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ABSTRACT

This paper uses the invariance principle to solve the incidental parameter problem. We seek group
actions that preserve the structural parameter and yield a maximal invariant in the parameter space
with fixed dimension. M-estimation from the likelihood of the maximal invariant statistic yields the
maximum invariant likelihood estimator (MILE). We apply our method to (i) a stationary autoregressive
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normal when errors are Gaussian. In an instrumental variable (IV) model, this paper unifies asymptotic
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obtain a large N, fixed T bound; this bound coincides with Hahn and Kuersteiner's (2002) bound when
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1 Introduction

The maximum likelihood estimator (MLE) is a commonly used procedure to

estimate a parameter in stochastic models. Under regularity conditions, the MLE

is not only consistent but also has asymptotic optimality properties (e.g., Le Cam

and Yang (2000)). In the presence of incidental parameters, however, the MLE of

structural parameters may not even be consistent. This failure occurs because the

dimension of incidental parameters increases with the sample size, affecting the ability

of MLE to consistently estimate the structural parameters. This is the so-called

incidental parameter problem after the seminal paper by Neyman and Scott (1948).

Lancaster (2000) and Arellano and Honoré (1991) provide excellent overviews of the

subject.

This paper appeals to the invariance principle to solve the incidental parame-

ter problem. We propose to find a group action that preserves the model and the

structural parameter. This yields a maximal invariant statistic. Its distribution de-

pends on the parameters only through the maximal invariant in the parameter space.

Maximization of the invariant likelihood yields the maximum invariant likelihood es-

timator (MILE). Distinct group actions in general yield different estimators. We seek

group actions whose maximal invariant in the parameter space has fixed dimension

regardless of the sample size.

As is customary in the literature, we illustrate our approach with a series of

examples.

Section 3 considers two groups of transformations that completely discard the inci-

dental parameters. The first example is the stationary autoregressive model with fixed

effects. For a particular group action, our solution coincides with Andersen’s (1970)

conditional and Lancaster’s (2002) integrated likelihood approaches. The invariance

principle also provides a new perspective on the marginal likelihood approach, e.g.,

Arellano (2003, Section 2.4.3). The second example is the monotonic transformation

model. The proposed transformation is agent-specific and has infinite dimension. The

conditional and integrated likelihood approaches do not seem to be applicable here.

The invariant principle provides an estimator that is consistent and asymptotically

normal under the assumption of normal errors.

We then proceed to the two main sections of the paper.

Section 4 considers an instrumental variable (IV) model with N observations and

K instruments. In this section, we provide a likelihood maximization approach. It

unifies asymptotic results under both the strong instruments (SIV) and many weak

instruments (MWIV) asymptotics, e.g., Kunitomo (1980), Morimune (1983), and
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Bekker (1994). This framework parallels standard M-estimation in problems in which

the number of parameters does not change with the sample size. In particular, we

are able to (i) show consistency of the MLE in the IV setup even under MWIV as-

ymptotics from the perspective of likelihood maximization; (ii) derive the asymptotic

distribution of the MLE directly from the objective function under SIV and MWIV

asymptotics; and (iii) provide an explanation for optimality of MLE within the class

of regular invariant estimators.

Section 5 presents a simple dynamic panel data model with N individuals and T

time periods. We propose to use MILE based on the orthogonal group of transforma-

tions. This estimator is consistent as long as NT goes to infinity (regardless of the

relative rate of N and T ) and asymptotically normal under (i) large N , fixed T ; and

(ii) large N , large T asymptotics when the autoregressive parameter is smaller than

one. We derive a bound for large N , fixed T asymptotics when errors are normal; our

bound coincides with Hahn and Kuersteiner’s (2002) bound when T → ∞. MILE

reaches (i) our bound when N is large and T is fixed; and (ii) Hahn and Kuersteiner’s

(2002) bound when both N and T are large. Finally, this paper provides further

support to work by Arellano and Bond (1991) and Ahn and Schmidt (1995) from

a maximal invariant perspective. Together with Chamberlain and Moreira (2006),

we establish a connection between the GMM/MD and the integrated likelihood ap-

proaches in the dynamic panel data model.

