literature (see in particular,
Allen and Gale (1994) and Holmstrom and Tirole (1997)). There are two classes of agents,
households and specialists. The specialists have the know-how to invest in a risky asset, which
the households cannot directly invest in. This leads to the possibility of gains from trade. The
specialists accept moneys from the households and invest in the risky asset on the households’
behalf. In terms of the banking models, we can think of the specialist as the manager of a
financial intermediary which raises financing from the households. However, this intermediation
relationship is subject to a moral hazard problem, modeled along the lines of Holmstrom and
Tirole. Agents choose a financial contract to alleviate the moral hazard problem. Asin Holmstrom
and Tirole, the financial contract features a capital constraint: if the specialist managing an
intermediary has wealth W, the household will provide at most mW; of equity financing to the
intermediary. Here, m is a function of the primitives of the moral hazard problem.

There are many models in the banking literature that study intermediation relationships
subject to financial constraints. However, most of the literature considers one or two period
equilibrium settings (the typical model is a “¢t = 0,1,2” model). We embed this intermediation
stage game in an infinite horizon setting. That is, the households and specialists interact at date
t to form an intermediary, as described above, and make financing and asset trading decisions.
Shocks realize and lead to changes in the wealth levels of both specialists and households, as a
function of the intermediation relationship formed at date . Then in the next period, given these
new wealth levels, intermediation relationships are formed again, etc.

The advantage of the infinite horizon setting is that it is closer to the models common in the
asset pricing literature and can thus more clearly speak to asset pricing phenomena in a crisis.
The asset market is modeled along the lines of Lucas (1978). There is a risky asset producing an
exogenous but risky dividend stream. The specialists can invest in the risky asset directly, but

the household cannot. There is also a riskless bond in which all agents can invest. We use our



model to compute a number of asset pricing measures, including the risk premium, interest rate,
and conditional volatility, and relate these measures to intermediary capital.!

Most of our model’s results can be understood by focusing on the dynamics of the capital
constraint. Consider a given state, described by the specialists’ wealth W; and the households’
wealth W}/*. The capital constraint requires that the household can invest at most mW; (which
may be less than Wth) outside equity capital in intermediaries. Thus, intermediaries have total
capital of at most Wy + mW; to purchase the risky asset. In some states of the world, this total
capital is sufficient that the risk premium is identical to what would arise in an economy without
the capital constraint. This corresponds to the states where W; is high and the capital constraint
is slack. Now imagine lowering W;. There is a critical point at which the capital constraint will
begin to bind and affect equilibrium. In this case, the total capital of the intermediary sector
is low. However, in general equilibrium the low total intermediary capital must still go towards
purchasing the total supply of the risky asset, and the intermediary—who is the marginal investor
in our model— bears a disproportionate amount of risk. As a result, the risk premium rises.
Moreover, from this state, if the dividend on the risky asset falls, W; falls further, causing the
capital constraint to bind further, thereby amplifying the negative shock. This amplification
effect produces the rise in volatility when intermediary capital is low. Finally, falling W, induces
households to reallocate their funds from the intermediary sector towards the riskless asset. The
increased demand for bonds causes the interest rate to fall. As noted above, each of these results
match empirical observations during liquidity crises.

Xiong (2001), Kyle and Xiong (2001), and Vayanos (2005) develop dynamic models to study
crises and illiquidity.? Both Xiong (2001) and Kyle and Xiong (2001) papers model a capital
effect for asset prices and show that this effect can help to explain some of the crises regularities
we have noted. These papers model an “arbitrageur” sector using a shorthand log utility assump-
tion. In contrast, we develop a role for intermediation within the model, derive the constraints
endogenously from an explicit principal-agent problem, and are thereby better able to articulate

the part of intermediaries in crises.® Vayanos (2005) more explicitly models intermediation. His

'In a companion paper (He and Krishnamurthy, 2008), we develop these points further by incorporating ad-
ditional realistic features into the model so that it can be calibrated. We show that the calibrated model can
quantitatively match crisis asset market behavior.

2There is a large literature on intermediation and asset pricing exploring different aspects of how intermediation
frictions affect asset prices. See Allen and Gorton (1993), Brennan (1993), Dow and Gorton (1994), Grossman and
Zhou (1996), Shleifer and Vishny (1997), Dasgupta, Prat, and Verardo (2008), Brunnermeier and Pedersen (2008),
and Guerrieri and Kondor (2008).

3The same distinction exists between our paper and Pavlova and Rigobon (2008), who study a model with
log-utility agents facing exogenous portfolio constraints and use the model to explore some regularities in exchange
rates and international financial crises. Like us, their model shows how contagion and amplification can arise
endogenously. While their application to international financial crises differs from our model, at a deeper level the



model also explains the increase in conditional volatility during crises. However, his approach is
to model an open-ending friction, rather than a capital friction, into a model of intermediation.*

Empirically, the evidence for an intermediation capital effect comes in two forms. First, by
now it is widely accepted that the fall of 1998 crisis was due to negative shocks to the capital of
intermediaries (hedge funds, market makers, trading desks, etc.). These shocks led intermediaries
to liquidate positions, which lowered asset prices, further weakening intermediary balance sheets.?
Similar capital-related phenomena have been noted in the 1987 stock-market crash (Mitchell,
Pedersen, and Pulvino, 2007), the mortgage-backed securities market following an unexpected
prepayment wave in 1994 (Gabaix, Krishnamurthy, and Vigneron, 2006), as well the corporate
bond market following the Enron default (Berndt, et al., 2004). Froot and O’Connell (1999), and
Froot ( 2001) present evidence that the insurance cycle in the catastrophe insurance market is
due to fluctuations in the capital of reinsurers. Duffie (2007) discusses some of these cases in the
context of search costs and slow movement of capital into the affected intermediated markets.
One of the motivations for our paper is to reproduce asset market behavior during crisis episodes.

Although the crisis evidence is dramatic, crisis episodes are rare and do not lend themselves
to systematic study. The second form of evidence for the existence of intermediation capital
effects come from studies examining the cross-sectional/time-series behavior of asset prices within
a particular asset market. Gabaix, Krishnamurthy, and Vigneron (2006) study a cross-section of
prices in the mortgage-backed securities market and present evidence that the marginal investor
who prices these assets is a specialized intermediary rather than a CAPM-type representative
investor. Similar evidence has been provided for index options (Bates, 2003; Garleanu, Pedersen,
and Poteshman, 2005), and corporate bonds and default swaps (Collin-Dufresne, Goldstein, and
Martin, 2001; Berndt, et al., 2004). These studies are particularly good motivation for our model
because the markets they consider tend to be ones dominated by intermediaries. Thus they
reiterate the relevance of intermediation capital for asset prices.

This paper is laid out as follows. Section 2 describes the model and derives the capital con-
straint based on agency considerations. Section 5 solves for asset prices in closed form, and

studies the implications of intermediation capital on asset pricing. Section 6 explains the pa-

models are related.

1Gromb and Vayanos (2002) and Liu and Longstaff (2004) study settings in which an arbitrageur with limited
wealth and facing a capital constraint trades to exploit a high Sharpe-ratio investment. Liu and Longstaff show that
the capital constraint can substantially affect the arbitrageur’s optimal trading strategy. Gromb and Vayanos show
that the capital constraints can have important asset pricing effects. Both of these papers point to the importance
of a capital effect for asset pricing.

®Other important asset markets, such as the equity or housing market, were relatively unaffected by the turmoil.
The dichotomous behavior of asset markets suggests that the problem was hedge fund capital specifically, and not
capital more generally.



rameter choices in our numerical examples. Section 7 concludes. We place most of proofs in

Appendix.

2 The Model
2.1 Agents and Assets

We consider an infinite-horizon continuous-time economy with a single perishable consumption
good, along the lines of Lucas (1978). We use the consumption good as the numeraire. There are
two assets, a riskless bond in zero net supply, and a risky asset that pays a risky dividend. We
normalize the supply of the risky asset to be one unit.

The risky asset pays a dividend of D; per unit of time, where {D;:0 <t < oo} follows a

geometric Brownian motion,

dD
Tt =gdt+ odZ; given Dy, (1)
t

where ¢ > 0 and o > 0 are constants. Throughout this paper {Z} = {Z;:0<t < o0} is a
standard Brownian motion on a complete probability space (€2, F, P) with an augmented filtration
{F::0 <t < oo} generated by the Brownian motion {Z}.

We denote the progressively measurable processes {P;: 0 <t < oo} and {r; : 0 <t < oo} as
the risky asset price and interest rate processes to be determined in equilibrium. We write the

total return on the risky asset as,

Dydt + dP,
dR, = 21727t e L= pipdt + ogedZy, (2)
t

where g, is the risky asset’s expected return and og; is the volatility. The risky asset’s risk
premium 7Ry is

7TR7t = IU’R,t — Tt.

There are two classes of agents in the economy, households and specialists. Without loss
of generality, we set the measure of each agent class to be one. We are interested in studying
an intermediation relationship between households and specialists. To this end, we assume that
the risky asset payoff comprises a set of complex investment strategies (e.g., mortgage-backed
securities investments) that the specialist has a comparative advantage in managing, and therefore
intermediates the households’ investments into the risky asset.

As in the literature on limited market participation (e.g., Mankiw and Zeldes, 1991; Allen
and Gale, 1994; Basak and Cuoco, 1998; and Vissing-Jorgensen, 2002), we make the extreme

assumption that the household cannot directly invest in the risky asset and can directly invest only
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Figure 1: The economy.

in the bond market. We motivate this assumption by appealing to “informational” transaction
costs that households face in order to invest directly in the risky asset market.

We depart from the limited participation literature by allowing specialists to invest in the
risky asset on behalf of the households. However, there is a moral hazard problem that affects
this intermediation relationship. Households write an optimally chosen financial contract with
the specialist to alleviate the moral hazard problem. Figure 1 provides a graphical representation
of our economy.

Both specialists and households are infinitely lived and have log preferences over date ¢t con-

sumption. Denote ¢; (c}') as the specialist’s (household’s) consumption rate. The specialist

E [/ e Pl ctdt] ,
0

E [/ e Pt lnc?dt] ,
0

where the positive constants p and p” are the specialist’s and household’s time-discount rates,

maximizes

while the household maximizes

respectively. Throughout we use the superscript “A” to indicate households. Note that p may

differ from p”; this flexibility is useful when specifying the boundary condition for the economy.

2.2 Intermediaries and Intermediation Contract

At every t, households invest in intermediaries that are run by specialists. The intermediation
relation is short-term, i.e., only lasts from ¢ to t + dt; at ¢t + dt the relationship is broken. As we

describe below, there is a moral hazard problem that affects this intermediation relationship that



necessitates writing a financial contract. At time ¢ an intermediary is formed between specialist
and household, with a financial contract that dictates how much funds each party contributes to
the intermediary, and how much each party is paid as a function of realized return at t+dt. Given
the contract, at date ¢ the specialists trade in a Walrasian stock and bond market on behalf of
the intermediaries.

The short-term intermediation relationship in this model is analogous to the contracting prob-
lem in a one-period principal-agent problem, e.g., Holmstrom and Tirole (1997). One can imagine
a discrete-time economy where dividend shocks are realized every At and each intermediation
relationship lasts for an interval of At. In this case, the specialist makes a trading decision at
date ¢ resulting in one observable intermediary return at the end of the contracting period (i.e.
at t + At). Our continuous-time model can be thought of as a limiting case of this discrete-time
economy when we take At — dt, and this is the underlying information structure that we impose
throughout this paper.

For ease of exposition, here we describe the intermediation relationship as between a repre-
sentative specialist and a representative household; Section 3 describes the competitive structure
of intermediation market in detail. Consider a specialist with wealth W; and a household with
wealth Wth. In equilibrium, these wealth levels evolve endogenously. The specialist contributes
T; € [0, W] into the intermediary. We focus on the case in which any remaining specialist wealth
W, — T, earns the riskless interest rate of 7.5 The household contributes Tth S [0, Wth] into the
intermediary, and invests the rest in the bond at rate r;. We refer to T/ = T} + T} as the total
capital of the intermediary.

