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1 Introduction

This paper studies the optimal provision mechanism for multiple excludable public goods. We

brie�y consider a somewhat more general setup where we obtain some characterization results, but

most of the paper focuses on a parametric version of the model where valuations are binary. In the

binary valuation case, we demonstrate that there is a considerable degree of bundling in the optimal

solution if a regularity condition, akin to a hazard rate condition, on the distribution of valuations

is satis�ed. If the regularity condition is violated, which happens when valuations are too strongly

positively correlated across goods, the optimal solution replicates the separate provision outcome.

To motivate the importance of a better understanding of bundling of non-rival goods, we note

that many goods that are provided in bundles are close to fully non-rival. The most striking example

is the access to electronic libraries, for which the typical contractual arrangement is a site license

that allows access to every issue of every journal in the electronic library. Another example is

cable TV, where the basic pricing scheme consists of a limited number of available packages. Other

examples include computer software and digital music �les. For several of these cases, the pros and

cons of bundling for the consumer have been frequently debated by the media, legal scholars, and

in the courtroom. Still, there is no normative benchmark that explicitly considers the non-rival

nature of these goods in the economics literature.

We consider a model withM excludable public goods, meaning that all goods are fully non-rival,

but consumers can be excluded from usage. Each consumer is characterized by a valuation for each

good, and the willingness to pay for a subset of goods is the sum of the individual good valuations.

In addition, the cost of provision for each good is independent of which other goods are provided.

Under these separability assumptions, the �rst best benchmark is to provide good j if and only

if the sum of valuations for good j over all consumers exceeds its provision cost and to exclude

no consumer from usage. Under perfect information, there is thus no role for either bundling

or use exclusions. However, when preferences are private information, consumers must be given

appropriate incentives to truthfully reveal their willingness to pay. Together with self-�nancing and

participation constraints, it is then impossible to implement the (non-bundling) perfect information

social optimum. Bundling is then potentially useful because it improves possibilities to extract

surplus from the consumers, which will then relax a binding constraint on the problem.

The �rst part of the paper considers a relatively general setup, and characterizes the form

of optimal provision mechanisms in symmetric environments. We then apply these results in the

special case with binary valuations for which we obtain an exact characterization of the constrained

e¢ cient mechanism. To make the problem tractable, we impose symmetry conditions on costs and

type distributions in addition to the restriction that valuations take on only two values for each of

the M excludable public goods.

The solution to the problem is rather striking. When the economy is large in the sense that
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the number of consumers goes to in�nity, the optimal mechanism will either provide all goods

with probability close to one, or provide all goods with probability close to zero. Which of the

two scenarios applies depends on whether or not a monopolist pro�t maximizer that provides the

goods for sure could break even. If a regularity condition, akin to a hazard rate condition, on

the distribution of valuations is satis�ed, the optimal mechanism also prescribes a very simple rule

for user access to the public goods once they are provided. All consumers will fall into one of

three groups: the �rst group, consisting of those whose numbers of goods for which they have

high valuations strictly exceed a threshold, will be given access to the grand bundle consisting of

all goods; the second group, consisting of those whose number of goods for which they have high

valuations are strictly lower than the threshold, will be given access to only those goods for which

they have a high valuation; the third group, consisting of those with exactly the threshold-level

number of high valuation goods, will always be given access to their high valuation goods, and will

also be given access to their low valuation goods with some probability. Note that the third group

of consumers for which some randomization is applied will be quite rare when there are many public

goods, i.e., as M gets large.

For the special case with two goods we solve the problem also for the case where the regularity

condition discussed above is violated. With two goods, the regularity condition is violated when the

valuations are too positively correlated. This invalidates the standard approach to solve screening

problems using only downwards adjacent constraint, as there are simply too few �mixed types�

(those with one high and one low valuation) to justify giving them a better treatment than the type

with two low valuations. We show that the optimal solution in fact is identical to the solution when

both goods must be provided separately. It is interesting to relate this to the seminal contribution

by Adams and Yellen [1]. Their explanation of bundling was that the monopolist seller knows

more about the willingness to pay for the bundle than for the components provided that there is

negative correlation. It has been shown that the relevant comparison is the willingness to pay for

the components versus the willingness to pay for the average, implying that essentially the same

explanation also works when valuations are independent.1 Our result here shows that this logic

falls apart when valuations are too positively correlated.

The analytical tractability for the multidimensional mechanism design problem in our paper

comes from exploiting some important similarities to unidimensional problems. In particular, in the

unidimensional case, it is known that maximizing social surplus subject to budget and participa-

tion constraints leads to a Lagrangian characterization which can be interpreted as a compromise

between pro�t and welfare maximization (see Hellwig [10] and Norman [17]). In our model we

cannot collapse the constraints to a single integral constraint, but we are able to use the optimal-

ity conditions to link the values of the multipliers associated with various constraints so that the

optimal solution can be understood analogously.

1See, e.g., McAfee, McMillan and Whinston [15] and Fang and Norman [9].

2



The remainder of the paper is structured as follows. Section 2 presents the model and some

characterization results. Section 3 introduces the special case when valuations are binary and

derives the optimal mechanism in the regular case. In Section 4 we use some special cases to better

interpret the characterization in Section 3, in particular, we characterize the optimal mechanism for

the two good case when the regularity condition is violated. Section 5 contains a brief discussion

of the relevance of our analysis with respect to concrete anti-trust issues. Appendix A contains all

the proofs of results in Section 3.2

2 The Model

This section lays out a fairly general model (Section 2.1). The set of randomized direct mech-

anisms is represented in a somewhat nonstandard (but useful) way (Section 2.2), before we set up

the mechanism design problem (Section 2.3). We then gradually show, sometimes with additional

restrictions on the environment, that it is without loss of generality to consider a smaller and more

tractable class of simple, anonymous and symmetric mechanisms (Sections 2.4 and 2.5). The main

results of this section are Propositions 1 and 2, which are used in later Sections to reduce the

dimensionality of the design problem.

2.1 The Environment

There are M excludable public goods, labeled by j 2 J = f1; :::;Mg and n consumers, indexed
by i 2 I = f1; :::; ng. Each public good is indivisible, and the cost of providing good j, denoted
Cj (n), is independent of which of the other goods are provided. Since n is the number of consumers

in the economy, not the number of users, all goods are fully non-rival. The rationale for indexing

cost by n is to be able to analyze large economies without making the public goods a �free lunch�

in the limit. We therefore allow for the existence of cj > 0 such that limn!1Cj (n) =n = cj > 0.

There is no need to give this assumption any economic interpretation. It is best viewed as a way

to ensure that the provision problem remains �signi�cant�with a large number of agents.

Consumer i is described by a valuation for each good j 2 J ; so that her type is given by a
vector �i =

�
�1i ; :::; �

M
i

�
2 � � RM : Agent i has preferences represented by the utility function,X

j2J
I
j
i�
j
i � ti; (1)

where Iji is a dummy variable taking value 1 when i consumes good j and 0 otherwise, and ti is

the quantity of the numeraire good transferred from i to the mechanism designer. Preferences over

lotteries are of expected utility form.

The type �i is private information to the agent. While we allow valuations across goods to be

correlated for the individual, it is essential that we assume independence across agents. We denote
2An appendix available at the authors�websites contains the proofs for the more technical results in Section 2.
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by F the joint cumulative distribution over �i. For brevity of notation, we let � � (�1; :::; �n) 2 �n;
which will be referred to as a type pro�le. In the usual fashion, we let ��i = (�1; ::; �i�1; �i+1; :::�n) :

2.2 Randomized Direct Mechanisms

An outcome in our environment has three components: (1). Which goods, if any, should be

provided; (2). Who are to be given access to the goods that are provided; and (3). How to share

the costs. The set of feasible pure outcomes is thus

A = f0; 1gM| {z }
provision/no provision
for each goods j

� f0; 1gM�n| {z }
inclusion/no inclusion

for each agent i and good j

� Rn| {z }
�taxes� for each

agent i

: (2)

By the revelation principle, we restrict attention to direct mechanisms for which truth-telling is

a Bayesian Nash equilibrium. A pure direct mechanism is a map from �n to A: We represent

a randomized mechanism in analogy with the representation of mixed strategies in Aumann [5].

That is, let � � [0; 1] ; and think of # 2 � as the outcome of a �ctitious lottery, where, without
loss of generality, # is uniformly distributed and independent of �: A random direct mechanism

is then a measurable mapping G : �n � � ! A. A conceptual advantage of this representation

is that it allows for a useful decomposition. That is, we may write G as a (2M + 1)-tuple, G =
(
�
�j
	
j2J ;

�
!j
	
j2J ; �) where,

Provision Rule: �j : �n � �! f0; 1g

Inclusion Rule: !j : �n � �! f0; 1gn (3)

Cost-sharing Rule: � : �n ! Rn:

We refer to �j as the provision rule for good j, and interpret E��j (�; #) as the probability of

provision for good j given announcements �: The rule !j =
�
!j1; :::; !

j
n

�
is the inclusion rule for

good j; and E�!
j
i (�; #) is interpreted as the probability that agent i gets access to good j when

announcements are �; conditional on good j being provided. Finally, � = (�1; :::; �n) is the cost-

sharing rule, where � i (�) is the transfer from agent i to the mechanism designer given announced

valuation pro�le �. In principle, transfers could also be random, but the pure cost-sharing rule in

(3) is without loss of generality due to risk neutrality.
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2.3 The Design Problem

Let E�i denote the expectation operator with respect to (��i; #) : A mechanism is incentive

compatible if truth-telling is a Bayesian Nash equilibrium in the revelation game induced by G;

E�i

24X
j2J

�j(�; #)!ji (�; #)�
j
i � � i(�)

35 � E�i
24X
j2J

�j(b�i; ��i; #)!ji (b�i; ��i; #)�ji � � i(b�i; ��i)
35 ;

8i 2 I; � 2 �n;b�i 2 �: (IC)

We also require that the project be self-�nancing. For simplicity, this is imposed as an ex ante

balanced-budget constraint:3

E

0@X
i2I

� i (�)�
X
j2J

�j (�; #)Cj (n)

1A � 0: (BB)

Finally, we require that a voluntary participation, or individual rationality, condition is satis�ed.

Agents are assumed to know their own type, but not the realized types of the other agents, when

deciding on whether to participate. Individual rationality is thus imposed at the interim stage as,

E�i

24X
j2J

�j(�; #)!ji (�; #)�
j
i � � i(�)

35 � 0; 8i 2 I; �i 2 �: (IR)

A mechanism is incentive feasible if it satis�es (IC), (BB) and (IR). Utility is transferable, implying

that constrained ex ante Pareto e¢ cient allocations may be characterized by solving a utilitarian

planning problem, where a �ctitious social planner seeks to maximize total surplus in the economy,

subject to the constraints (IC), (BB) and (IR).4 Thus a mechanism is thus constrained e¢ cient if

it maximizes X
j2J

E�j(�; #)

"X
i2I

!ji (�; #)�
j
i � C

j (n)

#
; (4)

over all incentive feasible mechanisms.5

It is ex post e¢ cient to provide good j if and only if
P
i2I �

j
i � Cj (n), and to never exclude

any agent from usage, which is the same rule as the �rst best rule for a single public good. This is

implementable if and only if a non-excludable public good can be e¢ ciently provided under (IC),

(BB) and (IR). (See Mailath and Postlewaite [17].) Our setup is thus a second best problem.
3As shown in Borgers and Norman [9] it is without loss of generality to consider a resource constraint in ex ante

form. Given independence and two or more agents, transfers can be adjusted so as to satisfy ex post budget balance

without changing the interim expected payo¤ for any individual.
4The quali�er ex ante is crucial for the equivalence. See Ledyard and Palfrey [18] for a characterization of interim

e¢ ciency.
5All these constraints are noncontroversial if the design problem is interpreted as a private bargaining agreement.

If the goods are government provided, the participation constraints (IR) may seem questionable. One defense in this

context is that the participation constraint is a reduced form of an environment where agents may vote with their

feet. Another defense is to view this as a reduced form for inequality aversion of the planner. See Hellwig [15].
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2.4 Simple Anonymous Mechanisms

To simplify the analysis, we �rst exploit the symmetry, as well as the linearity, of the constraints

and the objective function. This allows us to reduce the dimensionality of the problem:

De�nition 1 A mechanism is called a simple mechanism if it can be expressed as (2M + 1)-tuple

g = (
�
�j
	
j2J ;

�
�j
	
j2J ; t) such that for each good j 2 J ;

Provision Rule: �j : �n ! [0; 1]

Inclusion Rule: �j : �! [0; 1] (5)

Cost-sharing Rule: t : �! R;

where �j is the provision rule for good j, �j is the inclusion rule for good j (same for all agents),

and t is the transfer rule (also same for all agents).

There are a number of simpli�cations in (5) relative to (3). First, inclusion and transfer rules

are the same for all agents; second, conditional on �; the provision probability �j (�) is stochasti-

cally independent from all other provision probabilities, and all inclusion probabilities; third, the

inclusion and transfer rules for any agent i are independent of the realization of ��i; and fourth,

all agents are treated symmetrically in terms of the transfer and inclusion rules. But (5) allows

provision rules to treat agents asymmetrically. We therefore need a de�nition to express what it

means for the name of an agent to be irrelevant:

De�nition 2 A simple mechanism is called anonymous if for every j 2 J ; �j (�) = �j
�
�0
�
for

every
�
�; �0

�
2 �n ��n such that �0 can be obtained from � by permuting the indices of the agents.

We now show that focusing on simple anonymous mechanisms is without loss of generality:

Proposition 1 For any incentive feasible mechanism G of the form (3), there exists a simple

anonymous incentive feasible mechanism g of the form (5) that generates the same social surplus.

The idea is roughly that risk neutral agents care only about the perceived probability of con-

suming each good and the expected transfer. Therefore, there is nothing to gain from conditioning

transfers and inclusion probabilities on ��i, or by making inclusion and provision rules condition-

ally dependent. Mechanisms of the form (5) are therefore su¢ cient. Moreover, given an incentive

feasible mechanism, permuting the roles of the agents leaves the surplus unchanged and all con-

straints satis�ed. An anonymous incentive feasible mechanism that generates the same surplus as

the initial mechanism can therefore be obtained by averaging over the n! permuted mechanisms.6

6The actual proof is a bit more complex than simply randomizing with equal probabilities over the n! permutations.

The reason is that inclusion and provision probabilities are potentially correlated.
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2.5 Symmetric Treatment of the Goods

Our next result, on which we rely heavily in Sections 3 and 4, identi�es conditions under which

it is without loss of generality to treat goods symmetrically. Obviously, the underlying environment

must be symmetric, and we formalize this by assuming that �i =
�
�1i ; � � � ; �Mi

�
is an exchangeable

random variable, that is F (�i) = F
�
�0i
�
whenever �0i is a permutation of �i; and that there exists

C (n) such that Cj (n) = C (n) for all j:

Given valuation pro�le � and a one-to-one permutation mapping P : J ! J of the set of goods,

let �Pi denote the permutation of agent i
0s type by changing the role of the goods in accordance to

P : that is, �Pi =
�
�
P�1(1)
i ; �

P�1(2)
i :::; �

P�1(M)
i

�
; where P�1 denote the inverse of P . For simplicity,

write �P �
�
�P1 ; :::; �

P
n

�
as the valuation pro�le obtained when the role of the goods is changed in

accordance to P for every i 2 I.

De�nition 3 Mechanism g is symmetric if for every � and every permutation P : J ! J :

1. �P
�1(j)

�
�P
�
= �j (�) for every j 2 J ;

2. �P
�1(j)

�
�Pi
�
= �j (�i) for every j 2 J ;

3. t
�
�Pi
�
= t (�i) :

In de�ning a symmetric mechanism, the same permutation of goods must be applied for all

agents. As an example, suppose that there are two agents and two goods, and that the valuation

for each good is either h or l: In this case � = f(h; h) ; (h; l) ; (l; h) ; (l; l)g. Consider the type pro�le
� = (�1; �2) = ((h; l) ; (l; h)) 2 �2: Applying the only non-identity permutation of the goods, i.e.,
P (1) = 2 and P (2) = 1; to all agents generates a type pro�le �P =

�
�P1 ; �

P
2

�
= ((l; h) ; (h; l)) :

De�nition 3 requires that the allocations for type pro�le ((l; h) ; (h; l)) is the same as the allocation

for ((h; l) ; (l; h)) with goods relabeled, and that transfers are unchanged.7 The result is:

Proposition 2 Suppose that �i is an exchangeable random variable and that there exists C (n) such

that Cj (n) = C (n) for all j 2 J : Then, for any simple anonymous incentive feasible mechanism
g; there exists a simple anonymous and symmetric incentive feasible mechanism that generates the

same surplus as g:

The idea is similar to that of Proposition 1, except that it is the identities of the goods that

are permuted. Consider the case with two goods, and suppose that the two goods are treated

7 If we were to apply di¤erent permutations for the two agents, e.g., applying the identity permutation for agent

1 and the non-identiy permutation for agent 2, then we would obtain a pro�le ((h; l) ; (h; l)), which is a qualitatively

di¤erent from either ((h; l) ; (l; h)) or ((l; h) ; (h; l)) : In the pro�le ((h; l) ; (h; l)) ; both agents have low valuations for

good 2 and high valuations for good 1, whereas, in the pro�les ((h; l) ; (l; h)) or ((l; h) ; (h; l)) ; one and only one agent

has high valuation for both goods.
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asymmetrically. Reversing the role of the goods, an alternative mechanism that generates the same

surplus is obtained. Averaging over the original and the reversed mechanism creates a symmetric

mechanism where surplus is unchanged.8 Incentive feasibility of the new mechanism follows from

incentive feasibility of the original mechanism. Proposition 2 generalizes this procedure by per-

muting the goods (M ! possibilities) and creating a symmetric mechanism by averaging over these

permuted mechanisms.