Section 6 compares MILE with existing fixed-effects estimators for the dynamic

panel data model.

Section 7 provides proofs for our results.

2 The Maximum Invariant Likelihood Estimator

Let Pγ,η denote the distribution of the data set Y ∈ Y when the structural

parameter is γ ∈ Γ and the incidental parameter is η ∈ N: L (Y ) = Pγ,η ∈ P.

We seek a group G and actions A1 (·, Y ) and A2(·, (γ, η)) in the sample and

parameter spaces that preserve the model P:

L (Y ) = Pγ,η ⇒ L (A1 (g, Y )) = PA2(g,(γ,η)), for any Pγ,η ∈ P.

We are interested in γ. This yields the following definition.

Definition 1 Suppose that A2 : G×Γ×N → Γ×N induces an action A3 : G×N →
N such that

A2(g, (γ, η)) = (γ,A3(g, η)).
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Then the parameter γ is said to be preserved. The incidental parameter space N is

preserved if

N = {η ∈ N; η = A3(g, η̃) for some η̃ ∈ N} .

Suppose that both γ and N are preserved. We then can appeal to the invariance

principle and focus on invariant statistics φ(Y ) in which φ (A1 (g, Y )) = φ (Y ) for

every Y ∈ Y and g ∈ G. Any invariant statistic can be written as a function of a

maximal invariant statistic defined below.

Definition 2 A statistic M ≡ M(Y ) is a maximal invariant in the sample space if

M(Ỹ ) = M (Y ) if and only if Ỹ = A1 (g, Y ) for some g ∈ G.

Comment: If M is a maximal invariant then c̃ · M is also a maximal invariant

statistic (for any scalar c̃ 6= 0). This shows that the maximal invariant statistic is not

unique.

An orbit of G is an equivalence class of elements Y , where Ỹ ∼ Y (mod G) if

there exists g ∈ G such that Ỹ = A1 (g, Y ). By definition, M is a maximal invariant

statistic if it is invariant and takes distinct values on different orbits of G. Every

invariant procedure can be written as a function of a maximal invariant. Hence, we

restrict our attention to the class of decision rules that depend only on the maximal

invariant statistic. An analogous definition holds for the parameter space.

Definition 3 A parameter θ ≡ θ(γ, η) is a maximal invariant in the parameter space

if θ(γ, η) is invariant and takes different values on different orbits of G: Oγ,η =

{A2 (g, (γ, η)) ∈ Γ×N; for some g ∈ G}.

The distribution of a maximal invariant M depends on (γ, η) only through θ. If

A2 : G×Γ×N → Γ×N induces a group action A3 : G×N → N, then θ ≡ (γ, λ),

where λ ∈ Λ is the maximal invariant in the nuisance parameter space N. The

parameter set Λ is allowed to be the empty set.

Definition 4 Let f(M ; θ) be the pdf/pmf of a maximal invariant statistic (we shall

abbreviate f(M ; θ) as the invariant likelihood). The maximum invariant likelihood

estimator (MILE) is defined as

θ̂ ≡ arg max
θ∈Θ

f(M ; θ).
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Comments: 1. Hereinafter, we assume the set Θ to be compact.

2. In general, different group actions A1 (·, Y ) and A2(·, (γ, η)) yield different

estimators. Hence, a better notation for θ̂ would indicate its dependence on the

choice of group actions. For brevity, we omit its dependence here.

3. Suppose that G = {1}, A1 (g, Y ) = Y , and A3 (g, η) = η. Then M = Y is

a maximal invariant statistic and θ = (γ, η) is a maximal invariant parameter. This

shows that MILE is a generalization of the MLE concept.

4. In general we seek group actions A1 (·, Y ) and A2(·, (γ, η)) that preserve the

model P and the structural parameter γ, and yield a maximal invariant λ in N which

has fixed dimension with the sample size.

5. MILE is a marginal approach. The use of invariance suggests which likelihoods

we should maximize.

We introduce some additional notation. The superscript ∗ indicates the true value

of a parameter, e.g., γ∗ is the true value of the structural parameter γ. The subscript

N denotes dependence on the sample size N , e.g., λ∗N is the true value of the maximal

invariant λ when the sample size is N . In addition, let 1T be a T -dimensional vector

of ones, Oj×k be a j × k matrix with entries zero, ej be a vector with entry j equals

one and other entries zero.