The intermediary is run by the specialist. We formalize the moral hazard problem by assuming
that the specialist makes (1) an unobserved due-diligence decision of “working” or “shirking,” i.e.,
st € {0,1} where s; = 0 (s; = 1) indicates working (shirking); and (2) an unobserved portfolio
choice decision of E], where &/ is the intermediary’s dollar exposure in the risky asset.” If the
specialist shirks s; = 1, the (dollar) return delivered by the intermediary falls by X;dt, but the

specialist gets a private pecuniary benefit (in terms of the consumption good) of Bydt, where

This restriction is similar to, but weaker than, the usual one of no private savings by the agent. This assumption
can be relaxed further: Our analysis goes through as long as the specialist cannot short the risky asset through
his personal account. Given the moral hazard issue, this assumption seems reasonable. See footnote 14 for more
details.

Tt is worth noting at this stage that the key feature of the moral hazard problem for our results is the unobserved
due-diligence decision rather than the unobserved portfolio choice. See Section 4.4.4 for further discussion of this
point. In Appendix A.9, we solve the model for the case where the portfolio choice is observable and show that the
results are substantively similar to the case of unobservable portfolio choice.



X; > B; > 0 can be state-dependent, e.g., increasing with risk premia.®? Throughout we will
assume that X; is sufficiently large that it is always optimal for households to implement working
(for a sufficient condition, see the proof of Lemma 2).

The intermediary’s total dollar return, as a function of the specialist’s due-diligence decision

s¢ and the risky asset position &/, is
TtIgR; (St, gtl) == 5151 (th - ’I”tdt) + CTtIT‘tdt - XtStdt, (3)

where dR; is the return on the risky asset in Eq. (2). Note that when £/ > T/, the intermediary
is shorting the bond (or borrowing) in the Walrasian bond market.

At the end of the intermediation relationship ¢ 4 dt, the intermediary’s return in Eq. (3)
realizes. The contract specifies how the specialist and the household share this return. We focus
on the class of affine contracts, i.e., linear-share/fixed-fee contracts. Denote by 3, € [0, 1] the share
of returns that goes to the specialist, and by 1 — 3, the share to the household. The specialist
may also be paid a fee of Kdt to manage the intermediary. We return to the discussion of the
contracting space (e.g., we have assumed no benchmarking and affine contracts) and the relation
to the dynamic contracting literature in Section 4.4.

In sum, at time ¢ the household offers a contract II; = (Tt,Tth, Bt»f(t) € [0, W] x [0, Wth] X
[0,1] x R to the specialist. Given the specialist’s decisions £/ and s;, the dynamic budget con-

straints for both specialist and household are:

AW, = B,TIdR; (€], st) + (Wi — Ty) redt + Kydt — cidt + Bysydt,

N . (4)
AWl = (1= B)TldR, (€], s1) + (W = T]") redt — Kydt — cjdt.
2.3 Dynamic Budget Constraint and Risk Exposure

For the next two sections, let us assume a contract is written that implements working, s; = 0 (in

Section 2.5 we will consider the specialist’s incentive-compatibility constraint in detail). Using

$We think of shirking as executing trades in an inefficient manner. If one specialist shirks and his portfolio return
falls by X.dt, the other investors in the risky asset collectively gain X,dt. Since each specialist is infinitesimal, the
other specialists’ gain is infinitesimal. Shirking only leads to transfers and not a change in the aggregate endowment.

9A related formulation of the moral hazard problem is in terms of diversion of returns by the agent, as in
DeMarzo and Fishman (2009), DeMarzo and Sannikov (2006), and Biais et al (2007). For example, we can consider
a model where by diverting Ldt from the intermediary’s return, the specialist gets ﬁLdt in his personal account,
where L > 0 and HLm = %. Diversion in this case is the same as the shirking of our formulation. One caveat
in interpreting the moral hazard problem of our model in terms of diversion is that in our model the specialist
will typically short the bond in the Walrasian bond market. If shorting the bond is interpreted as borrowing,
then diversion may also affect the specialist’s ability to short the bond. To reconcile this with our formulation, we
could assume that the short position in the bond is collateralized by the holdings of the risky asset, in which case

borrowing is not subject to the diversion friction.



Eq. (3) with s; = 0 and Eq. (4), we have
AWy = B,EL (dRy — midt) + (BT + Wy — Ty) rydt + Kydt — cydt,
AWl = (1 — B)EL (dRy — rdt) + (1 — BT + W) — T} redt — Kdt — .

For any given (3,, T}, T}') we can define an appropriate K;:
K, = (BtTtI - Tt) e+ f(t,

so that these budget constraints become:
AWy = B,EL (dRy — midt) + Kydt + Wirdt — cydt,
{dwf:u—@wﬂﬂa—mm—Kmewnﬁ—iﬁ )
That is, without loss of generality we restrict attention to contracts that only specifies a pair
I = (By, K4).

Reducing the problem in this way highlights the nature of the gains from intermediation in
our economy. The specialist offers the household exposure to the excess return on the risky asset,
which the household cannot directly achieve due to limited market participation. This is the first
term in the household’s budget constraint (i.e., (1 — 3,)&/). Note that contract terms (3, affects
both the household’s risk exposure and the specialist’s risk exposure 3,Ef. The second term in
the budge constraint is the transfer between the household and the specialist; in Section 3, we
will come to interpret this transfer as a price that the household pays to the specialist for the

intermediation service. The third term is the risk-free interest that the specialist (and household)

earns on his wealth, and the fourth term is consumption expense.

2.4 Preliminary Analysis of Consumption-Portfolio Decisions

The risk exposures chosen in the intermediation contract for both household and specialist in
(5) are the results of portfolio decisions by these agents. In order to analyze the intermedia-
tion contract further, we require some preliminary results on both agents’ value functions and
consumption-portfolio decisions. We take a guess-and-verify approach. In this section, we take
the equilibrium price processes as given, where equilibrium prices include not only those for risky
and riskless assets, but also {K;} of intermediation fees. We guess the structure of equilibrium
intermediation fees and verify the guess in Section 3.

From a household’s point of view, in the Walrasian intermediation market a household pur-
chases risk exposure £ from the intermediary, and pays k; per-unit of the risk exposure to the
specialist. A household wishing to purchase twice the risk exposure understands that he will also

pay twice the fees. The total fees paid by the household is

K, = k&P,



where k; > 0 can be interpreted as the equilibrium fee per unit of the household’s purchase of
risk exposure (see Section 3.2).

On the other hand, from the specialist’s point of view, in the intermediation market he earns
fees that are linear in his wealth:

K = qWh,

where ¢; > 0 can be interpreted as the equilibrium fee earned per unit of the specialist’s wealth.
That is, a specialist understands that if he had double the wealth, he would also earn double the
fees. We will provide the equilibrium relation between k; and ¢; in Section 3.4.

These two statements about how specialist and household assess their fees is important for
solving their consumption-portfolio problems. Recall the dynamic budget constraints in Eq. (5).
Denote the specialist’s risk exposure as & = 5t5tl ; then the specialist chooses the risk exposure

and his consumption rate to solve
max F [/ e Pt lnctdt]
{ct,€t} 0
s.t. th = 51: (th — Ttdt) + thtdt + Wﬂ’tdt - Ctdt, (6)

where he takes the equilibrium price dynamics {dRy;7;¢:} as given. In writing this optimization
problem, we continue to assume that a contract is chosen to implement working.

Denote by & = (1 — 8,)&/ the household’s purchase of risk exposure. The household solves
& h
max E [/ e’ tlncﬁdt}
ety Lo
s.t. AW = &l (dRy — ridt) — k&Mt + Wirpdt — chdt. (7)
The following proposition summarizes the optimal consumption-portfolio rules for both agents.

Lemma 1 The specialist’s value function takes the form J (W) = Y, + %ln Wy, where Yy is a

function of prices and aggregate states. The optimal consumption rule is:
C;fk = th7 (8)
and the optimal risk exposure is linear in his wealth:

% TRt
gt — 0_2 Wt . (9)
R,t

Similarly, the household’s value function takes the form J" (Wy) = Y/ + pih In W}, where Y} is a

function of prices and aggregate states. The household’s optimal consumption rule is:
C?* = phWtha (10)

10



and the optimal risk exposure is:
TRt — k¢

2
ORt

EM = wh. (11)

See Appendix A.1 for the proof. In our model, the specialist’s optimal consumption and
portfolio policies are exactly the same as those of a log investor facing excess return of 7 ; and
volatility of ogy; in particular, these policies are not affected by intermediation fees. The reason
is that the equilibrium fees ¢;W; are proportional to his wealth, which amounts to an increment
to the return process on his wealth.' Then the simple consumption rule follows from the fact
that the log investor’s consumption rule is independent of the return process. And, because the
extra fee from the intermediation service does not alter the specialist’s risk-return tradeoff when
choosing the portfolio share between risky asset and riskless bond, ¢; has no impact on his portfolio
choice.

For the household, his consumption rule remains the same as the standard log investor. Be-
cause the household pays an extra fee-per-unit of exposure to the risky asset, the effective excess
return delivered by the risky asset drops to mr; — k¢, thereby affecting his allocation to the

intermediary. We will come back to this result in Section 3.2.

2.5 Incentive Compatibility and Household’s Maximum Exposure

We now analyze how the intermediation contract II; = (8,, K;) is optimally chosen given the
two moral hazard problems: (1) the specialist makes an unobserved due-diligence decision of
“shirking” or “working;” and (2) the specialist makes an wunobserved portfolio choice decision.
In designing the intermediation contract II; = (5,, K;), both classes of agents take as given the
future equilibrium investment opportunity set, as well as the future equilibrium contracts from
competitive intermediation markets.

First we analyze the moral hazard problem regarding the specialist’s due-diligence effort.

B 11
X¢-

Proof. When the specialist makes a shirking decision of s; € {0,1}, Eq. (4) implies that the

Lemma 2 To induce working sy = 0 from the specialist, we must have [3; >

specialist’s budget dynamics 1s,
th = BtTtI(/i—E (Etl) + (Wt - Tt) ’l“tdt + tht — Ctdt + St (Bt — ﬁtXt) dt.

Here, in addition to the return from standard consumption-investment activities and intermedia-

tion transfers, there are two terms affected by the specialist’s shirking decision. If the specialist

0Tn particular, intermediation fees cannot be equivalently viewed as the specialist’s labor income due to the
dependence of intermediation fees on his own wealth.
"In Appendix A.2, we give sufficient conditions that guarantee that it is never optimal to implement shirking.

11



shirks sy = 1, he bears B,X¢dt of loss given the sharing rule B, but enjoys Bidt in his personal
account.
Since the contracting relationship is short-term, the specialist takes his future value function

J () identified in Lemma 1 as given (J(-) is determined by future investment/intermediation
opportunities). Then the specialist’s value difference between shirking s; = 1 and working sy = 0
is (for any portfolio decision &} ):

Ee[J (Wisar) [se = 0] = By [J (Wigar) |se = 1]

Ey[J (Wiga) — J (W) s = 0] = B¢ [J (Wigar) — J (W) [se = 1]

= J (W) (B — B, Xy) dt.

Thus, to rule out shirking so that sy = 0 is optimal, 5, must be such that,
J (W) (B — 8, X1) <0.

Because J' (Wy) > 0, it follows that B, > %. |

For simplicity, throughout the paper we assume that the ratio % = ﬁ < 1, where m > 0 is
a constant. Therefore we have
1
> 12
Bz (12)

We call (12) the incentive-compatibility constraint. Intuitively, the specialist needs to have suffi-
cient “skin in the game” to provide incentives.

The second moral hazard problem of unobservable portfolio choice provides us with a conve-
nient result in solving the specialist’s portfolio choice problem. With a slight abuse of notation,
given any feasible contract I, = (3, K;) let us denote & as the intermediary’s optimal risk

exposure (chosen by the specialist). Then we have:

Lemma 3 In any contract II; = (B;, Ky) offered in equilibrium, the specialist will choose Ef so
that his effective risk exposure B,El = &} always, where & (independent of I1;) is the specialist’s

optimal exposure derived in (9).

This result, which we refer to as “undoing,” implies that the contract term 3, does not have
any effect on the specialist’s exposure to the risky asset. The reason is that if 3, is changed,
the specialist adjusts the portfolio choice within the intermediary so that his net exposure 3,/

remains the same as in (9).!? See Appendix A.3 for a formal proof.

121t is possible that the transfer K, might affect the specialist’s risk exposure choice indirectly through changing
the specialist’s wealth; however, in the proof in Appendix A.3 we show that the household will find it never profitable
to do so.

