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I Introduction

Tenure, promotion, and salaries in academia are based on publications. These factors also

a¤ect an individual�s market value out of academia. Despite this, there is little to be found

on the inner workings of journals and on how well they perform. In part this is because

data that matches papers with authors and their characteristics, as well as with the edi-

tor handling the submission, is sensitive and rarely available. Most previous work in this

area, with a few rare exceptions mentioned below, has used data on published articles from

one or more journals or small random samples obtained from the editors of these journals.

Rarely has data been available on both published and rejected papers: even when such data

is available, information on authors�characteristics has been quite limited. The matched

editor/author/paper/outcome data we have constructed is, thus, quite unique. We have

compiled data that combines information on paper submissions and editor assignments to

the Journal of International Economics with in-depth data on authors and citations.1

We analyze the data with a view to describing, evaluating, and improving the process.

The paper proceeds as follows. Section I.A provides a selective survey of the literature to

date so as to place our work relative to this literature. Section II describes the data as

well as some interesting patterns that occur. Sections III and IV make up the heart of the

paper. Section III takes an ex-ante approach. The main question is whether a two stage

procedure, where a fraction of papers is rejected without going through the refereeing process,

might signi�cantly reduce costs without compromising on selection quality. We answer this

question by looking at the determinants of rejection and our ability to correctly predict it

on the basis of author characteristics alone. If a signi�cant fraction of the papers can be

correctly rejected on this basis, then surely an editor can do better by taking a quick look

at the paper! We �nd that there is much to recommend this procedure.

1Our data covers ten years, from 1995-2004, with about 3,032 observations. The authors� data was
manually collected from the authors�CVs whenever feasible. For a sub-sample of 2031 papers we have
citation data collected from Google Scholar R.
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Section IV evaluates the performance of the JIE along various fronts. First, we look for

evidence on the extent of type 1 (convicting an innocent man, or in our case, rejecting a good

paper) and type 2 (letting a guilty man go free, or in our case, accepting a bad paper) errors.

Evidence on the extent of such errors comes from two sources: �rst, from looking at the

ultimate fate of rejected papers; and second, from comparing the distributions of citations

of di¤erent groups of papers. Roughly 14% of rejected papers end up in journals ranked

above the JIE. However, the distribution of citations for papers accepted by the JIE �rst

order stochastically dominates that of papers rejected by the JIE as well as those rejected

by the JIE but accepted at higher ranked journals! This is consistent with the JIE doing a

good job of not rejecting good papers, or type 1 error being low. However, about 15% of

published papers are cited less than once in two years, and 7% are never cited, suggesting

that type 2 error could be large. While there are certainly �aws in our approach, this is the

�rst time that this has been attempted in this area, at least, to our knowledge.

We also look for evidence on how good a measure of quality citations seem to be. If

citations are closely related to quality, and the acceptance decision is based only on paper

quality, then once citations are included, nothing else should matter! Even if citations are not

a perfect proxy for quality, including them should reduce the size of the coe¢ cient estimates

of the remaining explanatory variables or make them less signi�cant, which is exactly what

we �nd!

Finally, we look at co-editor speci�c e¤ects. We ask whether co-editors di¤er in their

acceptance rates in ways that cannot be accounted for by the author characteristics or paper

quality. We �nd signi�cant di¤erences in co-editor acceptance behavior as well as evidence

supporting the hypothesis of di¤erences in acceptance criteria.

Section V performs some robustness checks. We correct for a selection bias that arises

in the simple probit model due to our ability use only data points, for which whom we

can �nd a CV on the web. We show that even when we correct for this using maximum
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likelihood techniques, our results are by and large una¤ected. Section VI outlines our policy

conclusions as well as directions for future research.

A Existing Work

There are two main groups of papers in terms of the questions asked. The �rst group deals

with questions related to the determinants of the time it takes to publish. The second group

deals with whether there is an evidence of bias in acceptances.

Despite a proliferation of journals, there seems to have been a signi�cant slowdown in

the publication process. It seems to have become the norm for papers to undergo multiple

revisions, with each round easily taking six to nine months. Even when accepted, papers

can take a year or more to come out. Coe and Weinstock (1967) �nd that this process took

about 250 days in the 1960�s. Yohe (1980) reports that between 1966 and 1979 the delay

in the publication process increased substantially with the average time between submission

and publication being 15.3 months for specialized journals and 23.3 month for major general

interest journals. Trivedi (1993) uses data on 1134 submissions from 7 econometrics journals

from 1986 to 1990. He �nds that delays were large and increasing over time with the average

lag exceeding 31 months in 1986 and 34 months in 1990. Supplementing his data with survey

data from authors (34 complete answers from 135 questionnaires) Trivedi constructs delay

distributions, but only has data for published papers. He argues that: �It is also important

to �nd out how long the rejected papers stay in the processing line. That statistic re�ects the

e¢ ciency with which the profession deals with research submitted for publication in journals.

These data are also available to the journal editors, but rarely published.�He then suggests

that the processing delays for rejected papers should be similar to those of accepted papers.

However, we �nd that the delay for accepted papers exceeds that of rejected ones, and that

the conditional survival probability increases over time.

Bowen and Sundem (1982) obtain data directly from the editors of leading accounting and
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�nance journals on the durations of all the steps that articles go through between submission

and publication or rejection. With data on a random sample of 40 accepted and 40 rejected

papers from each of 9 journals, they compare the duration of di¤erent stages in submission

among journals. They �nd that a lion�s share of accepted papers (219 out 281) went through

one or more revisions. At the same time only 14 out of 326 rejected papers were not rejected

in the �rst round. We �nd a similar pattern in our data.

Ellison (2002a) looks at the changes in submit-accept times for di¤erent journals and then

examines possible causes for these patterns. He looks at several possible explanations for

this increase, including democratization of the profession away from an �old boys�network,

increased complexity of articles, and growth of the profession. To test the �rst hypothesis,

Ellison collects data on the authors of the published papers only and regresses submit-

accept times on variables that proxy for the authors�position in economic hierarchy such

as publications in top journals and contributions to the AER Papers and Proceeding or

Brookings Papers, which are invited but prestigious. He �nds no statistically signi�cant

relationship between the submit-accept time and the authors� standing in the profession.

Note, however, that this does not account for the possibility that the authors� standing

could a¤ect the probability of acceptance rather than the time to publication. Moreover, the

use of published papers only creates selection bias.

The complexity of papers is somewhat di¢ cult to measure. To test this explanation,

Ellison (2002a) uses proxies such as the length of the paper, the number of co-authors, and

the degree of specialization as re�ected in the JEL index. Since the 1970�s, the average paper

gained approximately 75% in size, while the share of co-authored papers doubled from 30%

to 60% from 1970 to 1999 in Econometrica and REStud. Ellison �nds that each extra page

seems to add 5 days to the time to the �rst decision. The overall increase in the average

number of co-authors from 1.4 to 1.7 accounts for about 10 days of delay. At the same time,

he �nds no support for the increased specialization hypotheses.
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He also argues that there is not much evidence of growth in the profession. Comparing

the number of submissions to the best journals such as Econometrica, JPE, AER, and QJE,

Ellison fails to record any dramatic trend. However, higher standards for acceptance could

reduce submissions and keep acceptance rates constant. Other measures, such as connections

with the editor or NBER membership, also failed to have any explanation power or had the

�wrong�signs. He argues that while the �rst response time grew somewhat, the number of

revisions and the time spent on them increased more severely.

Ellison (2002b) makes the case that the balance between the importance of the main idea,

(q); and other aspects of quality2, (r); has changed as referees, who have an upwardly biased

view of their own work, update their priors on the social norm regarding the importance

of the two. He �nds that papers with better ideas (as measured by position in the volume

and citations) on average have a shorter reviewing time.3 However, this theory explains only

about a quarter of the increase in the delay. Ellison�s work remains the most extensive and

up to date research on publication lags and their possible causes.

The second direction taken in this literature has been to test for bias in acceptance/rejection.

A number of authors look for evidence of biases according to gender as well as closeness to

editors or co-editors of the journal. For example, Laband and Piette (1994) use citation data

to test for favoritism. They �nd, if anything, the opposite: articles published by people in

an editors�network tend to have a higher, not lower citation index!4 They speculate that

editors seem to use their personal ties to obtain better papers for their journals.5 Blank

(1991) looks at the outcome of an experiment carried out by the AER as an indicator of

2The other aspects of quality include quality of math, econometrics, robustness checks, the level of
polishing, etc.