3 The Case with Binary Valuations

In the remainder of the paper we assume that the valuation for each good j is either high or

low, so that �ji 2 fl; hg for each i 2 I and j 2 J : The probability of any type �i 2 � � fl; hg
M is

denoted �i (�i) ; and using independence � (�) = �ni=1�i (�i) and ��i (��i) = �i0 6=i�i0 (�i0) denote
the probabilities of type pro�le � and ��i respectively:9 Moreover, suppose that Cj (n) = cn for all

j 2 J :10

For any �i 2 � = fl; hgM ; write m (�i) 2 f0; :::;Mg as the number of goods for which �ji = h;

i.e.,

m (�i) = #
n
j 2 J : �ji = h

o
:

Given any m 2 f0; :::;Mg there are M !
m!(M�m)! types of �i 2 � such that �

j
i = h for exactly m goods.

Maintaining the assumption that �i is an exchangeable random variable, we therefore have that the

probability that an agent has a high valuation for exactly m goods, denoted by �m; is given by

�m =
M !

m! (M �m)!�i (�i) ; (6)

where �i is any type withm high valuations. This formulation allows the willingness to pay between

goods to be correlated. In the simplest case where valuations for di¤erent goods are i.i.d., for any

�i such that m (�i) = m, �i (�i) = �m (1� �)M�m and �m =
M !

m!(M�m)!�
m (1� �)M�m ; where � is

the probability that �ji = h:

Appealing to Proposition 1, we only consider mechanisms in the form of (5), implying that it
is without loss of generality to consider:11

8Provision probabilities and taxes are given by straightforward averaging, but since inclusion and provision prob-

abilities may be correlated the procedure is somewhat more involved for the inclusion rules.
9Note that the probability of type �i; �i (�i) does not depend on i: The subscript i is used in �i so that we can

use � to denote the probability of the valuation pro�le � = (�1; :::; �n) :
10Keeping the per capita costs constant simpli�es notation, but is not necessary.
11Note that the dimensionality of the problem could be reduced further by using Propositions 1 and 2, but it is

notationally convenient to impose these additional symmetry restrictions at a later stage. As such, we are indexing

�ji and ti by i; even though we know from Propositions 1 and 2 that they do not need to depend on i in the optimal

mechanism.
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max
f�;�;tg

X
�2�n

� (�)

MX
j=1

�j (�)

"
nX
i=1

�ji (�i) �
j
i � cn

#
(7)

0 �
X

��i2��i

��i (��i)

MX
j=1

�j (�) �ji (�i) �
j
i � ti (�i)�

24 X
��i2��i

��i (��i)

MX
j=1

�j
�
��i; �

0
i

�
�ji
�
�0i
�
�ji � ti

�
�0i
�35

for every �i; �
0
i 2 ��� (8)

0 �
X

��i2��i

��i (��i)

MX
j=1

�j (��i; l) �
j
i (l) l � ti (l) (9)

0 �
nX
i=1

X
�i2�

�i (�i) ti (�i)�
X
�2�n

� (�)

MX
j=1

�j (�) cn (10)

�j (�) 2 [0; 1] ; �ji (�i) 2 [0; 1] ;

where ��i denotes the set of possible pro�les for all agents except i: In words, the planner maximizes

the social surplus subject to the incentive compatibility constraints (8), the participation constraint

for type l =(l; ::::; l) (9), and the resource constraint (10).

To simplify our discussions in the analysis below, we use the following terminology:

De�nition 4 An incentive constraint (8) is referred to as:

1. a downwards incentive constraint if �ji � �0ji for all j 2 J ;

2. an upwards incentive constraint if �ji � �0ji for all j 2 J ;

3. a diagonal incentive constraint if there exists j; k 2 J so that �ji > �0ji and �
k
i < �0ki :

Incentive constraints that rule out deviations where a single coordinate is misrepresented are

henceforth called adjacent. If the jth coordinate in �i is changed from h to l we write �ijlj and if
the kth coordinate in �i is changed from l to h we write �ijhk.

3.1 The Relaxed Optimization Problem

Guided by intuition based on unidimensional mechanism design problems, we will now formulate

a relaxed problem where all incentive constraints in (8) except the downwards adjacent incentive

constraints are removed. The relaxed problem is fully described below in (11). Analogous to the

standard approach in unidimensional problems, we will show in Lemma 12 below that this provides

a valid solution to the full problem when the solution to the relaxed problem is monotonic in the

following sense:

De�nition 5 Mechanism (�; �; t) is monotonic if �ji (�i) � �ji
�
�0i
�
and �j (��i; �i) � �j

�
��i; �

0
i

�
whenever m (�i) � m

�
�0i
�
and �ji � �0ji :
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In Lemma 13 below we will provide su¢ cient conditions in terms of primitives for the solution

to the relaxed problem to be monotonic.
The relaxed optimization problem where the full set of incentive constraints is replaced with

the downwards adjacent incentive constraints may be written as:

max
f�;�;tg

X
�2�n

� (�)

MX
j=1

�j (�)

"
nX
i=1

�ji (�i) �
j
i � cn

#
(11)

s.t. 0 �
X

��i2��i

��i (��i)

MX
j=1

�j (�) �ji (�i) �
j
i � ti (�i)�

24 X
��i2��i

��i (��i)

MX
j=1

�j (��i; �ijlk) �ji (�ijlk) �
j
i � ti (�ijlk)

35
for every k such that �ki = h [m (�i) constraints for every i and �i] (12)

0 �
X

��i2��i

��i (��i)

MX
j=1

�j (��i; l) �
j
i (l) l � ti (l) (13)

0 �
nX
i=1

X
�i2�

�i (�i) ti (�i)�
X
�2�n

� (�)

MX
j=1

�j (�) cn (14)

�j (�) 2 [0; 1] ; �ji (�i) 2 [0; 1] :

We will next state a sequence of intermediate results that will be used to characterize the solution

to (11) and, eventually, the full problem in (7).

3.2 Relating the Multipliers

First, a standard argument based on compactifying the constraint set assures that there are

solutions to the relaxed optimization problem:

Lemma 1 There exists at least one optimal solution to (11).

Next, we use the general symmetry result in Proposition 2 to show that the value of a multiplier

for any of the downwards adjacent incentive constraint (12) depends only on the number of goods

for which the consumer has a high valuation.

Lemma 2 It is without loss of generality to assume that for every m 2 f1; :::;Mg there exists some
� (m) � 0 such that � (m) is the multiplier associated with every constraint (12) applicable for every
�i 2 � with m (�i) = m:

Hence, � (m) denotes the multiplier for all downwards adjacent incentive constraints for types

withm � 1 high valuations. We also let � (0) denote the participation constraint for type l =(l; :::; l)
and let � denote the value of the multiplier for the resource constraint (14).

We now show that the multipliers � (m) ;m 2 f0; :::;Mg and � are closely linked. Let �i be a
type for which agent i has a high valuation for m 2 f0; ::::;M � 1g goods. There are m di¤erent

ways to replace a coordinate in �i that corresponds to a high valuation. Also, there areM�m types

of �0i that can be �turned into�type �i by replacing a single high valuation with a low valuation.

10



As a result of these observations, we have that the optimality conditions to the program (11) with

respect to ti (�i) are given by

� � (m)m+ � (m+ 1) (M �m) + ��i (�i) = 0; (15)

whereas the optimality condition for �i = h = (h; ::::; h) is

� (M) + ��i (h) = 0 (16)

Using the identity �m =
M !

m!(M�m)!�i (�i) ; and the di¤erence equation de�ned by (15) and (16), we

obtain:

Lemma 3 For every m 2 f0; :::;Mg the value of � (m) is related to � in accordance with

m� (m) =
m! (M �m)!

M !
�

MX
j=m

�j (17)

=
m! (M �m)!

M !
�Pr [m (�i) � m] ;

where �j is de�ned in (6).

A rough intuition for Lemma 3 is that if the designer could extract an extra unit of surplus

from types with m high valuations without upsetting any constraints, then an extra unit could be

obtained from all higher types as well because only the di¤erence in the transfers are relevant for

the (adjacent downwards) incentive constraints. This explains why the value of the multipliers are

proportional to the probability that the number of valuations exceeds m:

3.3 Inclusion Rules

Next, we will show that the solution has the intuitively plausible (but non-obvious) property

that exclusions are only used for goods for which the agent has low valuations.

Lemma 4 Suppose that �i 2 � such that �ji = h and that
P
��i2��i ��i (��i) �

j (�i; ��i) > 0:

Then, �ji (�i) = 1 in any optimal solution to (11):
12

At �rst blush, Lemma 4 may appear like a �no distortion at the top result.�However, this is

not the case because it says that a consumer should be given access to her high valuation goods

irrespective of her total number of goods with high valuations. Instead, the result is best understood

in terms of the relationship between the multipliers in (15). Providing a high valuation good to a

type with m high valuations relaxes the downwards adjacent incentive constraints (12) for every

12The condition
P

��i2��i ��i (��i) �
j (�i; ��i) > 0 is needed because the inclusion rule has no e¤ect on either the

objective function or the constraints when the conditional probability of provision is zero, but, one may of course set

�ji (�i) = 1 also in this case.

11



type with exactly m high valuations. There are m such incentive constraints, so the increased

utility from truth-telling for these types is � (m)mh: However, giving access to the high valuation

good j does make it more tempting for a type with m+1 high valuations to announce only m high

valuations. There are M � m ways to change one coordinate into a lie with m high valuations,

so the decreased utility from announcing a type with one of the other coordinates changed from h

to l is �� (m+ 1) (M �m)h: It is then immediate from (15) that the positive e¤ect from making

truth-telling more appealing always dominates, thus all consumers always get access to the high

valuation goods.

In order to simplify the discussion of the inclusion rules for good j with �ji = l; it is useful to

de�ne

Gm (�) = (1� �) (M �m) l�m +�

24�m (M �m) l � (h� l)
MX

j=m+1

�j

35 : (18)

The inclusion rule for low valuation goods is characterized by:

Lemma 5 Suppose that �i 2 � with m (�i) = m: Suppose that �ji = l for some j 2 J and thatP
��i2��i ��i (��i) �

j (�i; ��i) > 0: Then,

�ji (�i) = � (m) �

8>><>>:
0 if Gm (�) < 0

z 2 [0; 1] if Gm (�) = 0

1 if Gm (�) > 0;

(19)

in any optimal solution to (11) where � = �
1+� :

To interpret (18) and Lemma 5, we �rst notice that (M �m) l�m is the (positive) e¤ect on

social welfare if the inclusion rule changes so as to give access to the low valuation goods for all

consumers with exactly m high valuations. To understand the second term in (18), consider the

expected revenue for the provider if she gives consumers with m or more high valuations full access

to all the goods, and the remaining consumers access to only their high valuation goods. Under

the above access policy, the provider can charge mh + (M �m) l to the group of consumers who
consume all goods; and charge h per good to the remaining consumers who only obtain access

to their high valuation goods. Assuming that all goods would be provided for sure, the expected

revenue under the above access and pricing policy is then be given by

R (m) = Pr [m (�i) � m] [mh+ (M �m) l] + h
m�1X
j=1

�jj (20)

=
MX
j=m

�j [mh+ (M �m) l] + h
m�1X
j=1

�jj:

12



In the absence of a provision decision, a pro�t maximizer would thus simply pick m to maximize
R (m) : We note that

R (m)�R (m+ 1) =

(
MX
j=m

�j [mh+ (M �m) l] + h
m�1X
j=1

�jj

)
�
(

MX
j=m+1

�j [(m+ 1)h+ (M �m� 1) l] + h
mX
j=1

�jj

)

= �m [mh+ (M �m) l] +
MX

j=m+1

�j [mh+ (M �m) l]�
MX

j=m+1

�j [(m+ 1)h+ (M �m� 1) l]� h�mm

= �m (M �m) l � (h� l)
MX

j=m+1

�j :

Thus the second term in (18) is the (positive or negative) e¤ect on pro�ts from allowing a consumer

withm high valuations to consume also her low valuation goods. We conclude that we may interpret

the constrained welfare optimization as maximizing a weighted average of welfare and pro�ts, with

weights on pro�ts increasing with the multiplier � associated with the resource constraint (14).

This property has been shown in unidimensional settings (see Hellwig [14] and Norman [23]), where

incentive feasibility can be characterized by a single constraint using methods from Myerson [21],

but to the best of our knowledge, no analogous result directly applicable for our multidimensional

setting has been shown in the literature.

3.4 Provision Rules

We are now in a position to characterize the optimal provision rule. To do this transparently,

it is useful to �rst denote Hj (�;m) as the number of agents with a high valuation for good j and

m high valuations in total under the type pro�le � = (�1; :::; �n). Symmetrically, we let Lj (�;m)

denote the the number of agents with a low valuation for good j and m high valuations in total

under type pro�le �: The solution to the relaxed problem can now be characterized rather sharply

in terms of the multiplier of the resource constraint only:

Lemma 6 The provision rule for good j in the optimal solution to (11) satis�es

�j (�) =

8>><>>:
0 if

PM
m=1H

j (�;m)h+
PM

m=0 L
j (�;m) 1

�m(M�m) max f0; Gm (�)g � cn < 0
z 2 [0; 1] if

PM
m=1H

j (�;m)h+
PM

m=0 L
j (�;m) 1

�m(M�m) max f0; Gm (�)g � cn = 0
1 if

PM
m=1H

j (�;m)h+
PM

m=0 L
j (�;m) 1

�m(M�m) max f0; Gm (�)g � cn > 0:
(21)

Just like the optimal inclusion rule, (21) may be understood as a compromise between welfare

maximization and pro�t maximization. To see this, �rst note the fact that all high valuation agents

consume the good for sure conditional on provision implies that
PM
m=1H

j (�;m)h is the surplus

from all consumers with a high valuation for good j: Next, recall that Gm (�) had the interpretation

as the e¤ect from giving an agent with m high valuations access to all the goods for which the

agent has a low valuation. However, in order to get the surplus from the low valuation agents in

the same units as
PM
m=1H

j (�;m)h in (21), we need to rescale Gm (�) by 1
�m(M�m) : The reason

for 1
�m

is as follows. The inclusion rules involves a trade-o¤ between the possibility that an agent

13



has exactly m high valuations (with probability �m) and the probability that the number of high

valuations exceed m (with probability
PM
j=m+1 �j). In contrast, the natural unit for the welfare

created by providing good j is for a �xed �; implying that we need to scale up Gm (�) by 1
�m
. In

addition, as all goods are treated symmetrically, the marginal e¤ect of changing the inclusion rule

is to provide access to M �m goods. In contrast, providing a good only gives the agents a single

extra good on the margin. This di¤erence is what accounts for the scaling factor 1
M�m in (21).

Hence, the �rst two terms may be thought of as the e¤ect from provision on a combination of social

welfare and revenue, whereas the �nal term obviously is the associated cost of provision.

3.5 Su¢ cient Conditions for the Solution to the Relaxed Problem (11) To Solve

the Full Problem (7)

We will now discuss when the solution to the relaxed problem (11) also solves the full problem

(7). Many steps in this analysis are similar to Matthews and Moore [19], but the multidimensional

nature of our environment leads to some important di¤erences.

If the mechanism is monotonic in the sense of De�nition 5, we show that, the diagonal con-

straints are irrelevant (Lemma 7) and that all downwards (upwards) constraints are implied by the

downwards adjacent (upwards adjacent) constraints (Lemma 8 and 9 respectively):

Lemma 7 Suppose that (�; �; t) is monotonic and that all downwards and upwards incentive con-

straints hold. Then, all incentive constraints in (7) are satis�ed.

Lemma 8 Suppose that (�; �; t) is monotonic and that all downwards adjacent incentive constraints

hold. Then, all downwards constraints in (7) are satis�ed.