12



While undoing implies a portfolio exposure for the specialist that does not depend on the
contract, it does not imply the same for the household. For any f3,, the household’s post-undoing
exposure to the risky asset is,

1-5,
B

The household can vary (3, to achieve his desired risk exposure. Setting [, to one provides zero

gl =Q1-8)€E = & (13)

risk exposure, and decreasing 3, increases the household’s risk exposure.
The incentive compatibility constraint (12) places a limit on how low 3, can fall. Combining
both (12) and (13) together, we see that the household’s maximum risk exposure is achieved when

B is set to the minimum value of ﬁ Therefore, the household’s maximum risk exposure is,
14
——EF =mé&f. (14)

The above equation says that household’s exposure to the risky asset (i.e., (1—3;)&;) is at most m
times that of the specialist (i.e., £). The inverse of m measures the severity of agency problems.
As a summary of this section, we can express the core agency problem as a maximum exposure

constraint

Eh < mé;. (15)

Because of the underlying friction of limited market participation, the households are gaining
exposure to the risky asset through intermediaries. However, due to agency considerations, the
risk exposure of households, who are considered as “outsiders” in the intermediary, must be capped

)

by the maximum exposure m times that of the specialists’, or “insiders’,” risk exposure. Note
that & 4 & is, in equilibrium, the aggregate risk this economy. Thus, (15) can also be thought
of as risk-sharing constraint between the two classes of agents in our economy. This constraint

drives the asset pricing implications of our model.

3 Equilibrium Intermediation Contracts
3.1 Competitive Intermediation Market

We model the competitive intermediation market as follows. At time ¢, households offer interme-
diation contracts (;, K)’s to the specialists; then the specialists can accept the offer, or opt out
of the intermediation market and manage their own wealth. In addition, any number of house-
holds are free to form coalitions with some specialists. At t + dt the relationship is broken and

the intermediation market repeats itself.
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Definition 1 In the intermediation market at time t, households make offers (B, K;) to spe-
cialists, and specialists can accept/reject the offers. A contract equilibrium in the intermediation

market at date t satisfies the following two conditions:

1. B, is incentive compatible for each specialist in light of (12).

2. There is no coalition of households and specialists, such that some other contracts can make

households strictly better off while specialists weakly better off.

3.2 Equilibrium Contracts

Denote by Eth the household’s risk exposure obtained in the intermediation market. Given condi-

tion (2) in Definition 1, we have the following lemma:

Lemma 4 Suppose at the beginning of time t specialists (or households) are symmetric. Then
the resulting equilibria in the intermediation market is symmetric, in that every specialist receives

fee Ky, and every household obtains an exposure E' and pays a total fee of K.

The proof of Lemma 4, which is in Appendix A.4, borrows from the core’s “equal-treatment”
property in the equivalence between the core and Walrasian equilibrium (see Mas-Colell, Whin-
ston, and Green (1995) Chapter 18, Section 18.B). Here is a sketch of the argument. Suppose that
the equilibrium is asymmetric. We choose the household who is doing the worst (i.e. receiving
the lowest utility), and match him with the specialist who is doing the worst (i.e. receiving the
lowest fee); then this household-specialist pair can do strictly better. The only equilibrium in
which such a deviating coalition does not exist is the symmetric equilibrium.

The next lemma shows that in this competitive intermediation market, households who pur-

chase risk exposure from the specialists behave as price takers.

Lemma 5 Given &' and K; in any symmetric equilibrium at date t, define ky = E%f In this
competitive intermediation market households are price takers and face a per-unit-exposure price
of ki. This implies that in order to obtain an exposure of £, a household has to pay K; = k&
to the specialist.

Proof. Given £ and K, in any symmetric equilibrium, suppose that a measure of n households
consider reducing their per-household exposure by € relative to the equilibrium level Eth. To do so,
they reduce the measure of specialists in the coalition by ?—5, thereby saving total fees of ’g—tﬁKt =
neky. Since the allocation is symmetric, each household reduces his fees, per unit €, by ky. A

stmilar argument implies that the households can raise their exposure at a price of ky. ®
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This lemma verifies the fee structure faced by households that we assumed in Eq. (7) in
Section 2.4. From the household’s point of view, each dollar of the risk exposure to the risky asset
generates an after-fee risk premium of 7r; — k¢, and the households’ demand for risk exposure

EM (k) is decreasing in kg as in Eq. (11).
3.3 Unconstrained and Constrained Regions

So far we have discussed how the exposure price k; enters into the household’s investment decisions,
which in turn affects the aggregate demand for the risk exposure. From the supply side, combining

Eq. (9) and (15) we have:

mE; = m LW, (16)

ORt

This maximum exposure supply is independent of the exposure price k;, and increasing in the
specialist’s wealth. The equilibrium k; equates demand with supply.

Because the specialist has an outside option to trade on his own, it must be that k; > 0 (i.e.,
K; > 0) in equilibrium. The following proposition shows that there are two distinct equilibria
that arise: one with k; > 0 and the maximum supply in Eq. (16) is binding, and the other with
k; = 0 and the maximum supply is slack. Because the incentive-compatibility constraint (12)
determines the maximum risk exposure supply in this economy, the characterization is linked to

whether the incentive-compatibility constraint (12) is binding or not.
Proposition 1 At any date t, the economy is in one of two equilibria:

1. The intermediation unconstrained equilibrium occurs when

EM(ky = 0) < mé&;.
In this case, the incentive-compatibility constraint of every specialist is slack 5, < ﬁ.13

2. Otherwise, the economy is in the intermediation constrained equilibrium. There exists a

strictly positive exposure price ki, such that,
EM (ks > 0) = mé&;.

In this case, the incentive-compatibility constraint is binding for all specialists: 5, = ﬁ

13In standard optimal contracting models, the resulting incentive-compatibility constraint is always binding. In
our model, since the principal (the household) is also risk averse, the risk sharing is also at work beyond the
incentive issue. As a result, incentive-compatibility constraint will be slack when the specialist’s risk bearing
capacity is relatively high. See detailed discussion after Proposition 3.
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In the wunconstrained equilibrium, or unconstrained region, the per-unit-exposure price k; is
zero, and the incentive-compatibility constraint (12) is slack so that the maximum supply of risk
exposure does not bind. Note that since & is increasing in specialist wealth, this region arises
when specialists’ wealth is relatively high. The abundance of intermediation supply, suggested by
Eq. (16) then results in free intermediation service.

On the other hand, if the specialists’ wealth W; is relatively low so that & (k; = 0) exceeds
the aggregated maximum exposure mé&; provided by the specialists, we are at the constrained
equilibrium, or constrained region. In this case, the price k; rises to to curb the demand from the
households (recall £ (k;) = %Wt’l in Eq. (11)). In equilibrium, specialists earn a positive
rent K; = kymE* > 0 for their scarce intermediation service. For a more rigorous proof that is

based on the coalition argument, see Section A.5 in the Appendix.

3.4 Intermediation Fees from Specialist’s Point of View

The last important result that arises from the competitive intermediation market concerns the
fees as viewed by the specialist. We show that a given specialist earns an intermediation fee that
is linear in his wealth W;. This result verifies the key assumption in deriving the specialist’s

consumption-portfolio decision in Lemma 1.

Lemma 6 Given the equilibrium risk exposure price ki, define the per-unit-of-specialist-wealth fee

as

(17)

{ 0 in the unconstrained region,
q =

mm . . .
UTR’tkt in the constrained region.
Rt

Then from the specialist’s point of view, he earns intermediation fees that are linear in this wealth,

i.e., Kt = tht'

See Appendix A.6 for the proof. Clearly, the key argument is in the constrained region. There,
the specialist receives a strictly positive fee that is linear in his maximum risk exposure supply
mé&; . Because his equilibrium exposure & is in turn linear in his wealth as stated in Eq. (9), the

total fee is linear in his wealth W;.

Remark 1 The linearity of the fee in the specialist’s wealth implies that the specialist under-
stands that if he had a wealth of 2W; (which could be due to an unanticipated windfall) so that his
mazimum 1isk exposure supply is 2mé&}, he would receive a fee of 2K;. Since our model is sym-
metric, this cannot occur in equilibrium. However, when making dynamic decisions the specialist

accounts for this dependence in considering how his today’s consumption decision alters future
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fees. An extra dollar of saving can earn q; more in intermediation fees tomorrow. We return to

this discussion when deriving the specialist’s Fuler equation in Section 5.5.

4 Equity Implementation and Equilibrium
4.1 Equity Implementation

The somewhat abstract (3;, K;) contract can be implemented and interpreted readily in terms of
equity contributions by households and specialists. In Section 2.5, we see that the heart of the
agency friction imposes a restriction on the maximum risk exposure that the households can obtain
through intermediaries, in that £ < m&; in (15). From a slightly different angle, because & is
the specialist’s exposure to the risky asset, this restriction dictates a risk-sharing rule between
the household and the specialist in the intermediary. In the language of equity contracts, the
restriction can be interpreted as one in which the households, as outsiders of the intermediary,

cannot hold more than Him (equity) shares of the intermediary.

Definition 2 (Equity Implementation)

The equity implementation of the intermediation contract is as follows:

1. A specialist contributes all his wealth Wy into an intermediary, and household(s) contribute

T;th < Wth‘14

Wy ~
Wt 7 fraction

2. Both parties purchase equity shares in the intermediary. The specialist owns

h
of the equity of intermediary, while the households own WﬁTh'
t

3. Equity contributions must satisfy the equity capital constraint
" < mWs.

4. Households pay the specialist an intermediation fee of fi per dollar invested in the interme-

diary. The total transfer paid by the households is K; = ftTth,

" Note that on point (1), the specialist is indifferent between contributing and not contributing all of his wealth
to the intermediary. We can also consider implementations in which the specialist contributes a fraction v € (0, 1]
of his wealth to the intermediary, and the household’s contribution satisfies the capital constraint T} < m~yW;.
Because the specialist can only invest in the riskless asset outside the intermediary, the undoing activity implies
that such outside investment cannot affect each party’s ultimate exposure to the risky asset. As a result, our asset
pricing results remains the same under this alternative implementation.

The above argument relies on the restriction that the specialist can only invest in the riskless asset outside the
intermediary. This restriction can be relaxed further. Any positive exposure to the risky asset in his personal
account reduces the risk exposure delivered by the intermediary. Since the fee the specialist receives from delivering
exposure to the household is non-negative, the specialist will never purchase the risky asset through his personal
account. Therefore, the core restriction that the paper needs to impose is that the specialist cannot short the risky
asset in his personal account. This restriction is consistent with the notion that given moral hazard issues, the
specialist must be disallowed from “hedging” the risk in his contract payoff.
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We are only interested in equity implementations that result in the same equilibrium as in
the original economy. The next corollary gives the counterpart of Proposition 1 under the equity

implementation.
Corollary 1 At any date t, the economy is in one of two equilibria:

1. In the unconstrained region, the capital constraint is slack, Tth < mWy, and the intermedia-
tion fee f; = 0.
2. In the constrained region, the capital constraint is binding, Tth = mW,, and intermediation

fee fr > 0.

Because in the constrained region the specialist receives a fee of ¢;W;, the above corollary

implies that (recall (17) in Lemma 6):

a 0 in the unconstrained region,
fe=—"=9 TRtL iy the constrained region (18)
m P L gion.

Moreover, in equilibrium we have the following fee structure (which holds for both regions):
Ky = [T} = W, = mf;W,.

Under the equity implementation, in equilibrium the intermediation transfer is linear in both the
household’s investment and the specialist’s wealth. More specifically, from the specialist’s point

of view, he earns a fee of m f; per unit of his own wealth.

4.2 Decisions under Equity Implementation

We reformulate both agent’s problems under the equity implementation. A specialist contributes
all of his wealth to the intermediary, and chooses his consumption rate ¢; and the portfolio share
in the risky asset oy for the intermediary. The share choice a; is isomorphic to the exposure choice
& described in Section 2.2, but it is more convenient to work with the former when deriving asset

prices. Besides, the specialist earns a fee of m f;Widt. Thus, the specialist solves the problem:

m —~—
max F {/ e P 1n ctdt} s.it. dWy = —cdt + WidRy (o) + mfiWydt, (19)
0

{et,an}

where the return delivered by intermediaries m, as a function of a4, is
m (ozt) = Ot (th — T'tdt> + Ttdt.