3In our data, however, the correlation between citations and time to the �rst decision is not signi�cantly
di¤erent from zero for both accepted and rejected papers separately. However, the correlation between the
time to the �nal decision for accepted papers and citations is slightly negative. This could be because lower
quality papers require more polishing to be acceptable.

4Citations may be a bad indicator of quality. A paper with serious �aws may have a high citation index
because others cite its defects. Also, insular networks may deliberately cite each other�s work making citation
numbers suspicious.

5For obvious reasons the authors use the data on published articles, not on submissions.
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bias. During the experiment papers were randomly allocated into two groups. Those in the

�rst group were sent for a single-blind review, i.e., the referee had information about the

author�s identity, though the author did not know the identity of the referee. Those in the

second group were sent for a double-blind peer review, i.e., referees had no information about

the author. One of her key �ndings was that under double-blind review, rejection rates were

higher and referees were more critical of the papers. At the same time Blank did not witness

any discrimination by gender, but outlined some di¤erences in acceptance rates on the basis

of university ratings: applicants, who worked at near-top universities or from non-academic

institutions, had lower acceptance rates under the double-blind review system.

Hamermesh and Oster (1998) look at how productivity and the probability of acceptance

vary with age, using data on 208 faculty members of the leading 17 economic departments

who got their degrees between 1959 and 1983. They �nd that researchers are most pro-

ductive in the �rst decade after graduation and slow down over time. However, early high

productivity seems to be a characteristic of those who remain productive many years later.6

They also obtain a random sample of submissions to a top general interest journal. This

data suggests that the probability of acceptance does not vary with the author�s age, though

highly cited scholars have a signi�cantly higher probability of acceptance. We �nd a slow

increase in the probability of acceptance with age, but do not wish to make too much of this.

How does our work relate to that in the literature? It is complementary to the literature

in that it validates some previous �ndings and questions others (like the constancy of the

acceptance rate as a function of age) using a new data set. It di¤ers from it in a number of

ways. First and foremost, it is the only paper that evaluates the performance of a journal

and its co-editors directly. We can do so because of our unique data set.

6However, it is unclear if this is due to talent or the fact that talented academics tend to have a higher
initial job placement, where (due to lower teaching loads and better research environment) it is easier for
them to stay at the forefront of research.
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II The Model and the Data

We assume that each article has a quality, qi; which cannot be observed directly. The purpose

of the editorial process is to identify q and accept article i if qi exceeds a threshold level, Q.

We distinguish between factors that can be observed at the time of submission and those

that cannot: while the latter can be used to evaluate the process of selection and outcomes,

only the former can be used to help to guide it.

A The Model

We assume that the quality of a paper depends on the author�s abilities (a) and e¤orts (e)

as well as an element of luck:

qi = g(ai; ei) + "i;

and that the article is published if qi > Q. Ability and e¤ort could be proxied for by the

author�s education, experience, and performance to date as re�ected in his/her publication

record. Professional age could also be related to e¤ort, with untenured faculty putting in

more e¤ort and so being more likely to submit high quality papers, other things constant.

They might also be closer to the frontier, especially if they come from good programs, than

faculty who are not as research oriented and whose human capital has depreciated since

graduate school.

By making assumptions on the distribution of "i; we obtain either the probit or logit

model from this setup. We assume that the article i is published in the journal if its latent

quality qi exceeds a threshold level:

Yi =

�
1; if qi = Xi� + "1i > 0;
0; if qi = Xi� + "1i < 0;

(1)

where Yi is an indicator for the paper being published (Yi = 1) or not (Yi = 0). Note

that under such speci�cation we have to include a constant term in Xi�; which provides an
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estimate for the threshold level Q.

B The Data

We have several sources of data.

B.1 Journal Based Data

The JIE displayed steady growth through 1995-2004. Its size doubled as it went from 700

to 1400 pages per year. Its publication pattern changed discretely in 1998: instead of 4

issues per year the JIE started publishing 6 issues. Despite a temporary drop in 2001, due

to the publication of two special issues with a slightly larger number of articles, the number

of pages per article also increased by the end of the period.

Submission Data. We have data on submissions from 1995 to 2004. For each sub-

mission, we observe the authors�names7, the title of the paper, the date of submission, the

name of the co-editor who handled the article, the date of the �rst decision and subsequent

decisions if any as well as the decisions themselves.

The decision making process at the JIE is as follows. When the JIE receives an article,

the editor decides who handles the paper, the editor or a co-editor. After that, whoever is

handling the paper sends it to two referees of his/her choice. The referees observe the name of

the author as the JIE follows the single-blind review practice. Once the referee reports are in,

there are three possible outcomes: accept, decline, or revise and resubmit. In case revisions

are requested, additional rounds occur. We observe at most four such rounds in the data.

Once the paper is accepted, it joins the queue for publication.8 Overall, the JIE received

about 3032 submissions of which almost 600 articles (20%) were accepted for publication. At

the same time acceptance rates have almost halved from 27% to 14% in 1995-2004, despite

7If a paper is co-authored, we collect information on all co-authors which allows us to check whether
results are sensetive to the choice of the author characteristics used in estimation (average, best, and worst).

8There are other possibilities. For instance, an article may be withdrawn. We do have a few such
observations in our sample, but far too few to carry out any analysis.
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doubling in the journal size! The increase in size did result in a blip upward in acceptance

rates from 18.8% to 21% in 1999, but the downward trend continued.9

Co-editor Information. We include dummy variables for the co-editors who handled

the papers. Co-editors have quite di¤erent raw acceptance rates. This could occur if co-

editors have di¤erent views on the minimum acceptable quality of a paper. However, this

is not the only possible interpretation. Papers need not be distributed randomly across

co-editors. On the contrary, articles would likely be sent to the co-editors whose expertise

is closest to the paper, and if some areas are hotter than others, this could result in some

editors having higher acceptance rates. Another possibility is that more interesting articles

are retained by those assigning papers to co-editors, i.e., there could be a cherry picking

e¤ect. This could again lead to di¤erences in raw acceptance rates that have nothing to do

with di¤erences in standards. However, by controlling for author characteristics, we control

for such composition biases, at least to the best of our ability. Co-editors are only identi�ed

by number to preserve con�dentiality. There are 21 co-editors who worked with the JIE at

some time in this period and handled a non-trivial number of articles.

Backlog. Like many journals, the JIE has a stock of articles that have been accepted

but are awaiting publication. We construct a backlog variable to see if this has any e¤ect

on the probability of acceptance.10 The backlog could a¤ect the decisions of the co-editors

if information on it is conveyed to the co-editors, who, in turn, raise standards and reduce

the acceptance rate. It could a¤ect submissions if the increase in the backlog was known to

authors and this reduced submissions, possibly raising the probability of acceptance. In our

regressions we use the backlog in the previous month as an explanatory variable.

9We see slightly higher submission rates in June and July, perhaps as academics �nish o¤ leftover projects,
and after the summer, in October. We also see higher rates in February, which might be due to submissions
that occur after being rejected at a general interest journal or after working during the winter break.
10The backlog variable we calculate (recursively and based on the fact that as of September 1, 2002, the

backlog was 73 papers) is accurate for later years of the sample (1999-2004), but is less so for 1995-1998 due
to not observing all acceptances in the earlier years. This biases our imputation for the number of papers
accepted, and thus, for the backlog variable downward. However, by 1999 this error should be close to zero
as it is unlikely that articles submitted in 1994 or earlier are still under revision in 1999.
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Time to First Decision. We have the date of the paper submission and the date of

the �rst decision. The length of the sample allows us to test whether the JIE demonstrated

any increase in the processing time over the decade. We split our sample into two parts:

articles submitted in 1995-1999 and in 2000-2004.

There is a slight increase in the time to the �rst decision from 134 days in 1995-1999 to

142 days in 2000-200411. The natural question is where these delays are coming from. Do

we observe an increase in waiting time for both rejected papers and papers sent for revision?

Comparison of cumulative distributions for both categories of articles for earlier and later

years gives some insight into the reasons for the increase in time to the �rst decision. For

rejected papers, the time to the �rst decision remains about the same for the whole period

(130 vs. 134 days)12. For articles not rejected after the �rst round reviewing time increased

quite noticeably from 152 to 172 days13. This con�rms the hypothesis of Ellison (2002a) of

an increase in the polishing component of quality, r, rather than q component.

B.2 Vita Based Data

In addition to information on the decisions regarding each paper, the timing of each of the

stages, the co-editor assignment, and the applicants� names and titles of the papers, we

collected detailed data on the authors�background from their curriculum vitaes (CVs). In

the main body of the paper we use a simple probit approach. As a robustness check, we also

present estimation results, where we deal with the potential bias of omitting individuals for

whom CVs were not available. It turns out that the di¤erence in the results between these

two speci�cations are minor.