Lemma 9 Suppose that (�; �; t) is monotonic and that all upwards adjacent incentive constraints

hold. Then, all upwards constraints in (7) are satis�ed.

A qualitative di¤erence in the way downwards and upwards adjacent constraints are dealt with

is that the latter may possibly be violated at the optimal solution to (11). However, should the

downwards adjacent constraint bind, then it follows that the upwards adjacent constraints are all

satis�ed:

Lemma 10 Suppose that (�; �; t) is such that the downwards adjacent constraints in (11) bind.

Then all upwards adjacent incentive constraints in (7) are satis�ed.

Combing the results above, we have that the solution to the relaxed problem is also a solution

to the full problem provided that the downwards adjacent incentive constraints bind and that the

solution to the relaxed problem is monotonic. We therefore need conditions for when this is true

in the optimal solution to the relaxed problem (11). As a �rst step we establish that monotonicity

guarantees that the constraints bind.

14



Lemma 11 Let (�; �; t) be an optimal solution to (11). If (�; �; t) is monotonic and is not ex post

e¢ cient, then every downwards adjacent incentive constraint and the participation constraint for

type l =(l; :::; l) bind.

The basic idea behind Lemma 11 is obvious: if there is slack in a constraint, one can increase

inclusions or the probability of provision. However, the actual proof is a little bit more subtle

because the inclusion and provision probabilities may already be at their upper bound for the

particular �i where there is slack. To deal with this possibility we instead extract some additional

cash from type �i: An inductive argument shows that this additional cash can be used to improve

the allocation unless the solution is already ex post e¢ cient.

We can now combine these preliminary results and provide a characterization of when the

solution to the relaxed problem solves the full problem.

Lemma 12 Let (�; �; t) be an optimal solution to (11). If (�; �; t) is monotonic and is not ex post

e¢ cient, then (�; �; t) is also an optimal solution to the full problem (7).

Finally, we derive useful su¢ cient conditions for the conditions in Lemma 12 to be ful�lled:

Lemma 13 Let (�; �; t) be a solution to (11). Then,

� (�; �; t) is monotonic if 1
M�m

PM
j=m+1 �j
�m

is strictly decreasing in m on f0; :::;M � 1g;

� Moreover, a su¢ cient condition for 1
M�m

PM
j=m+1 �j
�m

to be strictly decreasing inm on f0; :::;M � 1g
is that the valuations for any goods j and j0 6= j are independent.

The condition is almost, but not quite, a hazard rate condition, where the term M �m makes

the condition diverge from a simple hazard rate condition. Intuitively, the explanation of the

�almost hazard rate condition� is that we are either providing access to all goods or only to the

goods for which the agent has high valuations. Allowing access to all goods is better in terms of

social surplus, but may reduce the revenue raised. More precisely, with probability �m a consumers

has exactly m high valuations, and such a consumer will be willing to pay (M �m) l more if he
is given access to the low valuation goods. On the other hand, with probability

PM
j=m+1 �j the

number of high valuations exceed m, and for such a consumer the revenue is reduced by (h� l) : In
general, 1

M�m

PM
j=m+1 �j
�m

may be non-monotonic, because there are no restrictions on the behavior of

�m (M �m) : Independence is one way to rule out too extreme �uctuations in this term, essentially
because it makes the tails of the distribution over m very thin.

If the solution to the relaxed problem (11) is monotonic (which, from Lemma 13, will be the

case if 1
M�m

PM
j=m+1 �j
�m

is strictly decreasing in m); we can show that the inclusion rule for low

valuation goods as characterized in Lemma 5 can take a sharp threshold rule:
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Lemma 14 Let (�; �; t) be a solution to (11) and suppose that 1
M�m

PM
j=m+1 �j
�m

is strictly decreasing

in m on f0; :::;M � 1g : Then, there exists some em such that:

1. �ji (�i) = � (m) = 0 for every �i with �
j
i = l if m (�i) < em;

2. �ji (�i) = � (m) = 1 for every �i with �
j
i = l if m (�i) > em.

3.6 The Main Result

Now we provide our main result regarding the limit of the sequences of optimal solutions to

(11) as the number of agents n goes out of bounds. We will henceforth index mechanisms by the

number of agents n when needed.

The rationale for considering such sequences is that it allows us to take limits of exact solutions

to our optimization problems, to obtain a more easily interpretable characterization of the solutions

when n is large. The key advantage of considering a large population limit is that it allows us to

use a version of the �Paradox of Voting��for large n; it is almost as if the provision rule is constant

in type announcements �which tremendously simpli�es the description of the optimal mechanism.

Formally, we can use the Central Limit Theorem to establish:

Lemma 15 Let (�n; �n; tn) be a solution to the constrained welfare problem (11). Then, E
h
�jn (�) j�0i

i
�

E
h
�jn (�) j�00i

i
! 0 as n!1 for any j and any pair �0i; �

00
i 2 �:

Lemma 15 immediately implies that E
h
�jn (�) j�0i

i
�E

h
�jn (�)

i
! 0: Hence, all conditional prob-

abilities appearing in the incentive constraints may be approximated by the ex ante probability of

provision, which greatly simpli�es the analysis. Our main result is about the provision probabilities

and inclusion rules in the limit as n goes to in�nity is given as follows:

Proposition 3 Suppose that 1
M�m

PM
j=m+1 �j
�m

is strictly decreasing on f0; :::;M � 1g and let R (m)
be de�ned as in (20). Then,

1. limn!1E�
j
n (�) = 0 for every j if maxmR (m)� cM < 0 in any sequence of feasible solutions

to the full problem (7);

2. limn!1E�
j
n (�) = 1 for every j if maxmR (m)� cM > 0 in any sequence of optimal solutions

to the full problem (7);

3. When maxmR (m)�cM > 0; let m� be the smallest m such that R (m)�cM > 0: Then there

exists N <1 such that if n � N;

(a) for every type �i with m (�i) � m�; �jn (�i) = 1 for every good j;
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(b) for every type �i with m (�i) = m� � 1; �jn (�i) = 1 for every good j such that �ji = h;

and

�jn (�i)!
R (m�)� cM

R (m�)�R (m� � 1)

for ever good j such �ji = l;

(c) for every type �i with m (�i) � m��2; �jn (�i) = 1 for every good j such that �ji = h and

�jn (�i) = 0 for every good j such that �
j
i = l.

The proof of Proposition 3 requires quite a bit of technical work. Still, the key idea is rather

simple. Once we have established that the solution must have a threshold characterization (Lemma

14), and that the in�uence of any individual agent�s announcement vanishes as the number of agents

goes to in�nity, it is quite clear that we want to set the threshold as low as possible, subject to

the constraint that provision must be self-�nancing. The condition on whether maxmR (m)� cM
is positive thus will dictate whether there will be su¢ cient budget to provide all the public goods.

Most work in the proof goes into establishing that a large economy is approximately like an economy

where the provision decisions are made ex ante, not conditioning on �: The intuition for this is that

the larger the economy is, the more certain we can be that the economy is close to the expected.

4 Special Cases and Implications

4.1 One Good or Independent Provision

When there are no complementarities in preferences and production costs, it is clear that the

analysis of providing a single excludable public good is the same as the analysis of the case where

M goods are provided by independent agencies. Also, the case when valuations for di¤erent goods

are perfectly correlated is also equivalent to the case with a single good.

Let � =
PM
m=1

m
M �m denote the (marginal) probability that a consumer has a high willingness

to pay for any particular good. With only a single good, the condition that 1
M�m

PM
j=m+1 �j
�m

is

decreasing in m is satis�ed by default, thus Proposition 3 is always applicable. Furthermore,

R (m) =

(
l if m = 0

�h if m = 1:

Hence, Proposition 3 says that limn!1E�n (�) = 0 if max fl; �hg� c < 0; and limn!1E�n (�) = 1
if max fl; �hg � c < 0:

The case with l � c is trivial: if the low valuation exceeds the cost of provision, it is �rst best

e¢ cient to always provide and never exclude any consumers from usage, which can be implemented

by a uniform user fee of c: When l < c < �h; we know from Proposition 3 that the probability for

access for type l goods converges to

R (1)� c
R (1)�R (0) =

�h� c
�h� l 2 (0; 1) (22)
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as n goes to in�nity. Moreover, G1 (�) as de�ned in (18) is equal to zero, thus the provision rule

characterized in (21) simpli�es to

�j (�) =

8>><>>:
0 if Hj (�; 1)h� cn < 0

z 2 [0; 1] if Hj (�; 1)h� cn = 0
1 if Hj (�; 1)h� cn > 0;

(23)

which interestingly is exactly the same provision rule as the one that would be optimal for a pro�t-

maximizing monopolist; thus for the one good case, the welfare loss associated with a for-pro�t

monopolist relative to the constrained social optimum is only due to over-exclusion, not in under-

provision. With more than one good, there is typically under-provision by a for-pro�t monopolistic

provider for �nite n:

4.2 Two Goods

Here we describe the results for the two-good case, which was the focus of Fang and Norman [12].

The two-good case is also interesting because we can also characterize the optimal mechanism

when the regularity condition is violated (the characterization for that case is provided in the next

subsection).

Note that with two goods, 1
M�m

PM
j=m+1 �j
�m

is strictly decreasing in m on f0; 1g if and only if

�2
�1

<
1

2

�1 + �2
�0

=
1

2

1� �0
�0

() �1
2
>

�0�2
1� �0

: (24)

Furthermore,

R (m) =

8>><>>:
2l for m = 0

(�1 + �2) (h+ l) for m = 1

2�h for m = 2;

where � = �1
2 + �2: Ruling out the trivial case of l � c; we see from Proposition 3 that there are

three possibilities (see also Proposition 5 in Fang and Norman [12]):

1. If max f(�1 + �2) (h+ l) ; 2�hg < 2c; then limn!1E�
j
n (�) = 0 for j 2 f1; 2g ;

2. (�1 + �2) (h+ l) > 2c; then limn!1E�
j
n (�) = 1 for j 2 f1; 2g ; all consumers with at least 1

high valuation good get access to both goods, and those with only low valuations get access

to each good with probability

R (1)� 2c
R (1)�R (0) =

(�1 + �2) (h+ l)� 2c
(�1 + �2) (h+ l)� 2l

2 (0; 1) ;

3. 2�h > 2c > (�1 + �2) (h+ l) ; then limn!1E�
j
n (�) = 1 for j 2 f1; 2g ; all consumers get

access to their high valuation goods, and those with 2 low valuations do not get any access at

all, but those with one high valuation get access to their low valuation good with probability

R (2)� 2c
R (2)�R (1) =

2�h� 2c
2�h� (�1 + �2) (h+ l)

2 (0; 1) : (25)
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It is worth emphasizing that in the optimal joint provision mechanism, both goods will be

provided with probability one asymptotically if max f(�1 + �2) (h+ l) ; 2�hg > c; in stark con-

trast to the optimal separate provision mechanism characterized in Subsection 4.1 where a good

is provided asymptotically if �h > c: It is clear that there exits a non-empty parameter region

where (�1 + �2) (h+ l) > 2c > 2�h where we get asymptotic non-provision if goods are provided

separately, but the optimal bundling mechanism provides both goods for sure.

The increased provision probability for e¢ cient public goods under a bundling mechanism rela-

tive to the separate provision mechanism is only one channel through which bundling may increase

e¢ ciency. The optimal bundling mechanism also leads to strict e¢ ciency gains relative the non-

bundling mechanism by increasing the probability of inclusion for low-valuation agents, even in cases

when the goods can also be provided without bundling. To see this, suppose that �h > c so that

both public goods will be asymptotically provided with probability one with or without bundling.

From (22), we know that under the best separate provision mechanism, the probability for access to

a low valuation agent is (�h� c) = (�h� l) : In contrast, (25) implies that the ex ante probability
for access conditional on a low valuation for the case where 2c > (�1 + �2) (h+ l) is

�1
�0 + �1| {z }

prob of mixed type
given low valuation

2�h� 2c
2�h� (�1 + �2) (h+ l)| {z }

from (25)

: (26)

Some algebra shows that (26) is larger than �h�c
�h�l whenever

�1
2 > �0�2

1��0
; which is precisely the

condition under which Proposition 3 is applicable. Fewer consumers are thus excluded in the

optimal bundling mechanism. A similar calculation applies to the case with (�1 + �2) (h+ l) > 2c:

4.3 The Case with a Binding Monotonicity Constraint

The case with two goods also provides a useful setup for investigating the case when the reg-

ularity condition on 1
M�m

PM
j=m+1 �j
�m

fails. As shown in (24) this reduces to the condition that
�1
2 �

�0�2
1��0

; which may be interpreted as saying that the valuations are (su¢ ciently strongly) pos-

itively correlated. In the Appendix we prove that the asymptotic characterization for this case

is:

Proposition 4 Assume that �12 �
�0�2
1��0

and l < c. Then:

1. limn!1E�
j
n (�) = 0 for every j if �h < c for any sequence f�n; �n; tng of feasible mechanisms.

2. limn!1E�
j
n (�) = 1 for every j if �h > c for any sequence f�n; �n; tng of optimal mechanisms.

Moreover, all consumers get access to the high valuation goods and

�jn (�i)!
�h� c
�h� l 2 (0; 1)

as n!1 for every �i with �
j
i = l:
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The interesting aspect of Proposition 4 is that the solution is identical to the case when

bundling is not allowed. To understand why, recall that asymptotic provision or non-provision

is related to whether the maximal revenue for a monopolistic provider of the goods �if provided

� exceeds the costs. The revenue maximizing selling strategy for a monopolist, if both public

goods are provided, is either to sell goods separately at price h; or sell the goods as a bundle

at price h + l, or to charge l for each good. These selling strategies generate a revenue of 2�h;

(�1 + �2) (h+ l) ; and 2l respectively. Since we are already assuming l < c; the question is thus

whether max f(�1 + �2) (h+ l) ; 2�hg exceeds 2c. For the �rst part of Proposition 4, if �h < c and

l < c are both satis�ed, we have that

(�1 + �2) (h+ l) < (�1 + �2) (h+ c) < (�1 + �2)

�
1

�
+ 1

�
c

=

"
2 +

(1� �0)
�
1
2�1 + �2

�
� �2

1
2�1 + �2

#
c < 2c

when 1
2�1 �

�0�2
1��0

: This calculation shows that it is impossible to provide the goods with probability

1 if �h < c; and the idea for why this translates into E�jn (�) ! 0 is the same as for the previous

analysis.

For the second part of Proposition 4, consider the case when either separate provision or

bundling provide su¢ cient revenue to cover the cost of provision. In the solution characterized

by Proposition 4, the asymptotic ex ante probability of getting access to low valuation good j is�
�0 +

1

2
�1

�
�h� c
�h� l :

If, instead, the mechanism which is optimal for the case with �1
2 > �0�2

1��0
is used, the ex ante

probability of getting access to low valuation good is

�0
(�1 + �2) (h+ l)� 2c
(�1 + �2) (h+ l)� 2l

:

Some algebra along the lines discussed in connection with (26) shows that the ex ante probability of

getting access and therefore also the social surplus is actually smaller using the bundling mechanism

in this case.

5 Conclusion and Discussion

This paper studies the optimal provision mechanism for multiple excludable public goods when

agents�valuations are private information. For a parametric class of problems withM goods whose

valuations take binary values, we fully characterize the optimal mechanism and demonstrate that

it involves bundling if a regularity condition, akin to a hazard rate condition, on the distribution of

valuations is satis�ed. Bundling alleviates the free riding problem in large economies in two ways:
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�rst, it may increase the asymptotic provision probability of socially e¢ cient public goods from

zero to one; second, it decreases the extent of use exclusions. For the case of two goods, we also

show that if the regularity condition is violated, then the optimal solution replicates the separate

provision outcome.

Our Model as a Positive Theory of Bundling. Bundled discounts are common in many

markets. In fact, some have argued that almost any commodity is best viewed as a bundle of

characteristics.13 However, once we take a narrower perspective of only considering bundles of

commodities that are viable �stand-alone goods� in the sense that a consumer has a substantial

willingness to pay for each component even if no other goods in the bundle are consumed, it is

arguable that commonly bundled commodities mostly have non-rival properties, or, more generally,

goods with a substantial �xed costs. Software, music, electronic libraries, and TV programming

are obvious examples, and these kinds of goods are growing more important. As such, our paper

may be interpreted as a positive theory of bundling of goods with no-rival properties.

It is worth noting that in this paper we focused on the harder problem of maximizing social

welfare instead of maximizing pro�ts; but the pro�t-maximizing selling strategy is a by-product of

our analysis. It is easy to see that the only change in the asymptotic characterization of the pro�t-

maximizing selling mechanism is that the threshold number of high valuation goods a consumer

needs in order to get access to her low valuation goods will increase. Or, put di¤erently, the price

of the grand bundle will be higher than in Proposition 3 because a pro�t-maximizing monopolist

will seek as high a pro�t as possible rather than to only break even. The rest of Proposition 3 is

unchanged for the pro�t-maximization problem.

