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Missing data are ubiquitous in applied econometric research. When data are miss-

ing at random (MAR), or selection is on observables, a simple consistent procedure is

to (i) reweight those units without any missing data by the inverse of the probability

of selection or the propensity score, and (ii) apply standard estimation methods to

this reweighted subsample (e.g., Wooldridge, 2007). Inverse probability weighting

(IPW) is widely-used to address attrition in panel data (e.g., Abowd, Crépon and

Kramarz, 2001), program evaluation under exogenous treatment assignment (e.g.,

Hirano, Imbens and Ridder, 2003), and to control biases caused by missing and/or

mismeasured regressors (e.g., Robins, Rotnitzky and Zhao, 1994). Chen, Hong and

Tarozzi (2004) and Wooldridge (2007) survey additional applications of IPW.

In this paper we propose a modified version of inverse probability weighting, which

we call inverse probability tilting (IPT). Our procedure coincides with the IPW es-

timator of, for example, Wooldridge (2007), except that we replace the conditional

maximum likelihood estimate (CMLE) of the propensity score with an alternative

method of moments estimate. We show that if the unconditional moments used to

estimate the propensity score parameter are appropriately chosen our procedure (i)

is locally efficient and (ii) remains consistent even if the propensity score is misspec-

ified. These properties, local efficiency and double robustness, which we carefully

define below, are not shared by the standard IPW estimator.2

A key appeal of IPW is its conceptual and operational simplicity. Inverse probabil-

ity tilting preserves this advantage, while offering improvements in terms of estimator

efficiency and robustness. However other modifications of IPW exist. A leading one,

which shares IPT’s local efficiency and double robustness properties, is the augmented

inverse probability weighting (AIPW) estimator introduced by Robins, Rotnitzky and

Zhao (1994).3 We characterize the −1 order asymptotic bias of IPT and a class of

AIPW estimators under conditions where they are first order equivalent. We find

that IPT has smaller bias than AIPW in this setting. To our knowledge these are the

first higher-order comparisons in the missing data literature.

In an illustrative empirical application we revisit Johnson and Neal’s (1998) analy-

2To be more specific, IPW is locally efficient at a rather peculiar data generating process (DGP).

Unfortunately this DGP is difficult to interpret and a priori implausible. We discuss this point

below.
3While perhaps less familiar to econometricians, although Hirano and Imbens (2001), Imbens

(2004), and Wooldridge (2007) are notable exceptions, AIPW methods are widely-studied (and

used) by statisticians. Tsiatis (2006) provides a book length treatment.
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sis of the Black-White wage gap for young men in the United States. They find that

approximately 60 percent of the Black-White gap can be predicted by group differ-

ences in cognitive skills acquired prior to labor market entry at age 18. We study

the predictive value of group differences in skills acquired prior to adolescence (i.e.,

by age 12). We find that pre-adolescent skill differences can account for about 40

percent of the overall wage gap and two thirds of pre-market effect found by Johnson

and Neal (1998).

Our analysis is complicated by the fact that a pre-adolescence test score is avail-

able for just 11 percent of respondents.4 In addition to being few in number, these

complete cases are unrepresentative of the sample as a whole. An analysis which

ignores these facts may be both inconsistent and imprecise. The IPT estimate of the

wage gap conditional on the preadolescence test score corrects for the unrepresenta-

tiveness of the complete cases. The IPT point estimate is also precisely determined.

Its standard error is, respectively, one third and one half, the length of the correspond-

ing unweighted complete case and IPW ones. Our application provides a concrete

example of the type of efficiency gains IPT can provide. These gains arise despite

the fact that we implement IPW with a heavily overparameterized propensity score

model, which theory suggests should lead to a precisely determined point estimate

(Hirano, Imbens and Ridder, 2003; Wooldridge, 2007).

The next section formally defines the class of problems to which our IPT pro-

cedure applies. In Section 2 we present our estimator and characterize its large

sample properties. Section 3 compares the higher order bias of IPT with that of

the class of AIPW estimators introduced by Robins, Rotnitzky and Zhao (1994).

Section 4 presents the empirical application. Section 5 ends with some suggestions

for further research. Selected proofs are collected in the Appendix, which also in-

cludes details on computation. Additional proofs, further details on the empirical

application, and a full set of Monte Carlo experiments can be found in the Supple-

mental Web Appendix. Software implementing our procedure is available online at

https://files.nyu.edu/bsg1/public/.

4Given the severity of the missing data problem in our sample one may reasonably question the

plausibility of the missing at random assumption. We emphasize that the goal of our empirical

application is illustrative.

2



1 A semiparametric missing data model

Here we describe a general moment condition model with data missing at random

(MAR). Our set-up is as in Wooldridge (2007) except that our parameter is the

solution to a moment condition, as opposed to a population optimization, problem.

Let  = ( 0
1 

0)0 be a random vector, 0 an unknown parameter, and assume that:

Assumption 1.1 (Identification) For some known  × 1 vector of functions
 ( )

E [ ( 0)] = 0

with (i) E [ ( )] 6= 0 for all  6= 0  ∈ G ⊂ R and G compact with 0 ∈
int (G), (ii) | ( )| ≤  () for all  ∈ Z with  () a non-negative function on

Z and E [ ()]  ∞ (iii)  ( ) is continuous on G for each  ∈ Z and con-

tinuously differentiable in a neighborhood of 0, (iv) E
£k ( 0)k2¤  ∞ and (v)

E
£
sup∈G k∇ ( )k

¤
∞

Assumption 1.1 provides a standard set of conditions under which the full sample

method-of-moments estimate of 0, the solution to
P

=1  (b)  = 0, will be

consistent and asymptotically normal (cf., Newey and McFadden 1994, Theorems 2.6

and 3.4). Our interest is in identification and estimation when 1 is not observed

for all units. Let  be a binary indicator variable. When  = 1 we observe 1

and , while when  = 0 we observe only . Our benchmark model is defined by

Assumption 1.1 as well as:

Assumption 1.2 (Random Sampling) {  1}=1 is an independently and
identically distributed random sequence. We observe ,  and  = 1 for each

sampled unit.

Assumption 1.3 (Missing at Random) Pr ( = 1|1) = Pr ( = 1|)

Assumption 1.4 (Strong Overlap) Let 0 () = Pr ( = 1| = )  then 0 

 ≤ 0 () ≤ 1 for some 0    1 and all  ∈ X ⊂ Rdim()

Assumption 1.5 (Propensity Score Model) There is a unique ∗0 ∈ int (D∗)
with D∗ ⊂ Rdim(∗) and compact, known vector  () of linearly independent functions
of and known function  (·) such that (i)  (·) is strictly increasing, continuously
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differentiable and maps into the unit interval with lim
→−∞

 () = 0 and lim
→∞

 () = 1,

(ii) 0 () =  (()0∗0) for all  ∈ X , and (iii) 0   ≤  (()0∗) ≤ 1 for all

∗ ∈ D∗ and  ∈ X .

We refer to the model defined by Assumptions 1.1 to 1.5 as the semiparametric

missing data model. Chen, Hong and Tarozzi (2008) study this model without main-

taining Assumption 1.5, that is, with the propensity score left nonparametric. As is

well-known, removing Assumption 1.5 from the prior restriction does not affect the

asymptotic precision with which 0 may be estimated (Hahn, 1998). We nevertheless

maintain it when deriving our local efficiency result (Theorem 2.1). Doing so is im-

portant for establishing regularity of our estimator. We also assess the properties of

IPT when Assumption 1.5 fails (Theorem 2.2).

To get a sense of the range of problems to which our methods may be applied it

is helpful to consider a few specific examples.

Example 1.1 (Mean of a variable missing at random) Let 1 be a binary

indicator for an individual’s HIV status, let  = 1 if an individual is tested and

zero otherwise; 1 is logically observable only when  = 1 We would like to es-

timate the population prevalence of HIV: 0 = E [1]  This corresponds to setting

 ( ) = 1 − . Assumption 1.3 says that the testing decision is independent of

HIV status in subpopulations homogenous in . This may be plausible if  includes

measures of risk-taking behavior and other background characteristics so that it closely

approximates an individual’s own information set regarding their status. Assumption

1.4 requires that at least some individuals in every subpopulation defined in terms of

 =  get tested. Assumption 1.5 presumes the availability of a parametric model for

the testing decision. This example is closely related to that of average treatment effect

(ATE) estimation under exogenous treatment assignment (see Section 5 below).