Note that the intermediary’s portfolio share «y is also the portfolio share on the specialist’s own

wealth.
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The household with wealth W/ chooses his consumption rate c' and funds for delegation T}.
Since the fraction 7)*/W/* of his wealth earns a net return of dR (a¢) — fidt, the return on the
household’s wealth is,

—h Th Th o
th = <1 — t> T'tdt + —t (th (th> — ftdt) s
The optimization problem for the household is:

& ——h
max [ [ / e " n el dt} st. dWl = —ctdt + WldR; . (20)
ety Lo

Definition 3 An equilibrium for the economy under equity implementation.is a set of progres-

sively measurable price processes { P}, {r¢}, and {f;}, and decisions {T}', cs,cl, o} such that,

1. Given the price processes, decisions solve (19) and (20);
2. The intermediation decisions satisfy the equilibrium conditions of Corollary 1;

3. The stock market clears:

Oét(Wt + Tth) = Pt;

4. The goods market clears:

Ct—|—C? = Dt.

Given market clearing in risky asset and goods markets, the bond market clears by Walras’
law. The market clearing condition for the risky asset market reflects that the intermediary is the
only direct holder of the risky asset, and the total holding of the risky asset by the intermediary
must equal the supply of the risky asset.

The following proposition implies that it is equivalent to study the economy under equity

implementation.

Proposition 2 The agents’ portfolio decisions under the equity implementation are the same as

those in the original economy.

This result is important for the next steps in our analysis where we analyze asset prices because
it implies that both economies share the same asset pricing equilibrium. See Appendix A.7 for

the proof.
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4.3 Equilibrium and Capital Constraint

The next proposition characterizes the capital constraint in terms of the wealth distribution

between households and specialists in the economy.
Proposition 3 At any date t, the economy is in one of two regions:

1. When mW; > Wth, the capital constraint is slack, and the economy is in the unconstrained
region. The intermediation fee f; = 0, and the households invest their entire wealth in the

intermediary so that T} = W};

2. When mW,; < Wth, the capital constraint is binding, and the economy is in the constrained
region. The intermediation fee f; = 0, and the households only invest Tth = mW; in the

intermediary.

See Appendix A.8 for a formal proof. In Corollary 1 we have shown that when mW; > T}, the
fee is zero. Since T)' < W}, it follows that f; = 0 if mW; > W}. The first part of this corollary
states further that the household sets 7} = W/ in this case. The argument is as follows. When
the household invests his entire wealth in the intermediary, the portfolio share in the risky asset
is the same for household and specialist. Both agent-types have log preferences, and since the
specialist chooses the intermediary’s portfolio to optimize his utility, this portfolio choice must
also be optimal for the household.

In this case both agents optimally hold the same portfolio. Because the risky asset market
must clear, this portfolio must be 100% investment in the risky asset, which implies that the
risk exposure allocation is proportional to the wealth ratio W; : W/'. The economy achieves the
first-best risk exposure allocation that would arise in a heterogeneous-agents-economy without
frictions.

On the other hand, if Wth > mW,;, investing Tth = Wth violates the capital constraint. In
this case, the intermediation fee f; rises (or, k; rises in the original economy) so that the optimal
investment in the intermediary T}* equals mW;. The equity implementation implies that the
resulting exposure allocation & : & = 1 : m is greater than the wealth distribution ratio
Wy . Wth, and the risk exposure allocation is tilted toward the specialist who has relatively low
wealth. As we will show in Section 5, this disproportional risk allocation drives the pricing

implications in the constrained region.
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4.4 Discussion of Intermediation Contract

In this section, we discuss in further detail the contracting issues that arise in our model. Skipping

this section will not hinder the reading of Section 5.

4.4.1 Discussion of Incentive Constraint

We think of the incentive constraint that emerges from the model as similar to the explicit and
implicit incentives across many modes of intermediation. For example, a hedge fund manager
is typically paid 20% of the return on his fund. We may think of this 20% as corresponding to
the minimum fraction 8 that has to be paid to the hedge fund manager for incentive provision
purposes. Likewise, many investment and commercial banks have traders on performance-based
bonus schemes. Mutual funds receive more flows if they generate high returns (Warther, 1995),
and the salaries of the managers of these funds rise with the fees on these flows. Thus there is a
relation between the payoffs to the manager and the returns on the mutual fund. Finally, while
these examples all have the agent exposed to returns on the upside, it is also true that agents who
generate poor returns are fired or demoted.

The key feature of the model, which we think is robustly reflected across many modes of
intermediation in the world, is the feedback between losses suffered by an intermediary (drop in
W) and exit by the investors of that intermediary. Our model captures this feature through the

capital constraint, when it is binding.

4.4.2 Benchmarking

A substantive restriction that we impose on the contracting space is to not consider benchmarking
contracts. In our model the specialist is compensated/punished based only on his own perfor-
mance; we do not consider contracts where one specialist’s performance is benchmarked to the
aggregate risky asset return, and/or the performance of another specialist. If we allow for such
contracts, then the principal can perfectly detect shirking by the agent. As such, the principal
can overcome the moral hazard problem at no cost.

The issue of benchmarking is a thorny one for macroeconomic models of credit market fric-

tions.'® From a theoretical standpoint, the literature has offered some avenues to explicitly deal

Y5For example, the analysis of the Holmstrom and Tirole (1997) model turns on comparative statics of inter-
mediaries’ total capital to shed light on a credit crunch. However, if we interpret these changes in intermediary
capital as the result of exogenous aggregate shocks, then in a full blown dynamic model presumably agents will
write contracts that anticipate these shocks. In general, such contracts will condition out the aggregate shocks (see
Krishnamurthy, 2003). Thus, at one level, one can view this paper’s analysis as the counterpart to Holmstrom and
Tirole’s comparative static within a fully dynamic model.
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with the benchmarking issue. We think the most promising for our model is based on the limited-
commitment models of, e.g., Kehoe and Levine (1993) and the diversion models of, e.g., DeMarzo
and Fishman (2009). For example, consider a model in which the agent (specialist) can divert
some investment returns at a cost into his personal account. Moreover, as in Kehoe and Levine,
even though such diversion is observable, there are no courts that can punish detectable diversion.
In this case, one can imagine that the principal will commit to a contract whereby the agent is
paid a share of the investment return if the agent does not divert. The share is chosen to be large
enough so as to eliminate the incentive to divert. In this formulation, even if all agents generate
high returns (i.e. a good aggregate shock), a given agent still needs to be bribed with a share of
his (higher aggregate) returns to prevent diversion. Thus, the agent receives payments that vary
with the aggregate state. The reason this modeling can work is that in Kehoe and Levine the
incentive constraint is ex-post.

Is it easy to accommodate this change within our model? The answer is yes for the equity
contract of the model. The harder issue is the debt contract. In our model, shorting the bond (i.e.
borrowing) is not affected by agency issues. This assumption is consistent with our effort moral-
hazard formulation and allows our analysis to focus on the effect of constraining a single equity
margin. With the possibility of diversion, presumably debt-borrowings will also be constrained
(see footnote 9). Thus, we would have to study a model with constraints on both equity and debt.
While such a model seems both theoretically and empirically interesting to study, we leave this

task for future work.

4.4.3 Long-term Contracts

For tractability reasons, in this paper we focus on short-term contracts. There has been much
recent interest in dynamic models of long-term financial contracts, e.g., DeMarzo and Fishman
(2007), Biais et al (2007), and DeMarzo and Sannikov (2006). In these models, the principal
commits to a compensation rule as a function of the agent’s performance history. In our model,
no party can commit beyond the short-term intermediation relationship [¢,t + dt].

On the one hand, it will be interesting to develop models that marry the dynamic financial
contracting models with the dynamic asset pricing models. We are unaware of papers in the
literature that accomplish this. On the other hand, if the main advantage of long-term contracting
is to generate history dependence, then it is worth noting that the specialist’s compensation—and
in turn the aggregate state—is history dependent in our model despite the short-term nature of
the intermediation relationship. History dependence arises in our model because we embed the

short-term contracting problem into a dynamic model.
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In particular, in our model, after the intermediary sector suffers a series of losses, the special-
ists’ wealth drops faster than that of the households.!® As a result, the agency frictions become
more severe, which is reflected in a more distorted risk allocation toward the intermediary sector
with scarce capital. This is akin to the result in DeMarzo and Fishman (2009), Biais et al (2007),
and DeMarzo and Sannikov (2006), where a sequence of bad performance shocks increases the
likelihood of inefficient termination/liquidation. The underlying connection is that in both mod-
els, after a sequence of bad shocks, the agent’s inside stake within the relationship (whether it is

short-term or long-term) falls, leading to more severe agency frictions.

4.4.4 Observability of Specialist Portfolio

We assume that the specialist’s portfolio choice is unobservable. We make this assumption primar-
ily because it seems in harmony with the household limited participation assumption. Households
who lack the knowledge to directly invest in the risky asset market are also unlikely to understand
how specialists actually choose the intermediaries’ portfolio.

On the other hand, making the portfolio choice observable will not substantively affect any of
our results. The Appendix A.9 formally solves the case where the portfolio choice is observable,
but the due-diligence effort problem remains. Relative to the case of unobservable portfolio choice,
the main difference is that now the household pays the specialist intermediation fees that depend
on the actual risk exposure delivered to the household. In other words, when the portfolio choice
is observable, from the specialist’s point of view the total intermediation fee is no longer a function
of his wealth; rather, it becomes a direct function of the exposure supply to the household.!”

The region of interest is the constrained region where in our current model the household
achieves a lower-than-first-best exposure to the risky asset. In this region, the sharing rule j3, is

1

still binding at the constant 1. to respect the incentive-compatibility constraint. Therefore, in

light of (12) and (13), in equilibrium we still have
EM = mé&}.

We know from Eq. (11) that the households demand £/** is decreasing in k;. In our current model

where the portfolio choice is unobservable, the exposure supply mé&; is independent of k; (see Eq.

Y6 This occurs when the economy starts from the constrained region where the specialists own a leveraged position
in the risky asset. If the economy starts from the unconstrained region, because p > p, households consume more
relative to the specialists, and as a result the economy eventually reaches the constrained region. In He and
Krishnamurthy (2008) we introduce leverage in the unconstrained region so that both regions are transient.

'"In the main model with unobservable portfolio choice, it is the specialist’s observable wealth that determines
the actual risk exposure supply in the constrained region. As a result, even though the household purchases risk
exposure from the intermediary, the total fee is a function of specialist’s wealth. Any specialist can potentially
promise to deliver a higher-than-equilibrium level of risk exposure to households in an attempt to earn greater total
intermediation fees. However, because the investment position is unobservable, this promise is not credible.
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(9)). Now in the case of observable portfolio choice, the exposure supply m&; is increasing in k;
(see Eq. (34) in Appendix A.9). Intuitively, with a positive risk exposure price k, specialists are
induced to supply more exposure to households. Because the supply is not infinitely elastic, the
core feature of inefficient risk allocation is preserved in the observable portfolio choice case: The
risk-sharing allocation tilts toward more risk on the specialist, exactly as the unobservable portfolio
choice case (see Proposition 5 in Section 5). The lower the specialist’s wealth (or intermediary
capital) Wy, the tighter is the intermediation constraint, and therefore the more inefficient the
risk allocation in this economy. Again, to induce the specialist to hold the equilibrium risky asset
position, the risk premium rises accordingly. Therefore, the link between the extent of the capital

constraint and the higher risk premium is preserved in the observable portfolio choice case.

4.4.5 Non-linear Contracts

We have restricted attention to affine contracts (/3;, K;) in solving for an intermediation contract.
It is worth asking how our results will be altered if we considered non-linear contracts such as
option-like contracts. If we allow for non-linear contracts, the household will have a lever to affect
the specialist’s risk taking incentives, which in turn gives the household some ability to affect the
specialist’s portfolio choice. Specifically, consider a smooth (at zero) compensation contract Fy (-),
where the argument is the intermediary’s return T} c/iE (Stl , st) in Eq. (3) with s; = 0. Tto’s rule

implies that,

o o 1
Fy (T} dR: (€])) = Fr (0) dt + F/ (0) T/ dRy (/) + B 2(0) (&) 0%, dt.