Ph.D. Vintage. This variable is not the year the Ph.D. was awarded, but the number of

years since getting the Ph.D. at the time of submission. It helps capture how human capital

11The Anderson (1996) test allows us to reject the FOSD hypothesis, while the Kolmogorov-Smirnov test
rejects the null hypothesis that the distributions are the same. See Appendix, Table 7, Column 2.
12The Anderson (1996) test allows us to reject FOSD hypothesis. See Appendix, Table 7, Column 4.
13The Anderson (1996) test does not let us to reject FOSD hypothesis. See Appendix, Table 7, Column 3.
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and incentives vary across the lifecycle. On the one hand, young Ph.D.�s could have more

current human capital, higher ambitions, and be willing to invest more in their research to

get tenure and because they have a long time to recoup their investments. As a result, they

may be more likely to write high-quality papers. They may also be particularly keen on

getting an acceptance before tenure and submit a high quality paper to the journal, where

an acceptance is more likely, rather than take their chances elsewhere. On the other hand,

with age comes experience: for instance, they might be better able to choose where best to

submit a paper or how to sell it, thereby raising the probability of acceptance. Which of

these e¤ects dominates is not obvious ex-ante. For this reason, we include a set of dummy

variables to proxy for such e¤ects in a �exible manner. In total we have 6 dummies that

indicate that an applicant obtained his Ph.D. from 0 to 2 years ago, from 2 to 4, from 4 to

6, from 6 to 10, from 10 to 20, or that the Ph.D. is not completed at the time of submission.

Scholars who got their Ph.D.s more than 20 years ago are used as the reference group.14

University Rank. This gives the ranking of the university that awarded the author�s

Ph.D. We use world-wide rankings of the best 200 economic schools from Kalaitzidakis et.

al. (2003). Schools, which are not on this list, are labeled �non-ranked�.

Employer Type. We specify whether the author was employed at the US, Canadian,

United Kingdom, or European university15, or at a university anywhere else on the date

of submission. For authors employed outside academia we code whether they worked in

research or international organizations, for instance, such as the Fed, the IMF, or World

Bank, or in business. We also distinguish between organizations based in and outside the

US.

An obvious trend is the decrease in the share of submissions from the authors a¢ liated

with the US universities from 50% in 1995 to 37% in 2004 and a corresponding increase in

such number for researchers from the European universities from 12% to 28%, suggesting

14We tried but failed to collect good data on a tenure status at the time of submission.
15We treated Norwegian and Swiss universities as the EU ones though neither country is the EU member.
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that at least in International Economics, the US may well be losing ground. The share of

submissions from various organizations is stable at about 10% average. Very few submissions

come from business employees but this could be partly due to the absence of their CVs.

Number of Previous Publications. These are broken down into those in the lead-

ing general interest journals (Group 1 : The American Economic Review, Econometrica,

The Journal of Political Economy, The Quarterly Journal of Economics, and The Review of

Economic Studies), the number of publications in the second tier general interest journals

(Group 2 : The Journal of Monetary Economics, The Review of Economics and Statistics,

The Journal of Economic Theory; Group 5 : The International Economic Review, The Eu-

ropean Economic Review, and The Economic Journal), and the number of publications in

top �eld journals and general interest journals with a record of publishing papers in In-

ternational Economics (Group 3 : The Journal of Pubic Economics, The Rand Journal of

Economics, The Scandinavian Journal of Economics, Economic Letters, Journal of Applied

Econometrics, The Journal of Development Economics, The International Journal of Indus-

trial Organizations; Group 4 : Economic Theory, Econometric Theory, Games and Economic

Behavior, The Journal of Econometrics, The Journal of Human Resources, The Journal of

Labor Economics, Journal of Economic Dynamic and Control, The Journal of Environmental

Economics and Management). We also track the number of publications in the JIE prior

to submission and the number of papers in �Network�journals, which demonstrate that a

person is well linked in the profession as the papers tend to be solicited, even if they are

refereed. This group includes: AER Papers and Proceedings, The Journal of Economic

Perspectives, The Journal of Economic Literature, Rochester Series, Brookings Papers on

Economic Activity. Finally, we have the total number of papers in economic journals.

Native Language. Quite a few papers submitted to the JIE are written by non-native

speakers, for whom it might be harder to get their article published. We include a language

dummy to allow for this. Unfortunately, many economists do not explicitly state in their

12



CVs if English is their native language. In such cases we de�ne language pro�ciency by

treating a person as pro�cient in English if he obtained his bachelors and subsequent degrees

from a university located in an English speaking country.

B.3 Publication and Citation Data

We also collected data on the �nal outcomes with each submission. Here we looked for

information of its ultimate fate as well as its reception by the profession.

Fate of Article. For those papers rejected by the JIE, and for which we have data on

at least one of the authors, we record whether the paper was �nally published or not. If

published, we code the ranking of the journal of publication in deciles (top 10, 10-20,...).

Citation Data. The number of citations can be an indicator of the paper quality. Of

course, there are problems here as well. Citations can be negative rather than positive due

to the paper susceptibilities! Also, published papers are more likely to be cited just because

they are published. However, since many published papers have almost 0 citations, while

other unpublished ones are highly cited, this is less of an issue today than before the internet.

There are several sources of citation data. The Social Sciences Citation Index R is one

possible source. However, it contains citation data only for published papers and only for

a subset of journals. The only source that provides citation data on both published and

working papers is Google Scholar R. Using it, we collected citation data for 2031 articles.

For the rest of articles, Google Scholar R either failed to �nd any information on the paper

or we were not able to identify the match. Articles written in earlier years are likely to have

more citations. To provide comparability, we calculate the number of citations per year.16

16One might be concerned that earlier papers would tend to be more heavily cited due to the time taken for
word to spread. However, the distributions of citations per year for papers during earlier and later periods
do not di¤er signi�cantly.
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III A Two Stage Procedure?

Here we �rst look at the determinants of acceptance. Then we see how well the model can

predict acceptance. Table 8 in the Appendix summarizes the main �ndings. We run a probit

model, that is, we estimate equation (1), where the error term " is assumed to be i.i.d.

normal with variance 1.

In Column 1 we report the estimated marginal e¤ects of the probit model, where X

includes Ph.D. vintage, a number of publications, which we separate into those published

in the JIE and those in �Network�journals. Other variables in X are: language, university

ranking, co-editors �xed e¤ects, institutional a¢ liation, and the year dummies. In Column 2

we add citations per year to X. In Column 3 we add the number of other articles per year to

the number of publications variables. In Column 4 we present the coe¢ cient estimates of the

speci�cation in Column 2. Before we begin, note that as we are not estimating a structural

model, we cannot interpret the estimated parameters as clearly. For example, a positive sign

on prior publications in Group 1 journals can indicate that such people send better papers

to the JIE or that the editor favors them. However, by looking at other correlations, one

can sometimes argue for one interpretation over another.

A The Determinants of Acceptance

We have a number of variables in our regression. All of these are ex-ante variables as they

are observable at the time of submission.

Ph.D. Vintage. The �rst block of coe¢ cients in Table 8 corresponds to the results

for Ph.D. vintage. Submission to the JIE is the authors�choice. If all authors, irrespective

of their vintage, submit the same quality papers to the JIE, there should be no signi�cant

coe¢ cients here. However, if a looming tenure decision makes an early acceptance at the JIE

more valuable than a slower acceptance at a higher ranked journal, we may see a positive

coe¢ cient for the close to tenure years, i.e., a tenure e¤ect in submission choice. Also, if
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tenure is a way o¤, even if the chances of acceptance at the JIE are small, low quality

submissions may be worth making. What we see in the probit equation results is that the

acceptance probability increases with vintage up to Ph.D. vintage 2 to 4. Thereafter, the

probit marginal e¤ects decrease. Our �ndings are somewhat di¤erent to those by Hamermesh

and Oster (1998), who use a random sample of submissions to one of major economic journals

in 1991 and argue that �on average there is no decline with age in acceptance rate of papers

submitted�, after controlling for the author�s quality and experience.