Example 1.2 (Regression function estimation with missing regressors)

Let 1 be a vector of demographic characteristics, 2 log earnings, 1 armed forces

qualification test (AFQT) score, and 3 a vector of always observed surrogates or

proxies for 1 (e.g., scores on subcomponents of the test, on earlier tests, etc.). Let

 = 1 if a unit’s test score is available and zero otherwise. Let  = ( 0
1

0
2

0
3)
0


 = (01 
0
2)
0
and  ( ) = ( 0

1 
0
1)
0
(2 − 0

11 −  0
12)  Here  corresponds to the

coefficient vector indexing the linear predictor of log earnings given demographics and
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AFQT score as in Johnson and Neal (1998). This corresponds to a linear regression

model where the covariate of interest is subject to item non-response. Assumption 1.3

requires that across individuals with identical earnings (2), demographics (1), and

test proxies (3) the probability of observing the AFQT score is independent of its

value.

Other examples of the semiparametric missing data model defined by Assumptions

1.1 to 1.5 include panel data models with attrition, certain forms of censored durations

and M-estimation under variable probability sampling. Chen, Hong and Tarozzi

(2004) and Wooldridge (2007) survey additional examples. See also Section 5 below.

2 Inverse probability tilting

Our first result shows that standard IPW, where the propensity score is estimated

by CMLE, is typically inefficient under Assumptions 1.1 to 1.5. This motivates our

search for an efficient variant of IPW. The maximal asymptotic precision with which

0 can be estimated under these assumptions was characterized by Robins, Rotnitzky

and Zhao (1994) and is given by the inverse of

I (0) = Γ00Λ
−1
0 Γ0 (1)

with

Γ0 = E
∙
 ( 0)

0

¸
 Λ0 = E

∙
Σ (; 0)

0 ()
+  (; 0)  (; 0)

0
¸
 (2)

where Σ (; ) = V ( ( )| = ) and  (; ) = E [ ( )| = ]. We seek an

estimator which attains this bound.

To describe the textbook IPW estimator we require some notation. Let  =

 ()   () =  ( ) and  =  ( 0). Similarly let  (
∗) =  (0

∗) and

 =  (0
∗
0)  Denote a random unit’s contribution to the score of the propensity

score log-likelihood evaluated at ∗ = ∗0 by

∗ =
 −

 (1−)
1

with  () =  ()  for  = 1 25 Finally let  (; ) = E [ ( )|] and

5To economize on notation we often omit an argument of a function when it is being evaluated
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 =  (; 0)  The inverse probability weighted estimate of 0 is given by the solution

to

1



X
=1

 (b )
( ()

0 b∗)
= 0 (3)

with b∗ the CMLE estimate of 
∗
0. Proposition 2.1 summarizes the first order as-

ymptotic properties of b .

Proposition 2.1 (Asymptotic Sampling Distribution of b ) Suppose As-
sumptions 1.1 to 1.5 hold, then (i)

√
 (b − 0)

→ N (0AVar (b )) with
AVar (b ) = I (0)−1 (4)

+ Γ−1E
∙µµ




− 1
¶
 −Π∗

¶µµ



− 1
¶
 −Π∗

¶0¸
Γ−10

for Π = E
£


0∗

¤
E [∗0∗ ]

−1
and (ii) 0

£
AVar (b )− I (0)−1¤  ≥ 0 for any

vector of constants .

Proof. See the supplemental web appendix.

While the inefficiency of IPW, part (ii) of Proposition 2.1, is well known, the

asymptotic variance expression (4) provides new insight into its large sample prop-

erties. Observe that Π∗ equals the best (i.e., mean squared error minimizing)

linear predictor of
¡


− 1¢  given ∗.

6 If ∗ happens to be a good predictor of¡


− 1¢  then IPW will be nearly efficient. Consider the case where the propensity

score takes a logit form so that  () = exp ()  [1 + exp ()]  Some basic calculations

give ∗ =
¡


− 1¢ · ; therefore if it so happens that  can be written as a linear

function of  ·  then the asymptotic variance of IPW will coincide with that of an

efficient estimator. An interpretation of Hirano, Imbens and Ridder (2003) is that if

the dimension of  is allowed to grow with the sample size, then  will eventually be

arbitrarily well-approximated by a linear function of  ·  so that this coincidence
holds generally (i.e., for all data generating processes (DGPs)). Wooldridge (2007)

makes a related point: (4) cannot increase if the dimension of  increases.

at the ‘truth’. For example 1 = 1
¡
 ()

0
∗0
¢
= 

¡
 ()

0
∗0
¢
.

6Note that by the conditional mean zero property of the score function and Assumption 1.3

E
∙µ




− 1
¶
0∗

¸
= E

∙



0∗

¸
= E

∙



0∗

¸
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In practice the researcher is only able to fit a finite dimensional model for the

propensity score. Proposition 2.1 indicates that, except under very special circum-

stances, the resulting IPW estimate of 0 is inefficient under Assumptions 1.1 to 1.5.

Expression (4) indicates this inefficiency is most acute when
¡


− 1¢  is poorly ap-

proximated by a linear combination of ∗, the vector of estimating equations for the

propensity score parameter ∗. This suggests that changing the estimating equations

for ∗, such that a linear combination of them closely approximates
¡


− 1¢ , might

improve estimator precision. This conjecture turns out to be correct. To show this

result we begin by positing a working model for the conditional mean of  ( 0)

given .

Assumption 2.1 (Moment CEF Model) For some unique matrix Π∗0 and vector

of linear independent functions ∗ () with a constant in the first row, we have

E [ ( 0)|] = Π∗0
∗ () 

The precise content of Assumption 2.1 depends on the form of  ( )  If  ( ) =

1− as in Example 1.1, then it is equivalent to assuming that the conditional mean
of 1 is a linear function of 

∗ (). Example 1.2 provides a more complicated illus-

tration. In that case

E [ ( 0)|] =
Ã

12 −1
0
11 −1E [1|]0 2

E [1|]2 − E [1|] 0
11 − E [1 0

1 |] 2

!


so that selecting ∗ () requires formulating models for the first and second conditional

moments of 1.
7

When  ( ) is nonlinear in  choosing ∗ () such that Assumption 2.1 holds

is more difficult. In this case one can think of ∗ () as a vector of approximating

functions as in the literature on nonparametric sieve estimation (e.g., Chen, 2007;

see also Section 5 below). We emphasize that any approach to missing data which

involves imputation also requires formulating a model for E [ ( 0)|].
Let  () denote the union of all linearly independent elements in ∗ () and

 () (recall that  () are the functions of  entering the propensity score model

7To be explicit assume that E [1|] = 1 ()
0
1 and  (E [1 0

1 |]) = 2 ()
0
2 Let

3 () consist of 1 () and all non-redundant interactions between its elements and those of 1

and 2 then setting ∗ () = (2 ()
0
 3 ()

0
)0 with any redundant entries removed is sufficient

for Assumption 2.1 to hold.
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in Assumption 1.5). Let 1 + equal the dimension of  (); this vector will include

a constant and  known functions of  Note that  () =
¡
 ()

0
 ∗ ()0

¢0
where

∗ () is the relative complement of  () in ∗ (). Letting 0 = (∗00  
0
0)
0
 where 0 =

0 we have under Assumptions 1.1 to 1.5 the following just-identified unconditional

moment problem

E
∙



( ()
0
0)

 ( 0)

¸
= 0 (5)

E
∙µ



( ()
0
0)
− 1
¶
 ()

¸
= 0 (6)

Our proposed estimator chooses b = ³b0  b0´0 to set the sample analog of (5)
and (6) equal to zero:

1



X
=1



( ()
0 b ) (b ) = 0 (7)

1



X
=1

Ã


( ()
0 b ) − 1

!
 () = 0 (8)

Several features of this estimator merit comment. First, as with the standard IPW

estimator, b is the solution to an inverse probability weighted method of moments
problem (compare (7) with (3)). However, the fitted propensity score values used to

construct the weights are not conditional maximum likelihood estimates. Instead b
is the solution to a method of moments problem.8 Importantly, under Assumption

2.1, a linear combination of the estimating equations for b equals ¡ − 1¢ , which
Proposition 2.1 suggests might be important for efficiency.9

Second, if  () is not contained within ∗ (), then we add moments to the

propensity score estimating equation, replacing ∗ () with  ()  These additional

moments do not improve the precision of b , but they do ensure that (6) contains a
sufficient number of moment restrictions to pin down the propensity score parameter.

Third, in the opposite case where ∗ () is not contained within  (), we enrich the

propensity score model, replacing  ()
0
∗0 with  ()

0
0 in  (·). The effect of this

8Consequently b is an inefficient estimate of 0 = (∗00  00)0.
9An earlier version of this paper derived (6) as the solution to an optimal instrumental variables

problem based on the conditional moment formulation of the semiparametric missing data model

studied by Graham (2011). For brevity this derivation is omitted here.
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replacement is to eliminate any overidentifying restrictions. To see this note that

 ()
0
0 =  ()

0
∗0 + ∗ ()0 0

where, by Assumption 1.5, 0 = 0. Nevertheless including ∗ () in the propen-

sity score model ensures that the combined dimension of (5) and (6) coincides with

dim (0)+dim (0) = +1+ so that 0 = (
0
0 

0
0)
0
is just-identified. This approach

to overidentification appears to be novel.10 Theorem 3.1 below shows that it results

in attractive higher order properties.