The key di¤erence between our model of bundling for non-rival goods and the standard bundling

model for private goods with constant unit costs is that the decision for whether to provide a good

becomes non-trivial. This in turn makes it necessary to go beyond the standard setup with a single

consumer. As a result the characterization of the optimal selling mechanism in our setup is more

complicated when there is a �nite number of consumers.

A Regulatory Benchmark for Bundling of Goods with Large Fixed Costs. Bundling

may under some circumstances violate current U.S. anti-trust legislation; indeed the legality and

desirability of bundling of software (a non-rival good) have been a critical point of debate in several

recent cases. While economists have been involved in this discussion, to the best of our knowledge

there is not yet a clear-cut normative benchmark in the economics literature. The analysis in this

paper is a small step towards the development of a useful normative benchmark for bundling in

natural monopoly situations.

13For example, a car can be considered as a �bundle� consisting of a chassis, an engine, cup holders, a stereo

system, air conditioning etc.
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Though our model is highly stylized, it has enough �exibility to generate a non-trivial trade-o¤.

On the one side, it is a possible that bundling is required for the monopolist to break even. In

this case the pro�t-maximizing outcome with bundling is better for the consumer than the welfare

maximizing outcome without bundling; thus a requirement to �unbundle�is strictly worse for the

consumers, regardless of other budget-balancing remedies that may be combined with the decision

to unbundle.14 On the other side, the fact that bundling makes it easier for the monopolist to

extract consumer surplus can make consumers worse o¤ for the obvious reasons.

Our model still makes many restrictive assumptions on the cost and preference side. In par-

ticular, while the assumption that preferences exhibit no complementarities highlights the role of

bundling as a screening instrument, it is counter-factual in many cases. Moreover, arguments based

on alleged complementarities are often used to justify bundling. However, it should be rather clear

that in itself, complementarities are not su¢ cient to provide a rationale for bundling: if many

consumers like to consume a particular computer program jointly with their computer, they may

choose to do so regardless of whether the computer program is bundled with the computer.15 Even

though the argument that �bundling is good for the customer because the customers like the goods

together�is suspect, complementarities in preferences may matter if combined with some other po-

tential justi�cation for bundling, such as the considerations about �xed costs of the current paper.

We intend to study this question in future research.
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A Appendix: Proofs of Results in Section 3

Proof of Lemma 1.

Proof. The only variables that are not automatically in a compact set are the transfers. However,

ti (l) � Ml < Mh and ti (�i) � ti (�ijlk) � m (�i)h + [M �m (�i)] l < Mh. Recursive application

of (12) therefore implies that we may bound ti (�i) from above by M2h: Since this is also an upper

bound for the di¤erence between ti (�i) and ti (�ijlk) ; it follows from (14) that we may bound ti (�i)
from below by �M2h: Hence, existence of a solution to (11) follows from Weierstrass maximum

theorem.

Proof of Lemma 2.

Proof. Letm (�i) = m
�b�i� = m, let �i

�
�i; �

0
i

�
denote the multiplier associated with one of them�1

downwards adjacent constraints for type �i and let �i
�b�i;b�0i� denote the multiplier associated with

one of the m� 1 downwards adjacent constraints for type b�i. Proposition 2 ensures that provision
and inclusion rules are symmetric and by use of strong duality in linear programming we �nd that

it is without loss to assume that �i
�
�i; �

0
i

�
= �i

�b�i;b�0i�.
Proof of Lemma 3.
Proof. Fix m and let �i 2 � with m (�i) = m: Consider the incentive compatibility conditions
involving �i :

0 �
X
��i

��i (��i)
MX
j=1

�j (�) �ji (�i) �
j
i � ti (�i)| {z }

Term A

�
X
��i

��i (��i)
MX
j=1

�j (��i; �ijlk) �ji (�ijlk) �
j
i � ti (�ijlk)| {z }

Term B

(A1)
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We note that ti (�i) enters in Term A for m conditions: there are m ways to manipulate a single
coordinate so as to announce a pro�le with one h replaced with a l: From Lemma 2, the multiplier
associated with each of these conditions is � (m) : In addition, ti (�i) enters in Term B for M �m

downwards incentive constraints for types with m + 1 high valuations. Finally, it also enters the
resource constraint (14). The �rst order condition with respect to ti (�i) can thus be written as

�m� (m)+ (M �m)� (m+ 1)+��i (�i) = �m� (m)+ (M �m)� (m+ 1)+�m! (M �m)!
M !

�m = 0; (A2)

where we used (6) for the �rst equality.
For m = M; condition (A2) reads M� (M) = ��M , implying that Lemma 3 is also true for

m = M: Now suppose that � (m) is given by the expression in (17) for some m � M . The
optimality condition (A2) with respect to ti

�
�0i
�
where m

�
�0i
�
= m� 1 then reads:

0 = � (m� 1)� (m� 1) + (M �m+ 1)� (m) + (m� 1)! (M �m+ 1)!

M !
�m�1

= � (m� 1)� (m� 1) + (M �m+ 1)
m

m� (m) +
(m� 1)! (M �m+ 1)!

M !
�m�1

= � (m� 1)� (m� 1) + (M �m+ 1)
m

m! (M �m)!
M !

�
MX
j=m

�j +
(m� 1)! (M �m+ 1)!

M !
�m�1

= � (m� 1)� (m� 1) + (m� 1)! (M �m+ 1)!
M !

�
MX

j=m�1
�j ;

where the third equality follows from induction hypothesis. Thus, (17) holds also for m � 1: The
result follows from induction.

Proof of Lemma 4.
Proof. Let j be some good for which �ji = h: The optimality conditions for problem (11) with
respect to �ji (�i) may be written asX

��i2��i

� (�) �j (�)h+ � (m)m
X

��i2��i

��i (��i) �
j (�)h (A3)

�� (m+ 1) (M �m)
X

��i2��i

��i (��i) �
j (�)h+ 
ji (�i)� �

j
i (�i) = 0


ji (�i) �
j
i (�i) = 0 and �ji (�i)

�
1� �ji (�i)

�
= 0;

where 
ji (�i) and �
j
i (�i) are respectively the multipliers for the constraints �

j
i (�i) � 0 and 1 �

�ji (�i) � 0. Since we are assuming that
P
��i2��i ��i (��i) �

j (�i; ��i) > 0 and sinceX
��i2��i

� (�) �j (�)h = �i (�i)
X

��i2��i

��i (��i) �
j (�)h; (A4)

we may simplify the �rst equality in (A3) and write

�i (�i)h+ � (m)mh� � (m+ 1) (M �m)h+ 
ji (�i)� �
j
i (�i) = 0; (A5)

25



which, by the use of the complementary slackness conditions in (A3), implies that

�ji (�i) =

8>><>>:
1 if �i (�i) + � (m)m� � (m+ 1) (M �m) > 0

x 2 [0; 1] if �i (�i) + � (m)m� � (m+ 1) (M �m) = 0
0 if �i (�i) + � (m)m� � (m+ 1) (M �m) < 0:

But, from (15) we have that � (m)m� � (m+ 1) (M �m) = ��i (�i) ; implying that

�i (�i) + � (m)m� � (m+ 1) (M �m) = (1 + �)�i (�i) > 0:

Proof of Lemma 5.
Proof. Let j be some good for which �ji = l: The optimality conditions for problem (11) with
respect to �ji (�i) are: X

��i2��i

� (�) �j (�) l + � (m)m
X

��i2��i

��i (��i) �
j (�) l (A6)

�� (m+ 1)
X

��i2��i

��i (��i) �
j (�) [(M �m� 1) l + h] + 
ji (�i)� �

j
i (�i) = 0


ji (�i) �
j
i (�i) = 0 and �ji (�i)

�
1� �ji (�i)

�
= 0;

where 
ji (�i) and �
j
i (�i) are the multipliers for the constraints �

j
i (�i) � 0 and 1 � �ji (�i) � 0

respectively. Using (A4) as in the proof of Lemma 4, we may rearrange the �rst inequality in (A6)

as:

�i (�i) l + � (m)ml � � (m+ 1) [(M �m� 1) l + h] + 
ji (�i)� �
j
i (�i)P

��i2��i ��i (��i) �
j (�)

= 0: (A7)

Using the relations between the multipliers we �nd that

�i (�i) l + � (m)ml � � (m+ 1) [(M �m� 1) l + h]

/(15)/ = �i (�i) l (1 + �)� � (m+ 1) (h� l)

/Lemma 3/ = �i (�i) l (1 + �)� (h� l)
m! (M � (m+ 1))!

M !
�

MX
j=m+1

�j

/(6)/ = �m
m! (M �m)!

M !
l (1 + �)� (h� l) m! (M � (m+ 1))!

M !
�

MX
j=m+1

�j ;

=
m! (M � (m+ 1))!

M !

24�m(M �m)l (1 + �)� (h� l) �
MX

j=m+1

�j

35
=

m! (M � (m+ 1))!
M !

(1 + �)Gm (�)

for � = �
1+� : Substituting into (A7) and using the complementary slackness conditions in (A6), we

have

�ji (�i) = � (m) =

8>><>>:
0 if Gm (�) < 0

z 2 [0; 1] if Gm (�) = 0

1 if Gm (�) > 0;
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as asserted.

Proof of Lemma 6.
Proof. The optimality conditions for �j (�) associated with the problem (11) may (with somewhat
ambiguous notation) be written as

� (�)

"
nX
i=1

�ji (�i) �
j
i � cn

#
+

MX
m=0

� (m)m
�
Hj (�;m)��i (��i)h+ L

j (�;m)��i (��i) � (m) l
�

�
M�1X
m=0

� (m+ 1)
�
Hj (�;m)��i (��i) (M �m)h+ Lj (�;m)��i (��i) � (m) f(M �m) l + (h� l)g

�
��� (�) cn+ 
j (�)� �j (�) = 0;

together with the complementary slackness conditions.16 Recall thatHj (�;m) (respectively, Lj (�;m))

is the number of agents that has a high (respectively, low) valuation for good j and m high valua-

tions in total, whereas � (m) denotes the probability that an agent gets access to his low valuation

goods when having m high valuations (as characterized in Lemma 5), and 
j (�) and �j (�) are the

multipliers for the boundary constraints. After using (A4) and the fact that

nX
i=1

�ji (�i) �
j
i =

MX
m=0

Hj (�;m)h+
MX
m=0

Lj (�;m) � (m) l;

we can write the condition as

MX
m=0

Hj (�;m)h+
MX
m=0

Lj (�;m) � (m) l +
MX
m=0

� (m)

�
Hj (�;m)

m

�i (�i)
h+ Lj (�;m)

m

�i (�i)
� (m) l

�

�
M�1X
m=0

� (m+ 1)

�
Hj (�;m)

(M �m)
�i (�i)

h+ Lj (�;m)
1

�i (�i)
� (m) ((M �m) l + (h� l))

�

� (1 + �) cn+ 
j (�)� �j (�)
� (�)

= 0:

Collecting terms, we get:

MX
m=0

Hj (�;m)

�
h+

h

�i (�i)
[� (m)m� � (m+ 1) (M �m)]

�
MX
m=0

Lj (�;m)

�
� (m) l +

� (m)

�i (�i)
[� (m)ml � � (m+ 1) f(M �m) l + (h� l)g]

�

� (1 + �) cn+ 
j (�)� �j (�)
� (�)

= 0:

16The notation is somewhat unsatisfactory in that ��i (��i) would be more appropriately denoted by ��i (�j�i)
where �i would describe a type that would enter in the particular term (and therefore change with each term).

Concretely, Hj (�;m)��i (��i) would correspond to ��i (�j�i) for �i with �
j
i = h and a total of m high valuations.
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Using the di¤erence equation for the multipliers in (15), which implies that � (m)m�� (m+ 1) (M �m) =
��i (�i) ; we can simplify this further [after using (15)] to:

MX
m=0

Hj (�;m) fh+ �hg+
MX
m=0

Lj (�;m)

�
� (m) l + � (m)

�
�l � � (m+ 1)

�i (�i)
(h� l)

��
(A8)

� (1 + �) cn+ 
j (�)� �j (�)
� (�)

= 0:

But using (17) and (6), we have that � (m+ 1) = m!(M�m�1)!
M ! �

PM
j=m+1 �j ; thus

� (m+ 1)

�i (�i)
/(17)/ =

1

�i (�i)

m! (M �m� 1)!
M !

�
MX

j=m+1

�j (A9)

=
1

�i (�i)

m! (M �m)!
M ! (M �m)�

MX
j=m+1

�j

/(6)/ =
1

�m (M �m)�
MX

j=m+1

�j :

Hence,

� (m) l + � (m)

�
�l � � (m+ 1)

�i (�i)
(h� l)

�
= � (m) l + � (m)

24�l � 1

�m (M �m)�
MX

j=m+1

�j (h� l)

35

= (1 + �) � (m)

8>><>>:l �
�

1 + �| {z }
=�

24 1

�m (M �m)

MX
j=m+1

�j (h� l)

35
9>>=>>;

= (1 + �) � (m)

8<:(1� �) l +�
24l � 1

�m (M �m)

MX
j=m+1

�j (h� l)

359=;
=

(1 + �) � (m)

�m (M �m)

8<:(1� �)�m (M �m) l +�

24�m (M �m) l �
MX

j=m+1

�j (h� l)

359=;
/(18)/ =

(1 + �)

�m (M �m) max f0; Gm (�)g :

Substituting this back into (A8) gives us

(1 + �)

"
MX
m=0

Hj (�;m)h+
MX
m=0

Lj (�;m)

�
1

�m (M �m) max f0; Gm (�)g
�
� cn

#
+

j (�)� �j (�)

� (�)
= 0;

which, together with the complementary slackness conditions, gives the result.

Proof of Lemma 7.
Proof. The solution to (11) violates an incentive constraint in (7) if there exists �i; �0i such that

X
��i2��i

��i (��i)
MX
j=1

�j (�) �ji (�i) �
j
i � ti (�i) <

X
��i2��i

��i (��i)
MX
j=1

�j
�
��i; �

0
i

�
�ji
�
�0i
�
�ji � ti

�
�0i
�
: (A10)
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Since �i is exchangeable and costs are identical for all goods, we can apply Proposition 2 (in

conjunction with Lemma 4) to conclude that it is without loss of generality to assume that there

exists
�
� (m) ; P h (��i;m) ; P l (��i;m) ; t (m)

	M
m=0

; such that:

1. �ji (�i) = � (m) for every (�i; j) such that �
j
i = l for good j and m (�i) = m;

2. �j
�
��i; �

0
i

�
= P h (��i;m) for every (�i; j) such that �

j
i = h for good j and m (�i) = k;

3. �j
�
��i; �

0
i

�
= P l (��i;m) for every (�i; j) such that �

j
i = l for good j and m (�i) = k;

4. ti (�i) = t (m) for every �i such that �ki = h and m (�i) = k:

Consider an arbitrary announcement �0i with m
�
�0i
�
= m0. Let r � min fm0;mg be the number

of coordinates such that �ji = �0ji = h; and let s � min fM �m0;M �mg be the number of
coordinates such that �ji = �0ji = l: We can then express the failure of an incentive constraint for
the full problem in (A10) asX

��i2��i

��i (��i)
�
Ph (��i;m)mh+ P

l (��i;m) � (m) (M �m) l
�
� t (m) (A11)

<
X

��i2��i

��i (��i)
�
Ph (��i;m

0) [rh+ (m0 � r) l] + P l (��i;m0) � (m0) [sl + (M �m0 � s)h]
	
� t (m0) :

We note that if r < m0 and s < M �m0; then it is possible to announce a type �00i (that di¤ers
from �0i) with m

�
�00i
�
= m

�
�0i
�
= m0, but there are r + 1 coordinates with �0ji = �00ji = h and s+ 1

coordinates with �0ji = �00ji = l: The utility for agent i with type �0i from announcing �00i is, using
the mechanism described above,X

��i2��i

��i (��i)
n
Ph

�
��i;m

0� �(r + 1)h+ �m0 � r � 1
�
l
�
+ P l

�
��i;m

0� � �m0� �(s+ 1) l + �M �m0 � s� 1
�
h
�o
� t

�
m0�

=
X

��i2��i

��i (��i)
n
Ph

�
��i;m

0� �rh+ �m0 � r
�
l
�
+ P l

�
��i;m

0� � �m0� �sl + �M �m0 � s
�
h
�o
� t

�
m0�

+
X

��i2��i

��i (��i)
h
Ph

�
��i;m

0�� P l ���i;m0� � �m0�i (h� l)
�

X
��i2��i

��i (��i)
n
Ph

�
��i;m

0� �rh+ �m0 � r
�
l
�
+ P l

�
��i;m

0� � �m0� �sl + �M �m0 � s
�
h
�o
� t

�
m0�

where the inequality follows from the assumed monotonicity [i.e. P h (��i;m0) � P l (��i;m0)] and

� (m0) � 1: This is a violation of the upwards incentive constraints, a contradiction to the postulate
of the Lemma that all upwards incentive constraints hold. Thus, we conclude that a failure of an

incentive constraint implies that either r = m < m0 and s = M �m0; in which case an upwards

incentive constraint fails or r = m0 < m and s = M � m in which case a downwards incentive

constraint fails.