Co-editor Fixed E¤ects. Co-editors vary substantially in terms of the raw acceptance

rates from 10 to 35% (17-51% for the subsample with CVs). However, this should not be

taken as an indicator of bias as it could easily be the case that the quality composition of

papers varies across co-editors. For this reason, we allow for co-editor �xed e¤ects in our

regression, and when testing for di¤erences in standards in Section IV below, look at these

rather than the raw probabilities. As shown in Table 1 below, these dummies are signi�cant

for a number of co-editors, i.e., for co-editors 3, 5, 8, and 20. For the results presented in

Table 8, we only include dummies of those co-editors. As we can see from the results in

Table 1 and in Columns 1, 2, and 3 of Table 8, including only these 4 co-editors reduces the

magnitude of the marginal e¤ects somewhat. All of the coe¢ cients, except for the one for

co-editor 20, are strongly signi�cant.

Experience. Good prior publications may reveal the ability to write good papers for

the JIE, so as we expected, having publications in journals as good as or better than the

JIE tends to raise the probability of acceptance at the JIE. Notice that only the number

of publications in Group 2, 5, and �Network�journals is statistically signi�cant. Statistical

insigni�cance of other experience is likely to be a result of a multicollinearity problem:

the numbers of publications in di¤erent groups are highly correlated! The �rst principal

component17 explains 60% of the variance as evident from Table 9.2 in the Appendix. If we

17This is just a linear combination of all papers an author has in di¤erent groups, for which all coe¢ cients
are positive.

15



drop the number of publications in Group 3 to 5, then the number of publications in Group

1 journals becomes positive and statistically signi�cant at 5% or 1% level.18

Table 1: Co-editor �xed e¤ects

Co-editor

%

Accepted

(Sample)

Probit

marginal

e¤ect19

Quality

di¤erence20

Citations

per year,

Accepted

Citations

per year,

Rejected

Time to

�rst

decision

1 0.31 0.064 -0.13 4.6 2.0 187

2 0.28 -0.011 -0.08 5.8 2.0 115

3 0.49 0.183*** -0.07 6.8 1.7 124

4 0.26 -0.070 -0.04 4.7 2.0 127

5 0.38 0.229*** -0.22 5.3 1.4 156

6 0.37 � � 11.4 3.2 80

7 0.32 0.053 -0.10 2.4 1.9 166

8 0.51 0.302*** -0.16 6.5 0.2 218

9 0.22 -0.008 -0.15 8.7 2.6 103

10 0.26 0.045 -0.16 3.4 1.0 191

11 0.32 -0.002 -0.05 6.6 0.8 101

12 0.30 0.002 -0.08 12.4 1.4 192

13 0.23 0.060 -0.20 2.7 2.4 128

14 0.20 0.066 -0.24 2.6 1.5 123

15 0.35 0.090 -0.11 9.4 1.8 117

16 0.23 0.071 -0.14 5.7 3.2 136

17 0.17 0.055 -0.20 3.7 0.7 107

18 0.17 -0.037 -0.16 9.0 3.6 187

19 0.18 -0.073 -0.13 14.9 2.6 180

20 0.40 0.194* -0.17 5.7 0.7 122

21 0.41 0.032 0.01 7.8 2.1 128

Marginal e¤ects are reported for regression estimates. It measures a change in a probability if

dummy variable changes from zero to one. Co-editor 6 dummy is omitted to avoid collinearity.

*,**,*** denote signi�cance at 10, 5, and 1 percent level, respectively.

The number of publications per year in journals other than the above (other journals)

has a negative impact on the probability of being published. This could be because writing

18The results are available upon request.
19The discrete change in the probability for a change of dummy variable from 0 to 1 is reported (evaluated

at the means).
20See Section IV.C for a detailed description and discussion.
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bad papers one more likely to keep doing so. One would expect this e¤ect to be stronger for

people being out of grad school for a while. To check for this, we also looked for the evidence

of a di¤erential impact on the probability of acceptance depending on vintage. While the

interaction of Ph.D. vintage and the total number of publications not in top journals turns

out to be negative, it is statistically insigni�cant.21

Language. The language dummy is positive in all speci�cations and signi�cant except

for the Probit speci�cations in Columns 1 and 3. This highlights the importance of good

writing for publication.

University Rank. The distribution of submissions by the world-university ranking

according to the author�s Ph.D. is given in Table 2. Note that the share of the top 20

universities constitutes a lion�s share of submissions and the share tapers o¤ quite rapidly.22.

Table 2: Submissions and acceptances by graduate school quality cohorts

Submissions # Submissions % Accepted Accepted / submissions

Top 20 1145 56% 394 34:4%

Top 50 1494 73% 465 31:1%

Top 200 1932 94% 531 27:5%

Sample Available 2051 100% 537 26:2%

�Population� 3032 � 600 19:8%

Our estimates (in all columns of Table 8) show that people who graduated from more

highly ranked places are more likely to have their papers accepted23. At the same time,

coe¢ cients for the top 10 - 30 places are about the same, while graduates from the universities

that are unranked have a much lower probability of having their papers accepted, other things

constant.

What might account for the relative stability of acceptance rates across schools? A

simple explanation comes from noting that submission decisions are endogenous. Authors

21The results are available upon request.
Since the JIE has a single blind system of refereeing, it could be that referees take publications in lower

ranked outlets as a signal of poor quality, or maybe such submissions actually tend to be of lower quality.
22Acceptance rates at lower ranked departments are very volatile due to the small number of submissions.

In fact, for some institutions the acceptance rate is 100% due to a single paper being submitted.
23The base group for the dummy variables is the universities ranked from 101 to 200.
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choose where to submit on the basis of expected payo¤s. An increase in the payo¤ from a

JIE publication or a higher subjective probability of acceptance, given quality, would tend

to make an author more willing to try his luck with a lower quality paper and so end up

with a lower probability of acceptance. It is likely that the probability of acceptance is

overestimated at lower ranked schools (as the acceptance rate at the JIE has been falling,

which may be less well known at lower ranked school), while the value of a JIE publication

is higher for them (at lower ranked schools a JIE article would count towards tenure, while

it would probably not make much of a di¤erence at a highly ranked one). This may well

explain the slightly lower acceptance rates at lower ranked institutions. Another explanation

could be the desire to get a feedback on a paper, even if it has a little chance of acceptance.

This factor could be important for faculty at lower ranked institutions.

Interactions in University Rank and Ph.D. Vintage. To see whether university

quality might have di¤erent e¤ects than Ph.D. vintage, we include interaction terms between

university rankings and Ph.D. vintage. Table 3 summarizes these coe¢ cient estimates. These

estimates clearly show that graduates from better places are more likely to have a better

start. The probability of acceptance falls with Ph.D. vintage for graduates of the top 10

universities. For other graduates the coe¢ cients on the interaction terms are insigni�cant,

which implies that initial di¤erences seem to persist.

In Table 4, for each Ph.D. vintage we show the share of manuscript submissions for

di¤erent university quality groups. Though the number of submissions falls with Ph.D.

vintage, it clearly shows that the structure of submissions remains roughly the same as we

vary Ph.D. vintage. In other words, even though those who are 20 years out submit far

fewer papers than those who are 5 years out, the distribution across the universities they

graduated from remains stable.

A¢ liation Matters. Geography and employer type matter when citations are not

accounted for. However, once citations are included, they become insigni�cant. In other
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words, the probability of acceptance is higher for scholars employed in research organizations,

but this seems to be due to higher quality of papers submitted by them, as a JIE publication

could be more valuable to them in their careers.

Table 3: Divergence versus convergence

Rank of the university Constant term
Slope of intersection

with Ph.D. vintage

Top 10 universities 0:752 �0:030
(0:148)��� (0:014)���

Top 20, excluding Top 10 0:490 0:012

(0:158)��� (0:014)

Top 30, excluding Top 20 0:347 0:015

(0:232) (0:019)

Top 40, excluding Top 30 0:411 �0:013
(0:260) (0:023)

Top 50, excluding Top 40 0:469 �0:019
(0:247)� (0:021)

Top 100, excluding Top 50 0:321 �0:009
(0:173)� (0:016)

Not one of the 200 best universities �0:250 0:006

(0:135)�� (0:011)

Table 4: Shares of papers�submissions with Ph.D. vintage for various education quality cohorts

University Ph.D. vintage

Rank 0 to 5 years 5 to 10 years 10 to 15 years 15 to 20 years more than 20

Top 10 31% 34% 33% 32% 31%

Top 10 - 20 24% 20% 22% 20% 17%

Top 20-30 7% 8% 7% 6% 10%

Top 30-40 6% 7% 9% 11% 10%

Top 40-50 6% 5% 7% 6% 7%

Top 50-100 15% 14% 12% 15% 19%

Top 100-200 12% 11% 10% 10% 7%

# of Papers 624 545 333 194 201

Backlog. The backlog variable turns out to be signi�cant at the 10% level and has a

negative coe¢ cient24.