An example helps to fix ideas. Let  ( ) = 1 −  as in Example 1.1 with

 scalar. We assume that Assumption 1.5 holds with  () = (1 )
0
so that the

propensity score is, for example, logit with an index linear in . In choosing ∗ ()

such that Assumption 2.1 holds we are concerned about possible nonlinearities in

E [1| = ], therefore we set ∗ () = (12)
0
 This gives  () = ∗ () and

∗ () = 2 In this case we fit a propensity score model with an index that is

quadratic in  despite the fact that Assumption 1.5 says that a linear one will suffice.

We fit this model not by CMLE but by choosing b to solve (8). Once we have
fitted our propensity score we compute b by choosing it to solve (7).
Now consider the case where the analyst believes that the propensity score might

vary sharply with  so that Assumption 1.5 requires  () = (1 2)
0
, but that

E [1| = ] is linear in  so that Assumption 2.1 requires only ∗ () = (1)0. In

this case  () =  () and ∗ () is empty. Here the added moment serves only to

tie down the propensity score parameter; it does not increase the precision of b .
There is no need to overfit the propensity score in this case.

The main difference between IPW and IPT is that the latter approach (i) overfits

the propensity score if Assumption 2.1 requires us to do so and (ii) we do not use

CMLE to fit the propensity score. In Appendix A we show that the first step of our

procedure requires solving a globally concave programming problem with unrestricted

domain. In theory this is no harder than computing the CMLE associated with a

binary choice logit model and in practice we have found this step to be straightforward.

The second step of our procedure, as with the standard IPW one, can be completed

by any M-estimation program that is able to accept user-specified weights.

10It is similar in spirit to the introduction of ‘tilting’ parameters in the context of generalized

empirical likelihood (GEL) estimation of overidentified moment condition models (e.g., Imbens,

1997). This observation is the source of inverse probability tilting’s name.
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The next two theorems characterize the first order asymptotic properties of b .
The first result shows that when Assumptions 1.1 to 1.5, and Assumption 2.1 hold,

the asymptotic variance of b equals I (0)−1. More precisely b is locally efficient
for 0 in the semiparametric model defined by Assumptions 1.1 to 1.5 at DGPs which

also satisfy Assumption 2.1.

Equation (1) is the information bound for 0 without imposing the additional aux-

iliary Assumption 2.1. This assumption imposes restrictions on the joint distribution

of the data not implied by the baseline model. If these restrictions are added to the

prior used to calculate the efficiency bound, then it is generally possible to estimate

0 more precisely. We emphasize that our estimator is not efficient with respect to

this augmented model. Rather it attains the bound defined by (1) if Assumption 2.1

happens to be true in the population being sampled from, but is not part of the prior

restriction used to calculate the bound. Newey (1990, p. 114), Robins, Rotnitzky and

Zhao (1994, p. 852 - 3) and Tsiatis (2006) discuss the concept of local efficiency in

detail. In what follows we will, for brevity, say b is locally efficient at Assumption
2.1.

Theorem 2.1 (Local Semiparametric Efficiency of b ) Consider the semi-
parametric missing data model defined by Assumptions 1.1 to 1.5, then for b the
solution to (7), (i) b is regular and (ii) locally efficient at Assumption 2.1 with√
 (b − 0)

→ N ¡0 I (0)−1¢.
Proof. See Appendix A.

Theorem 2.1 indicates that b has good efficiency properties. By choosing the
estimating equation for the propensity score with the properties of E [ ( 0)|] in
mind, efficiency improvements over the standard IPW estimator are possible.11

Our next Theorem shows that IPW has a double robustness property (cf., Bang

and Robins, 2005; Tsiatis, 2006; Wooldridge, 2007). Restrictions (5) and (6) were

derived under the baseline missing data model defined by Assumptions 1.1 to 1.5.

11We comment that the standard IPW estimator is also locally efficient. However this occurs

not at DGPs which satisfy Assumption 2.1, but rather at ones where E [ ( 0)|] is linear in
 () ·  ¡ ()0 ∗0¢  We find this condition a bit awkward from a modelling standpoint, however

it does help to explain why IPW is often nearly efficient in Monte Carlo experiments where the

outcome equation is a direct function of the propensity score (e.g., Busso, DiNardo, and McCrary,

2009). If the data are missing completely at random (MCAR) such that 0 () = Pr ( = 1) = 0
for all  ∈ X , then IPW and IPT will be locally efficient at the same DGPs as long as  () = ∗ () 

10



Consequently regardless of whether Assumption 2.1 also holds b will be consistent
for 0 and asymptotically normal.

12 This is the first part of double robustness.

Now consider a DGP where Assumptions 1.1 to 1.4 and 2.1, but not 1.5, hold.

That is, a situation where the propensity score is misspecified but the implicit moment

CEF model is not. In this case b → ∗ where ∗ is the pseudo-true value which solves

(6). This pseudo-true value has an interesting property. Rearranging (6) we get

E
∙



( ()
0
∗)

 ()

¸
= E [ ()]  (9)

The inverse probability weighted mean of  () in the  = 1 subpopulation coincides

with its full population mean, E [ ()]. This property holds regardless of whether

the true propensity score is of the form ( ()
0
) for some  = 0

In the sample, rearranging (8), we get

X
=1

b () =
1



X
=1

 ()  b = 1





( ()
0 b )  (10)

so that the inverse probability weighted mean of  () in the  = 1 complete case

subsample coincides with its full sample mean. By choosing the propensity score

parameter to solve (8) we ensure that the estimated inverse probability weights satisfy

an exact balancing property. For example, if  () = (12)
0
with  scalar, then,

after reweighting the complete case sample with b the mean and variance of 
will coincide with their full sample counterparts. Since the first element of  () is a

constant, the b weights will also sum to 1.13

Let  ( 1) be the joint distribution of  1, then

b ( 1) =
X

=1
b1 ( ≤ )1 (1 ≤ 1)  (11)

is the estimate for the joint distribution of  and 1 implied by the IPT estimator

(cf., Back and Brown, 1993; Imbens, 1997). By (10) this distribution function satisfies

12Its asymptotic variance, however, will lie above I (0)−1, in the matrix sense, unless Assumption
2.1 also holds.
13Equation (10) highlights that the existence of b requires that P

=1  ()  lie within the

convex hull of the complete case subsample (a condition that is easy to check). Under Assumption

1.4 this will be true in large enough samples, but may not be in small samples; particularly when

overlap is poor.
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the exact balancing conditionZ
 () d b ( 1) =

Z
 () d ()  (12)

where  () is the full sample empirical distribution function of . Since  () is

an efficient estimate of the distribution of , it is reassuring that b ( 1) satisfies

(12). We discuss the properties of b ( 1) further in Section 3.

The exact balancing property of b ( 1) implies that b may be consistent
for 0, even if the maintained propensity score model is incorrect. Let Π0 = (Π

∗
0 0),

under Assumption 2.1 we have Π0E [ ()] = E [Π∗0
∗ ()] = E [ ( 0)]  Using this

equality, Assumption 1.3, and exact balancing (9) we get

E
∙
 ( )

( ()
0
∗)

¸
= E

∙
0 () ( )

( ()
0
∗)

¸
− E [ ( 0)]

= E
∙
0 () ( )

( ()
0
∗)

¸
−Π0E [ ()]

= E
∙

0 ()

( ()
0
∗)

 ( )

¸
−Π0E

∙
0 ()

( ()
0
∗)

 ()

¸
= E

∙
0 ()

( ()
0
∗)
{E [ ( )|]− E [ ( 0)|]}

¸
= 0 (13)

Therefore  = 0 is a solution to the inverse probability weighted population moment

even if there is no 0 such that ( ()
0
0) = 0 () for all  ∈ X  This is the second

part of double robustness.

If  ( ) is linear in  as in Examples 1.1 and 1.2 above, then  = 0 uniquely

solves (13). In the general nonlinear case ensuring uniqueness of the solution to

(13) may require the imposition of additional conditions, depending on the form of

 ( )  As such conditions are model-specific we do not formulate them here, but

note that doing so is facilitated by the fact that Assumption 1.4 and part (iv) of

Assumption 1.5 ensure that 0 () ( ()
0
∗) is bounded below by some positive

constant.14 Proceeding under the assumption that  = 0 uniquely solves (13) we get

our second result.