Hereinafter, additional notation is specific to each example.

3 Transformations Within Individuals

In this section, we present three examples of transformations within individuals.

Instead of Pγ,η, we work with P i
γ,ηi

, the probability of the model for agent i. This

clarifies our exposition and highlights the fact that the likelihood of each maximal

invariant M = (M1, ..., MN) is the sum of marginal likelihoods. In all examples below,

the maximal invariant in the parameter space is θ = γ, with the objective function

simplifying to

QN (θ) =
1

N

N∑
i=1

ln fi (mi; θ) , (1)

where fi (mi; θ) is the marginal density of the maximal invariant Mi for each individual

i. Because the MILE θ̂N maximizes QN (θ), consistency, asymptotic normality, and

optimality of θ̂N follow from standard results.
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Lemma 1 Let QN (θ) be defined as in (1) and take all limits as N →∞.

(a) Suppose that (i) sup θ∈Θ|QN(θ) − Q(θ)| →p 0 for a fixed, nonstochastic function

Q(θ), and (ii) ∀ε > 0, inf θ/∈B(θ∗,ε)Q(θ) > Q(θ∗). Then

θ̂N →p θ∗.

(b) Suppose that (i) θ̂N →p θ∗, (ii) θ∗ ∈ int (Θ), (iii) QN (θ) is twice continuously

differentiable in some neighborhood of θ∗, (iv)
√

N∂QN (θ∗) /∂θ →d N (0, I (θ∗)), and

(v) sup θ∈Θ|∂2QN (θ∗) /∂θ∂θ′ + I (θ) | →p 0 for some nonstochastic matrix that is

continuous at θ∗ where I (θ∗) is nonsingular. Then

√
N(θ̂N − θ∗) →d N(0, I (θ∗)−1).

(c) Suppose that (i) {QN(θ); θ ∈ Θ} is differentiable in quadratic mean at θ∗ with non-

singular information matrix I (θ∗) , and (ii)
√

N(θ̂N−θ∗) = I (θ∗)−1
√

N∂QN (θ∗) /∂θ+

oQN (θ∗) (1). Then

ln
QN(θ + h ·N−1/2)

QN(θ)
= h′SN − 1

2
h′I (θ∗) h + oQN (θ∗) (1) ,

where SN →d N (0, I (θ∗)) under QN (θ∗), and θ̂N is the best regular invariant esti-

mator of θ∗.

3.1 A Linear Stationary Panel Data Model

As an introductory example, consider a linear stationary panel data model with

exogenous regressors and fixed effects:

yit = ηi + x′itβ + uit,

where yit ∈ R and xit ∈ RK are observable variables; uit are unobservable (possibly

autocorrelated) errors, i = 1, ..., N , t = 1, ..., T ; ηi ∈ R are incidental parameters,

i = 1, ..., N ; and γ = (β, σ2) ∈ RK × R are the structural parameters.

The model for yi· = [yi1, ..., yiT ]′ ∈ RT conditional on xi· = [xi1, ..., xiT ]′ ∈ RT×K is

yi·
iid∼ N

(
ηi1T + xi·β, σ2ΣT

)
, where ΣT =

1

1− ρ2




1 ρ · · · ρT−1

ρ 1
...

. . .

ρT−1 1




(2)

This is Example 3 of Lancaster (2002).
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Both the model and the structural parameter γ = (β, σ2, ρ) are preserved by

translations g · 1T (where g is a scalar):

yi· + g · 1T
iid∼ N

(
(ηi + g)1T + xi·β, σ2ΣT

)
.

Proposition 1 Let g be elements of the real line with g1 ◦g2 = g1 +g2. If the actions

on the sample and parameter spaces are, respectively, A1 (g, yi·) = (yi· + g · 1T ) and

A2 (g, (β, σ2, ρ, ηi)) = (β, σ2, ρ, ηi + g), then

(a) the vector Mi = Dyi· is a maximal invariant in the sample space, where D is a

T − 1× T differencing matrix with typical row (0, ..., 0, 1,−1, 0, ..., 0),

(b) γ is a maximal invariant in the parameter space, and

(c) Mi ≡ M (yi·)
iid∼ N (Dxi·β, σ2DΣT D′) with density at mi = Dyi· given by

fi

(
mi; β, ρ, σ2

)
=

(
2πσ2

)− (T−1)
2 |DΣT D′|−1/2

× exp

{
− 1

2σ2
(yi· − xi·β)′ D′ (DΣT D′)−1

D (yi· − xi·β)

}
.