24The detailed estimation results are available upon request.
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B Time to First Decision and Survival Probabilities

What does the time to the �rst decision say about the probability of rejection? Most accepted

papers go through at least one revision: out of about 3,032 submissions, only 17 (0.6%) were

accepted with no revision, about 770 (23%) were sent for revision, and about 600 (78%)

of them were �nally accepted. Trivedi (1993) hypothesizes that the processing delays for

rejected and accepted papers should be of the same order. However, this is not so in our

data. The plot below shows the cumulative distributions of waiting times for these 2 groups.

The cumulative distribution for rejected papers clearly lies above that for accepted ones, so

that the latter FOSD the former. Figure 1 also suggests25 that �no news is good news�! This

makes sense as it may take more time to review an acceptable paper than to reject a clearly

bad one. On average, it takes about 132 days to process a paper that will be rejected and

162 days to handle an article that has to be revised. Papers accepted without revision on

average spent 130 days under reviewing, but with a very high standard deviation of 115 days.

The probability that an article will not be rejected given that it has survived for X days from

submission, i.e., the probability of acceptance conditional on survival is also increasing!

C Streamlining and its Costs

Finally, we ask, how well the model does in predicting �nal acceptance. Suppose the JIE

rejected the papers with the lowest probability of acceptance according to the model without

looking at the paper itself. How badly would it err? Of course, editors could do better by

taking a quick look at the content, but even without this, how well does our regression per-

form? Using only those variables that are available ex-ante, and omitting co-editor dummies,

we estimate a version of our model. Then we take the predicted probability of being pub-

lished for each paper submitted to the JIE in 2004 and sort the articles in descending order.

25Both the Anderson (1996) FOSD and Kolmogorov-Smirnov tests support our �ndings, see Appendix,
Table 7, column 1.
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Figure 1: Time to the �rst decision
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In other words, the articles with the highest probability of acceptance are at the top. We

ask, if we had taken the top k% of papers after ordering papers in terms of their predicted

probability of acceptance and only sent these out for refereeing, rejecting the others, what

fraction of papers would be wrongfully rejected? This is depicted in Figure 2.

When k = 60%, this number is 8%. Hence, without reading the papers, eliminating 40%

of the submitted manuscripts will result in at most an 8% wrongful rejection rate relative to

the current procedure. Note that this is without any information about the paper itself!

When we look at single authored papers only, we do even better: at k = 60%, the error is

zero! In other words, none of the worst 40% of papers as classi�ed by our model were actually

accepted and half of the best papers account for approximately 73% of articles accepted for

publication. The quality of prediction on single-authored papers is far better than that for

the whole sample, suggesting that co-authorship is befuddling the model.26

26Using the best author�s characteristics does not improve the �t.
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Figure 2: Costs of streamlining
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Table 5: Final publications for papers rejected by the JIE

Rank of journal Share (%)

Top 1-10 journal 1.6

Top 11-20 journal 8.3

Top 21-30 journal (Excluding JIE) 4.1

Top 31-40 journal 6.4

Top 41-50 journal 9.0

Top 50-100 journal 9.2

Other ranked journals 4.4

Non-ranked journals 56.9

IV Evaluating Performance

A Type 1 versus Type 2 Errors

Out of 3032 papers submitted to JIE, 600 were accepted. Of the 2432 remaining articles, 564

were published elsewhere with 14% of them being published in journals ranked by Kalaitzi-

dakis et. al.(2003) above the JIE (see Table 5). If we take publication in a journal ranked

above the JIE as an evidence of a mistake, then type 1 error is 14%. This would be an over-

estimate, if most such papers were rejected for not being a good �t and not because of low
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quality, or an under-estimate, if rejection by the JIE discourages authors from submitting

elsewhere. Table 6 shows that the average number of citations per year varies signi�cantly

across groups of articles. For papers published in better journals, this number is half that of

those published in the JIE. It can be argued that articles rejected by the JIE take more time

to get accepted in another journal, which leads to lower citations. However, most papers

are available on-line and accumulate citations before publication. Moreover, even for the pre

2001 period, papers published in better journals are cited less often, suggesting that type 1

error is not so large. Figure 3 plots the cumulative distribution functions of the number of

citations per year for 3 groups of papers. The citations for the papers published in the JIE

FOSD all the others, which cannot be distinguished from each other.27

Table 6: Average citations per year for di¤erent groups of papers

Citations

per year

(average)

Maximum

citations

per year

Citations

per year

(average)

Maximum

citations

per year

1995 - 2004 1995 - 2004 1995 - 06/2001 1995 - 06/2001

Published in JIE 6.33 70.75 6.30 69.54

Rejected by JIE, but published

in a higher ranked journal
3.71 71.00 3.20 38.83

Rejected by JIE, but published

not in a higher ranked journal
2.17 71.00 1.78 21.00

Rejected by JIE, and not
published anywhere else

1.67 56.67 0.96 11.71

B Acceptance, Rejection and Quality

Next, we look at the relation between quality and outcomes by considering the distributions

of citations for accepted and rejected papers. The probability of acceptance equals that of

rejection when citations per year are about 4:5-5: Thus, articles with 4:5-5 cites are equally

likely to be accepted or rejected. Similarly, articles with 0:5-1 cites per year are 4 times more

27Results of the Anderson (1996) Kolmogorov-Smirnov tests are in Appendix, Table 7, Columns 5-7.
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Figure 3: Number of citations per year (CDF)
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likely to be rejected than accepted. In other words, they have an odds ratio (A/R) of :25.

Hence, an accepted paper with this number of cites has :25
:75
or 1=3 chance of being wrongfully

accepted. If published papers are cited more than unpublished ones, this number would

tend to under-estimate type 2 error. From these distributions we derive the conditional

probabilities of acceptance and rejection (which add to unity), given that a paper has x

citations per year or less. Figure 4 depicts the probability of accepting a paper conditional

on that it has x citations per year or less. If we say that articles with a citation below

x were wrongfully accepted, then even with x = 0; we have roughly 7% of such articles,

suggesting that type 2 error is quite high. It is particularly high for earlier years of our

sample, indicating that both overall quality of submissions and standards went up, and that

the e¢ ciency of reviewing system improved.

C Editorial Heterogeneity

The raw acceptance rates di¤er quite substantially across co-editors. How should we inter-

pret this? Clearly there are at least two reasons for this di¤erence. First, that co-editors
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get di¤erent quality papers, and second, that they have di¤erent standards. Suppose, for

example, that the more interesting articles are retained by the managing editor who assigns

papers but all co-editors have the same standards. This would lead to di¤erences in raw ac-

ceptance rates that have nothing to do with di¤erences in standards! How can we decompose

acceptance rates into their components parts? By adding dummies for co-editors in conjunc-

tion with controlling for author characteristics, we can capture �xed e¤ects associated with

co-editors.28 These �xed e¤ects would capture di¤erences in acceptance rates that are not

due to quality di¤erences. Moreover, since the di¤erence in raw acceptance rates between

two co-editors captures both the di¤erence in standards and heterogeneity in quality, these

two e¤ects can be separated!

For co-editor i; denote the raw acceptance rate as Ai, the standards as Si; and the average

quality of papers he handles as Qi. Consider the di¤erence between the acceptance rates of

co-editor j and the base editor 0. This can be decomposed as follows:

A(Qj; Sj)� A(Q0; S0) = [A(Qj; Sj)� A(Qj; S0)] + [A(Qj; S0)� A(Q0; S0)] :

The �rst term on the RHS corresponds to the e¤ect of keeping the papers the same (i.e., as

those handled by co-editor j) but asking how the acceptance rate would change if the base

editor handled the papers rather than editor j: If this is positive then co-editor j would be

more lenient than the base co-editor. This is, thus, just the marginal e¤ect.

The second term on the RHS corresponds to the e¤ect of keeping the co-editor the

same (to be the base co-editor), but changing the quality of papers given to him. This can

be obtained by subtracting the marginal e¤ect from the di¤erence in the raw acceptance

rates (LHS). For example, we see that the raw acceptance rate of co-editor 1 is 31%; while

that of co-editor 6 is 37% (see Table 1). The raw di¤erence is �6%; suggesting that co-

28Such e¤ects can exist if co-editors have di¤erent views on the minimal acceptable quality of a paper and
would make the outcome more random and decisions less uniform.
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Figure 4: Probability of accepting paper with X or less citations
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editor 1 accepts less papers than co-editor 6. Does it mean that co-editor 1 is harsher

than co-editor 6? In fact, he is more lenient as the marginal e¤ect for co-editor 1 is 6%.