14Wooldridge (2001, pp. 458 - 459) develops conditions for consistency of unweighted M-estimators

when the underlying sample is a stratified random one. His argument could be adapted to the current

setting for cases where  [ ( 0)] = 0 corresponds to the first order condition of a population

optimization problem.
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Theorem 2.2 (Double Robustness of b ) Suppose Assumptions 1.1 to 1.4,
either Assumption 1.5 or 2.1,  = 0 uniquely solves (13), and additional regularity

conditions hold, then
√
(b − 0)

→ N (0Ψ0) where the form of Ψ0 depends on

whether Assumption 1.5 or 2.1 holds (see Appendix A).

Proof. See Appendix A.

Our formulation of the IPT estimator was undertaken with efficiency consider-

ations at the forefront. This led to an approach where the propensity score was

parameterized with two concerns in mind. First, the parametric propensity score

family needs to be rich enough to contain the true score. Second, it needs to be rich

enough to balance those functions of  which enter the CEF of  ( 0). Theorem

2.2 shows that the dividend to this approach extends beyond local efficiency. Even if

the propensity score is misspecified, IPT will remain consistent if E [ ( 0)|] is
linear in  ()  More heuristically Theorem 2.2 suggests that IPT will perform well

for moderately rich forms of  () when either the propensity score or the condi-

tional expectation of  ( 0) is smooth in . Researchers should choose  () to

be rich enough so that it accurately approximates whichever function, either 0 ()

or 0 () = E [ ( 0)| = ], is believed to be the least smooth. The double ro-

bustness properties of IPT are illustrated via a series of Monte Carlo experiments,

summarized in the Supplemental Web Appendix.

3 Other alternatives to IPWand higher order com-

parisons

Theorems 2.1 and 2.2 provide one argument for routine use of IPT: it is (i) more

robust than either standard IPW or parametric imputation and (ii) locally efficient

at Assumption 2.1. Computationally it is no harder than standard IPW (see Ap-

pendix A). Finally the exact balancing property is likely to be attractive to applied

researchers. It is consistent with the intuition that reweighting makes the complete

case subsample more like the full sample. Tables which assess balance after IPW are

commonly featured in applied work (e.g., Hirano and Imbens, 2001; see also Table 14

in the Supplemental Web Appendix).

While the argument privileging IPT over IPW appears to be straightforward,

other alternatives to IPW exist. One such alternative is the class of augmented
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inverse probability weighting (AIPW) estimators introduced by Robins, Rotnitzky,

and Zhao (1994). Like IPT, AIPW is locally efficient at Assumption 2.1. It is also

doubly robust. In this section we present two theoretical arguments for privileging

our IPT method over AIPW ones. First we show that the implicit estimate of the

joint distribution of  and 1 associated with IPT is attractive relative to the ones

associated with AIPW. Second we compare the higher order bias of the two types of

estimators.

3.1 A class of iterated AIPW estimators

Several versions of AIPW are now available (see Tan (2010) for a recent survey). Here

we describe a general set-up which captures many of them. Let  () =  ( ) and

 () =  ( ) be known, scalar-valued, nonnegative weight functions. We

require that  ( ) is such that E [ ( )|] = 1. Our family of AIPW

estimators will be indexed by these two weight functions. Let b() be an AIPW
estimate in the family, which is defined as the solution to

1



X

=1

(


(b)

¡
b()¢− b() ¡;b()¢

(b)

³
 −(b)

´)
= 0 (14)

with b the CMLE of the propensity score parameter and

b() (; ) = " 1


X
=1

b

b () 
0


#
×
"
1



X
=1

bb0
#−1

 () 

with b = (b), b = (b) and b = (b) Note that b() (; ) is the fitted
value associated with a weighted least squares fit of  () onto 

Setting  () = () and  () = () we get the original AIPW estimator

of Robins, Rotnitzky and Zhao (1994);  () = 1 and  () = 1 yields Newey’s (1994,

Section 5.3) estimator, while  () = () and  () = (1−()) () gives

the estimator suggested by Cao, Tsiatis and Davidian (2009) (see Table 1).15

Hirano and Imbens (2001) and Wooldridge (2007) propose a doubly robust esti-

15Many of the estimators listed in Table 1 were originally proposed in the context of a specific

form for  ( ). We adapt to the general case as necessary. Newey (1994) derives the large

sample properties of his estimator where the dimension of  () grows with  . Here we consider his

estimator with the dimension of  () held fixed.
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mator for the average treatment effect under exogenous treatment assignment.16 It

turns out that setting  () = () and  () = 1 gives their estimator. In the

general moment model case their approach chooses b to solve

1



X

=1
b (;b ) = 0 (15)

where b (; ) is the weighted least squares fit

b (; ) =

"
1



X
=1

b

 () 
0


#
×
"
1



X
=1

b


0


#−1
 ()  (16)

The following Proposition shows that (15) is also a member of our class of AIPW

estimators.

Proposition 3.1 The solution to (15) is numerically identical to b() with  () =
() and  () = 1.

Proof. Since the first element of  is a constant we have, by the first order condition

associated with (16),

1



X

=1

b

{ (b)− b (; )} = 0 (17)

Adding the left-hand side of (17) to (15) and re-arranging gives the result.

3.2 Implicit distribution function estimates

A useful way to understand the properties of first order equivalent estimators is in

terms of their implicit distribution function estimates. After some simple algebra we

can show that the solution to (14) coincides with that toX

=1
b()(b()) = 0

where b() = 1



b

b() (18)

16Wooldridge’s (2007) estimator is actually slightly more general than the one described here in

that b (; ) need not correspond to a least squares fit.
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with

b() =
⎧⎨⎩1−

"
1



X
=1

µ
b

− 1
¶
0

#
×
"
1



X
=1

bb0
#−1

× b
⎫⎬⎭  (19)

for  = 1      This implies that the estimate of the joint distribution associated

with b() is
b() ( 1) =X

=1
b()1 ( ≤ )1 (1 ≤ 1)  (20)

(see Back and Brown, 1993, Proposition 1).

This distribution function has several interesting properties. First if  = (),

which is true for all the estimators listed in Table 1 except Newey’s (1994), thenZ
 () d b() ( 1) = Z  () d () 

The re-weighted mean  () in the complete case ( = 1) subsample coincides with

its unweighted full sample mean. Since the unweighted full sample mean of  () is

an efficient estimate of its population analog, then so is the re-weighted complete case

sample mean. In this sense the b() ( 1) inherits some of the efficiency properties of
 (). Since the first element of  () is 1 the AIPW distribution function estimate

also integrates to 1 (i.e.,
R
d b() ( 1) = 1).

As noted in the previous section the IPT distribution function estimate (11) also

exactly balances the mean of  () and integrates to one. However, it differs fromb() ( 1) in that it is guaranteed to be non-decreasing, whereas b() ( 1) may
be decreasing in  and/or 1 over some ranges. Put differently some of the b()
weights may be negative, while the b weights are positive by construction.
To gain further insight into this problem consider the distribution function esti-

mator associated with standard IPW (e.g., Imbens, 2004):

b ( 1) =
X

=1
b1 ( ≤ )1 (1 ≤ 1)  b =

1



b

 (21)
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Now consider a random sample where

1



X
=1

µ
b

− 1
¶
 ()  0⇔

X
=1

b () 
1



X
=1

 ()  (22)

In this case the IPW estimate of the mean of  () exceeds its unweighted full sample

counterpart. The fact that the latter mean is efficient, implies that former is not. The

AIPW distribution function estimator corrects this inefficiency by adjusting the IPW

weights as follows b() = b × b()
with b() as defined in (19). Under (22) large realizations of  () are ‘too frequent’
in the complete case subsample (even after reweighting by the inverse of the estimated

propensity score). In such a situation b() will be less than one for  = 1 units with

large values of  () and greater than one for units with small values. In extreme cases

the resulting b() may be negative or exceed one. Condition (22) is especially likely
to occur when the propensity score model is misspecified. In that case b corresponds

to a quasi-MLE propensity score estimate and hence 1


P

=1

³
 b − 1

´
 () may

differ from zero even in large samples.

In practice the IPW and AIPW distribution functions can generate nonsensical

estimates. Let  ( ) = 1− Neither b and b() are guaranteed to lie within
the convex hull of the data. If 1 ∈ {0 1}, for example, this means it is possible
for b and b() to exceed one. In contrast b will lie in the convex hull of
the data by construction. In our view an estimator which sets a weighted mean of

 ( ) equal to zero, where these weights need not lie on the unit interval is a priori

unattractive (cf., Robins, Sued, Lei-Gomez and Rotnitzky, 2007; Tan, 2010).

3.3 Higher order bias

Another way IPT and AIPW can be compared is in terms of their higher order bias.