Comparing this contract to the affine contract that we have studied, F; (0) and F} (0) correspond
to the fixed transfer K; and the sharing rule 3,, respectively. The third term is new. By specifying
a convex Iy (-) such as an option contract, the specialist receives a fee that is increasing in &/
and therefore is willing to take more risk exposure than the case of affine contracts. That is,
the household can set F}’ (0) > 0 as a lever to induce the specialist to take a more preferable
risk exposure. Nevertheless, because this added lever is still weaker than allowing the household
to fully observe and choose the specialist’s portfolio, and because the full observability of the
specialist’s portfolio choice does not substantively affect our results, we believe that allowing for

non-linear contracts will also not substantively affect our results.

5 Asset Market Equilibrium

We look for a stationary Markov equilibrium where the state variables are (W, D;). As the

dividend process is the fundamental driving force in the economy, D; must be one of the state
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variables. Corollary 3 shows that whether capital constraints bind or not depends on the relative
wealth of households and specialists. Therefore the distribution of wealth between households
and specialists matters as well. Although there is some freedom in choosing how to define the
wealth distribution state variable, we use the specialist’s wealth W; to emphasize the effects of
intermediary capital.

The intrinsic scale invariance (the log preferences and the log-normal dividend process) in
our model allows us to simplify the model with respect to the variable D;. Define the scaled
specialist’s wealth as w, = W;/D;. We derive functions for the equilibrium price/dividend ratio
P,/ Dy, the risk premium 7p,, the interest rate 7, and the intermediation fee f; as functions of

wy only.

5.1 Risky Asset Price and Capital Constraint

Log preferences allows us to derive the equilibrium risky asset price P; in closed form. Recall the

optimal consumption rules (8) and (10) in Lemma 1:
¢ = pWy, and f* = p"W.

Because debt is in zero net supply, the aggregated wealth has to equal the market value of the
risky asset:

Wh+w, =P,

Invoking the goods market clearing condition cf + cé‘* = D;, we solve for the equilibrium price of
the risky asset:

(- 5)
P=—+ 11— |W,. 21
t ol oh t (21)

When the specialist wealth W; goes to zero, the asset price P, approaches D,/ p". Loosely
speaking, this is the asset price for an economy only consisting of households. At the other limit,
as the households wealth goes to zero (i.e., W; approaches P,), the asset price approaches D;/p.

We assume throughout that p* > p. Then, the asset price is lowest when households make
up all of the economy, and increases linearly from there with the specialist wealth, W;. This is
a simple way of capturing a low “liquidation value” of the asset, which becomes relevant when

specialist wealth falls and there is disintermediation.!®:1

'8Note that liquidation is an off-equilibrium thought experiment, since in our model, asset prices adjust so that
the asset is never liquidated by the specialist.

There are in other ways of introducing the liquidation effect. In He and Krishnamurthy (2008) we consider a
model where the specialist is more risk averse than the household. In that model, as the specialist loses wealth
and becomes more constrained, the high risk aversion of the specialist causes the equilibrium risk premium to rise
sufficiently fast that the asset price falls. In the present model if we set the discount rates equal to each other,
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Now invoking Corollary 3, we can determine the point w® so that the capital constraint starts

to bind, i.e., where mW; = Wth = P — W;. Simple calculation yields that

1
mp" + p

The next proposition summarizes our result.

Proposition 4 The equilibrium price/dividend ratio is

Pt 1 P
—_— = — 1—— .
Dy Ph+< Ph)wt

When wy > w€, the economy s unconstrained; when wy < w® the economy is constrained.

5.2 Specialist’s Portfolio Share

The specialist chooses the portfolio share a; of the risky asset for the intermediary, which is also
the portfolio share for the specialist’s own wealth invested in the risky asset. We can use the
market clearing condition for the risky asset to pin down ay.

When the economy is in the unconstrained region, households invest 100% of their wealth
into intermediaries (recall Corollary 3), and both household and specialist must have the same
portfolio share in the risky asset. Because the riskless bond is in zero net supply, market clearing
implies that a; = 1. This corresponds to the first-best risk allocation because both log-agents
have the same risk appetite in this economy (recall related discussions after Proposition 3).

When the economy is in the constrained region, the intermediaries have a total capital of
W plus the household’s capital investment of mW;. Because the risky asset must be held by
intermediaries, using (21) we find the portfolio share in the risky asset to be,

. Pt _1+(ph—p)wt
Wi + mW; (1 + m) phwt .

The next proposition summarizes our result.

Qi

Proposition 5 In the unconstrained region oy = 1. In the constrained region,

_ 1+ (" — p)uwy

(1 +m)phw; (23)

Qi

although the risk premium does rise as the specialist loses wealth, the interest rate also falls, and with log utility,
these two effects offset each other. To solve the model for the case of differential (in particular non-log) utility, we
have to rely on numerical methods in He and Krishnamurthy (2008). Another way to introduce liquidation is to
model a second-best buyer for the risky asset. For example, suppose households can directly own the asset, but
in doing so, receive a lower dividend than specialists. Then, if the intermediation constraint binds sufficiently, the
households will bypass the specialists to directly purchase the asset. This modeling sets a lower bound at which
the asset is liquidated to the households. Models such as Kiyotaki and Moore (1997) and Kyle and Xiong (2001)
have this feature. Following this approach in our setting necessitates having to model bankruptcy and in particular
the specialist’s trading decisions after bankruptcy. We do not take this approach because it is sufficiently more
complicated than the simple discount rate approach and it is unclear if the added complexity will yield more in
terms of the substance of our analysis.
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Figure 2: The specialist’s portfolio share «; in the risky asset is graphed against the scaled specialist wealth
w for m = 4 and 6. The constrained (unconstrained) region is on the left (right) of the threshold w®. Other
parameters are g = 1.84%, o0 = 12%, p = 1%, and p" = 1.67% (see Table 1).

In Figure 2 we plot the specialist’s portfolio share «; in the risky asset against the scaled
specialist’s wealth w;. The specialist’s portfolio holding in the risky asset rises above 100% once
the economy is capital constrained, and rises even higher when the specialist’ wealth falls further.
As a result, the risk exposure allocation, which departs from the first-best one, is tilted toward
the specialist who has relatively low wealth. Since in our model the specialist, not the household,
is in charge of the intermediary’s investment decisions, asset prices have to adjust to make the

higher risk share optimal.

Two Effects on m: Constraint Effect and Sensitivity Effect Figure 2 illustrates the
comparative static results for the cases of m = 4 and m = 6. There are two effects of the
intermediation multiplier m. The first is a “constraint effect.” The intermediation multiplier m
captures the maximum amount of households’ (outside) capital that can be raised per specialist’s
(insider’s) capital, thus giving an inverse measure of the severity of agency problems in our
model. Decreasing m exacerbates the agency problem and thereby tightens the capital constraint
for a given wealth distribution. From (22), it is immediate to see that w®(m = 4) is higher than
w® (m = 6), and therefore the unconstrained region (where w; < w®) is smaller when m = 4. Also,
in Figure 2 we observe that for a given value of wy, the lower the m, the higher the specialist’s
holding «y in the risky asset.

There is a second, more subtle, “sensitivity effect” of m, when we consider the economic impact
of a marginal change in the specialist’s wealth. This sensitivity effect is rooted in the nature of the

capital constraint. When in the constrained region, a $1 drop in the specialist’s capital reduces
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the households’ equity participation in the intermediary by $m. A higher m makes the economy
more sensitive to the changes in the underlying state, and therefore magnifies capital shocks.
One has to stare hard to see the sensitivity effect in Figure 2. For the m = 6 case, a; rises
faster in the constrained region than for the m = 4 case. It is easier to analytically show this
point. We calculate the derivative of portfolio share o with respect to wy using (23), and evaluate

this derivative (in its absolute value) across the same level of ay:

do L1 feem)p (" =)

(@ +m)phw? (1+m)ph

dwy

Differentiating this expression with respect to m, we find that,

_ A" (A4 m)*af — (1 p/p")?)
(1+m)? ’

d

dm

day

dwt

which is positive for all relevant parameters (recall that a; > 1 and that p” > p). In other words,
when m is higher, a change in specialist wealth leads to a larger change in «;. While we do not
go through the computations in the next sections, this sensitivity effect arises in most of the asset
pricing measures that we consider.

The two effects of m shed light on crises episodes. If we consider that an economy like the
U.S. has institutions with higher m’s, then our model can help explain why crisis episodes are

unusual (constraint effect), but on incidence, are often dramatic (sensitivity effect).

5.3 Volatility of Specialist Wealth

We may write the equilibrium evolution of the specialist’s wealth W; as

AW,
—L = gy dt + owedZy, (24)
W, ’

where the drift py;,, and the volatility oy are to be determined in equilibrium. By matching the

diffusion term in (24) with the specialist’s budget equation (19), it is straightforward to see that,
oWt = QtOR- (25)

The volatility of the specialist’s wealth is equal to the volatility of the risky asset return, modulated
by the position of the risky asset held by the specialist.

Given (21), the diffusion term on the risky asset price is,

D
UR,tPt - VOl(dPt) == 0?}: + (1 - pph> WtJW,t-
Then,
1 D, p
UR,t = Ft (O’ph + (1 — ph> WtUVV,t) . (26)
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Figure 3: The volatility of the specialist’s wealth ow ¢ is graphed against the scaled specialist wealth w,
for m =4 and 6. The constrained (unconstrained) region is on the left (right) of the threshold w®. Other
parameters are g = 1.84%, o = 12%, p = 1%, and p" = 1.67% (see Table 1).

Combining (25) and (26) we solve for oy

g

g =
T e

oy Dy - (ph

—p) w

Now based on % in Proposition 4 and the equilibrium portfolio share «; in Proposition 5, we can

solve for the volatility of the specialist’s wealth.

Proposition 6 In the unconstrained region, ow, = o. In the constrained region,

o
TV w(mph )

Not surprisingly, Figure 3 shows that the volatility of the specialist’s wealth displays a similar
pattern as that of ay. In the unconstrained region, the volatility of the specialist’s wealth is
constant. In the constrained region, the volatility of wealth rises as the specialist’s wealth falls,

and the specialist bears disproportionately more risk in the economy. The two effects—constrained

effect and sensitivity effects—are also visible from the figure.

5.4 Risky Asset Volatility

oW,

Now we are ready to solve for the volatility of risky asset ory, as op; = according to (25).

Proposition 7 In the unconstrained region cry = o. In the constrained region, we have,

ORt=0 ((:n:hnjr)ih> (1 + (phl— P)wt) '
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Figure 4: The risky asset volatility or ¢ is graphed against the scaled specialist wealth w; for m = 4 and
6. The constrained (unconstrained) region is on the left (right) of the threshold w®. Other parameters are
g=1.84%, 0 = 12%, p = 1%, and p" = 1.67% (see Table 1).

As Figure 4 shows, in the unconstrained region, the volatility of risky asset is constant and
equal to dividend volatility . The volatility rises in the constrained region, as the constraint

tightens (i.e. W; falls). Eq. (26) implies that

1 1
ORt = 57 (ah + <1 — Ph> thW,t) .
Fi/Dy \ p p

We have seen that in Proposition 6, wiow is a constant in the constrained region. Therefore, for
smaller scaled specialist wealth w;’s, the volatility o+ increases because the price/dividend ratio
P,/ Dy falls. The latter condition is consistent with the fire-sale discount of the intermediated
assets (see comments in footnote 19).

The model can help explain the rise in volatility that accompanies period of financial turmoil
where intermediary capital is low. It can also help to explain the rise in the VIX index during
these periods, and why the VIX has come to be called a “fear” index. We will next show that
the periods of low intermediary capital also lead to high expected returns. Taking these results
together, we provide one possible explanation for recent empirical observations relating the VIX
index and risk premia on intermediated assets. Bondarenko (2004) documents that the VIX index
helps explain the returns to many different types of hedge funds. Berndt, et al. (2004) note that
the VIX index is highly correlated with the risk premia embedded in default swaps. In both cases,
the assets involved are specialized and intermediated assets that match those of our model. Our
model suggests that, as intermediaries hit their capital constraints, the intermediation capital—
which is the wealth of marginal investors (as specialists in this model)—becomes more volatile,

and this translates to rising market volatilities and rising VIX index. At the same time, as we see
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in the next section, increased volatility gives rise to higher risk premia on the assets that they are

trading.