This reveals that the quality of papers co-editor 1 gets is worse than that of co-editor 6

(A(Qj; Sj) � A(Q0; S0) � [A(Qj; Sj)� A(Qj; S0)] = �12%). Thus, co-editor 1 is both more

lenient and gets lower quality papers than co-editor 6. Estimates of the second term of the

decomposition are reported in Table 1, column 4. Heterogeneity in submissions is responsible

for as much as 24; while di¤erences in standards are responsible for up to 30 percentage

points.29

Is it possible to interpret patterns in the decomposition in any way? What might explain

these large di¤erences in editorial standards? Could it be that what is happening is that

co-editors who receive lower quality submissions are being overly generous, perhaps, because

they compare each paper to the average they receive and aim for a target raw acceptance

29Unfortunately, we do not directly observe the �elds the papers belong to. Di¤erences in �elds may a¤ect
probability of acceptance. Since di¤erent editors specialize in particular �elds, the latter might be partially
responsible for di¤erence in marginal e¤ects. However, we do not �nd any evidence of this! Co-editors who
have signi�cant and positive estimates of marginal e¤ect specialize in di¤erent �elds and each of them has
at least one colleague co-editor, who works in the same �eld and does not have a signi�cant marginal e¤ect.
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rate. If this was true, then more generous editors should be handling lower quality papers.

This is exactly what we see: the rank correlation between the marginal e¤ect estimate and

the quality di¤erence is �0:44 (signi�cant at 10%). There is also a statistically signi�cant (at

the 10% level) rank correlation of 0:42 between the quality di¤erence in assigned papers and

the number of citations for accepted papers. Providing co-editors with information about

the relative quality of the papers they are assigned may help correct this bias.

A lower cuto¤for acceptance will reduce the average quality in both accepted and rejected

papers. Thus, lower standards should reduce citations for both groups. As expected, there

is a negative rank correlation of �0:3 (�:55) between the marginal e¤ect and the number of

citations for accepted (rejected) papers, consistent with our interpretation of the marginal

e¤ect. Moreover, for both accepted and rejected papers, the distribution of citations per year

for four co-editors with positive and signi�cant marginal e¤ects is �rst order stochastically

dominated30 by that for all other co-editors! This once again supports the idea that there

are signi�cant di¤erences in standards across co-editors.

V Robustness Checks

Simple binary choice models of acceptance could have problems when applied directly to

our data as there is a selection problem. This comes from the fact that while we have data

on all submissions, we only have CVs for authors with a web presence, and as a result, the

set of submissions we can use is restricted. As the acceptance rate for authors with a CV

on the web exceeds that of the entire population, there may be selection bias. It turns out

that CVs are more commonly available over time, and that the two groups, those with a

web presence and those without, seem to become more di¤erent in terms of their acceptance

rates: those with a vita were roughly 4.4 times as likely to be accepted in 1995 relative to

30The FOSD test used is from Anderson (1996). PAT statistics are signi�cant at 5% level for both groups
of papers. All decile di¤erences are of the same sign and at least 6 of them are signi�cant at the 5% level.
Details are available upon request.
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Figure 5: Selection bias
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those without a vita, and 4.75 times as likely to be accepted in 2004, suggesting that only

the most marginal authors did not have CVs by 2004. While we have CV data for 85% of

the authors of accepted articles, we only have 57% of CVs for the authors with unsuccessful

submissions. In other words, the authors of accepted papers are over-represented in our

sample.

The intuition for the expected bias is evident from Figure 5. In Figure 5, think of X

as the explanatory variable in the model estimated. Y could be either 0 or 1. Solid points

represent observations with CVs while hollow ones represent that without CVs. The object

is to �nd the coe¢ cient onX that maximizes the likelihood (or minimizes the sum of squared

residuals) of the observed data. This gives the solid line shown in Figure 1, which depicts

the estimated value of �X when the entire sample is used. If �X + " exceeds Q; then y = 1:
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Thus, the higher is X; the higher is the probability of acceptance, i.e., of the dependent

variable being unity. Hence, most of the high X data points have y = 1; and most of the low

X points have y = 0, though some high X data points are rejected and some low X ones

are accepted.

If agents with low values of X are less likely to be in our sample (as they are less likely

to have a web presence), then such points are going to be under-represented in the sample

due to truncation. To depict this, we remove the points that are not �lled in. Low X points

are removed more often than high X ones. This in itself does not result in bias.31 However,

if given X; submissions without a CV are less likely to be accepted, then we will see more

points not �lled in at Y = 0 than at Y = 1, and this biases the estimated slope parameter

upward. In this case, if we estimated the model using this truncated sample, we would get

the dashed line, which is steeper than the one for the case when the whole sample is used,

so that the estimated � is biased upward. Of course, if the selection was random, all points

were equally likely to be removed, and then there would be no bias.

To account for this selection bias in our estimation, we incorporate the selection equation

into the likelihood function as done below. Let X be the set of authors� characteristics

that a¤ect the likelihood of acceptance and Z be the set of the authors�characteristics that

de�ne a web presence. These sets can overlap to some extent. We assume that the article i

is published in the journal if its latent quality qi exceeds a threshold level:

Yi =

�
1; if qi = Xi� + "1i > 0;
0; if qi = Xi� + "1i < 0;

(2)

where Yi is an indicator for the paper being published (Yi = 1) or not (Yi = 0). Note

that under such speci�cation we have to include a constant term in Xi�; which provides an

estimate for the threshold level Q. However, we observe the author�s characteristics (the CV)

31Analogously, in a standard linear regression, removing low X points more often than high X ones will
not bias the �tted line, though it would raise the standard error.
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only if Zi + "2i > 0:32 This is a critical component since the standard Heckman approach

would require that both X and Z are observed for the whole sample.

(Yi; Xi; Zi) =

�
(Yi; Xi; Zi) ; if Zi + "2i > 0;

(Yi; Not observed) ; if Zi + "2i < 0:
(3)

It is natural to expect that "1i and "2i are positively correlated: authors with a better

chance of being published are also more likely to have an established name in profession

and have CVs easily accessible on the web.33 To allow for this, we assume that "1i and "2i

come from the joint normal distribution. This problem is usually referred to as an incidental

truncation problem. Versions of such models can be found in a number of applied articles

(see, for example, Weiss (1993) and Jenkins et. al. (2006)). However, due to speci�c data

structure and the type of truncation, none of these models could be directly applied to our

data. We also cannot use the standard Heckman correction for selection as we have no data

on the submissions of the authors without a web presence. We use maximum likelihood

techniques in a way similar to Weiss (1993) to correct for this selection bias. Our problem

is in essence a simpler version of his, and we discuss this further in the Appendix.

In Column 5 and 6 of Table 8, we report the coe¢ cient estimates of the full model,

where we estimate the truncation equation (2) jointly with the probit equation. We assume

that the errors ("1; "2) are jointly normally distributed with variance 1 and covariance �. In

Column 6 we add citations to the independent variables in Column 5.

We �nd that most of the patterns in coe¢ cient estimates of the 2-equation model are not

very di¤erent from those of the probit model. Thus, our conclusions above remain valid. The

coe¢ cients on Ph.D. vintage do di¤er from those of the probit speci�cation. This di¤erence

illustrates the potential problems that arise from only estimating the probit model so it is

useful to see what drives it.

32This needs to be quali�ed as citation data is observed even for some submissions that lack CVs and are
not observed for some that have CVs.
33If the errors above are uncorrelated, then there is no bias in estimation.
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In the 2-equation model, the acceptance probability increases uniformly with vintage,

except for the coe¢ cient estimate of the Ph.D. vintage 4 to 6 year dummy. If we look at the

coe¢ cient estimates of the �rst stage truncation equation, which are presented at the last

block of Table 8, we see that Ph.D. vintage increases web presence: its coe¢ cient is 0.132

and signi�cant, when citations are not added as the second stage independent variables, and

0.176 and signi�cant when they are. Furthermore, the correlation between the error term of

the truncation equation and the acceptance equation is signi�cantly positive. Together, this

implies that scholars with a higher Ph.D. vintage have on average lower value of "1, which

is why the acceptance probability decreases with vintage for vintages over 2-4 years.

VI Conclusion

A better understanding of the way journals operate can help all parties involved. It can help

authors understand how well or badly a journal performs, identify strengths and weaknesses

to those operating the journal, and provide editors feedback on their performance. Such

evaluations could also shed light on the biases, if any, inherent in the existing system.