In this section we present higher order bias expressions for both IPT and AIPW when

Assumptions 1.1 to 1.5 and Assumption 2.1 hold. Bias comparisons are interesting

in this case because IPT and AIPW are first order equivalent. Theorem 3.1, which is

based on an application of Lemma A.4 of Newey and Smith (2004), gives the result.
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Theorem 3.1 (Higher Order Bias) Suppose Assumptions 1.1 to 1.5, Assumption

2.1, and additional regularity conditions hold, then as  →∞

b() = 0 +



+

 ( )


+

¡
−2¢ (23)

b = 0 +



+

¡
−2¢ (24)

where

 = −1
2

X
=1

Γ−1E
∙

2

0

¸
I (0)−1 

+ Γ−1E
∙


0
Γ−1

1


{ − }

¸
+
1


Γ−1E

∙


0
Γ−1

¸
 ( ) = −Γ−1E

∙


2
Σ ()Λ−1Π

¸
+ Γ−1E

∙½




µ
2 − 1



¶
− 

¾
0Λ−1Π

¸
+ Γ−1E

∙


µ



− 

¶µ



− 1
¶
0−10 

¸


with  denoting a  × 1 vector with a 1 in the  row and zeros elsewhere,  =

( ()
0
0), and 0 = E

h
1−

0
i
.

Proof. See Appendix A and the Supplemental Web Appendix.

To understand Theorem 3.1 it is helpful to consider the asymptotic properties

of an infeasible ‘oracle’ estimator. This estimator chooses b to set the optimal (i.e.,
asymptotic variance minimizing) linear combination of the sample mean of

I ( 0) =

⎧⎨⎩


0()
 ( 0)³


0()

− 1
´
0 ()

⎫⎬⎭ (25)

equal to zero. This estimator is infeasible because (i) 0 () and 0 () are unknown

and (ii) the optimal linear combination is also unknown. An implication of Graham

(2011, Theorem 2.1) is that the efficient GMM estimator based on (25) is also semi-

parametrically efficient for the missing data problem defined by Assumptions 1.1 to

1.5.
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A direct application of Theorem 4.1 of Newey and Smith (2004) to (25) gives an

asymptotic bias for this estimator of  This bias coincides with that of b , de-
spite the fact that the oracle estimator is based on the true propensity score, 0 () 

conditional mean moment vector, 0 (), and GMM weight matrix. In contrast, the

bias expression for the AIPW estimate b() contains additional terms. The addi-
tional terms arise from AIPW’s separation of the tasks of propensity score estimation

and imposition of the optimal set of balancing restrictions implied by Assumption

2.1. The first task generates no gains in terms of asymptotic precision, while at

the same time introducing sampling error into the vector of estimating equations forb() The second task results in an overidentified system of moment equations. The
finite sample properties of b() may degrade as a result. It is straightforward to con-
structed stylized examples where the bias of b() increases with  , the dimension

of  (), while that of b does not. This will be especially true if the distribution
of  () is skewed and/or that of  ( 0) is heteroscedastic (see the Supplemental

Web Appendix for Monte Carlo examples).

The contrast between the higher order bias of b and b() in some ways par-
allels that between empirical likelihood (EL) and two-step GMM for general mo-

ment condition models (Newey and Smith, 2004). The empirical likelihood estimator

transforms an overidentified moment conditional problem into a just-identified one

by introducing a vector of tilting parameters (cf., Imbens, 1997). Our approach to

overidentification, in contrast, involves overparameterizing the propensity score. The

idea of overfitting a nuisance function to eliminate overidentification appears to be

novel.

An alternative to IPT would be to apply GEL directly to the set of moment

conditions underlying the AIPW estimator (cf., Qin, Zhang and Leung, 2009). Let

 = dim ( ()) and ∗ = dim (
∗ ()). Such an approach would apply GEL to the

 + ∗ +  system of moments

E

⎡⎢⎢⎢⎢⎣


(()0∗0)
 ( 0)³



(()0∗0)
− 1
´
∗ ()µ

−(()0∗0)
(()0∗0)[1−(()0∗0)]

¶
1( ()

0
∗0) ()

⎤⎥⎥⎥⎥⎦ = 0

Computation of b would involve solving a saddle point problem with 2 ( + )+

∗ parameters (Newey and Smith, 2004; Section 2). In contrast computing b
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requires solving a 1 + ≤ ∗ +  dimensional globally concave problem and a

just-identified moment condition problem with  parameters. Our approach involves

a smaller parameter and sidesteps the need to solve a saddle point problem.

4 Basic skills and the Black-White wage gap

In an important pair of papers Neal and Johnson (1996) and Johnson and Neal (1998)

document that Black-White skill differences present prior to labor market entry (i.e.,

by age 18) can account for a substantial portion of the corresponding gap in adult

hourly earnings. In particular they find that three fifths of the raw 28 percent Black-

White gap in average hourly earnings can be predicted by differences in Armed Forces

Qualification Test (AFQT) scores, a measure of basic skills used by the military.

Here we repeat Johnson and Neal ’s (1998) analysis after replacing AFQT scores

with measures of cognitive skills acquired prior to adolescence. The idea is to measure

how much of Black-White differences in hourly earnings can be accounted for by

differences in skills across the two groups already manifest prior to adolescence. If

a substantial portion of the wage gap can be so accounted for, then educational

interventions which aim to ameliorate racial inequality might be more appropriately

targeted toward younger children.17

We reconstruct the National Longitudinal Survey of Youth 1979 (NLSY79) extract

analyzed by Johnson and Neal (1998). This sample is a stratified random sample of

young men from the United States born between 1962 and 1964. Measurements of

average hourly wages over the 1990 to 1993 period, race, as well as AFQT scores

are available for each individual. The NLSY79 also collected data from respondents’

school records. In some cases these records included (nationally normed) percentile

scores on IQ tests taken at various ages. We use those scores corresponding to tests

taken between the ages of 7 and 12 as measures of cognitive skills acquired prior to

adolescence. Unfortunately these scores are missing for almost 90 percent of individ-

uals. An unweighted analysis based on those individuals with complete information

would be problematic for two reasons: (i) there are few complete cases making precise

inference difficult and (ii) the complete cases are not representative of the full sample

17Interpreting any predictive relationship between early childhood test scores and subsequent labor

market earnings causally involves a number of subtleties. As our purposes are primarily illustrative,

we do not dwell on this issue here. See Neal and Johnson (1996) for a discussion of some of the

issues involved.
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in terms of always-observed characteristics. Our IPT estimator is designed to address

both of these problems.

Columns 1 and 2 of Table 2 replicate Columns 1 and 2 of Table 14-1 in John-

son and Neal (1998, p. 483) (with the exception that we exclude Hispanics from

our analysis).18 The first column reports the least squares fit of LogWage onto a

constant, YearOfBirth, and Black. The estimated wage gap between Blacks and

Whites of the same age is 28 percent. Column 2 adds AQFT to the set of explanatory

variables. The wage gap between Blacks and Whites of the same age with the same

pre-market AFQT score is only 11 percent. Seventeen percentage points of the uncon-

ditional Black-White hourly wage gap can be accounted for by average differences in

pre-market AFQT scores across the two groups. That a substantial portion of racial

differences in hourly wages can be accounted for by differences in skills acquired prior

to entry into the labor market is Neal and Johnson’s (1996) central result.

Columns 3 and 4 of Table 2 replicate Columns 1 and 2 after replacing AFQT

with our preadolescence test score (EarlyTest). This is an unweighted analysis

based on the 144 complete cases. Conditioning on age alone, racial wage gaps in

the complete case subsample are very similar to those computed using the full sample

(Column 3). The wage gap conditional on the pre-adolescent test score is substantially

lower (Column 4). Unfortunately these wage gap estimates are very imprecise; their

standard errors are almost four times those of their Columns 1 and 2 counterparts.

A second problem with this analysis is that those individuals with early test scores

differ systematically from those without them (See the Table 11 in the Supplemental

Web Appendix).

To address bias due to non-randomness in the missingness process as well as to

improve precision we re-estimated the Table 2, Column 4 model using our IPT pro-

cedure. To appropriately use IPT we require that EarlyTest is missing at random

(Assumption 1.3). That is, conditional on YearOfBirth, Black, LogWage and

AFQT, we require that the probability of observing EarlyTest is independent of

its value. Given the severity of missingness in our dataset this assumption is poten-

tially problematic. We nevertheless maintain it in order to illustrate the practical

application of IPT.

The joint support of YearOfBirth and Black contains 3 × 2 = 6 points.

We included in  () five non-redundant dummy variables for YearOfBirth-by-

18See also Columns 1 and 3 of Table 1 in Neal and Johnson (1996, p. 875).
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Black cell (Whites born in 1962 are the excluded group). This resulted in full

distributional balance for the discretely-valued components of  We also balanced

the means, variances and covariance of AFQT and LogWage conditional on race

alone, and age alone, but not their interaction.19 That is  () also included AFQT,

LogWage, AFQT2, LogWage2 and AFQT×LogWage as well as the interactions
of these variables with Black and the two year of birth dummies (1962 being the

excluded cohort). This led to a specification of  () with 26 elements.