Comments: 1. The density fi (mi|β, ρ, σ2) is free of the incidental parameter ηi (as

it should be).

2. Under the assumption that 1
N

∑N
i=1 vec(xi·)vec(xi·)′ →p ΩXX p.d., we can use

Lemma 1 to show that θ̂N is consistent and asymptotically normal.

3. Maximization of the invariant likelihood coincides with maximization of the

integrated likelihood if the prior on ηi is left unrestricted, e.g., Arellano (2003, Section

2.4). The use of invariance gives an additional result, with θ̂N = (β̂N , σ̂2
N , γ̂N) being

asymptotically optimal within the class of invariant regular estimators.

Finally, we give an example in which MILE may not be admissible. Suppose that

ρ is known to be equal to zero. The model given by (2) simplifies to

yi·
iid∼ N

(
ηi1T + xi·β, σ2IT

)
, (3)

which is Example 2 of Lancaster (2002). The Proposition 1(a),(b) still holds true.

The density of Mi at mi = Dyi· is given by

fi

(
mi; β, σ2

)
=

(
2πσ2

)− (T−1)
2 |DD′|−1/2

× exp

{
− 1

2σ2
(yi· − xi·β)′ D′ (DD′)−1

D (yi· − xi·β)

}
.
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The MILE estimator θ̂N = (β̂N , σ̂2
N) is given by

β̂N =

∑N
i=1 x′i·D

′ (DD′)−1 Dyi·∑N
i=1 x′i·D′ (DD′)−1 Dxi·

and

σ̂2
N =

1

N (T − 1)

N∑
i=1

(yi· − xi·β̂N)′D′ (DD′)−1
D(yi· − xi·β̂N).

The estimator β̂N is unbiased, but the estimator σ̂2
N is biased and not even admissible

for a quadratic loss function. This example shows that the MILE method yields

consistent, but not necessarily admissible estimators of structural parameters.1

3.2 A Linear Transformation Model

Consider a simple panel data transformation model:

ηi (yit) = x′itβ + uit,

where yit ∈ R and xit ∈ RK are observable variables; uit ∈ R are unobservable errors,

i = 1, ..., N , t = 1, ..., T , with T > K; ηi : R→ R is an unknown, continuous, strictly

increasing incidental function; and β ∈ RK is the structural parameter. Unlike Abre-

vaya (2000), we shall parameterize the distribution of the errors: uit
iid∼ N (αi, σ

2).

Because of location and scale normalizations, we shall assume without loss of gener-

ality that uit
iid∼ N (0, 1).

The model for yi· = (yi1, yi2, ..., yiT ) ∈ RT is then given by

P (yi· ≤ v) =
T∏

t=1

Φ (ηi (vt)− x′itβ) , where v = [v1, v2, ..., vT ]′ .

Both the model and the structural parameter γ ≡ β are preserved by continuous,

strictly increasing transformations.

Proposition 2 Let g be elements of the group of continuous, strictly increasing

transformations, with g1 ◦ g2 = g1(g2). If the actions on the sample and parame-

ter spaces are, respectively, A1 (g, (yi1, yi2, ..., yiT )) = (g(yi1), g(yi2), ..., g(yiT )) and

A2 (g, (β, ηi)) = (β, ηi(g)), then

1We can of course fix this problem by finding the model for Y = vec(y1·, ..., yN ·) and considering
an action group that eliminates both the structural parameter β and the incidental parameters ηi,
e.g., Harville (1974). This yields a likelihood whose maximum likelihood estimator of σ2 is unbiased
and consistent as N →∞.
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(a) the statistic Mi = (Mi1, ...,MiT ) is the maximal invariant in the sample space,

where Mit is the rank of yit in the collection yi1, ..., yiT ,

(b) the vector β is the maximal invariant in the parameter space, and

(c) Mi, i = 1, ..., N , are independent with marginal probability mass function of Mi

at mi given by

fi (mi1, ..., miT ; β) =
1

T !
E

[
exp

{(
T∑

t=1

V(mit)x
′
it

)
β

}]
exp

{
−1

2
β′

(
T∑

t=1

xitx
′
it

)
β

}
,

where V(1), ..., V(T ) is an ordered sample from a N (0, 1) distribution.