Proof of Lemma 8.
Proof. The proof is by induction. Pick an arbitrarym. Assume that there is some K < m such that
a type withm high valuations has no incentives to pretend to be of any type with k 2 fm� 1; :::;Kg
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high valuations. It follows that

U (m;m) =
X

��i2��i

��i (��i)
�
Ph (��i;m)mh+ P

l (��i;m) � (m) (M �m) l
�
� t (m) (A12)

�
X

��i2��i

��i (��i)
�
Ph (��i; k)Kh+ P

l (��i;K) � (K) (M �m) l + (m�K)h
�
� t (K)

= U (m;K)

is satis�ed by hypothesis. By assumption the downwards adjacent incentive constraint for type K
holds, implying that

U (K;K) =
X

��i2��i

��i (��i)
�
Ph (��i;K)Kh+ P

l (��i;K) � (K) (M �K) l
�
� t (K) (A13)

�
X

��i2��i

��i (��i)
�
Ph (��i;K � 1) (K � 1)h+ P l (��i;K � 1) � (K � 1) (M �K) l + h

�
� t (K � 1)

= U (K;K � 1)

But, the payo¤ of announcing type K � 1 for type m isX
��i2��i

��i (��i)
�
Ph (��i;K � 1) (K � 1)h+ P l (��i;K) � (K � 1) (M �m) l + (m�K + 1)h

�
� t (K � 1)

=
X

��i2��i

��i (��i)
�
Ph (��i;K � 1) (K � 1)h+ P l (��i;K) � (K � 1) (M �K) l + h

�
� t (K � 1)

| {z }
RHS in (A13)

+
X

��i2��i

��i (��i)P
l (��i;K � 1) � (K � 1) (m�K) (h� l)

/(A13)/ �
X

��i2��i

��i (��i)
�
Ph (��i;K)Kh+ P

l (��i;K) � (K) (M �K) l
�
� t (K)

+
X

��i2��i

��i (��i)P
l (��i;K � 1) � (K � 1) (m�K) (h� l)

=
X

��i2��i

��i (��i)
�
Ph (��i;K)Kh+ P

l (��i;K) � (K) (M �m) l + (m�K)h
�
� t (K)

�
X

��i2��i

��i (��i)P
l (��i;K) � (K) (m�K) (h� l)

+
X

��i2��i

��i (��i)P
l (��i;K � 1) � (K � 1) (m�K) (h� l)

, (A12) and

P l(��i;K � 1)�(K � 1)
� P l(��i;K)�(K)

,
�

X
��i2��i

��i (��i)
�
Ph (��i;m)mh+ P

l (��i;m) � (m) (M �m) l
�
� t (m) ;

implying that m has no incentive to mimic K � 1: By induction it follows that all downwards
constraints are satis�ed.
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Proof of Lemma 9.
Proof. The proof is by induction. Let K > m and assume that

U (m;m) =
X

��i2��i

��i (��i)
�
Ph (��i;m)mh+ P

l (��i;m) � (m) (M �m) l
	
� t (m)

�
X

��i2��i

��i (��i)
�
Ph (��i; k) [mh+ (k �m) l] + P l (��i; k) � (k) (M � k) l

	
� t (k)

= U (m; k)

for all k 2 fm+ 1; :::;Kg : If K = M; all upwards constraint hold by assumption. If K < M; the
upwards adjacent constraint for type K implies that

U (K;K) =
X

��i2��i

��i (��i)P
h (��i;K)Kh+ P

l (��i;K) � (K) (M �K) l � t (K) (A14)

�
X

��i2��i

��i (��i)P
h (��i;K + 1) [Kh+ l] + P l (��i;K + 1) � (K + 1) (M �K � 1) l � t (K + 1)

= U (K;K + 1) :

We then note that

U (m;m)� U (m;K + 1) � U (m;K)� U (m;K + 1)

=
X

��i2��i

��i (��i)
�
Ph (��i;K) [mh+ (K �m) l] + P l (��i;K) � (K) (M �K) l

	
� t (K)

�
X

��i2��i

��i (��i)P
h (��i;K + 1) [mh+ (K + 1�m) l] + P l (��i;K + 1) � (K + 1) (M �K � 1) l � t (K + 1)

=
X

��i2��i

��i (��i)
�
Ph (��i;K)Kh+ P

l (��i;K) � (K) (M �K) l
	
� t (K)

+
X

��i2��i

��i (��i)
�
Ph (��i;K) (K �m) (l � h)

	
�

X
��i2��i

��i (��i)P
h (��i;K + 1) [Kh+ l] + P l (��i;K + 1) � (K + 1) (M �K � 1) l � t (K + 1)

+
X

��i2��i

��i (��i)P
h (��i;K + 1) (K �m) (h� l)

= U (K;K)� U (K;K + 1)| {z }
�0 by (A14)

+
X

��i2��i

��i (��i)
�
Ph (��i;K + 1)� Ph (��i;K)

�
(K �m) (h� l)

| {z }
�0 by monotonicity of Ph

;

implying that type m has no incentive to mis-report as type K + 1:

Proof of Lemma 10.
Proof. Consider types �i and �0i with m (�i) = m and m

�
�0i
�
= m+ 1: For ease of notation, de�ne

U (m;m) and U (m+ 1;m+ 1) as the payo¤ of truth-telling for type m and m + 1; and denote
the payo¤ from a type with m + 1 high valuations to announce a type with m high valuations as
U (m+ 1;m) ; and the payo¤ from a type with m high valuations to announce m+1 high valuations
as U (m;m+ 1) : U (m+ 1;m) and U (m;m+ 1) are respectively given as:

U (m+ 1;m) =
X

��i2��i

��i (��i)
n
Ph (��i;m)mh+ P

l (��i;m) � (m) [(M �m� 1) l + h]
o
� t (m) ;

U (m;m+ 1) =
X

��i2��i

��i (��i)
h
Ph (��i;m+ 1) (mh+ l) + P l (��i;m+ 1) � (m+ 1) (M �m� 1) l

i
� t (m+ 1) :
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We then have that

U (m;m)� U (m;m+ 1)

=
X

��i2��i

��i (��i)P
h (��i;m)mh+ P

l (��i;m) � (m) (M �m) l � t (m)

�
X

��i2��i

��i (��i)
�
Ph (��i;m+ 1) [mh+ l] + P l (��i;m+ 1) � (m+ 1) (M �m� 1) l

�
� t (m+ 1)

=
X

��i2��i

��i (��i)P
h (��i;m)mh+ P

l (��i;m) � (m) f(M �m� 1) l + hg � t (m)

| {z }
=U(m+1;m)

+
X

��i2��i

��i (��i)P
l (��i;m) � (m) (l � h)

�
X

��i2��i

��i (��i)
�
Ph (��i;m+ 1) (m+ 1)h+ P l (��i;m+ 1) � (m+ 1) (M �m� 1) l

�
� t (m+ 1)

| {z }
=U(m+1;m+1)

+
X

��i2��i

��i (��i)
�
Ph (��i;m+ 1) [h� l]

�
= U(m+ 1;m)� U (m+ 1;m+ 1)| {z }

=0 by Lemma 11

+
X

��i2��i

��i (��i)
�
Ph (��i;m+ 1)� P l (��i;m) � (m)

	
[h� l]

| {z }
�0 as Ph(��i;m+1)�P l(��i;m)�(m)�0

� 0:

Proof of Lemma 11.

Proof. We �rst prove a useful claim:

Claim A1 In any solution to (11), �j (�) = 0 if
Pn
i=1 �

j
i (�i) �

j
i � cn � 0.

Proof of Claim A1: From Lemma 6, we know that �j (�) > 0 only if

MX
m=1

Hj (�;m)h+
MX
m=0

Lj (�;m)
1

�m (M �m) max f0; Gm (�)g � cn � 0:

The lemma follows from the fact that

nX
i=1

�ji (�i) �
j
i � cn =

MX
m=1

Hj (�;m)h+

MX
m=0

Lj (�;m) l � cn;

and

1

�m (M �m)Gm (�) = l � �

24(h� l) MX
j=m+1

�j

35 < l:

(Proof of Lemma 11, continued:) Since we assume that (�; �; t) is not ex post e¢ cient, it must be
the case that (n � 1)h > nc. Otherwise, the ex post optimal mechanism is either to implement
if and only if �ji = h for all i (when (n� 1)h < nc < nh), or to never provide any good (when
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nh � nc). In each of these two cases, the ex post optimal mechanism is trivially implementable
under the constraints in (11). We therefore assume that (n � 1)h > nc in the remainder of the
proof. If a downwards adjacent incentive constraint does not bind, there exists some �i such thatX
��i2��i

��i (��i)
MX
j=1

�j (�) �ji (�i) �
j
i � ti (�i) >

X
��i2��i

��i (��i)
MX
j=1

�j (��i; �ijlk) �ji (�ijlk) �
j
i � ti (�ijlk)

If �ji (�ijlk) < 1; we can increase �ji (�ijlk) slightly without violating the constraint. Since (n �
1)h > nc; it follows that

P
��i2��i ��i (��i) �

j (��i; �ijlk) > 0 for every j: Hence, the value of

the objective function increases, which contradicts the assumption that (�; �; t) is an optimum

in the �rst place. Suppose instead that �ji (�ijlk) = 1: Then, we can �nd some " > 0 and raise

the tax to eti (�i) = ti (�i) + " for �i and every �0i with m
�
�0i
�
= m (�i) : This raises some extra

revenue, implying that the taxes can be lowered slightly for some other types without upsetting

the resource constraint. We can therefore proceed inductively as follows. First consider types �0i
with m

�
�0i
�
= m (�i)� 2: If �ji

�
�0i
�
< 1 we can increase the surplus by increasing �ji

�
�0i
�
for �0i with

m
�
�0i
�
= m (�i) � 2 and simultaneously decrease ti

�
�0i
�
for types with �0i = m (�i) � 1 in order to

keep the downwards incentive constraint for types with �0i = m (�i)� 1 satis�ed (as we have slack
in resource constraint this can be done). If �ji

�
�0i
�
= 1 and m (�i)� 2 � 1 repeat the argument for

types �0i with m
�
�0i
�
= m (�i) � 3: By Claim A1, it follows that the associated increased access is

always desirable from the social welfare viewpoint, so by induction, we conclude that either there

exists a feasible allocation with a higher surplus or that �ji (�i) = 1 for all �i and j; meaning that

there are no active use of exclusions in the solution. However, as we have slack in the resource

constraint we can also gain surplus by increasing �j (�) for some � unless the solution to (11) is the

ex post optimal rule.

Proof of Lemma 12.

Proof. By Lemma 7, all �diagonal� incentive constraints hold, and by Lemma 8 all downwards

constraints hold. By Lemma 11 we have that all downwards adjacent incentive constraints bind,

which, by use of Lemma 10 assures that the upwards adjacent incentive constraints hold. Finally,

Lemma 9 guarantees that all upwards incentive constraints hold. Taken together, we have then

veri�ed that all incentive constraints in (7) hold if the solution to the relaxed problem is monotonic

and di¤erent from the �rst best.

Proof of Lemma 13.

Proof. (1). First note that (19) is irrelevant when m = M; and it is immediate from (21) that

the probability of provision given (h; ��i) is always weakly higher than under (�i; ��i) for any

��i 2 ��i: Next, from (19) and (21), we know that a su¢ cient condition for monotonicity is that
1

�m(M�m) max f0; Gm (�)g is increasing in m on f0; ::::M � 1g : But,

Gm (�)

�m (M �m) = l � �

24 (h� l)
�m (M �m)

MX
j=m+1

�j

35 (A15)
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which proves the �rst part of the Lemma.

(2). If valuations are independent across goods, say the probability that an agent has a high

valuation for any good j is �; then the probability that an agent has m high valuations is given by

�m =
M !

m!(M�m)!�
m (1� �)M�m : This implies that

�m+1 =
M !

(m+ 1)! (M �m� 1)!�
m+1 (1� �)M�m�1 =

(M �m)�
(m+ 1) (1� �)�m: (A16)

Using (A16), we have that

1

�m+1 (M �m� 1)

MX
j=m+2

�j =
1

�m+1 (M �m� 1)

M�1X
j=m+1

�j+1 (A17)

=
(m+ 1) (1� �)

(M �m)� (M �m� 1)�m

M�1X
j=m+1

(M � j)�
(j + 1) (1� �)�j

=
1

(M �m)�m

M�1X
j=m+1

(m+ 1) (M � j)
(j + 1) (M �m� 1)�j

/j � m+ 1 and �M > 0/ <
1

(M �m)�m

MX
j=m+1

�j :

Since m was arbitrary, we conclude that 1
�m(M�m)

PM
j=m+1 �j is strictly decreasing in m:

Proof of Lemma 14.

Proof. All we need to check is that Gm+1 (�) > 0 is implied by Gm (�) � 0; and that Gm�1 (�) < 0
is implied by Gm (�) � 0: Both are immediate from (A15).

Proof of Lemma 15.

Proof. To prove this lemma, it turns out to be useful to consider a related auxiliary problem which

aims to maximize the average probability of provision (instead of social welfare) under the same

constraints as the relaxed problem (11):

max
f�;�;tg

X
�2�n

� (�)

MX
j=1

�j (�) (A18)

s.t. (12), (13), (14).

We �rst show in Claim A2 below that the characterization of the solution to (A18) is qualitatively

similar to the constrained welfare problem (11):

Claim A2 Let (�; �; t) be an optimal solution to (A18) and assume that
P
��i2��i ��i (��i) �

j (�i; ��i) >

0. Then,
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1. conditional on provision, all consumers get access to all their high valuation goods and the

inclusion rule for low valuation goods is given by:

�ji (�i) = � (m) �

8>><>>:
0 if Gm (1) < 0

z 2 [0; 1] if Gm (1) = 0

1 if Gm (1) > 0;

(A19)

2. there exists some � � 0 such that the provision rule for good j satis�es

�j (�) =

8>>><>>>:
0 if 1 + �

PM
m=0

h
Hj (�;m)h+ Lj (�;m) maxf0;Gm(1)g�m(M�m) � cn

i
< 0

z 2 [0; 1] if 1 + �
PM
m=0

h
Hj (�;m)h+ Lj (�;m) maxf0;Gm(1)g�m(M�m) � cn

i
= 0

1 if 1 + �
PM
m=0

h
Hj (�;m)h+ Lj (�;m) maxf0;Gm(1)g�m(M�m) � cn

i
> 0

(A20)

Proof of Claim A2: The derivation of the inclusion rules follow the analysis of the constrained

welfare problem step by step and is omitted.
To derive the provision rule, note that the optimality conditions for �j (�) associated with the

problem (A18) may be written as

� (�) +
MX
m=0

� (m)m
�
Hj (�;m)��i (��i)h+ L

j (�;m) � (m) l
�

�
M�1X
m=0

� (m+ 1)
�
Hj (�;m)��i (��i) (M �m)h+ Lj (�;m)��i (��i) � (m) [(M �m) l + (h� l)]

	
��� (�) cn+ 
j (�)� �j (�) = 0;

together with the complementary slackness conditions. By noting that
��i(��i)
�(�) = 1

�i(�i)
; we can

write the condition as

1 +
MX
m=0

� (m)

�
Hj (�;m)

m

�i (�i)
h+ Lj (�;m)

m

�i (�i)
� (m) l

�

�
M�1X
m=0

� (m+ 1)

�
Hj (�;m)

(M �m)
�i (�i)

h+ Lj (�;m)
1

�i (�i)
� (m) [(M �m) l + (h� l)]

�

��cn+ 
j (�)� �j (�)
� (�)

= 0:

Collecting terms, we get

1+
MX
m=0

Hj (�;m)

�
h

�i (�i)
[� (m)m� � (m+ 1) (M �m)]

�

+
MX
m=0

Lj (�;m)
� (m)

�i (�i)
f� (m)ml � � (m+ 1) [(M �m) l + (h� l)]g

��cn+ 
j (�)� �j (�)
� (�)

= 0:
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Using the di¤erence equation for the multipliers in (15), we can simplify this further to:

1 +
MX
m=0

Hj (�;m)h� +
MX
m=0

Lj (�;m)

�
�� (m) l � � (m)

�i (�i)
� (m+ 1) (h� l)

�
� �cn+ 
j (�)� �j (�)

� (�)
= 0:

Using (A9), we can eliminate � (m+ 1) and get

1 +
MX
m=0

Hj (�;m)h� +
MX
m=0

Lj (�;m)

8<:�� (m) l � � (m) (h� l)
�m (M �m)�

MX
j=m+1

�j

9=;� �cn+ 
j (�)� �j (�)
� (�)

= 0:

Furthermore,

�� (m) l� � (m) (h� l)
�m (M �m)�

MX
j=m+1

�j =
�� (m)

�m (M �m)

24�m (M �m) l � (h� l)
MX

j=m+1

�j

35 = �

�m (M �m) max f0; Gm (1)g ;

where Gm (�) is de�ned in (18). Substituting this back into (A8) gives

1 + �

MX
m=0

�
Hj (�;m)h+ Lj (�;m)

max f0; Gm (1)g
�m (M �m) � cn

�
+

j (�)� �j (�)

� (�)
= 0:

which, by combining with the complementary slackness conditions, gives the result.