Our choice of  () was informed by two considerations. First, we wanted  ()

to be rich enough to allow for complex forms of selection into missingness (see As-

sumption 1.5) as well as for the conditional mean and variance of EarlyTest (see

Assumption 2.1 and Example 1.2). Second, we wanted to reweight the 144 complete

cases such that an analyst with access to these data alone would numerically exactly

reproduce the results of Johnson and Neal (1998) (i.e., the point estimates in Columns

1 and 2 of Table 2).20

Column 2 of Table 3 reports IPT estimates of the best linear predictor of Log-

Wage given, YearOfBirth, Black, and EarlyTest. For comparison the un-

weighted complete case estimates are reproduced in Column 1 of the table, while

the standard inverse probability weighted (IPW) estimates are given in Column 3.

Relative to the unweighted complete case one, the IPT estimate of the Black-White

wage gap, conditional on skills acquired prior to adolescence (EarlyTest), is larger

in absolute value with a standard error almost two thirds smaller. Recall that the

wage gap conditional on age alone was 28 percent (Table 2, Column 1). Conditioning

on skills acquired prior to adolescence this gap falls to 18 percent. This is larger than

the 11 percent gap present after conditioning on the later AFQT score, but substan-

tially smaller than the unconditional gap. Put differently roughly 40 percent of the

raw Black-White wage gap can be accounted for by differences in average skill levels

across the two groups manifest prior to adolescence. This represents about two-thirds

of the pre-market effect found by Neal and Johnson (1996).

Column 3 of Table 3 reports IPW estimates of the same model. The IPW estimate

19Given the near normal distribution of AFQT and LogWage in our sample focusing on the first
two moments of these variables seemed appropriate.
20Our choice of  () ensures that all those moments used to compute the full sample least squares

fit of LogWage onto a constant, YearOfBirth, Black and AFQT are exactly balanced. Con-

sequently the corresponding IPT-weighted least squares fit based on the 144 complete cases alone

will be numerically identical to the unweighted full sample fit.
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of the Black-White wage gap is imprecisely determined with a standard error over

twice as large as the IPT one. This provides a concrete example of the efficiency gains

IPT can provide relative to IPW (see Proposition 2.1 and Theorem 2.1). Columns

4 through 7 report estimates based on the four implementations of AIPW described

in Section 3. The AIPW point estimates, with the exception of Newey’s (1994), are

very similar to their IPT counterpart, albeit with slightly larger standard errors.21

5 Summary and extensions

The IPT procedure proposed in this paper is a promising alternative to standard IPW-

and AIPW-based approaches to missing data. We end by outlining some possible

extensions to IPT that might merit further research.

Program evaluation and related problems Thus far we have focused on prob-

lems where  is completely observed if  = 1. Now consider the case where

 = ( 0  0
0  

0
1)
0
with   and  = (1−)0+1 observed. That is we observe

0 if  = 0 and 1 if  = 1. Let the moment function take the separable form

 ( ) = 1 (1  )− 0 (0  ) 

Many problems fall into this basic set-up.

Example 5.1 (Average treatment effects (ATEs)) Let  = 1 and  = 0

respectively denote assignment to an active and control program or intervention and

1 and 0 the corresponding potential outcomes. The Average Treatment Effect (ATE)

is

0 = E [1 − 0] 

which corresponds to setting 1 (1  ) = 1 and 0 (0  ) = 0+. Since each

unit can only be exposed to one intervention, either 1 or 0 is missing for all units.

21In this particular example the implicit AIPW distribution function estimates are reasonably

similar to the IPT one; AIPW does not give inordinate weight to any particular respondent and

negative weight is attached to only a handful of units. The exception is Newey’s (1994) variant of

AIPW. Theorem 3.1 suggests this variant of AIPW is more biased than the others, consistent with

our empirical results.
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Example 5.2 (Two sample instrumental variables (TSIV) estimation with

compatible samples) Assume that dim () ≥ dim (0) and consider the following
instrumental variables model

1 =  0
00 +  E [] = 0

This suggests a moment function with 1 (1 ) = 1 and 0 (0  ) =  0
0

Two independent random samples of size 1 and 0 from the same population are

available. In the first sample 1 values of 1 and  are recorded, while in the sec-

ond 0 values of 0 and  are recorded. For asymptotic analysis we assume that

lim
10→∞

1(1 + 0) = 0  0. This is the two-sample instrumental variables

(TSIV) model analyzed by Angrist and Krueger (1992). Ridder and Moffitt (2007)

provide a technical and historical overview. This model is equivalent to a special case

of the semiparametric missing data model, an observation that is apparently new. As-

sume  units are randomly drawn from some target population. With probability 0

the  unit’s values for 1 and  are recorded, while with probably 1−0 its values

of 0 and  are recorded. The indicator variable  denotes which set of variables are

measured. The only difference between this sampling scheme and that of Angrist and

Krueger (1992) is that in the latter 1 and 0 are fixed by the researcher, whilst in the

missing data formulation they are random variables. An adaptation of the argument

given by Imbens and Lancaster (1996, Sections 2.1-2.2) shows that this difference does

not affect inference.

To apply IPT to these problems we find the b0 , b1 and b which solve
1



X
=1

(
1 (1b )
( ()

0 b1 ) − (1−)0 (0 b )
1−( ()

0 b0 )
)
= 0

1



X
=1

Ã
1−

1−( ()
0 b0 ) − 1

!
 () = 0

1



X
=1

Ã


( ()
0 b1 ) − 1

!
 () = 0

Note that this involves computing two propensity score parameter estimates. One

which balances the mean of  () in the  = 1 subsample with its full sample mean

(b1 ) and one which balances the mean of  () in the  = 0 subsample with its
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full sample mean (b0 ). Each of these propensity score estimates may be computed
using the algorithm described in Appendix A. The second step of estimation involves

solving a just-identified moment condition problem.

It is straightforward to extend the arguments given above to show that the above

estimator is locally efficient and doubly robust. As before  () should be rich

enough to adequately model the propensity score. Local efficiency requires that

E [0 (0  )|] and E [1 (1  )|] be linear in  () (this is also the con-

dition for double robustness). As in the examples outlined above the form of  ()

is often suggested by the structure of the problem. Consider efficient estimation of

the ATE by IPT. This requires choosing  () such that the true propensity score is

contained in the parametric family 
¡
 ()

0

¢
and the true potential outcome CEFs

are linear in  ()  Consistency requires only one of these two restrictions to be true.

E [ ( 0)|] nonlinear If there is no  () such that E [ ( 0)|] is linear in
 () then neither our local efficiency or double robustness result can exactly hold

(although our procedure, like IPW, will still be consistent if the propensity score is

correctly specified). Although, in practice, E [ ( 0)|] may be well-approximated
by a function linear in  (), it is of interest to allow E [ ( 0)|] to be intrinsically
nonlinear. As a concrete example assume that we seek to estimate the marginal mean

of the binary-valued 1. We posit the working model Pr (1 = 1|) =  ( 0) and

choose b to maximize the log-likelihoodX

=1
 {1 log ( 0

) + (1− 1) log (1−  ( 0
))} 

Note we use only the complete cases ( = 1 units) for this computation.

Observe that if  () included  ( 00) as an element, then Assumption 2.1 would

hold by construction. We approximate this ideal by including the estimate  ( 0b) as
an element of  () (along with the elements of  () and possibly other known func-

tions of ). Denote  ()  so defined, by  (; b). Using this vector of balancing

functions we estimate the propensity score parameter by solving

1



X
=1

Ã


( (; b)
0 b ) − 1

!
 (; b) = 0

The IPT estimate of 0 is solved for as before. The main difference between the IPT
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procedure introduced in Section 2 and the one sketched above is the inclusion of a

generated regressor in the propensity score model. It is possible that sampling error inb could affect the asymptotic properties of b . We conjecture that, appropriately
restated, Theorems 2.1 and 2.2 would remain valid, but that our higher-order bias

calculations would be affected.

Data dependent choice of  () when E [ ( 0)|] is nonparametric As-

sume the propensity score is known, but that prior knowledge on the form of E [ ( 0)|]
is unavailable (i.e., it is nonparametric). If the first element of  () is −1 (0 ()),

then b will be consistent. The choice of what other functions of  to include

in  () has implications for efficiency alone (and perhaps finite sample bias). In

this special case, the problem of choosing  () is closely related to that of moment

selection in conditional moment problems (e.g., Donald, Imbens and Newey, 2008).

Hirano, Imbens and Ridder (2003) also suggest incorporating a known propensity

score in a similar fashion, but do not make the connection between overparameter-

ization of the propensity score and moment selection. This connection is made, by

construction, explicit in the IPT setting. When the propensity score is also nonpara-

metric, choosing  () is no longer analogous to a pure moment selection problem

since  () also determines the quality with which the propensity score is approxi-

mated. It would be interesting to explore automated, data dependent, procedures for

choosing the components and dimension of  () in the above settings.