The likelihood of the maximal invariant also yields semiparametric methods. For

example, consider the case in which T = 2. If x′i2β > x′i1β, then it is likely that yi2 >

yi1. This yields the semiparametric estimator of Abrevaya (2000). This estimator

maximizes

Qn (β) =
1

N

N∑
i=1

{H (yi2, yi1) I (4x′iβ > 0) + H (yi1, yi2) I (4x′iβ < 0)}

where H is an arbitrary function increasing in the first and decreasing in the second

argument. This estimator is very appealing as it is consistent under more general error

distributions. For asymptotic normality, Abrevaya (2000) proposes to smoothen the

objective function to obtain asymptotic normality whose convergence rate can be

made arbitrarily close to N−1/2. In contrast, the MILE estimator suggested here

does not require arbitrary choices of H or smoothing.

4 An Instrumental Variables Model

Consider a simple simultaneous equations model with one endogenous variable,

multiple instrumental variables (IVs), and errors that are normal with known co-

variance matrix. The model consists of a structural equation and a reduced-form

equation:

y1 = y2β + u,

y2 = Zπ + v2,

where y1, y2 ∈ RN and Z ∈ RN×K are observed variables; u, v2 ∈ RN are unobserved

errors; and β ∈ R and π ∈ RK are unknown parameters. The matrix Z has full
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column rank K; the N × 2 matrix of errors [u :v2] is assumed to be iid across rows

with each row having a mean zero bivariate normal distribution with a nonsingular

covariance matrix; π is the incidental parameter; and β is the parameter of interest.

The two equation reduced-form model can be written in matrix notation as

Y = Zπa′ + V,

where Y = [y1 : y2], V = [v1 : v2], and a = (β, 1)′. The distribution of Y ∈ RN×2 is

multivariate normal with mean matrix Zπa′, independence across rows, and covari-

ance matrix Σ for each row.

Because the multivariate normal is a member of the exponential family of distri-

butions, Moreira (2001) shows that low dimensional sufficient statistics are available

for the parameter (β, π′)′. Andrews, Moreira, and Stock (2006) and Chamberlain

(2007) propose to use orthogonal transformations applied to the sufficient statistic

(Z ′Z)−1/2 Z ′Y . The maximal invariant is Y ′NZY , where NZ = Z(Z ′Z)−1Z ′.
Reducing the data to a sufficient statistic before applying invariance is a delicate

argument. For example, suppose that there is a (nearly) optimal invariant decision

rule based on a sufficient statistic. This does not imply that it is (nearly) optimal

within invariant decision rules based on the initial data. This problem arises because

there may exist invariant decision rules whose equivalent procedures based on the

sufficient statistic are not invariant. See for example Hall, Wijsman, and Ghosh (1965)

and Lehmann and Romano (2005). To avoid this issue, we shall use an invariance

argument without reducing the data to a sufficient statistic.

For convenience, it is useful to write the model in a canonical form. The matrix Z

has the polar decomposition Z = ω(ρ′, 0K×(N−K))
′, where ω is an N ×N orthogonal

matrix, and ρ is the unique symmetric, positive definite square root of Z ′Z. Define

R = ω′Y and let η = ρπ. Then the canonical model is

R
d
=

(
ηa′

0

)
+ V, L (V ) = N (0, IN ⊗ Σ) .

Both model and structural parameters β and Σ are preserved by transformations

O (K) in the first K rows of R. The next proposition obtains the maximal invariants

in the sample and parameter spaces.