Before getting into the details of the proof, it is also useful to observe that (A20) can be rewritten

as

�j (�) =

8>><>>:
0 if 1 + �

�Pn
i=1 Z

j (�i)� cn
�
< 0

z 2 [0; 1] if 1 + �
�Pn

i=1 Z
j (�i)� cn

�
= 0

1 if 1 + �
�Pn

i=1 Z
j (�i)� cn

�
> 0;

where

Zj
�
�i
�
=

(
h if �ji = h

maxf0;Gm(1)g
�m(M�m) if �ji = l and �ki = h for exactly m goods k 2 J :

The point with this formulation is that
�
Zj
�
�i
�	n
i=1

is a sequence of i.i.d. random variables.

Observe that Zj
�
�i
�
is bounded below by 0 and above by h, so the variance is bounded. This

allows us to use the central limit theorem to establish a �generalized paradox of voting�, which

simply states the intuitively obvious fact that the in�uence of a single agent approaches zero as the

number of agents goes out of bounds. To state this, we will now need to be careful about the fact

that the solution depends on the number of agents in the economy, and a mechanism with n agents

will therefore now be denoted by (�n; �n; tn) and the multiplier on the resource constraint will be

denoted by �n:

(Proof of Lemma 15, continued): Consider a mechanism that solves (A18) �rst. As Zj
�
�i
�
2 [0; h]

for every �i 2 �; it follows that for any pair
�
�0i; �

00
i

�
we have

E
�
�jn (�) j�0i

�
� E

�
�jn (�) j�00i

�
� Pr

241 + �n
0@h+X

k 6=i
Zj (�k)

1A� cn � 0
35� Pr

241 + �n
0@0 +X

k 6=i
Zj (�k)

1A� cn > 0
35

= Pr

241� cn
�n

� h �
X
k 6=i

Zj (�k) �
1� cn
�n

35 :
36



Let � = VAR
�
Zj
�
�i
��
: We can then rewrite the probability statement as

Pr

"
kn �

P
k 6=i Z

j (�k)� EZj (�i)
�
p
n� 1

� kn +
h

�
p
n� 1

#
;

where kn � 1�cn
�n�

p
n�1�

h
�
p
n�1�

EZj(�i)

�
p
n�1 : As � is �nite, E

�
Zj (�k)� EZj (�i)

	
= 0; and

�
Zj
�
�i
�	n
i=1

is an i.i.d. sequence, we know that the central limit theorem is applicable, thus
P
k 6=i Z

j(�k)�EZj(�i)
�
p
n�1

is asymptotically distributed as a standard normal distribution. Moreover, h
�
p
n�1 ! 0; which

together with the convergence in distribution implies that for every real number k and any " > 0;

there exists N <1 such that

Pr

"
k �

P
k 6=i Z

j (�k)� EZj (�i)
�
p
n� 1

� k +
h

�
p
n� 1

#
� 1p

2�

Z k+"

k
exp

�
y2

2

�
dy + "

for n � N: But, the standard normal is symmetric and single-peaked, so for n � N;

Pr

"
kn �

P
k 6=i Z

j (�k)� EZj (�i)
�
p
n� 1

� kn +
h

�
p
n� 1

#
� 1p

2�

Z kn+"

kn

exp

�
y2

2

�
dy + "

� 1p
2�

Z "
2

� "
2

exp

�
y2

2

�
dy + "! 0

as "! 0: The result follows.

For the case in which f�n; �n; tng1n=1 is a sequence from the solution to (11), we replace Zj (�i)

above with

Zjn (�i) =

(
h if �ji = h

maxf0;Gm(�n)g
�m(M�m) if �ji = l and if �ki = h and m (�i) = m:

By choice of subsequences such that Gm (�n) ! G�m; we can approximate
maxf0;Gm(�n)g
�m(M�m) with

maxf0;G�mg
�m(M�m) : The rest of the argument follows the one above step by step.

Proof of Proposition 3.

Proof. [PART 1] For contradiction, let there be a subsequence of feasible mechanisms with

limn!1 E
h
�jn (�)

i
= �� and limn!1 �n (em) = ��; where em is the threshold number of high goods

in the sense of Lemma 14, which without loss is taken to be constant along the sequence by choice

of converging subsequence. We use the following notations below:

� E
h
�jn (�) jm; �ji = h

i
denotes the conditional provision probability for good j perceived by

agent i given that �ji = h and �ki = h for exactly m goods k 2 J (including j). Notice that
this probability is the same for all goods by Proposition 2.

� E
h
�jn (�) j m; �ji = l

i
denotes the conditional provision probability for good j perceived by

agent i given that �ji = l and �ki = h for exactly m goods k 2 J . Again, this probability is

the same for all goods by Proposition 2.
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Note that Propositions 1 and 2 jointly imply that for every m 2 f0; ::;Mg ; there exists some
tn (m) such that the transfer tn (m) is paid by every agent i with m high valuations. The utility

(from truth-telling) is,

mhE
h
�jn (�) jm; �ji = h

i
� tn (m) if m < ememhE h�jn (�) jem; �ji = h

i
+ (M � em)�n (em) E h�jn (�) jem; �ji = l

i
l � tn (em) if m = em

mhE
h
�jn (�) jm; �ji = h

i
+ (M �m)E

h
�jn (�) jm; �ji = l

i
l � tn (m) if m > em:

Hence,

tn (m) � mhE
h
�jn (�) jm; �

j
i = h

i
for �i with m < em; (A21)

since otherwise these agents would be better o¤ not to participate.17. Similarly,

tn (em) � emhE h�jn (�) jem; �ji = h
i
+ (M � em)�n (em) E h�jn (�) jem; �ji = l

i
l for �i with m = em; (A22)

again immediately from the participation constraint (or the downwards adjacent incentive con-
straint combined with (A21)). Using (A22), we �nd

(em+ 1)hE h�jn (�) jem+ 1; �ji = h
i
+ (M � (em+ 1))E h�jn (�) jem+ 1; �ji = l

i
l � tn (em+ 1)

� emhE h�jn (�) jem; �0ji = h
i
+ �n (em) E h�jn (�) jem; �0ji = l

i
([M � (em+ 1)] l + h)� tn (em)

/(A22)/ � �n (em) E h�jn (�) jem; �0ji = l
i
([M � (em+ 1)] l + h)� (M � em)�n (em) E h�jn (�) jem; �ji = l

i
l

= �n (em) E h�jn (�) jem; �0ji = l
i
(h� l) :

Hence,

tn (em+ 1) � (em+ 1)hE h�jn (�) jem+ 1; �ji = h
i
+ (M � em� 1)E h�jn (�) jem+ 1; �ji = l

i
l (A23)

��n (em) E h�jn (�) jem; �0ji = l
i
(h� l) :

Finally, for every for every m > em+ 1; (A23) implies that

mhE
h
�jn (�) jm; �

j
i = h

i
+ (M �m)E

h
�jn (�) jm; �

j
i = l

i
l � tn (m)

� (em+ 1)hE h�jn (�) jem+ 1; �ji = h
i
+ E

h
�jn (�) jem+ 1; �ji = l

i
[(M �m) l + (m� em� 1)h]� tn (em+ 1)

� E
h
�jn (�) jem+ 1; �ji = l

i
[(m� em� 1) (h� l)] + �n (em) E h�jn (�) jem; �0ji = l

i
(h� l) ;

hence,

tn (m) � mhE
h
�jn (�) jm; �

j
i = h

i
+ (M �m)E

h
�jn (�) jm; �

j
i = l

i
l (A24)

�E
h
�jn (�) jem+ 1; �ji = l

i
[(m� em� 1) (h� l)]� �n (em) E h�jn (�) jem; �0ji = l

i
(h� l) :

From from Lemma 15, we have

lim
n!1

E
h
�jn (�) jm; �

j
i = h

i
= lim

n!1
E
h
�jn (�) jm; �

j
i = l

i
= lim

n!1
E
h
�jn (�) jem; �0ji = l

i
= lim

n!1
E
�
�jn (�)

�
= ��:

(A25)

17Strictly speaking, we only impose the participation constraint on type l: However, the downwards adjacent

incentive constraint together with the participation constraint for type l imply that all participation constraints hold.
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Combining (A25) with (A21), (A22), (A23) and (A24), it follows that, for every " > 0 there is some

N such that, whenever n � N;

1. tn (m) � ��mh+ " if m < em
2. tn (em) � �� [emh+ (M � em)��l] + "
3. tn (em+ 1) � �� [(em+ 1)h+ (M � em� 1)l � �� (h� l)] + "

4. tn (m) � �� [(em+ 1)h+ (M � em� 1)l � �� (h� l)] + " if m > em+ 1:
Summing over m, we �nd that the expected per capita transfer revenue satis�es:

MX
m=0

�mtn (m) � ��

" 
MX

m=em+1�m
!
f(em+ 1)h+ (M � em� 1)lg+ h emX

m=0

�mm

#
(A26)

+����

"
� em(M � em)l � MX

m=em+1�m
!
(h� l)

#
+ "

= �� (1� ��)
" 

MX
m=em+1�m

!
f(em+ 1)h+ (M � em� 1)lg+ h emX

m=0

�mm

#

+����

"
� em(M � em)l + MX

m=em+1�m
!
(emh+ (M � em)l) + h emX

m=0

�mm

#
+ "

= �� (1� ��)
" 

MX
m=em+1�m

!
f(em+ 1)h+ (M � em� 1)lg+ h emX

m=0

�mm

#

+����

" 
MX

m=em�m
!
(emh+ (M � em)l) + h em�1X

m=0

�mm

#
+ "

= �� f(1� ��)R (em+ 1) + ��R (em)g+ ":
Moreover, for any "; we can �nd N such that M

P
�2�n � (�) �

j
n (�) c � ��Mc � "; which in con-

junction with (A26) means that

nX
i=1

X
�i2�

�i (�i) tin (�i)�
X
�2�n

� (�)
MX
j=1

�jn (�) cn = n
X
m

�mtn (m)�M
X
�2�n

� (�) �jn (�) c (A27)

� ��f(1� ��)R (em+ 1) + ��R (em)�Mcg| {z }
<0 by hypothesis

+ 2":

We conclude that corresponding to any �� > 0; there exists " > 0 such that the right hand side of

(A27) is negative. Hence, the budget constraint (14) is violated for large n along any sequence with

non-vanishing provision probability. It thus follows that limn!1 E
h
�jn (�)

i
= 0 for any convergent

subsequence.

[PARTS 2 and 3] Consider the sequence of mechanisms
�b�n;b�n;btn� where b�jn (�) = 1 for every

n and �; where all agents get to consume all high valuation goods and the inclusion rule for low
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valuation goods is

b�n (m) =
8>><>>:

0 if m < m�

R(m�+1)�cM
R(m�+1)�R(m�) if m = m�

1 if m > m�;

and where the transfer tule is

btn (m) =
8>><>>:

mh if m < m�

m�h+ (M �m�) �l if m = m�

(m� + 1)h+ (M �m� � 1)l � �� (h� l) if m > m�;

for

�� =
R (m� + 1)� cM

R (m� + 1)�R (m�)
: (A28)

It is easy to check that truth-telling is incentive compatible and individually rational. The per
capita expected transfer under the above mechanism is

MX
m=0

�mbtn (m) = h
m��1X
m=0

�mm+ �m� [m�h+ (M �m�) ��l] (A29)

+

 
MX

m=m�+1

�m

!
[(m� + 1)h+ (M �m� � 1)l � �� (h� l)]

= (1� ��)
(
h
m�X
m=0

�mm+

 
MX

m=m�+1

�m

!
[(m� + 1)h+ (M �m� � 1)l]

)

+��

"
h

m��1X
m=0

�mm+

 
MX

m=m�

�m

!
[m�h+ (M �m�)l]

#
= (1� ��)R (m� + 1) + ��R (m�)

/(A28)/ =

�
cM �R (m�)

R (m� + 1)�R (m�)

�
R (m� + 1) +

R (m� + 1)� cM
R (m� + 1)�R (m�)

R (m�) = cM:

The feasibility constraint thus holds exactly. Thus we conclude that
�b�n;b�n;btn� is incentive feasible

for every n: The associated social surplus with the above mechanism is

S�n (�) =
MX
j=1

(
h

MX
m=1

Hj (�;m) + l

"
��Lj (�;m�) +

MX
m=m�+1

Lj (�;m)

#)
� cM; (A30)

where the notations Hj (�;m) and Lj (�;m) were explained earlier. By Lemma 14, we know that
the surplus maximizing mechanism is also characterized by some threshold m�� and some inclusion
probability given m = m�� denoted by ��; so that the associated social surplus is given by

S��n (�) =
MX
j=1

�j (�)

"
h

MX
m=1

Hj (�;m) + l

(
���Lj (�;m��) +

MX
m=m��+1

Lj (�;m)

)
� c
#
: (A31)

Notice that Hj(�;m)
n converges in probability to m

M �m and Lj(�;m)
n converges in probability to

M�m
M �m: These immediately imply that

lim
n!1

Pr

"�����S�n (�)n
� h

MX
m=0

m�m � l
"
�� (M �m�)�m� +

MX
m=m�+1

(M �m)�m

#
+ cM

����� > "

#
= 0 (A32)
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for any " > 0: Next, note that
MX
m=1

Hj (�;m)h+
MX
m=0

Lj (�;m)
1

�m (M �m) max f0; Gm (�)g � cn (A33)

converges in probability to
MX
m=1

m

M
�mh+

MX
m=0

M �m
M

�m
1

�m (M �m) max f0; Gm (�)g � cn (A34)

=
MX
m=0

nm
M
�mh+max f0; Gm (�)g

o
� cn

=
MX
m=1

m

M
�mh+

MX
m=m��+1

(1� �) (M �m) l�m +�

24�m (M �m) l � (h� l)
MX

j=m+1

�j

35� cn:
Recalling the form of the surplus maximizing provision rule in (21), we see that good j is provided

is and only if the expression in (A33) is positive. Now:

1. Suppose that m�� > m�: Then, R (m��) � cM < 0 and an argument identical with part 1

establishes that limn!1 E
h
�jn (�)

i
! 0.

2. Suppose that m�� < m� and R (m��) � cM < 0: Then an argument identical with part 1

establishes that limn!1 E
h
�jn (�)

i
! 0.

3. Suppose that m�� < m� and R (m��) � cM � 0: Then, the expression in (A34) is strictly

positive and limn!1 E
h
�jn (�)

i
! 1: The social surplus must therefore converge towards the

same expression as in (A32), but with m� replaced by m��: But, if m�� < m� surplus is

smaller because there are more exclusions.

4. Suppose that m�� = m�: If b�n (m�)! ��� < �� an argument identical with part 1 establishes

that limn!1 E
h
�jn (�)

i
! 0. If b�n (m�)! ��� > �� we have that limn!1 E

h
�jn (�)

i
! 1 and,

again, social surplus converges towards the same expression as in (A32), but with �� replaced

by ���: Again, surplus is smaller if ��� > �� since exclusions are higher.

Proof of Proposition 4.
Proof. To prove Proposition 4, we add the (non-adjacent) constraint that the highest type should
not have an incentive to pretend to be the lowest type:

0 �
X

��i2��i

��i (��i)
MX
j=1

�j (��i;h)h� ti (h)�

24 X
��i2��i

��i (��i)
MX
j=1

�j (��i; l) �
j
i (l)h� ti (l)

35 (A35)

to program (11). Let  denote the multiplier on constraint (A35). The optimality conditions with

respect to t are then

�2� (2)�  + ��2 = 0

� (2)� � (1) + �1
2
�1 = 0

2� (1) +  � � (0) + ��0 = 0;
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which are obtained just like (A2) by considering types with 2, 1 and 0 high types respectively in the

special case with two high valuations and the additional constraint (A35). It follows immediately

that:

Lemma A1 Consider m = 2: Then, there are three possibilities in the solution to the program

where (A35) has been added to (11):

1. The only binding constraints are the adjacent constraints in (11). In this case the solution is

unchanged relative to program (11) and � (2) = 1
2��2; � (1) =

1
2� (�1 + �2) and � (0) = �

2. The only binding constraints are (A35) and the downwards adjacent constraints for types with

m = 1: In this case  = ��2; � (1) = �
1
2�1 and � (0) = �

3. All constraints bind, in which case 2� (2) �  = ��2; � (1) 2
�
�12�1;�

1
2 (�1 + �2)

�
and

� (0) = �:

We now consider these possibilities in turn:

Claim A3 Suppose that �12 < �0�2
1��0

. Then (A35) binds.