Estimation of overidentified moment condition models If dim ( ( )) 

dim () the procedure outlined above is not directly applicable. One approach overi-

dentification would be to estimate the inverse probability tilt as described above.

In step two the analyst could then apply two-step GMM (or GEL) using the IPT-

reweighted data. We conjecture that this procedure would be locally efficient and

doubly robust. It would be interesting to construct a one step estimator for overiden-

tified models.

A Appendix

This appendix outlines the proofs of the results given in the main text. Throughout

the Appendix we assume that  () = ∗ () =  () so that Π0 = Π∗0 and 0 = ∗0
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This is done only to simplify the notation and is without loss of generality. We also

drop ‘0’ subscripts, used to denote (true) population values, when doing so causes no

confusion. A supplemental web appendix, available at https://files.nyu.edu/bsg1/public/,

contains additional proofs.

Local efficiency and double robustness of b (Theorems 2.2 and 2.1)
Consistency and double robustness When Assumptions 1.1 to 1.5 hold con-

sistency follows from arguments analogous to those of Wooldridge (2007) for IPW.

If Assumptions 1.1 to 1.4 and 2.1 hold, but not 1.5 (we do assume that the  (·)
function satisfies the stated regularity conditions; in particular that ( ()

0
)  0

for all  ∈ X and  ∈ D) we have b → ∗ where ∗ is the pseudo-true value which

solves E
£¡
( ()

0
∗)− 1

¢
 ()

¤
= 0 This gives E

£
0 ()  () ( ()

0
∗)
¤
=

E [ ()] so that under Assumption 1.3 and 2.1 we have equation (13) of the main text.

Therefore  = 0 is a solution to the IPW population moment. If  ( ) is linear in

, then this solution is also unique. Otherwise uniqueness follows by hypothesis.

Asymptotic normality Asymptotic normality of b follows from Theorem

6.1 of Newey and McFadden (1994). Let  = (0 0)0  The  + 1 + × 1 moment
vector and derivative matrix equal

 () =

⎛⎝ 

()
 ()³



()
− 1
´


⎞⎠   () =

"


()

()

0 − 

()

1()

()
 () 

0


0 − 

()

1()

()

0


#


(26)

First consider the case where Assumptions 1.1 to 1.5 hold. Let  = E [ (0)] and

Ω = E
£
 (0) (0)

0¤
, then

√
 (b − 0)

→ N (0Ψ0) forΨ0 =
n
( 0Ω−1)−1

o
1:1:

(where 1:1: is the upper left hand  ×  block of ). The covariance of

 =  (0) equals

Ω =

Ã
E
h
0


i
0

0
0 0

!
 (27)

with

0 = E
∙
1−


0
¸
 0 = E

∙
1−


0
¸
 (28)
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The the population mean of  = (0) equals

 =

Ã
Γ −E £1


0
¤

0 −E £1

0
¤ !  (29)

Using (27) and (29) we get a limiting sampling variance for
√

³b − 0

´
equal to

−1Ω−10 =

⎛⎝ Γ−1
³
E
h
0


i
−0

−1
0 0

0

´
Γ−10 + Γ−1E

£
1

0
¤−1

∆0
00∆0E

£
1

0
¤−1

Γ−10

−E £1

0
¤−1

0

n
0

−1
0 − E

£
1

0
¤
E
£
1

0
¤−1o0

Γ−10

(30)

−Γ−1
n
0

−1
0 − E

£
1

0
¤
E
£
1

0
¤−1o

0E
£
1

0
¤−1

 ()

!


where

∆0 = E
∙




¡
 −0

−1
0 
¢
0

¸
  (0) = E

∙
1


0
¸−1

0E
∙
1


0
¸−1

 (31)

Now consider the case where Assumptions 1.1 to 1.4 and 2.1 hold, but not 1.5.

Let ∗ = (00 
0
∗)
0
 with ∗ the pseudo-true propensity score parameter. Let ∗ =

( ()
0
∗) etc. Under this set of assumptions we have

Ω∗ =

⎛⎝ E
h
0()

2∗
0

i
E
h
0()

∗

³
1−∗
∗

´
0
i

E
h
0()

∗

³
1−∗
∗

´
0
i
E
h³

0()

2∗
− 20()

∗
+ 1
´
0
i ⎞⎠ 

and

∗ =

⎛⎝ E
h
0()

∗


0

i
−E

h
0()

∗
1∗
∗

0
i

0 −E
h
0()

∗
1∗
∗

0
i ⎞⎠ 

so that Ψ0 =
n
( 0

∗Ω
−1
∗ ∗)

−1
o
1:1:



Local efficiency If Assumption 2.1 also holds we have E [|] = Π0 =  so

that 0
−1
0 = Π0 and hence

0
−1
0 0

0 = E
∙
1−


Π0

0Π00

¸
= E

∙
1−


0
¸
 (32)
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which gives the equality Γ−1
³
E
h
0


i
−0

−1
0 0

0

´
Γ−10 = I (0)−1  In that case we

also have ∆0 = 0 since E [|] = 0
−1
0  Under these conditions (30) simplifies

to

−1Ω−10 = 
¡I (0)−1   (0)

¢
 (33)

Local efficiency at Assumption 2.1 follows if we can show that IPT is regular

under Assumptions 1.1 to 1.5. The score function for a parametric submodel of the

semiparametric missing data model is (e.g., Chen, Hong and Tarozzi, 2008)

 (  ; ) =  (1|; )

+
−( ()

0
)

( ()
0
)
£
1−( ()

0
)
¤1( ()

0
) ()×

µ




¶
+  (; ) 

Under Assumption 1.1 we have, differentiating under the integral and using iterated

expectations,

 (0)


= −Γ−1E

∙
 ( 0)

 log  (1 ; 0)



¸
= −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; )  (; 0)]} 

Under Assumptions 1.1 to 1.5 standard calculations yield an asymptotically linear

representation of b equal to:
b = 0− 1



X
=1

Γ−1
½
 ( 0)

( ()
0
0)
−12

−1
22

µ


( ()
0
0)
− 1
¶
 ()

¾
+

¡
−12¢ 

where −Γ−1 times the term in {·} is the influence function and 12 and 22 denote

the upper right-hand × 1+ and lower right-hand 1+ × 1+ blocks of as

given in (29) above. Let  denote this influence function, by Theorem 2.2 of Newey

(1990), regularity of b follows if
 (0)


= E [ (| 0)] = −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; 0)  (; 0)]} 

We have, using the conditional mean zero property of scores, the MAR assumption,
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and the fact that 0() = ( ()
0
0)

E [ (| 0)] = −Γ−1E
" n

(0)

(()00)
−12

−1
22

³


(()00)
− 1
´
 ()

o
×{ (1|; 0) +  (; 0)}

#

= −Γ−1E
∙
 ( 0)

( ()
0
0)
{ (1|; 0) +  (; 0)}

¸
= −Γ−1E [ ( 0) { (1|; 0) +  (; 0)}]
= −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; 0)  (; 0)]} 

as required.

Consistent variance-covariance matrix estimation If Assumptions 1.1 to 1.4

and either 1.5 or 2.1 or both hold, then the asymptotic variance of b may be consis-
tently estimated by bΨ = ½³c 0bΩ−1c´−1¾

1:1:

 (34)

with c =
P

=1

³b´  and bΩ =P

=1

³b´

³b´0  .
Derivation of the higher order bias of IPT (Theorem 3.1) Here we outline

the derivation of the  (−1) bias expressions for b (i.e., equation (24) in the main
text). The derivation of the corresponding bias expression for the class of AIPW

estimators discussed in the main text can be found in the supplement. Newey and

Smith (2004, Lemma A.4, pp. 241 - 242) provide a general formula for the  (−1)

bias of M-estimators. As IPT and AIPW have M-estimator representations we use

their general result in our calculations. We maintain Assumption 2.1 throughout in

what follows (in addition to Assumptions 1.1 to 1.5).