5.5 Risk Premium

The key observation regarding our model is that the specialist is in charge of the investment
decisions into the risky asset. Asset prices then have to be such that it is optimal for specialists
to buy the market clearing amount of .

The specialist’s Euler equation for pricing risky asset return dR; is,

dc: dc; dc;
mfydt — pdt + B, [Cﬂ + Vary [Cﬂ + B[R] = Couv, [Cct th} . (27)

t t t

This expression looks like the standard consumption Euler equation, except for the first term
mfidt, which is the total fee that the specialist earns per unit of his wealth. Note that this
expression encompasses both regions, as m f; = 0 when the economy is unconstrained.

The additional term due to the intermediation fee is rooted in Corollary 6 and Remark 1 in
Section 3.4. Consider a specialist who decreases consumption today by § and uses the § to increase
his investment in the intermediary. As in the usual argument, this strategy has a consumption
cost today and a gain tomorrow when the proceeds of this investment are consumed. Relative
to the usual argument there is a twist in our case, because the increased investment, J, attracts
further households investment on which the specialist gets a fee. The additional fee amounts to
q:0 = mf;0 that the specialist can immediately consume. This explains the first term in the Euler
equation.

The consumption rule ¢ = pW; implies that dcf /c; = dW;/W;. Applying the Euler equation

to the risky asset return dR; and to a riskless bond, we find,
TFR,tdt = Et [th — Ttdt] = O'R¢O'Wdt.

This is the familiar CAPM pricing result. Since the specialist has log preferences, a CAPM holds

with the market portfolio defined as the return on the specialist’s wealth.

Proposition 8 In the unconstrained region, Tr; = o?. In the constrained region, we have,

’ ((1+”nﬂﬂ> ( 1 >
™ = .
B wy(mph + p) \mph +p ) \1+ (0" = p)w

Since both or; and oy, rise as W; falls, the risk premium on the risky asset rises through

the constrained region, as shown in Figure 5. It is easy to show that this pattern also prevails for

the Sharpe ratio.
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Figure 5: Risk premium 7g; is graphed against the scaled specialist wealth w; for m = 4 and 6. The
constrained (unconstrained) region is on the left (right) of the threshold w®. Other parameters are g =
1.84%, o = 12%, p = 1%, and p" = 1.67% (see Table 1).

An interesting point of comparison for our results is to the literature on state-dependent risk
premia, notably, Campbell and Cochrane (1999), Barberis, Huang, and Santos (2001). In these
models, as in ours, the risk premium is increasing in the adversity of the state. In Campbell
and Cochrane, the state dependence arises because marginal utility is dependent on the agent’s
consumption relative to his habit stock. In Barberis, Huang, and Santos, the state dependence
comes about because risk aversion is modeled directly as a function of the previous period’s gains
and losses. Relative to these two models, we work with a standard CRRA utility function, but
generate state dependence endogenously as a function of the frictions in the economy.

Our model is closer in spirit to heterogeneous agent models where losses shift wealth between
less and more risk averse agents thereby changing the risk-aversion of the representative investor.
Longstaff and Wang (2008) is an example of this work. In Kyle and Xiong (2001), the two agents
are a log investor and a long-term investor. Although their paper is not explicit in modeling
the preferences and portfolio choice problem of the long-term investor, since his demand function
is different than the log investor, implicitly his choices must reflect different preferences. In
theoretical terms, our model also works through shifts in wealth between household and specialist.
However both agents in our model share the same utility function, so the action is rather through
the capital constraint and its effect on market participation. For empirical work, our approach
suggests that measures of intermediary capital/capacity will help to explain risk premia. As noted

in the introduction, there is a growing body of empirical work documenting this effect.
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Figure 6: Intermediation fee f; per unit of delegated wealth is graphed against the scaled specialist wealth
wy for m = 4 and 6. The constrained (unconstrained) region is on the left (right) of the threshold w®.
Other parameters are g = 1.84%, o = 12%, p = 1%, and p" = 1.67% (see Table 1).

5.6 Intermediation fee

To calculate the equilibrium intermediation fee f;, it is easier to derive the equilibrium price of

risk exposure k; first. Recall Eq. (11) in Lemma 1:

. TR —k
EM (ky) = 2wk,
R

In the unconstrained region, k; = 0. In the constrained equilibrium, m&; = £* and &M + & =
P = Wth + W;. These relations imply that

L _Pt—(l—i—m)Wt
T R-W,

7TR,t~

TRt
p)
OR,t

Now using f; = k; in Eq. (18), we have:

Proposition 9 In the unconstrained region, the intermediation fee f; = 0. In the constrained

region, the intermediation fee is

s o? 1—(p+mph)wt<1>2>0
t — —_— .
(p+mph)* L= pur

wt

In Figure 6, the intermediation fee displays a similar pattern as the risk premium in Figure 5.
This is intuitive: The higher risk premium in the constrained region implies a higher household
demand for investment in intermediaries to gain access to the higher risk premium. Because the

supply is fixed at mW4, the equilibrium fee rises to clear the intermediation market.
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The positive intermediation fee, which measures the shadow price of intermediation capital,
can be seen as a reflection of the scarcity of the specialists’ capital.?’ This delivers one of the key
points of our model: Intermediation capital becomes increasingly valuable during the liquidity
event when the intermediary sector suffers more losses. The following example illustrates this
point.

Example: Lending Spreads and Market Liquidity

During periods of financial turmoil in the intermediary sector, the terms of credit for new
loans get worse. That is, lending spreads rise, even on relatively safe borrowers. Our model sheds
light on this phenomenon.

We now interpret the intermediary as not just a purchaser of secondary market assets, but also
a lender in the primary market (e.g., investment banks). Suppose that a borrower (infinitesimal)
asks the intermediary for a loan at date ¢t to be repaid at date t + dt, with zero default risk. We
denote the interest rate on this loan as 7, and ask what 7; lenders will require.

Suppose that making the loan uses up capital. That is to say, if a specialist makes a loan of size
J, he has less wealth (W, — 0) available for coinvestment with the household in the intermediary.
In particular, if in the constrained region, the lender is able to attract md less funds from the
households.?!

IfmW; > Wth, intermediation capital is not scarce and thus 7, = r,. However, if intermediation
capital is scarce, then using intermediation capital on the loan reduces the size of the intermediary.
A lender could have used the ¢ in the intermediary to purchase the riskless bond yielding r; and
received a fee from households of mf;0. Since both investments are similarly riskless, we must
have that,

Ty =1 +mfi.

We have seen that falling into the constrained region causes the intermediation fee f; to rise, and

so does the lending spread m f.

20The higher intermediation fee is the logical result of our model of scarce supply of intermediation. However, it
seems counterfactual that specialists can demand a higher fee from their investors during a crisis period in which
agency concerns may be widespread. One resolution of this anomalous result is to assume that households, lacking
the knowledge of the risky asset market, are also not aware of time variation in the risk premium on the risky
asset. For example, one can explore a model in which households hold static beliefs over the mean-variance ratio of
the payoffs delivered by intermediaries. This model may deliver the result that fees are state independent, thereby
resolving the counterfactual result on fees. We do not pursue this extension here.

21To develop this example in terms of the primitive incentive constraint, we need to assume that households only
observe the specialist’s wealth net of the loan, and do not observe the actual loan. Also, households’ beliefs are
that every specialist will contribute his entire wealth into the intermediary when the delegation fee is positive, a
belief that is consistent with the current equilibrium. In this case, observing wealth of W, — ¢ leads households to
believe that the risk exposure delivered by that specialist is reduced proportionately, which in turn tightens the
intermediation capacity constraint.
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In this example, even a no-default-risk borrower is charged the extra spread of mf;. The
reason is that the specialist-intermediary is marginal in pricing the loan to the new borrower, so
that the opportunity cost of specialist capital is reflected in the lending spread. If we had assumed
that households could also have made such a loan, then we will find that 7, = ;. Of course a
business loan, which requires expertise and knowledge of borrowers, is the prime example of an

intermediated investment.22

5.7 Interest Rate and Flight to Quality

We can derive the equilibrium interest rate r; from the household’s Euler equation, which is

d hx d hx
rdt = pldt + B, [ C}f* ] — Vary [ Cff* } .
Ct Ct

The equilibrium condition gives us,

def* d(p"Wl) AP —Wy)
C?* ,OhWth a Pt — Wt ’

Recall that the specialist’s budget equation is
th/Wt = O (th - ’f’tdt) + Ttdt - pdt + mftdt
Using the expressions for ay, o, and f; that have been derived previously, we have:

Proposition 10 In the unconstrained region, the interest rate is

rtzph+g+p(p—ph)wt—02.

In the constrained region, the interest rate is
2
(00 () =0) + ]
(1= pwy) (p+ mph)®

In the unconstrained region, the interest rate is decreasing in the scaled specialist’s wealth

Tt=ph+g+p(p—ph)wt—a

w;. This just reflects the divergence in both parties’ discount rates (recall that p < p"). In the
limiting case where W; = %, the economy only consists of specialists. Then, consistent with
the familiar result of an economy with specialists as representative log-investors, the interest rate
converges to p + g — 0. For a smaller w;, where households play a larger part of the economy,
the bond’s return also reflects the households’ discount rate p”, and the equilibrium interest rate

is higher.

*2The results illustrated in this example are also present in the Holmstrom and Tirole (1997) model, although
the connection to secondary market activity is not apparent in their model.
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Figure 7: Interest rate 7, is graphed against the scaled specialist wealth w; for m = 4 and 6. The constrained
(unconstrained) region is on the left (right) of the threshold w®. Other parameters are g = 1.84%, 0 = 12%,
p=1%, and p" = 1.67% (see Table 1).

In the constrained region, the pattern is reversed: The smaller the specialist’s wealth, the
lower the interest rate. This is because the capital constraint brings about two larger effects that
reinforce each other. First, when the capital constraint is binding, the result in Proposition 6
implies that the specialists bear disproportionately greater risk in this economy: The specialist’s
wealth volatility increases dramatically, and more so when the specialist’s wealth further shrinks.
As a result, the volatility of the specialist’s consumption growth rises, and the precautionary
savings effect increases his demand for the riskless bond. Second, as specialist wealth falls, house-
holds withdraw equity from intermediaries and channel these funds into the riskless bond. The
extra demand for bonds from both specialist and households lowers the equilibrium interest rate.

The pattern of decreasing interest rate presented in Figure 7 is consistent with a “flight
to quality.” Households withdraw funds from intermediaries and increase their investment in
bonds in response to negative price shocks. This disintermediation leaves the intermediaries more

vulnerable to the fundamental asset shocks.

5.8 Illiquidity and Correlation

In the capital constrained region, an individual specialist who may want to sell some risky asset
faces buyers with reduced capital. Additionally, since households reduce their (indirect) partic-
ipation in the risky asset market, the set of buyers of the risky asset effectively shrinks in the
constrained region. In this sense, the market for the risky asset “dries up.” On the other hand, if
a specialist wished to sell some bonds, then the potential buyers include both specialists as well

as households. Thus the bond is more liquid than the risky asset.
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Figure 8: The correlation between the market return and the return on an individual asset, corr(dRy, th),
is graphed against the scaled specialist wealth w for m = 4 and 6. The constrained (unconstrained) region
is on the left (right) of the threshold w®. Other parameters are g = 1.84%, o = 12%, p = 1%, p" = 1.67%
(see Table 1), and 6 = 12%.

There are further connections we can draw between low intermediary capital and aggregate
illiquidity periods. As we have already seen, a negative shock in the constrained region leads
to a rise in risk premia, volatility, and fall in interest rate. In this subsection, we show that
our model also generates increasing comovement of assets that many papers have documented
as an empirical regularity during periods of low aggregate liquidity (see, e.g., Chordia, Roll, and
Subrahmanyam, 2000). We illustrate this point through two examples.

Example 1: Orthogonal Dividend Process

We introduce a second asset held by the intermediaries.?® The asset is in infinitesimal supply

so that the endowment process and the equilibrium wealth process for specialists is unchanged.

We assume that the dividend on this second asset is:

d_[)t ~ 15 th ~ 17

—_ = gdt + O'dZt + O'dZt = — + O'dZt.

Dt Dt

Here, Z; is the common factor modeled earlier; and 7, is a second Brownian motion, orthogonal
to Z;, which captures the asset’s idiosyncratic variation. Put differently, this second asset is a

noisy version of the market asset.