Proof of Claim A3: If (A35) does not bind, Lemma A1 implies that the solution is unchanged from

(11). Simplifying the inclusion rule (19) for the special case with M = 2; we have that

� (1) �

8>><>>:
0 if G1 (�) < 0

z 2 [0; 1] if G1 (�) = 0

1 if G1 (�) > 0;

� (0) �

8>><>>:
0 if G0 (�) < 0

z 2 [0; 1] if G0 (�) = 0

1 if G0 (�) > 0;

where

G1 (�) = �1l � � (h� l)�2
G0 (�) = �02l � � (h� l) (�1 + �2)

and the provision rule (21) simpli�es to

�j (�) =

8>><>>:
0 if

�
Hj (�; 1) +Hj (�; 2)

�
h+ Lj(�;0)

2�0
max f0; G0 (�)g+ Lj(�;1)

�1
max f0; G1 (�)g � cn < 0

z 2 [0; 1] if
�
Hj (�; 1) +Hj (�; 2)

�
h+ Lj(�;0)

2�0
max f0; G0 (�)g+ Lj(�;1)

�1
max f0; G1 (�)g � cn = 0

1 if
�
Hj (�; 1) +Hj (�; 2)

�
h+ Lj(�;0)

2�0
max f0; G0 (�)g+ Lj(�;1)

�1
max f0; G1 (�)g � cn > 0:

Notice that

G1 (�)

�1
= l � � (h� l)�2

�1
< l � � (h� l)�2

2 �0�21��0

= l � � (h� l) (�1 + �2)
2�0

=
G0 (�)

2�0
;
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implying that � (1) � � (0) and �j (��i; �i) � �j (��i; ll) if �
j
i = l and �ki = h for k 6= j: Let t (0) ; t (1)

and t (2) denote transfers from types with zero, one and two high valuations respectively. Because
the downwards adjacent incentive constraint for type hh and the types with one high valuation are
binding, it follows that X

��i2��i

��i (��i)
�
�1 (��i; hh) + �

2 (��1; hh)
�
h� t (2)

| {z }
utility from truth-telling for hh

/binding DAIC for hh/ =
X

��i2��i

��i (��i)
�
�1 (��i; hl)h+ �

2 (��1; hl) � (1)h
�
� t (1)

=
X

��i2��i

��i (��i)
�
�1 (��i; hl)h+ �

2 (��1; hl) � (1) l
�
� t (1)

+
X

��i2��i

��i (��i) �
2 (��1; hl) � (1) (h� l)

/binding DAIC for hl/ =
X

��i2��i

��i (��i)
�
�1 (��i; ll) � (0)h+ �

2 (��1; ll) � (0) l
�
� t (0)

+
X

��i2��i

��i (��i) �
2 (��1; hl) � (1) (h� l)

=
X

��i2��i

��i (��i)
�
�1 (��i; ll) � (0)h+ �

2 (��1; ll) � (0)h
�
� t (0)

| {z }
utility if hh announces ll

+
X

��i2��i

��i (��i)
�
�2 (��1; hl) � (1)� �2 (��1; ll) � (0)

�
(h� l)

| {z }
�0 as �(1)��(0) and �j(��i;hl)��j(��i;ll) for every ��i

;

implying that (A35) binds or is violated, a contradiction.

Claim A4 Suppose that �12 < �0�2
1��0

. Then the downwards adjacent constraints for type hh binds.

Proof of Claim A4: For contradiction, assume thatX
��i2��i

��i (��i)
�
�1 (��i; hh) + �

2 (��1; hh)
�
h�t (2) >

X
��i2��i

��i (��i)
�
�1 (��i; hl)h+ �

2 (��1; hl) � (1)h
�
�t (1) :

(A36)

With slack in the downwards adjacent constraints for hh and a binding (A35) the optimality
conditions with respect to �2i (hl) my be written asX

��i2��i

� (��i; hl) �
2 (��i; hl) l + � (1)

X
��i2��i

��i (��i) �
2 (��i; hl) l + 


2
i (hl)� �2i (hl) = 0:

This implies that �2i (hl) = �1i (lh) = � (1) = 1 because a small increase in the low valuation
usage probability for the types with one high valuation has no e¤ect on incentives for hh if the
downwards adjacent constraints for type hh are nonbinding. After a simpli�cation (that removes
the awkwardness of the notation mentioned in footnote 16), the optimality conditions with respect
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to �1 (�) are given by the complementary slackness conditions together with�
h
�
H1 (�; 1) +H1 (�; 2)

	
+ l
�
L1 (�; 1) + � (0)L1 (�; 0)

	
� cn

�
(A37)

+� (1)
2

�1

�
H1 (�; 1)h+ L1 (�; 1) � (0) l

�
+  

1

�2
H1 (�; 2)h

� 1
�0
��i (��i) � (0)H

1 (�; 2)� � (1) � (0)
�0

�
H1 (�; 1)h+ L1 (�; 1) l

�
+� (0)

1

�0
L1 (�; 0) l � �cn+ 
1 (�)� �1 (�)

� (�)
= 0;

where 
1 (�) is for the constraint the multiplier �1 (�) � 0 and �1 (�) is the multiplier for the

constraint 1 � �1 (�) � 0: It is easy to see from (A37) that �1 (��i; lh) � �1 (��i; ll) for every ��i

as increasing L1 (�; 1) by a unit and decreasing L1 (�; 1) by a unit: Together with the fact that

� (1) � � (0) ; it follows thatX
��i2��i

� (��i) �
1 (��i; lh) � (1) �

X
��i2��i

� (��i) �
1 (��i; ll) � (0) ;

which means that the perceived probability to consume a low valuation good is weakly higher for
a consumer with a high valuation for the other good. Hence,X

��i2��i

��i (��i)
�
�1 (��i; hh) + �

2 (��1; hh)
�
h� t (2)

| {z }
utility from truth-telling for hh

/(A35)binds/ =
X

��i2��i

��i (��i)
�
�1 (��i; ll) � (0)h+ �

2 (��1; ll) � (0)h
�
� t (0)

| {z }
utility if hh announces ll

=
X

��i2��i

��i (��i)
�
�1 (��i; ll) � (0) l + �

2 (��1; ll) � (0)h
�
� t (0)

| {z }
utility if lh announces ll

+(h� l)
X

��i2��i

��i (��i) �
1 (��i; ll) � (0)

/binding DAIC for lh/ =
X

��i2��i

��i (��i)
�
�1 (��i; lh) � (1) l + �

2 (��1; lh)h
�
� t (1)

| {z }
utility from truth-telling for lh

+(h� l)
X

��i2��i

��i (��i) �
1 (��i; ll) � (0)

=
X

��i2��i

��i (��i)
�
�1 (��i; lh) � (1)h+ �

2 (��1; lh)h
�
� t (1)

| {z }
utility if hh announces lh

+(h� l)
X

��i2��i

��i (��i) �
1 (��i; ll) � (0)� (h� l)

X
��i2��i

��i (��i) �
1 (��i; lh) � (1)| {z }

�0

;

which contradicts (A36).

(Proof of Proposition 4, continued): We conclude that all constraints must bind. This immediately
implies that � (1) = � (0) : Assuming that l < c < �h it is easy to check that 0 < � (1) = � (0) < 1
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for su¢ ciently large n; which can only hold if G1 (�) = G0 (�) = 0: That means that the provision
rule for good j becomes

�j (�) =

8>><>>:
0 if

�
Hj (�; 1) +Hj (�; 2)

�
h� cn < 0

z 2 [0; 1] if
�
Hj (�; 1) +Hj (�; 2)

�
h� cn = 0

1 if
�
Hj (�; 1) +Hj (�; 2)

�
h� cn > 0;

which coincides with the provision rule if good j is provided as a stand alone good. Since the

inclusion rule is also the same as that when only good is provided, the result follows.
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B Appendix: Proofs for Results in Section 2

Proof of Proposition 1.

Claim B1 For any incentive feasible mechanism G of the form (3), there exist an incentive feasible
mechanism

G =

��
�j ; �j1; :::; �

j
n

�
j2J

; (ti)i2I

�
; (B1)

that generates the same social surplus, where �j : �n ! [0; 1] is the provision rule for good j;

�ji : � ! [0; 1] is the inclusion rule for agent i and good j;and ti : � ! R is the transfer rule for

agent i:

Proof. Consider an incentive feasible mechanism G. Pick k 2 [0; 1] arbitrarily and de�ne,

�j (�) = E��
j (�; #) =

Z 1

0
�j (�; #) d# (B2)

�ji (�i) =

8><>:
E�i�

j(�;#)!ji (�;#)

E�i�
j(�;#)

=

R
�n�i

R 1
0 �

j(�;#)!ji (�;#)d#dF(��i)R
�n�i

R 1
0 �

j(�;#)d#dF(��i)
if
R
�n�i

R 1
0 �

j (�; #) d#dF (��i) > 0

k if
R
�n�i

R 1
0 �

j (�; #) d#dF (��i) = 0

ti (�i) = E�i� (�) =

Z
�n�i

� (�) dF (��i) ;

for each � 2 �n; j 2 J and i 2 I: This is a mechanism of the form in (B1), and we will call it

G. Use of the law of iterated expectations on �j (�) and ti (�i) shows that (BB) is una¤ected when

switching from G to G: It remains to show that the surplus is unchanged, and that (IC) and (IR)
continue to hold under G: The utility of agent i of type �i 2 � who announces �̂i 2 � is

E�i
hP

j2J �
j
�
�̂i; ��i; #

�
!ji

�
�̂i; ��i; #

�
�i � �

�
�̂i; ��i

�i
in mechanism G (B3)

E�i
hP

j2J �
j
�
�̂i; ��i

�
�ji

�
�̂i

�
�i � ti

�
�̂i

�i
in mechanism G: (B4)

If
R
�n�i

R 1
0 �

j
�
�̂i; ��i; #

�
d#dF (��i) = 0; we trivially have that the payo¤s in (B3) and (B4) are

identical, whereas if
R
�n�i

R 1
0 �

j
�
�̂i; ��i; #

�
d#dF (��i) > 0; we have that

E�i�
j
�
�̂i; ��i

�
�ji

�
�̂i

�
�i = E�i�

j
�
�̂i; ��i; #

� E�i!ji ��̂i; ��i; #� �j ��̂i; ��i; #�
E�i�

j
�
�̂i; ��i; #

� (B5)

= E�i!
j
i

�
�̂i; ��i; #

�
�j
�
�̂i; ��i; #

�
�i:

Trivially, E�iti (�i) = ti (�i) = E�i� (�) ; which combined with (B5) implies that the payo¤s in (B3)

and (B4) are identical. Since the equality between (B3) and (B4) were established for any i; �i and

�̂i; it follows that all incentive and participation constraints (IC) and (IR) hold for mechanism G

given that they are satis�ed in mechanism G. Moreover, [again by (B5)]

E�i
hP

j2J �
j (�) �ji (�i) �i

i
= E�i

hP
j2J !

j
i (�; #) �

j (�; #) �i

i
; (B6)

1



so it follows by integration over � and summation over i that

E
hP

i2I
P
j2J �

j (�) �ji (�i) �i

i
= E

hP
i2I
P
j2J �

j (�; #)!ji (�; #) �i

i
; (B7)

By construction, we also have that �j (�) = E��
j (�; #) for every �: Thus E

�
�j (�)Cj (n)

�
=

E
�
�j (�; #)Cj (n)

�
; implying that

X
j2J

E�j (�)

"X
i2I

�ji (�i) �i � C
j (n)

#
=
X
j2J

E�j (�; #)

"X
i2I

!ji (�; #) �i � C
j (n)

#
: (B8)

Hence, G and G generate the same social surplus.

Claim B2 For every incentive feasible mechanism of the form (B1), there exists an anonymous

simple incentive feasible mechanism g of the form (5) that generates the same surplus.

Proof. Consider an incentive feasible simple mechanism G on form (B1). For k 2 f1; ::::; n!g ; let
Pk : I ! I denote the k-th permutation of the set of agents I. Note that P�1k (i) gives the index

of the agent who takes agent i0s position in permutation Pk: Moreover, for any given � 2 �n; let
�PK =

�
�P�1k (1); :::; �P�1k (n)

�
2 �n denote the corresponding k-th permutation of �.18 For each

k 2 f1; :::; n!g ; let Gk =
��

�jk; �
j
k1; :::; �

j
kn

�
j=1;2

; tk1; :::; tkn

�
be given by

�jk (�) = �j
�
�Pk
�

8 � 2 �n; j 2 J ; (B9)

�jki (�i) = �j
P�1k (i)

(�i) 8 �i 2 �; j 2 J ; i 2 I;

tki (�i) = tP�1k (i)(�i) 8 �i 2 �; i 2 I;

and let g =
��e�j ;e�j1; :::;e�jn�

j=1;2
;et1; :::;etn� be given by

e�j (�) = 1
n!

Pn!
k=1 �

j
k (�) 8 � 2 �n; j 2 Je�ji (�i) = Pn!

k=1 E�i[�
j
k(�)]�

j
ki(�i)Pn!

k=1 E�i[�
j
k(�)]

8 �i 2 �; i 2 I; j 2 Jeti (�i) = 1
n!

Pn!
k=1 tki (�i) 8 �i 2 �; i 2 I:

We now note that: (1) for each j 2 J ; e�j (�) = e�j ��0� if �0 is a permutation of �: This is immediate
since the sets

n
�jk (�)

on!
k=1

=
�
�j (Pk (�))

	n!
k=1

and
n
�jk
�
�0
�on!

k=1
=
�
�j
�
Pk
�
�0
��	n!

k=1
are the same;

(2) for j 2 J and each pair i; i0 2 I;e�ji (�) = e�ji0 (�) : That is, the inclusion rules are the same
for all agents. To see this, consider agent i and i0, and suppose that �i = �i0 : We then have

that
n
E�i

h
�jk (�)

i
�jki (�i)

on!
k=1

and
n
E�i0

h
�jk (�)

i
�jki0 (�i0)

on!
k=1

are identical and that E�i
�e�j (�)� =

18To illustrate, suppose n = 3;M = 2; � = (�1; �2; �3) = ((1; 2) ; (3; 2) ; (2; 1)) : Consider, for example, pur-

mutation k given by Pk (1) = 2; Pk (2) = 1; Pk (3) = 3: Then P�1k (1) = 2; P�1k (2) = 1; P�1k (3) = 3 and

�Pk =
�
�
P�1
k

(1)
; �
P�1
k

(2)
; �
P�1
k

(3)

�
= (�2; �1; �3) = ((3; 2) ; (1; 2) ; (2; 1)) :
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E�i0
�e�j (�)�; and (3) for each pair i; i0 2 I;eti (�) = eti0 (�) ; which is obvious since the sets ftki (�i)gn!k=1

and
�
tki
�
�0i
�	n!
k=1

are identical. Together, (1), (2) and (3) establishes that g is anonymous and

simple.

Now we show that g is incentive feasible and generates the same expected surplus as G. First,

since G and Gk are identical except for the permutation of the agents, we have, for k = 1; :::; n!;

X
j2J

E

(
�jk (�)

"X
i2I

�jki (�i) �
j
i � C

j (n)

#)
=
X
j2J

E

(
�j (�)

"X
i2I

�ji (�i) �
j
i � C

j (n)

#)
: (B10)

Hence,

X
j2J

E

(e�j (�)"X
i2I

e�j (�i) �ji � Cj (n)
#)

=
X
j2J

E

(
1

n!

n!X
k=1

�jk (�)

"X
i2I

Pn!
k=1 E�i�

j
k (�) �

j
ki (�i)Pn!

k=1 E�i�
j
k (�)

�ji � C
j (n)

#)

=
X
j2J

X
i2I

E�i

(
1

n!

n!X
k=1

E�i�
j
k (�) �

j
ki (�i) �

j
i

)
� E

"
1

n!

n!X
k=1

�jk (�)

#
Cj (n)

=
1

n!

n!X
k=1

X
j2J

E

(
�jk (�)

"X
i2I

�jki (�i) �
j
i � C

j (n)

#)
=
X
j2J

E

(
�j (�)

"X
i2I

�ji (�i) �
j
i � C

j (n)

#)
;

where the last equality follows from (B10). Hence the surplus generated by g is identical to that

by original mechanism G: To show that g is incentive feasible we �rst note that E�jk (�) = E�
j (�)

and E
P
i2I tki (�i) = E

P
i2I ti (�i) for all k, since the agents�valuations are drawn from identical

distributions and Gk and G only di¤er in the index of the agents. Thus

E
P
i2I eti (�i)�Pj2J Ee�j (�)Cj (n) = E

P
i2I

1
n!