Proposition 3 Let g be elements of the orthogonal group of transformations O (K)

and partition the sample space R = (R′
1, R

′
2)
′, where R1 is K×2 and R2 is (N −K)×

2. If the actions on the sample and parameter spaces are, respectively, A1 (g, R) =
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((gR1)
′, R′

2)
′ and A2 (g, (β, Σ, η)) = (β, Σ, gη), then

(a) the maximal invariant in the sample space is M = (R′
1R1, R2), and

(b) the maximal invariant in the parameter space is θN = (β, Σ, λN), where λN ≡
η′η/N .

To illustrate the approach we assume for simplicity that Σ is known. Hence, we

omit Σ from now on, e.g., θN = (β, λN).

The density of M is the product of the marginal densities of R′
1R1 and R2. Since

R2 is an ancillary statistic, we can focus on the marginal density of R′
1R1 ≡ Y ′NZY in

the maximization of the log-likelihood. As the density of Y ′NZY is not well-behaved

as N goes to infinity, we work with the density of WN ≡ N−1Y ′NZY instead.

Theorem 1 The density of WN ≡ N−1Y ′NZY evaluated at w is

g (w; β, λN) = C1,K ·NK · exp

(
−NλN

2
a′Σ−1a

)
|Σ|−K/2 |w|K−3

2 exp

(
−N

2
tr(Σ−1w)

)

×
(
N

√
λN · a′Σ−1wΣ−1a

)−K−2
2

IK−2
2

(
N

√
λN · a′Σ−1wΣ−1a

)
, (4)

where C−1
1,K = 2

K+2
2 π

1
2 Γ

(
K−1

2

)
, Iν(·) denotes the modified Bessel function of the first

kind of order ν, and Γ(·) is the gamma function.

Define MILE as

θ̂N ≡ arg max
θ∈Θ

QN (θ) ,

where QN (θ) ≡ N−1 ln g (WN ; θN) and θN = (β, λN).2 The next result shows that

θ̂N = θ∗N + op (1) under general conditions.

Theorem 2 (a) Under the assumption that N → ∞ with K fixed or K/N → 0,

(i) if λ∗N is fixed at λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), (ii) if λ∗N →p λ∗ > 0,

then θ̂N →p θ∗ = (β∗, λ∗), and (iii) if 0 < lim inf λ∗N ≤ lim sup λ∗N < ∞, then

θ̂N = θ∗N + op (1).

(b) Under the assumption that N → ∞ with K/N → α > 0, (i) if λ∗N is fixed at

λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), (ii) if λ∗N →p λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), and

(iii) if 0 < lim inf λ∗N ≤ lim sup λ∗N < ∞, then θ̂N = θ∗N +op (1), where θ∗N = (β∗, λ∗N).

2The objective function QN (θ) is not defined if WN is not positive definite (due to the term
ln |WN |). To avoid this technical issue, we can instead maximize only the terms of QN (θ) that
depend on θ.
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Comments: 1. Parts (a),(b)(i) yield consistency results conditional on λ∗N ; the

remaining results of the theorem are unconditional on λ∗N . Parts (a),(b)(ii) yield

consistency results for β∗ under SIV and MWIV asymptotics when λ∗N →p λ∗. The

assumption of λ∗N →p λ∗ is standard in the literature, but parts (a),(b)(iii) show that

β̂N →p β∗N without imposing convergence of λ∗N .

2. This result also holds under nonnormal errors as long as V (WN) → 0.

Proposition 4 MILE of β is the limited information maximum likelihood (LIMLK)

estimator.

Proposition 4 together with Theorem 2 explain why the LIMLK estimator is

consistent when the number of instruments increases. The MILE estimator maximizes

a log-likelihood function that is well-behaved as it depends on a finite number of

parameters. Because MILE is consistent and LIMLK is equivalent to MILE in the

instrumental variable problem, LIMLK is consistent as well.

The next result derives the limiting distribution of LIMLK.