Z3If the asset was traded by both households and specialists then its introduction will have an effect on equilibrium,
since the market is incomplete. However, introducing an intermediated asset will not alter the equilibrium.
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Figure 9: The instantaneous covariance between the returns of intermediated market asset and the
liquidation-sensitive asset, i.e., cov(dR,dQo (Wy,1)). The z-horizontal is the time-0 specialist’s wealth
w = Wy, as we normalize Dy = 1. We take m = 4, so the capital constraint binds at w® = 13. The
liquidation threshold is W = 3.57. Other parameters are g = 1.84%, o = 12%, p = 1%, and p"* = 1.67%
(see Table 1).

We can show that the price of this second asset is given by,??

~ ~ B AL P

Consider the correlation between dR; and the return th on the second asset:

- 1
corr(dRy,dR;) =

1+ (6/ops)?
In the unconstrained region, since og is constant, the correlation is constant. But, in the con-
strained region, as o rises, the common component of returns on the two assets becomes mag-
nified, causing the assets to become more correlated. We graph this state-dependent correlation
in Figure 8, where we simply take 6 = o.
Example 2: Liquidation-sensitive Asset

The preceding example illustrates how the risk-price of a common dividend rises during crises
periods and causes increased comovement in asset prices. Another mechanism for comovement
that is often emphasized by observers centers on forced liquidations by constrained intermediaries.
The following example illustrates this case.

Normalize the initial date as time 0 with the state pair (Wp, Dy = 1). Consider an (infini-

tesimal) asset that pays off Xp at the maturity date T', where the dividend is state-contingent,

2 Given the guessed form in Eq. (28), g—tt = %7 which implies that % = % + % = d?l? +6dZ;. Therefore

dR, = % + ‘%" = dR; + 6dZ;. Then we can verify that it satisfies the specialist’s Euler equation (27).
t t
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ie., Xp =X (Wp,Dr). We are interested in how the economy-wide shocks drive the asset price,
when the asset is subject to forced liquidation. A simple way to explore this idea is to assume
that this dividend X (Wrp, Dr) is received only if the economy-wide intermediary capital Wrp at
the maturity date is above a minimum threshold W. Specifically, we study a liquidation-sensitive

zero-coupon bond, with the state-contingent payoff as

1 if Wp > W;

X (Wr, Dr) = { 0 otherwise.

This asset reflects an investment-grade corporate bond or a mortgage backed-security that is at
low risk during normal times. However, during a period of low intermediation capital, the asset
value is determined by an exogenous fire-sale value, which we have normalized to be zero. Denote
the time-0 price of this liquidation-sensitive asset as Qo (W, D) = Qo (Wp, 1), which is simply
the time-0 present value of X (Wp, D) under the pricing kernel in this economy. We focus on
the constrained region to illustrate the interesting dynamics in this example, and perform the
computations numerically.

The value of this liquidation-sensitive zero-coupon bond Qq (Wp, 1) varies with the state of
the economy. Interestingly, the sign of the correlation switches depending on the state. Consider
a negative shock to this economy causing intermediary capital W to fall. A lower W leads to a
lower interest rate in the constrained region, which in turn leads to a higher bond price. This
interest rate effect generates a negative correlation between the returns of our (intermediated)
market risky asset and the liquidation sensitive asset.

When the intermediary capital Wy is sufficiently low, i.e., in the vicinity of the liquidation
boundary W, an opposite liquidation effect kicks in. Under this effect, a negative shock makes
forced liquidation more likely, and the price of the liquidation-sensitive asset falls. As a result,
there is positive correlation between the market return and the asset return.

Figure 9 graphs these two effects by considering the instantaneous covariance between dQo (Wo, 1),
and the market return dR;. When the scaled specialist’s wealth is high, the correlation is negative,
although close to zero for the parameters in our example. The covariance becomes more negative
as Wy shrinks due to the interest rate effect. Finally, when Wy falls around W (which is 3.57 in
our example), the liquidation effect dominates, and the liquidation-sensitive asset comoves with

the intermediated market asset.

6 Parameter Choices

Table 1 lists the parameter choices that we use in this paper. We choose parameters so that the

intermediaries of the model resemble a hedge fund. Of course the parameterization should be
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viewed not as a precise calibration but rather as a plausible representation of a hedge fund crisis

scenario.

Table 1: Parameters

Panel A: Intermediation

m  Intermediation multiplier 4,6
Panel B: Cashflows and Preferences

g  Dividend growth 1.84%
o Dividend volatility 12%
p"  Time discount rate of household 1.67%
p  Time discount rate of specialist 1%

The multiplier m parameterizes the intermediation constraint in our model. We note that m
measures the share of returns that specialists receive in order to satisfy the incentive compatibility
constraints. Hedge fund contracts typically pay the manager 20% of the fund’s return in excess
of a benchmark (Fung and Hsieh, 2006). A value of m = 4 implies that the specialist’s inside
stake is 1/5 = 20%. We also present an m = 6 case to provide a sense as to the sensitivity of the
results to the choice of m.

We choose the risky asset growth rate g and volatility o to reflect the typical asset class held
by hedge funds. Hedge funds usually invest in a variety of complex investment strategies each
with their own cashflow characteristics; we apply the model to fit an amalgam of these strategies,
rather than any single type of hedge fund. As a benchmark for such an amalgamate strategy, we
use the aggregate stock market and set o = 12% and g = 1.84% in this paper.?®

Finally, we set p and p” to match a riskless interest rate in the unconstrained region around
1%. The ratio of p to p" measures the ratio of the lowest value of P;/D; (when W; = 0, which also
can be interpreted as the risky asset’s fire-sale value) to the highest value of P,/ D; (when W} = 0).
We set this ratio to be 60% to be loosely consistent with the Warren Buffett/AIG/Goldman Sachs
bid for the LTCM portfolio in fall of 1998.26

25 As another benchmark, Chan, et al. (2005) report the volatility of returns on different categories of hedge
funds, finding standard deviations ranging between 3% to 17%. They also note that these numbers underestimate
the true volatility of returns, because the underlying assets of hedge funds are illiquid and there is evidence that
hedge funds smooth reported returns.

26 The Warren Buffett /AIG /Goldman Sachs bid bid was reported to be $4 billion for a 90% equity stake, suggesting
a liquidation value of $4.44 billion for LTCM’s assets. LTCM was said to have lost close to $3 billion of capital at
the time of this bid, suggesting that LTCM lost 40% of its value to arrive at the liquidation price of $4.44 billion.
Our calculation here is clearly rough.
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7 Conclusion

We have presented a model to study the effects of capital constraints in the intermediary sector
on asset prices. Capital effects arise because (1) households lack the knowledge to participate
in the risky asset; and, (2) intermediary capital determines the endogenous amount of exposure
that households can achieve to the risky asset. The model builds on an explicit microeconomic
foundation for intermediation. The model is also cast within a dynamic economy in which one
can articulate the dynamic effects of capital constraints on asset prices. We show that the model
can help to explain the behavior of asset markets during aggregate liquidity events.

There are a number of interesting directions to take this research. First, the model we have
presented has a degenerate steady-state distribution, which means that we cannot meaningfully
simulate the model. For typical parameter values, the specialist will eventually end up with all
of the wealth. This aspect of the model is well-known and arises in many two-agent models (see
Dumas, 1989, for further discussion). He and Krishnamurthy (2008) analyze a closely related
model, which has a non-degenerate steady-state distribution. That model is sufficiently complex
that it does not allow for the simple closed-form solutions of this paper. There, we solve the
model numerically and simulate to compute a number of asset pricing moments.

A second avenue of research is to expand the number of traded assets. Currently the only
non-intermediated asset in the model is the riskless bond. However, in practice, even unsophisti-
cated households have the knowledge to invest in many risky assets directly, or to invest in low
intermediation-intensive assets such as an S&P500 index fund. It will be interesting to introduce a
second asset in positive supply in which households can directly invest, and study the differential
asset pricing effects across these different asset classes. This exercise seems particularly relevant
in light of the evidence in the fall of 1998 that it was primarily the asset classes invested in by
hedge funds that were affected during the crises. Likewise, in the current credit crisis, interme-
diated debt markets were heavily affected since August 2007, while the S&P500 was not affected
until September 2008. These observations suggest a richer channel running from intermediated
markets to non-intermediated markets. We intend to investigate these issues more fully in future

work.
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Appendix

A.1 Proof of Lemma 1

We take a guess-and-verify approach. Guess the specialist’s value function as

1
WL Y0) =Yit W,

where Y; is a function of prices and aggregate states, with budget equation

th == 5t (th — ’l’tdt) + thtdt + WtT‘tdt - Ctdt. (29)
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Further guess dY; = py,dt. Then we can write down his Hamilton-Jacobi-Bellman equation as:

1 1
P <Yt + ;ln Wt> = Icnagx [ln ct + pyy + (Et (“R,t — T‘t) + (gt + 1) Wy — ct) Jw (W) + 5530%3,t=]ww (Wt)}
tH,Ct
= max lnct—i-u +(€t (M —Tt)+(Qt+Tt)Wt—Ct)L—1€20’2 i
Ct,gt Y,t R,t th 2 t R,t th2
The first-order condition for ¢; yields
C: = pWh,
and the first-order condition for & yields
—-r
gr =Mt " My, - Ty,
ORt ORt

Plugging in these two results, and collecting terms, we have

11 (7re)?
MY,t:PYt_lnp‘f‘<< 7t> +Qt+7“t—P>,
P \2 \0Rt

which allows us to solve for Y; using the differential equation dY; = py;,dt. This is consistent with
our original guess.
The analysis of the household’s problem is similar. The household’s HJB equation is

1

= max
cf ,Sth

1 1 2
h’lC,}; + ((‘:th (MR,t — Tt — kt) +TtWth — C?) W — 5 (5{1) J2R,t
t

and the same analysis follows. Q.E.D.

A.2 Proof of Lemma 2

Consider any contract (,B;,Kg) Suppose that the household implements shirking s; = 1. The
household’s dynamic budget equation when implementing s; = 1 is

dw}l

= (L= BE! (dRy — ridt) — Kyt + Witrdt — cj'dt — (1 ) X,

St=

where () < ﬁ; while when implementing s; = 0 it is

dw}l

== B)EL (dRy — rdt) — Kydt + Wrdt — .
St=
Clearly, the household faces the tradeoff that 1) he gains by getting a greater risk exposure by
setting 3} < 135, but 2) he suffers a deterministic cost of —K{ — (1 — ;) X; + K.
Let us first bound the gain due to a greater risk exposure. Based on (30), the equilibrium

. . . o —re—ke \ 2 e
flow benefit of risk exposure when implementing working is 217) (%) . When shirking is
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N2
implemented, the upper bound flow benefit under the optimal risk exposure is = HrieZTt )
2p OR,t

Therefore the incremental benefit due to a greater risk exposure is bounded by

1(MR,t—7”t>2_1(MR,t—Tt—kt>2 (31)
2p ORt 2p OR,t ‘

Now we study the cost side. When implementing shirking, the specialist understands that
shirking brings a total of By — 8} X; benefit (loss if negative) to his own account. Since the
specialist’s receives a fee of K; in equilibrium by taking other contracts that implement s; = 0,

the household has to pay at least K| = K; — By + B;Xt to the specialist. Therefore the total
incremental loss (we assume that X; = (1 +m) B; throughout) is

m
—(Ky— B+ B81Xy) — (1= )Xy + Ky = B — X, = T X (32)
+m
Therefore, as long as 17— X; (which can be state-dependent) dominates the increment benefit in

(31), implementing shirking is never optimal. Q.E.D.

A.3 Proof of Lemma 3

For simplicity we omit time subscript under £, § and K in this proof. With a slight abuse of
notation, denote by £ (£!") the intermediary’s optimal position (chosen by the specialist) in the
risky asset given a contract Il = (3, K) (II' = (8, K")).

First we fix K = K' = ¢W; at the equilibrium level. Then it is obvious to see that the
specialist will set . .
Elzg—andé’l':g—,

g B
so that his effective risk exposure & = 3! in (6) achieves the optimal level £*.