Pn!
k=1 tki (�i)�

P
j2J E

1
n!

Pn!
k=1 �

j
k (�)C

j (n)

= E
P
i2I ti (�i)�

P
j2J E�

j (�)Cj (n) ;

so g satis�es (BB) if G does. Second, (IC) holds for any permuted mechanism, that is,

E�i
P
j2J �

j
k(�)�

j
ki (�i) �

j
i � tki(�i) � E�i

P
j2J �

j
k(
b�i; ��i)�jki(b�i; ��i)�ji � tki(b�i; ��i) (B11)

for all i 2 I; and �i;b�i 2 �. Hence,
E�i

X
j2J

e�j(�)e�j (�i) �ji � et(�i) = E�iX
j2J

"
1

n!

n!X
k=1

�jk (�)

# Pn!
k=1 E�i

�
�jk (�)

�
�jki (�i)Pn!

k=1 E�i
�
�jk (�)

� �ji �
1

n!

n!X
k=1

tki (�i)

=
1

n!

n!X
k=1

"
E�i

X
j2J

�jk (�) �
j
ki (�i) �

j
i � tki (�i)

#
� 1

n!

n!X
k=1

"
E�i

X
j2J

�jk(
b�i; ��i)�jki(b�i; ��i)�ji � tki(b�i; ��i)

#

= E�i
X
j2J

1

n!

n!X
k=1

�jk(
b�i; ��i)�jki(b�i; ��i)�ji � 1

n!

n!X
k=1

tki(b�i; ��i) =X
j2J

E�ie�j(b�i; ��i)e�ji �b�i� �ji � et(b�i); (B12)
where the inequality follows from (B11). Hence g is satis�es (IC). Finally, g also satis�es the (IR)

because (see the second line in (B12)) all the permuted mechanisms satisfy participation constraints.

Proposition 1 follows by combining Claims B1 and B2.

Proof of Proposition 2.
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Notation: This proof requires us to be explicit about the coordinates of the vector � when per-

muting J . We therefore need some extra notation for this proof (only). We will, with some abuse
of notation, write F (�) � �i2IF (�i) and F (��i) � �k2IniF (�k) as the joint distribution of � and
��i respectively. We write �

�j
i =

�
�1i ; :::; �

j�1
i ; �j+1i ; :::; �Mi

�
for a type vector where good j has

been removed. Analogously, ��j =
�
��j1 ; :::; ��jn

�
stands for the type pro�le with good j coordinate

removed for all agents and �j =
�
�j1; :::; �

j
n

�
is the vector collecting the valuations for good j for

all agents. Furthermore, ��j�i =
�
��j1 ; :::; ��ji�1; �

�j
i+1; :::; �

�j
n

�
and �j�i =

�
�j1; :::; �

j
i�1; �

j
i+1:::; �

j
n

�
are

used for the vectors obtained respectively from ��j and �j by removing agent i: These conventions

are used also on the distributions, so, for example, F�j�i denotes the cumulative distribution of

��j�i : Conditional distributions are denoted in the natural way: for example F
�j
�i

�
�j �ji

�
denotes the

joint distribution of ��j�i conditional on �
j
i : Since no integrals are taken over subsets of the range

of integration, we also conserve space and write
R
� h (�) dF (�) rather than

R
�2�n h (�) dF (�) when

integrating a function h over � and similarly for integrals over various components of �:

Proof. Consider a simple anonymous incentive feasible mechanism g. For k 2 f1; :::;M !g let

Pk : J ! J be the k-th permutation of J and �Pki =

�
�
P�1k (1)
i ; :::; �

P�1k (M)
i

�
2 � be the per-

mutation of �i when the goods are permuted according to Pk: Let �Pk =
�
�Pk1 ; :::; �Pkn

�
2 �n

denote the corresponding permutation of �:19 For each k 2 f1; :::;M !g de�ne mechanism gk =

(
n
�jk

o
j2J

;
n
�jk

o
j2J

; tk), where for every � 2 �n;

1. �jk (�) = �P
�1
k (j)

�
�Pk
�
for every j 2 J ;20

2. �jk (�i) = �P
�1
k (j)

�
�Pki

�
for every j 2 J ;21

3. tk (�i) = t
�
�Pki

�
:

By construction, each gk is simple. Each gk is also anonymous by the anonymity of g: Using
the de�nition of gk and manipulating the result by observing that the labeling of the variables is

19To illustrate, suppose n = 2;M = 3; and � = (�1; �2) = ((1; 2; 0) ; (3; 2; 1)) : Consider, for example, pur-

mutation k given by Pk (1) = 2; Pk (2) = 1; Pk (3) = 3: Then P�1k (1) = 2; P�1k (2) = 1; P�1k (3) = 3 and

�
Pk
1 =

�
�
P�1
k

(1)

1 ; �
P�1
k

(2)

1 ; �
P�1
k

(3)

1

�
= (2; 1; 0) ; �

Pk
2 =

�
�
P�1
k

(1)

2 ; �
P�1
k

(2)

2 ; �
P�1
k

(3)

2

�
= (2; 3; 1) ; �Pk =

�
�
Pk
1 ; �

Pk
2

�
=

((2; 1; 0) ; (2; 3; 1)) :

20This implies that �
P�1
k

(j)

k

�
�Pk

�
= �j (�) for every j 2 J :

21This implies that �
P�1
k

(j)

k

�
�
Pk
i

�
= �j (�i) for every j 2 J .
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irrelevant, we get:22

E�jk (�) �
j
k(�i)�

j
i =

Z
�

�jk (�) �
j
k(�i)�

j
idF (�) /def of gk/ =

Z
�2�n

�P
�1
k

(j)
�
�Pk

�
�P

�1
k

(j)
�
�
Pk
i

�
�jidF (�)

=

Z
�j

�Z
��j

�P
�1
k

(j)
�
�Pk

�
�P

�1
k

(j)
�
�
Pk
i

�
�jidF

�j
�
��j

��� �j�� dFj ��j� (B13)

/relabel/ =

Z
�
P
�1
k

(j)

24Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�j

0@���j�Pk ���� �P
�1
k

(j)| {z }
j-th argument

1A35 dFj ��P�1k
(j)
�

where we recall, �
��j
�Pk � ��P�1k (1); :::; �P

�1
k (j�1); �P

�1
k (j+1); :::; �P

�1
k (n)

�
: (B14)

By exchangeability, we have

dF�j

0@���j�Pk ��� �P
�1
k (j)| {z }

j-th (vector) argument

1A (B15)

= dF�j
�
�P

�1
k (1); :::; �P

�1
k (j�1); �P

�1
k (j+1); :::; �P

�1
k (n)jj-th (vector) argument = �P

�1
k (j)

�
= dF�j

�
��j jj-th (vector) argument = �P

�1
k (j)

�
= dF�P

�1
k (j)

�
��P

�1
k (j)jP�1k (j) -th (vector) argument = �P

�1
k (j)

�
;

and

dFj
�
�P

�1
k (j)

�
= dF�

P�1
k

(j)
�
�P

�1
k (j)

�
: (B16)

Using (B13), (B15) and (B16), we have that

E�jk (�) �
j
k(�i)�

j
i (B17)

=

Z
�
P
�1
k

(j)

24Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�j

0@���j�Pk ���� �P
�1
k

(j)| {z }
j-th argument

1A35 dFj ��P�1k
(j)
�

=

Z
�
P
�1
k

(j)

264Z
(��j)Pk

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF�P
�1
k

(j)

0B@��P�1k
(j)j �P

�1
k

(j)| {z }
P�1
k

(j)-th argument

1CA
375 dFP

�1
k

(j) �
�P

�1
k

(j)
�

=

Z
�

�P
�1
k

(j) (�) �P
�1
k

(j) (�i) �
P�1
k

(j)

i dF (�) = E�P
�1
k

(j) (�) �P
�1
k

(j)(�i)�
P�1
k

(j)

i :

Moreover, exchangeability implies that Etk (�i) = Et
�
�Pki

�
= Et (�i) : The ex ante utility,

E
h PM

j=1
�jk (�) �

j
k(�i)�

j
i � tk (�i)

i
=

� PM
j=1

E�P
�1
k (j) (�) �P

�1
k (j)(�i)�

P�1k (j)
i

�
� Et (�i),

Same elements in J and�
P�1k (1) ; :::; P�1k (M)

	 ,
=

h PM
j=1

E�j (�) �j(�i)�
j
i

i
� Et (�i) ; (B18)

22 It is important to point out that, in reaching the fourth equality in (B13), we can relabel the integrating varibles

(since they are dummies) but not the integrating functions.
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is thus unchanged when changing from g to gk. The same steps as in (B13) through (B17) (only

somewhat simpler) establishes that E�jk (�) = E�
P�1k (j) for every j, implying that

E
h PM

j=1
�jk (�)C

j (n)� P
i
tk (�i)

i
=

h
C (n) E

PM
j=1

�jk (�)�
P
i
Etk (�i)

i
(B19)

=
h
C (n) E

PM
j=1

�j (�)� P
i
Et (�i)

i
= E

h PM
j=1

�j (�)C (n)� P
i
t (�i)

i
;

so the feasibility constraint is una¤ected when changing from g to gk: Next, write Write U(�i; �0i; g)

and U(�i; �0i; gk) for the expected utility from announcing �
0
i when the true type is �i in mechanisms

g and gk respectively. Next, by a calculation in the same spirit as (B13) through (B17):

E�i�
j
k

�
��i; �

0
i

�
=

Z
��i

�jk
�
��i; �

0
i

�
dF�i (��i) /def of gk/ =

Z
��i

�P
�1
k

(j)
��
��i; �

0
i

�Pk� dF�i (��i)
=

Z
�
j
�i

"Z
�
�j
�i

�P
�1
k

(j)
��
��i; �

0
i

�Pk� dF�j�i ���j�i ��� �j�i�
#
dFj�i

�
�j�i

�
(B20)

/relabel/ =

Z
�
P
�1
k

(j)

�i

"Z
�
�P�1

k
(j)

�i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF�j�i

��
��j�i

�Pk ���� �P�1k
(j)

�i

�#
dFj�i

�
�
P�1
k

(j)

�i

�

/exchangeability/ =

Z
�
P
�1
k

(j)

�i

"Z
�
�P�1

k
(j)

�i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF

�P�1
k

(j)

�i

�
�
�P�1

k
(j)

�i

���� �P�1k
(j)

�i

�#
dFj�i

�
�
P�1
k

(j)

�i

�
=

Z
��i

�P
�1
k

(j)
�
��i; �

0Pk
i

�
dF�i (��i) = E�i�

P�1
k

(j)
�
��i; �

0Pk
i

�
That is, the perceived probability of getting j when announcing �0i in mechanism gk is the same as

the perceived probability of getting good P�1k (j) when announcing
�
�0i
�Pk ; so that

U(�i; �
0
i; gk) = E�i

PM
j=1

�jk
�
��i; �

0
i

�
�jk(�

0
i)�

j
i � tk

�
�0i
�

(B21)

=
PM
j=1

�
P�1k (j)

k (
�
�0i
�Pk)�jiE�i�P�1k (j)

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk� ;

whereas

U(�i; �
0
i; g) =

MX
j=1

�jk(�
0
i)�

j
iE�i�

j
k

�
��i; �

0
i

�
� t
�
�0i
�
) (B22)

U(�i; �
0
i; g)

��
�i=�

Pk
i

�0i=�
0Pk
i

=
PM
j=1 �

j
k(
�
�0i
�Pk)�P�1k (j)

i E�i�
j
k

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk�

=
PM
j=1

�
P�1k (j)

k (
�
�0i
�Pk)�jiE�i�P�1k (j)

k

�
��i; �

0Pk
i

�
� t
��
�0i
�Pk�

= U(�i; �
0
i; gk);

which establishes that type �i who announces �0i in mechanism gk gets the same utility as type �
Pk
i

who announces
�
�0i
�Pk in mechanism g: Hence incentive compatibility and individual rationality

of gk follows from incentive compatibility and individual rationality of g: Now, construct a new
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mechanism eg = (�e�j	
j2J ;

�e�j	
j2J ;

et) by letting
e�j (�) = 1

M !

PM !
k=1 �

j
k (�) =

1
M !

PM !
k=1 �

P�1k (j)
�
�Pk
�

(B23)

e�j (�i) =

PM !
k=1 �

j
k (�i) E�i�

j
k (�)PM !

k=1 E�i�
j
k (�)

=

PM !
k=1 �

P�1k (j)
�
�Pki

�
E�i�

P�1k (j)
�
�Pk
�

PM !
k=1 E�i�

P�1k (j)
�
�Pk
�

et (�i) = 1
M ! tk (�i) =

1
M ! t

�
�Pki

�
let P : J ! J be an arbitrary perturbation of the set of goods. Then,

e�P�1(j) ��P � = 1
M !

PM !
k=1 �

P�1k (P
�1(j))

��
�P
�Pk� = 1

M !

PM !
k=1 �

P�1k (j)
�
�Pk
�
= e�j (�) ; (B24)

since the sets
n
�P

�1
k (P

�1(j))
��
�P
�Pk�oM !

k=1
and

n
�P

�1
k (j)

�
�Pk
�oM !

k=1
are identical. Furthermore

e�P�1(j) ��Pi � = PM !
k=1 �

P�1
k (P

�1(j))
k

�
(�Pi )

Pk
�
E�i�

P�1
k (P

�1(j))
k

�
(�P )

Pk
�

PM !
k=1 E�i�

P�1
k (P�1(j))

k

�
(�P )

Pk
�

=

PM !
k=1 �

P�1
k

(j)
�
�
Pk
i

�
E�i�

P�1
k

(j)(�Pk)PM !
k=1 E�i�

P�1
k

(j)(�Pk)
= e�j (�i)

(B25)

for the same reason. It is obvious that et ��Pi � = et (�i) ; which together with (B24) and (B25)
establishes that eg is symmetric. To complete the proof we need to show that eg is incentive feasible
and generates the same surplus as g: We note that

Ee�j (�)e�j (�i) �ji = 1
M !

PM !
k=1 E�

j
k (�)

PM !
k=1 �

j
k(�i)E�i�

j
k(�)PM !

k=1 E�i�
j
k(�)

�ji

= 1
M !E�i

PM !
k=1

�
E�i�

j
k (�)

PM !
k=1 �

j
k(�i)E�i�

j
k(�)PM !

k=1 E�i�
j
k(�)

�ji

�
= 1

M !E
hPM !

k=1 �
j
k (�i) �

j
k (�) �

j
i

i
) E

PM
j=1

he�j (�)e�j (�i) �ji � et (�i)i = 1
M !

PM !
k=1 E

hPM
j=1 �

j
k (�i) �

j
k (�) �

j
i � tk (�i)

i
/(B17) & (B18)/ = E

hPM
j=1 �

j (�i) �
j (�) �ji � t (�i)

i
;

which establishes that the ex ante utility from eg and g are the same for all agents. Moreover,
E
hPM

j=1 e�j (�)Cj (n)�Pn
i=1
et (�i)i = E hC (n)PM

j=1
1
M !

PM !
k=1 �

j
k (�)�

Pn
i=1

PM !
k=1

1
M ! tk (�i)

i
=
PM !
k=1 E

h
C (n)

PM
j=1 �

j
k (�)�

Pn
i=1 tk (�i)

i
/ (B19)/

= 1
M !

PM !
k=1 E

hPM
j=1 �

j (�)C (n)�
Pn
i=1 t (�i)

i
= E

hPM
j=1 �

j (�)Cj (n)�
Pn
i=1 t (�i)

i
;

so the budget balance constraint is una¤ected. All incentive compatibility constraints hold since,

U(�i; �
0
i; eg) =

MX
j=1

e�j(�0i)�jiE�ie�j ���i; �0i�� et ��0i�
=

PM !
k=1 �

j
k(�

0
i)E�i�

j
k(��i;�

0
i)PM !

k=1 E�i�
j
k(��i;�

0
i)

E�i
h
1
M !

PM !
k=1 �

j
k

�
��i; �

0
i

�i
� 1

M !

PM !
k=1 tk

�
�0i
�

= 1
M !

PM !
k=1

h
�jk
�
�0i
�
E�i�

j
k

�
��i; �

0
i

�
� tk

�
�0i
�i

/ (B21)/ = 1
M !

PM !
k=1 U(�i; �

0
i; gk) � / IC for each k/ 1

M !

PM !
k=1 U(�; gk ) = U(�; eg):

By the same calculation, U(�; eg) = 1
M !

PM !
k=1 U(�; gk) � 0; since all participation constraints hold

for each k: This completes the proof.
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