Our main conclusions are that overall the JIE seems to be doing a good job in identifying

quality. However, there is room for improvement. First, a two tier evaluation procedure

would likely reduce the burden on all concerned at little or no cost in terms of performance.

Second, the preliminary evidence suggests a di¤erence in standards and performance across

co-editors. This might be reduced by providing feedback to co-editors on their relative

performance and information on the quality composition of the papers they receive relative

to the average. In the future, with electronic data bases being kept by journals, such feedback

can also be provided to referees. Editors can also get more information on the referee

performance. Third, the evidence suggests that while type 1 error is relatively small (rejected

papers are clearly less well cited no matter what their �nal fate), type 2 error is large (many

accepted papers are poorly cited).
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VII Appendix

A The Likelihood Function

The errors in the choice and truncation equations are assumed to be jointly normally dis-

tributed with a variance-covariance matrix:

�
"1i
"2i

�
� N

0B@
0B@ 0

0

1CA ;
0B@ �21 ��1�2

��1�2 �22

1CA
1CA ; (4)

with � 6= 0: If � = 0; the estimates of the choice equation would coincide with those of the

probit model and the truncation equation is non-identi�able.

Denote the joint normal distribution of ("1i; "2i) by G("1i; "2i); its density function by

g("1i; "2i); and marginal density functions by g1("1i); g2("2i) and G1("1i); G2("2i); correspond-

ingly. One could also note that as in the usual probit model, �1 and �2 cannot be identi�ed

separately from � and  and without loss of generality can be normalized to 1.

Beyond this point we use � and � to refer to the density and cumulative distribution of the
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standard normal distributions. The probability that the article is accepted for publication

given that we observe the author�s vita is:

Prob[Xi� + "1i > 0 j Zi + "2i > 0] =
Prob["1i > �Xi� \ "2i > �Zi]

Prob["2i > �Zi]
= (5)

=

R1
�Zi

R1
�Xi� g(E1; E2)dE1dE2R1
�Zi g2(E2)dE2

=
1� �(�Xi�)� �(�Zi) +G(�Xi�;�Zi)

1� �(�Zi)
(6)

The probability that the article is rejected given that we observe the vita is unity less

the above expression.

The likelihood function, L(Y1; ::; YN ; X1; ::; XN ; Z1; ::; ZN); can be written as:

NY
i=1

�
1� �(�X�)�G(�X�;�Z)

1� �(�Z)

�Yi ��(�X�)�G(�X�;�Z)
1� �(�Z)

�1�Yi
:
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B Kolmogorov-Smirnov and Anderson Tests: Detailed Results

Table 7: FOSD (Anderson) and Kolmogorov-Smirnov tests

FOSD (Anderson) Test

Column # 1 2 3 4 5 6 7

Time to the �rst decision for: Number of citations per year for:

Distrib.
A

Papers
to be
revised

All
papers
1995-
1999

Papers to
be revised
1995-1999

Rejected
papers
1995-
1999

Papers
published
in JIE

Papers
published
in JIE

Papers
published
anywhere
else

Distrib.
B

Rejected
papers

All
papers
2000-
2004

Papers to
be revised

in
2000-2004

Rejected
papers
2000-
2004

Papers
never

published

Papers
published
anywhere
else

Papers
never

published

Decile 1 -8.0*** -1.7* 6.7*** -4.29*** -23.0*** -11.3*** -12.6***
Decile 2 -12.8*** 0.7 12.1*** -2.12 -25.2*** -20.6*** -11.2***
Decile 3 -15.0*** 5.2*** 14.1*** 1.61 -37.3*** -30.9*** -10.9***
Decile 4 -16.6*** 6.3*** 15.0*** 3.29* -39.6*** -34.2*** -10.3***
Decile 5 -14.5*** 7.4*** 13.5*** 4.48** -41.9*** -33.0*** -7.7***
Decile 6 -12.9*** 8.1*** 12.1*** 7.34*** -40.0*** -28.9*** -7.4***
Decile 7 -11.4*** 6.1*** 7.7** 5.07*** -37.0*** -27.8*** -4.9**
Decile 8 -8.9*** 4.1*** 6.7** 4.75*** -28.9*** -21.7*** 0.0
Decile 9 -5.8*** 1.8* 2.6 1.58 -15.8*** -13.3*** �
Decile 10 0.0 0.0 0.0 0.0 0.0 0.0 �

PAT(�2
(9)
) 85.7*** 34.5*** 23.1*** 34.42*** 306.2** 162.3***

32.2***
�2
(7)

Test
result:

FOSD
Mixed
Result

FOSD
Mixed
Result

FOSD FOSD FOSD

*, **,*** denote signi�cance at 10, 5, and 1 percent level, respectively.

Kolmogorov - Smirnov Test

Column 1 2 3 4 5 6 7

Time to the �rst decision for: Number of citations per year for:

Distrib.
A

Papers
to be
revised

All
papers
1995-
1999

Papers to
be revised
1995-1999

Rejected
papers
1995-
1999

Papers
published
in JIE

Papers
published
in JIE

Papers
published
anywhere
else

Distrib.
B

Rejected
papers

All
papers
2000-
2004

Papers to
be revised

in
2000-2004

Rejected
papers
2000-
2004

Papers
never

published

Papers
published
anywhere
else

Papers
never

published

H0 : The two samples come from a common distribution

P-value 0.000 0.000 0.000 0.005 0.000 0.000 0.621

H0 : FA(X) > FB(X), where F stands for CDF

P-value 0.000 0.480 0.964 0.072 0.000 0.000 0.519

H0 : FA(X) < FB(X), where F stands for CDF

P-value 0.998 0.000 0.000 0.000 0.999 1.000 0.346
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C Estimation Results
Table 8: Model estimation results

Estimated Model
Probit
model

Probit
model

Probit
model

Probit
model

2-equat.
specif-n

2-equat.
specif-n

Statistics reported
Marginal

effect34
Marginal

effect

Marginal

effect

Coef:

estim:

Coef:

estim:

Coef:

estim:

Column # 1 2 3 4 5 6

Ph.D. vintage variables (years)
Not Graduated Yet 0.226 0.214 � 0.577 -1.134 -1.145

[3.08]*** [2.54]** � [2.54]** [2.42]** [2.04]**
Ph.D. vintage: (0, 2] 0.272 0.229 0.232 0.619 -0.840 -0.878

[3.81]*** [2.83]*** [2.81]*** [2.83]*** [2.00]** [1.72]*
Ph.D. vintage: (2, 4] 0.361 0.346 0.346 0.922 -0.501 -0.424

[5.12]*** [4.34]*** [4.27]*** [4.34]*** [1.30] [0.90]
Ph.D. vintage: (4, 6] 0.233 0.213 0.218 0.578 -0.630 -0.547

[3.45]*** [2.77]*** [2.78]*** [2.77]*** [1.78]* [1.25]
Ph.D. vintage: (6, 10] 0.231 0.193 0.200 0.53 -0.417 -0.328

[3.71]*** [2.72]*** [2.78]*** [2.72]*** [1.35] [0.83]
Ph.D. vintage: (10, 20] 0.071 0.026 0.031 0.077 -0.376 -0.298

[1.36] [0.44] [0.51] [0.44] [1.67]* [0.98]

Co-editors �xed e¤ects
Co-editor 3 0.132 0.162 0.139 0.442 0.272 0.344

[3.21]*** [3.26]*** [2.60]*** [3.26]*** [2.83]*** [2.85]***
Co-editor 5 0.165 0.218 0.253 0.588 0.385 0.496

[4.20]*** [4.82]*** [5.12]*** [4.82]*** [4.18]*** [4.44]***
Co-editor 8 0.286 0.28 0.272 0.735 0.627 0.642

[3.59]*** [3.24]*** [2.94]*** [3.24]*** [3.81]*** [3.24]***
Co-editor 20 0.170 0.175 0.196 0.469 0.365 0.385

[2.00]** [1.81]* [1.91]* [1.81]* [1.85]* [1.70]*

Experience: number of publications in various journals
# of articles: Group 1 0.005 0.004 0.004 0.013 0.032 0.023

[0.65] [0.51] [0.50] [0.51] [1.63] [0.98]
# of articles: Group 2 0.017 0.016 0.015 0.048 0.050 0.051

[1.95]* [1.56] [1.44] [1.56] [2.11]** [1.79]*
# of articles: Group 3 -0.01 -0.008 -0.004 -0.022 -0.022 -0.016

[1.42] [0.96] [0.46] [0.96] [1.18] [0.74]
# of articles: Group 4 0.011 0.023 0.030 0.068 0.020 0.050