Next we argue that it never pays to induce the specialist to choose a different portfolio by
raising the transfer K above the equilibrium level (lowering K will lose the specialist to other
households.) On the cost side, giving the specialist a larger transfer K (€) = ¢;W; + € costs the
household in the order of edt. On the benefit side, take the future equilibrium policies (as played
by all other agents) as given, raising K by € at time ¢ raises the specialist’s wealth by edt. From
Lemma 1, the specialist will raise the exposure £* to

— T
£ (e) = % (W, + edt)
Ryt

which is higher than £* in order of dt. Because the household’s value derived from his risk
exposure £ = (1 — B) £ is at most in the order of di, the total value increment by having £ (¢)

relative to £* is bounded by the order of (dt)2. Therefore it is not profitable to affect the exposure
through the transfer K. Q.E.D.

A.4 Proof of Lemma 4

For simplicity we omit time subscript under £, 8 and K in this proof. We borrow from the
core’s “equal-treatment” property in the study of the equivalence between the core and Walrasian
equilibrium (see Mas-Colell, Whinston, and Green (1995) Chapter 18, Section 18.B). Suppose that
the equilibrium is asymmetric, and we have a continuum of (" (i), K (7)) (note that £" = %5 *
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so essentially we have a continuum of different contracts (5 (7) , K (¢))), where i is the identity of the
household-specialist pair. Choose the household who is doing the worst by getting some exposure
EM and paying a fee K’ (see the definition in Step 3 below) and match him with the specialist
who is doing the worst, i.e. receiving the lowest fee K” = minK (i). We want to show that
this household-specialist pair can do strictly better by matchin?g and forming an intermediation
relationship.

Define the average allocation (ﬁ, F) as

Eh—fgh di and K = [ K (i)
There are three observations.

1. (ﬁ, ?) is feasible. Because £" (i) = 1%’6;(;)8* where £* is constant for all specialists, and

B (i) < 1+m for all i’s, we can deﬁneﬁ<—such that
1-5 1-5() .
— = di.
ERRER IO

This implies that &M is achieved when setting the sharing rule to be .
2. The specialist is obviously weakly better off since K > min K (4).

3. We want to show that the household is weakly better off. The household’s value can be
written as

08 (600K 9) = et 7000 (02, -
as a function of (" (i), K (7)), where
Wi g = (1+ rdt) W) — cdt + E" (i) (R, — rydt) — K (i),

and J" (VV[_‘|r dt) Y o dt + L - In Wt Yt which is established in Lemma 1. The household who
are doing the worst has a Value
U" = minU" (i)
(A

By expanding U" (Sh,K ) in Eq. (33), we see that maximizing the household’s value is
equivalent to maximizing:

1 1 (") 0%,
(e omm) iy 1 |

This term is globally concave in (Eh, K ), and strictly concave in £". Therefore the average
allocation yields a higher-than-average value:

Ut (EF) > [U" (i) di
But because U" = minU" (i) < / U™ (i) di, we have the desired result U" (Eh K) > U,

Finally, note that if (" (i), K (i))’s are not identical across individual pairs, then at least one

of the inequalities established above is strict. Therefore (E, f) blocks the original asymmetric
coalition. Q.E.D.
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A.5 Proof of Proposition 1

For simplicity we omit time subscript under £, 8 and K in this proof. Suppose that the incentive-
compatibility constraint (12) is slack, i.e., 5 > ﬁ Note that each specialist just earns a profit of
K = k&M, and households prefer a contract with a lower per-household transfer. Then it implies
that the equilibrium exposure price £ = 0. Otherwise, consider forming a coalition with n measure
of households and n — € measure of specialists, and reducing the specialists’ share 3 to ¢ P 65 <p

(so the households’ total exposure remains at Tnff *in (13)) without changing the transfer K

per-specialist. The new coalition can maintain the same per-household risk exposure at %5*,
lower the per-household transfer, while keep the specialists indifferent. This deviation is strictly
profitable unless the transfer K becomes zero, i.e., the exposure price k = 0.

Now we discuss the case of constrained equilibrium. Since the demand £"* (k) is linear in k
while the supply mE&™* is independent of £*, there always exists a k > 0 to equate demand with

supply. The above deviating coalition/contract argument implies that the incentive-compatibility
1

1+m”

previous argument, n measure of households could form a coalition with n—e measure of specialists

constraint (12) for every specialist must be binding, i.e., § = Otherwise, invoking our

and lower their price k& by reducing their 8 infinitesimally, without affecting specialists and per-
household risk exposure. Q.E.D.

A.6 Proof of Lemma 6
From Eq. (9), we have the specialist’s optimal exposure

» T
& (W) = UR LW,
Rt

to be linear in his wealth. In the unconstrained region, k; = 0, which implies a zero intermediation
fee ¢¢ = 0 per unit of his own wealth. In the constrained region, suppose that the specialist’s
wealth (off the equilibrium path) is /Wt. Then according to Eq. (16) this specialist can offer a
supply of risk exposure £M* at

mé&; (Wt> = Wt,

Rt

which earns a total fee of m- Thit

Wtk:t = QtWt, as in the definition of ¢;. This implies that from

the specialist’s point of view he is receiving intermediation fees linear in his wealth. Q.E.D.

A.7 Proof of Proposition 2

Recall that f; = ¢;/m = Rtkt which holds in both regions. We want to show that the agents’

decision are the same under the equity implementation and the original economy. It is clear that

the specialist faces the same problem under both economies, and his equilibrium portfolio choice

is af = %; we only need to show that the household purchases the same risk exposure. Given
R,t

. . . U
the specialist’s choice of af = —,
Rt

intermediary return is oy mg; — fi, and the volatility is afo g ;. Therefore the household’s optimal
investment in the intermediary is

from the household’s point of view, the after-fee expected

afWRt ft

(atoRy)?

T (fy) = wy,
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which generates a dollar exposure (to the risky asset) of

TRt — fi/af
O‘th*h (ft) = %Wth-
ORt

Ttk = ok by definition, the household’s risk exposure to the risky asset is
IRt

But since f; =

. k
() = —tWt :
Rt

which coincides with & = ”;’éi_ktWth in (11). Q.E.D.
Rt

A.8 Proof of Proposition 3

Suppose that mW; > W}. We need to check that a zero intermediation fee f; = 0 leads to an
intermediation demand T} < mW,, and therefore we are at the unconstrained region as defined
in Proposition 2. To show this, we argue that the household’s intermediation demand at zero fee
f: = 0 is his entire wealth, i.e., T* = W/ < mW;. In fact, when f; = 0, both household and
specialist face identical investment opportunities. As a result, by purchasing T}* = W} < mW;
amount of equity, the household obtains the same portfolio share as the specialist. Because the
specialist makes the optimal portfolio choice for the specialist, this portfolio choices must also be
optimal for the household. Therefore T}* = W} is the household’s demand, which is below mW;.

When mW; < W/, investing the household’s entire wealth into the intermediary T}* = W}
violates the capital constraint. A result similar to that of Lemma 1 implies that the equilibrium
f: > 0 so that T} (f;) (which is decreasing in f;) equals mW; in equilibrium, and the economy
falls in the constrained region. Q.E.D.

A.9 Observable Portfolio Choice

Suppose that the portfolio choice is observable. The competitive intermediation market—where
the households are purchasing risk exposure from specialists—is exactly identical to the standard
goods market. Therefore the household can pay the specialist based on the exposure that the
specialist actually delivers. Importantly, this implies that the total fee is then linear in the
exposure supply so that K; = k:tgth, where k; is price per-unit of exposure that the household
receives. This is in sharp contrast to our current case where the specialist’s exposure is not
directly observable and the households have to infer the exposure supply from the specialist’s
wealth.

In this case, the specialist understands that his choice of risk exposure & delivers m&; units
of exposure to the household, which brings a total fee of mk;& dt (this also applies to the uncon-
strained region where k; = 0). Therefore, the specialist’s budget equation is (for a comparison,
check Eq. (29)):

th = gt (th — Ttdt) + mkté'tdt + WtT’tdt — Ctdt,

where the second term mk;&;dt captures the total intermediation fee. Clearly this quantity-based
transfer will affect the specialist’s optimal portfolio choice £;. Now the specialist’s HJB equation
is (where Y} is a function of aggregate sates and prices) is,

L 1lg, 1
oW 27 ORE |

CtyCt

1
P (Y;: + ;ln Wt> = max |:111 ct + /LYt (gtﬂ'Rt + mktgt + TtWt - Ct)
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so we have ¢j = pW;, and
TRt + mk
& ="y, (34)
IRt
In fact, (34) is the only change in the unobservable portfolio choice case (recall that in the
observable case, £ = %Wt is independent of k;). The decision rule for the household is still the
Rt
same as in the case with unobservable portfolio choice, i.e., cf* = pW}*, and EM* = ”;%%Wth.

R,t
The key moral hazard agency friction still applies in this case, which implies that

M < mér, (35)

In other words, in order for the specialist to not shirk, he has to bear at least ﬁ of the risk of
the intermediary.

We can provide explicit solutions in this case. In the unconstrained region, whether the
portfolio choice is observable or not makes no difference: k; = 0, and we still have the first-best
risk-sharing as in the unobservable case. Consider the constrained region. We repeat the steps of
Section 5 in the paper. Risky asset price is the same:

D
Pt:}f—i_(l_i)Wt
p P
The specialist’s position «; in the risky asset implies that his dollar exposure is ayW;. But this

implies that the household’s dollar exposure is ma;W; as (35) is binding. Risky asset clearing
implies that oWy + ma; Wy = P; therefore we have the same result for ay:

_ Pt :1+(ph—p)wt
Wt+th (1—|—m) phwt .

at

The results of ow,; =

o _ (1+m)p" 1 : .
o D) and op; = 0( o T (o —p)w; ) Temnain the same. It is

because in the main text we have just used the market clearing condition and capital constraint
to derive the above four objects, and the issue of observability is irrelevant.

On the other hand, since the observability does affect the specialist’s portfolio decision, the
equilibrium risk premium changes accordingly. The specialist’s Euler equation for the risky asset
is k k

mhkydt — pdt + By {dcct] + Var, [dcct] + E,[dRy] = Cou, [
t t

*
dcy

*
Ct

) th:| )

while for the riskless asset it is

dct dct
—pdt—&—Et{ C*t] —i—Vart{ c*t] + ridt = 0.
Ct Ct

This is different from the main text, where the fee adjustment also applies to the riskless asset.

The reason is simple: now the fee is based on the exposure directly, while in the unobservable

case the fee is based on wealth (so it does not matter in which asset the specialist invests).
Therefore we have

dc; o? (1+m)ph 1
ki = Covy | —5,dRy| = = . (36
TR+ MAY ot [ e’ t} TRETWE = i (mp + p) ( mph + p 1+ (p" — p)w; (36)
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On the other hand, the relation

TRt — k¢ TRt + mky
thh =m& =m—F—W,
ORt ORt

h* __
(C/'t —

implies that
Pt - (1 + m) Wt
k= )
TR W m2w,

(37)
Combining with (36), we have

Pt—Wt+m2Wt o? ((1—|—m)ph>< 1 >
s = ,
BTk m) (B — Wa) welmph + p) \ mpl +p ) \ 1+ (p" = p)w

which differs from the result in the unobservable case by a factor of %.

show that

It is easy to

Pt — Wt + m2Wt
(1+m) (P —Wy)

which is the definition of constrained region. This implies that the observability does ease the

_ 2 s
(Pl)t +mW)t(1+3tWimVZ § =1 jm, therefore g is still in the

order of w% This implies that the key asset pricing implication, which comes from the distortion

<le (A+m)W, <P,

constraint. However, when W; — 0, this factor

in risk sharing, remains the same in the observable case.
We then can solve for k; based on (37), which is also in the order of w% as in the unobservable
case. Finally we can solve for interest rate ;. Because

d hx d hox
redt = phdt + Fy [Cht* ] — Vary [C}f* } ,
Ct Ct
* hyyh
where dey” _ Ao W) = d(Pt_Wt), and dWy = & (dRy — rdt) + mkiEpdt + Wiredt — ¢ dt, we have

ch phwh P—Wy

0% = 2pwioow + pwioty,
(1 — pwt)
1 1
1- 2pmph+p + P wemp+p)2
(1 — pwy)

re = ph+g+p(p*ph)wt*

2

= ph+9+p(p—p”)wt—a

Here in the deep constrained region as wy — 0, the interest rate is in the order of _w%' This is

the same as in the unobservable case (which only differs by a factor of (14 m)).
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