Let b be the solution to the  = dim () equations
(b) =X

=1
(b) = 0 (35)

Under regularity conditions (see below) Newey and Smith (2004, Lemma A.4) show

that the asymptotic bias of b is given by
Bias(b) = −−1



µ
E [] +

1

2
E
hX

=1


i¶
 (36)
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where  is a  × 1 column vector with a one in the  row and zeros elsewhere and

 = E
∙
 ()

0

¸
  = −−1 ()   =

 ()

0
−  = E

∙
2 ()

0

¸
 (37)

The IPT estimator of  = (0 0)0 is given by the solution to (35) with

() =

⎛⎝ 

()
 ()³



()
− 1
´


⎞⎠ 

To apply (36) to IPT we require that the parameter space of  is compact with 0 in

its interior, continuity of () in  and continuous differentiability in a neighborhood

of 0 and rank () = dim ()  These conditions are implied by Assumptions 1.1 and

1.5. Additionally we require a Lipschitz continuity condition on the third derivative

of () and the existence of certain higher order moments. Specifically we assume

that (i) for some  () with E [ ()] ∞°°°° 3()


− 3(0)



°°°° ≤  () k − 0k

and (ii) E
£k(0)k6¤  E ∙°°°(0)0

°°°6¸  E ∙°°°2(0)0

°°°6¸  and E ∙°°° 3(0)



°°°2¸ are finite
for    = 1     + 1 + (see Newey, 2002) These conditions will hold if  (·)
and  ( ) are both three times continuously differentiable with bounded derivatives

and enough moments of  () exist (e.g., if a component of  () is a Cauchy random

variable then (36) will not hold).

Objects,
(0)

0 ,  and  of (37) above specialize to

 (0)

0
=

"





0 −



1



0


0 −



1



0


#
  =

"
Γ −E £1


0
¤

0 −E £1

0
¤ #

 =

"





0 − Γ −



1



0
 + E

£
1

0
¤

0 −



1



0
 + E

£
1

0
¤ # 

Using the partitioned inverse formula we have

−1 =

"
Γ−1 −Γ−1E £1


0
¤
E
£
1

0
¤−1

0 −E £1

0
¤−1

#
 (38)
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Combining the above expressions then gives

E [] (39)

= −
⎡⎣ E h 0Γ−1 1i− E h1− 

0Γ
−1E

£
1

0
¤
E
£
1

0
¤−1


i
+ E

h
1−


1

0E

£
1

0
¤−1


i

E
h
1−


1

0E

£
1

0
¤−1


i ⎤⎦ 

Let Π∗
≡ E

£
1

0
¤
E
£
1

0
¤−1
; using (39) we have the first  rows of −−1E []

equal to

Γ−1E
∙


0
Γ−1

1


{ −Π∗}

¸
+ Γ−1E

∙


0
Γ−1Π∗

¸
(40)

+ Γ−1E

"
1−



1


{ −Π∗} 0E

∙
1


0
¸−1



#


Assumption 2.1 gives  = Π0 so that Π∗ = Π0; therefore, applying the law of iterated

expectations, gives the last term in the expression above identically equal to zero.

Now consider the second component of the bias expression (36). Evaluating

E [0] yields

E [0] =

"
I (0)−1 0

0  ()

#
 (41)

For  = 1 , using the expression for  (0) 
0 we have

 = E

"
2

0
−1






0

0 0

#
 (42)

for  as defined in (37) above. For  =  +1  +1+ (=  ) we have instead

 = E

⎡⎣ −1

−



0

³
221
2
− 2



´
−0

0
³
221
2
− 2



´
−0

⎤⎦  (43)

Using (41), (42) and (43) the first  rows of −
−1

2
E
hP

=1 

i
can be shown to

equal

½−−1
2

E
hX

=1


i¾
1::

= − 1

2

X
=1

Γ−1E
∙

2

0

¸
I (0)−1  (44)
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Combining (40) and (44) yields  as given in the statement of the Theorem.

Computation Computation of b consists of two steps. In the first step, which is
nonstandard and detailed here, b is computed as the solution to (8). Here we outline
an approach to solving (8) which we have found to be computationally convenient

and very reliable in practice. This involves defining b to be the solution to a globally
concave programming problem with unrestricted domain. In the second b is computed
as the solution to (7).22

Consider the following function

 () =


 ()
+

Z 

1()

−1
µ
1



¶
d (45)

with  (·) as defined in Assumption 1.5. When the propensity score takes the logit
 () = (1 + exp (−))−1 form (45) exists in closed form (see below). We implement

the logit specification in the empirical application and expect that most users will

do likewise. If a different propensity score model is assumed, then (45) is can be

evaluated numerically.

The first and second derivatives of  () are

1 () =
1

 ()
 2 () = −1 ()

 ()
2
 (46)

so that (45) is strictly concave.

We compute b by solving the following optimization problem
max


 ()   () =
1



X
=1


¡
 ()

0

¢− 1



X
=1

 ()
0
 (47)

Differentiating  () with respect to  gives an 1 + × 1 gradient vector of

∇ ()
1+×1

=
1



X
=1

1
¡
 ()

0

¢
 ()− 1



X
=1

 ()  (48)

22The second step is identical to that associated with standard inverse probability weighting

(IPW). As the second step is both application specific, and typically straightforward to compute

using standard software (that accepts user-specified weights), we do not detail it here.
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which coincides with (8) as required. The 1 + × 1 + Hessian matrix is

∇ ()
1+×1+

=
1



X
=1

2
¡
 ()

0

¢
 ()  ()

0
 (49)

This is a negative definite function of ; the problem (47) is consequently concave with

a unique solution (if one exists). Existence of a solution requires that
P

=1  () 

lie within the convex hull of the complete case subsample (this will be true in large

samples under Assumption 1.4, but should nevertheless be checked prior to compu-

tation).23

In practice (48) will have an ‘exploding denominator’ when  ()
0
 is a large

negative number. This can lead to numerical instabilities by causing the Hessian

to be ill-conditioned. We address this problem by noting that at a valid solutionP

=1( ()
0 b) = 1. Since Assumption 1.5 implies that  () is bounded

below by zero, this means that ( ()
0 b)   for all  = 1      . Letting

 =  ()
0
 this inequality corresponds to requiring that

−1 ()    = 1      (50)

at  = b. Let ∗ = −1 (1); note that ∗ → −∞ as  → ∞ suggesting that

(50) will be satisfied for most values of  in large enough samples. In small samples

(50) may be violated for some  at some iterations of the maximization procedure

(although not at a valid solution). Our approach to estimation involves replacing

 () with a quadratic function when  ≤ ∗ ; this ensures that the denominator in

(48) is bounded. This will improve the condition of the Hessian with respect to 

without changing the solution Owen (2001, Chapter 12) proposes a similar procedure

in the context of empirical likelihood estimation of moment condition models.

Specifically we replace  () in (47), (48) and (49) with

◦ () =

(
 ()   ∗

 + 
∗
 +


2
(∗)

2
 ≤ ∗

 (51)

23Convex hull conditions also arise in research on empirical likelihood (e.g., Owen, 2001; pp. 85 -

87).
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where  ,  and  are the solutions to

 = 2 (
∗
)

 + 
∗
 = 1 (

∗
)

 + 
∗
 +



2
(∗)

2
= 0 (

∗
) 

This choice of coefficients ensures that ◦ () equals  (), as well as equality of first

and second derivatives, at  = ∗ 

When () is logit our algorithm is particularly simple to implement. For () =

exp ()  [1 + exp ()] we have

 () ∝  − exp (−) 

Differentiating with respect to  then gives 1 () = 1 + exp (−) and 2 () =

− exp (−) 
We also have ∗ = −1 (1) = ln

³
1

1−1

´
= ln

¡
1

−1
¢
so that solving for  , 

and  yields

 = − ( − 1)
"
1 + ln

µ
1

 − 1
¶
+
1

2

∙
ln

µ
1

 − 1
¶¸2#



 =  + ( − 1) ln
µ

1

 − 1
¶
  = − ( − 1) 
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Table 1: Weight functions for different AIPW estimators

AIPW Estimator  ()  ()
Locally

Efficient?

Doubly

Robust?

Robins, Rotnitzky, and Zhao (1994) ()


()
Yes Yes

Newey (1994) 1 1 Yes No

Cao, Tsiatis and Davidian (2009)
1−()

()


()
Yes Yes

Hirano and Imbens (2001) / Wooldridge (2007) 1 

()
Yes Yes

Table 2: Replication of Table 14-1 of Johnson and Neal (1998) and unweighted com-

plete case analysis with pre-adolescent test score

(1)



(2)



(3)

 −

(4)

 −

YearOfBirth
−00458
(00151)

∗∗
−00466
(00147)

∗∗
−00947
(00464)

∗
−00940
(00470)

∗

Black
−02776
(00261)

∗∗
−01079
(00284)

∗∗
−02708
(00833)

∗∗
−01606
(00900)

+

AFQT − 01645

(00146)
∗∗ − −

EarlyTest − − − 01011

(00539)
+

2 0062 0183 0068 0120

 1 371 1 371 144 144

NOTES: Estimation samples are as described in the main text. The 1979 baseline sampling
weights are used in place of the empirical measure when computing all estimates. A ‘∗∗’,
‘∗’ and ‘+’ denotes that a point estimate is significantly different from zero at the 1, 5

and 10 percent levels. Standard errors (in parentheses) allow for arbitrary patterns of

heteroscedasticity and dependence across units residing in the same household at baseline.
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