[0.77] [1.47] [1.73]* [1.47] [0.57] [1.23]
# of articles: Group 5 0.027 0.017 0.019 0.05 0.072 0.050

[2.17]** [1.14] [1.21] [1.14] [2.17]** [1.28]
# prior JIE publications 0.024 0.02 0.022 0.06 0.068 0.065

[2.62]*** [1.88]* [2.02]** [1.88]* [2.74]*** [2.21]**
# in network journals 0.098 0.061 0.066 0.182 0.227 0.136

[4.13]*** [2.20]** [2.30]** [2.20]** [3.84]*** [1.85]*
# other articles per year � � -0.052 � � �

� � [3.88]*** � � �

Language e¤ect
Language dummy 0.05 0.074 0.057 0.22 0.150 0.207

[1.60] [1.98]** [1.40] [1.98]** [1.85]* [2.14]**

Proxies for article quality
Citations per year � 0.022 0.022 0.066 � 0.053

� [9.23]*** [8.87]*** [9.23]*** � [8.63]***

34See page 31, Table 10 for the defenition of marginal e¤ect
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Table 8: Model estimation results (Continued)

Estimated Model
Probit
model

Probit
model

Probit
model

Probit
model

2-equat.
specif-n

2-equat.
specif-n

Statistics reported
Marginal

effect

Marginal

effect

Marginal

effect

Coef:

estim:

Coef:

estim:

Coef:

estim:

Column # 1 2 3 4 5 6

University ranking variables - Graduation Place
Grad. from top 10 0.176 0.163 0.168 0.47 0.407 0.373

[5.77]*** [4.50]*** [4.39]*** [4.50]*** [5.18]*** [3.89]***
Grad. from top 10 - 20 0.189 0.21 0.216 0.583 0.437 0.482

[5.90]*** [5.61]*** [5.49]*** [5.61]*** [5.48]*** [4.82]***
Grad. from top 20 - 30 0.117 0.146 0.147 0.4 0.259 0.330

[2.61]*** [2.73]*** [2.62]*** [2.73]*** [2.29]** [2.38]**
Grad. from top 30 - 40 0.047 0.077 0.074 0.218 0.104 0.192

[1.05] [1.40] [1.28] [1.40] [0.89] [1.36]
Grad. from top 40 - 50 0.085 0.105 0.061 0.294 0.196 0.249

[1.75]* [1.88]* [1.07] [1.88]* [1.64]* [1.74]*
Grad. from top 50 -100 0.068 0.08 0.078 0.228 0.153 0.178

[1.94]* [1.91]* [1.73]* [1.91]* [1.73]* [1.75]*
Not ranked university -0.056 -0.061 -0.043 -0.184 -0.125 -0.130

[2.28]** [2.07]** [1.36] [2.07]** [1.85]* [1.63]

Institution a¢ liation variables
A¢ liated with US univ. 0.079 0.004 -0.004 0.011 0.198 0.009

[2.55]** [0.10] [0.11] [0.10] [2.43]** [0.09]
A¢ liated with CA univ. 0.120 0.087 0.091 0.244 0.286 0.196

[2.38]** [1.50] [1.51] [1.50] [2.50]** [1.39]
A¢ liated with UK univ. 0.058 -0.013 0.037 -0.039 0.138 -0.042

[1.21] [0.24] [0.61] [0.24] [1.09] [0.28]
A¢ liated with EU univ 0.021 -0.043 -0.041 -0.129 0.049 -0.122

[0.62] [1.11] [0.99] [1.11] [0.56] [1.22]
A¢ liated with organiz. 0.124 0.063 0.068 0.181 � �

[3.18]*** [1.44] [1.50] [1.44] � �

Fixed year e¤ects
Year 1996 -0.047 -0.082 -0.057 -0.262 -0.120 -0.222

[0.97] [1.36] [0.86] [1.36] [0.92] [1.36]
Year 1997 -0.114 -0.136 -0.150 -0.462 -0.279 -0.346

[2.48]** [2.37]** [2.44]** [2.37]** [2.14]** [2.13]**
Year 1998 -0.128 -0.147 -0.146 -0.507 -0.360 -0.422

[2.81]*** [2.58]*** [2.32]** [2.58]*** [2.58]*** [2.45]**
Year 1999 -0.101 -0.135 -0.123 -0.45 -0.260 -0.348

[2.31]** [2.50]** [2.10]** [2.50]** [2.07]** [2.24]**
Year 2000 -0.082 -0.127 -0.116 -0.424 -0.186 -0.320

[1.75]* [2.28]** [1.90]* [2.28]** [1.46] [2.05]**
Year 2001 -0.081 -0.12 -0.092 -0.394 -0.200 -0.331

[1.75]* [2.13]** [1.46] [2.13]** [1.52] [2.06]**
Year 2002 -0.092 -0.135 -0.138 -0.451 -0.262 -0.385

[2.02]** [2.44]** [2.30]** [2.44]** [2.06]** [2.47]**
Year 2003 -0.122 -0.183 -0.187 -0.636 -0.328 -0.517

[2.88]*** [3.62]*** [3.43]*** [3.62]*** [2.74]*** [3.54]***
Year 2004 -0.125 -0.166 -0.194 -0.569 -0.343 -0.474

[2.90]*** [3.19]*** [3.47]*** [3.19]*** [2.77]*** [3.17]***

Constant term
Constant term � � � -1.542 -2.088 -1.671

� � � [5.21]*** [5.84]*** [6.51]***

First stage (truncation) equation
Constant term � � � � -3.003 -2.682

� � � � [3.26]*** [2.28]**
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Table 8: Model estimation results (Continued)

Estimated Model
Probit
model

Probit
model

Probit
model

Probit
model

2-equat.
specif-n

2-equat.
specif-n

Statistics reported
Marginal

effect

Marginal

effect

Marginal

effect

Coef:

estim:

Coef:

estim:

Coef:

estim:

Column # 1 2 3 4 5 6

First stage (truncation) equation (continued)
Organiz. dummy � � � � -0.509 -0.242

� � � � [3.14]** [1.12]
Ph.D. vintage � � � � 0.132 0.176

� � � � [3.57]*** [2.73]***
Correlation (�) � � � � 0.647 0.620

� � � � [99.2]*** [4.89]***

Pseudo R2 0.16 0.21 0.22 0.21 N/A N/A

Number of obs. 1792 1476 1082 1476 1792 1476

Estimates of month speci�c e¤ects in probit equations are not reported to save space.
Robust Z statistics in parentheses for simple probit estimates, t-ratios for the full model with
truncation equation; ***, **, * denote signi�cance at 1%, 5% and 10%, respectively.

Marginal e¤ect is the change in the probability for an in�nitesimal change in each independent and
continuous variable. For dummy variables marginal e¤ect is a discrete change in the probability for
change of dummy variable from 0 to 1. All marginal e¤ects are evaluated at the means.

D Principal Components Analysis

Table 9.1: Correlation between number of publications in di¤erent groups of journals
Group 1 Group 2 Group 3 Group 4 Group 5 JIE Network

Group 1 1
Group 2 0.61 1
Group 3 0.41 0.53 1
Group 4 0.23 0.30 0.24 1
Group 5 0.50 0.39 0.31 0.26 1

JIE 0.52 0.54 0.37 0.12 0.34 1
Network 0.49 0.24 0.15 0.08 0.28 0.28 1

Table 9.2: Principal components: eigenvalues of variance / covariance matrix
Component Eigenvalue Di¤erence Proportion Cumulative

Comp1 11.5 8.4 0.60 0.60
Comp2 3.1 1.3 0.16 0.76
Comp3 1.7 0.4 0.09 0.85
Comp4 1.3 0.6 0.07 0.92
Comp5 0.8 0.2 0.04 0.96
Comp6 0.6 0.4 0.03 0.99
Comp7 0.2 . 0.01 1.00

Table 9.3: Principal components: eigenvectors of variance / covariance matrix
Variable Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Unexplained

Group 1 0.66 -0.57 -0.44 -0.02 -0.17 0.07 -0.11 0.00
Group 2 0.49 0.11 0.63 -0.57 -0.10 -0.10 0.03 0.00
Group 3 0.44 0.80 -0.37 0.13 -0.06 -0.01 0.01 0.00
Group 4 0.08 0.04 0.00 -0.16 0.52 0.83 0.02 0.00
Group 5 0.16 -0.07 -0.06 0.00 0.83 -0.53 -0.04 0.00

JIE 0.31 -0.06 0.51 0.79 0.04 0.10 -0.02 0.00
Network 0.06 -0.08 -0.05 0.04 0.01 -0.03 0.99 0.00
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