Theorem 3 Let the score statistic and the Hessian matrix be

SN (θ) =
∂ ln QN (θ)

∂θ
and HN (θ) =

∂2 ln QN (θ)

∂θ∂θ′
,

respectively, and define the matrix

Iα (θ∗) =

[
λ∗2 a∗′Σ−1a∗·e′1Σ−1e1(α+2λ∗a∗′Σ−1a∗)+α(a∗′Σ−1e1)2

(α+λ∗a∗′Σ−1a∗)(α+2λ∗a∗′Σ−1a∗) λ∗ a∗′Σ−1e1·a∗′Σ−1a∗
α+2λ∗a∗′Σ−1a∗

λ∗ a∗′Σ−1e1·a∗′Σ−1a∗
α+2λ∗a∗′Σ−1a∗

(a∗′Σ−1a∗)2
2(α+2λ∗a∗′Σ−1a∗)

]
.

(a) Suppose that λ∗N is fixed at λ∗ > 0 and N → ∞ with K fixed. Then (i)√
NSN (θ∗) →d N(0, I0 (θ∗)), (ii) HN (θ∗) →p −I0 (θ∗), and (iii)

√
N(θ̂N − θ∗) →d

N(0, I0 (θ∗)−1).

(b) Suppose that λ∗N is fixed at λ∗ > 0 and N → ∞ with K/N → α. Then (i)√
NSN (θ∗) →d N(0, Iα (θ∗)), (ii) HN (θ∗) →p −Iα (θ∗), and (iii)

√
N(θ̂N − θ∗) →d

N(0, Iα (θ∗)−1).

Comments: 1. For convenience we provide asymptotic results only for the case in

which λ∗N is fixed at λ∗ > 0. Small changes in the proofs also yield asymptotic results

for λ∗N →p λ∗. Alternatively, if the convergence for
√

N(θ̂N − θ∗) is uniform in a

12



compact set containing λ∗, we can use Theorem 3 and Sweeting (1989) to show that√
N(θ̂N − θ∗N) converges to N(0, Iα (θ∗)).
2. If λ∗N does not converge, then

√
N(θ̂N − θ∗N) does not converge. However,

if the conditional convergence for
√

N(θ̂N − θ∗N) is uniform on a compact set that

eventually contains λ∗N , then N(0, Iα (θ∗N)) provides an approximation to the finite

sample distribution in the sense that
√

N(θ̂N−θ∗N) conditioned on λ∗N = λ∗ converges

in distribution to N(0, Iα (θ∗)).
3. It is possible to extend the asymptotic distribution to nonnormal errors, e.g.,

Bekker and der Ploeg (2005), Hansen, Hausman, and Newey (2006), and van Hasselt

(2007). Our approach entails finding the asymptotic distribution
√

NSN (θ∗) for

nonnormal errors.

As a corollary, we find the limiting distribution of LIMLK. This result of course

coincides with those obtained by Bekker (1994).

Corollary 1 Define σ2
u = b′Σb. Under SIV asymptotics (or under MWIV asymptot-

ics with α = 0), conditional on λ∗N = λ∗ > 0,

√
N(β̂N − β∗) →d N

(
0,

σ2
u

λ∗

)
. (5)

Under MWIV asymptotics, conditional on λ∗N = λ∗ > 0,

b
√

N(β̂N − β∗) →d N

(
0,

σ2
u

λ∗2

{
λ∗ + α

1

a∗′Σ−1a∗

})
. (6)

Comments: 1. The limiting distribution given in (6) simplifies to the one given in

(5) as α → 0.

2. Instead of using the invariant likelihood to obtain an estimator, we could

instead use only its first moment. Define

m (WN ; θN) = vech

(
R′

1R1

N

)
− vech

(
aa′ · λN +

K

N
Σ

)
. (7)

If λ∗N > 0, then the following holds (for possibly nonnormal errors):

Eθ∗N (m (WN ; θ)) = 0 if and only if θN = θ∗N . (8)

Because the number of moment conditions does not increase under SIV or MWIV

asymptotics, we can show that the MD estimator based on (7) and (8) is consistent

and asymptotically normal.

13



Finally, Chioda and Jansson (2007) derive limits of experiments from the maximal

invariant’s likelihood. In our setup, we obtain the following result under SIV and

MWIV asymptotics.

Theorem 4 Define the log-likelihood ratio

ΛN

(
θ∗ + h ·N−1/2, θ∗

)
= N(QN

(
θ∗ + h ·N−1/2

)−QN (θ∗)).

(a) Under SIV asymptotics,

ΛN

(
θ∗ + h ·N−1/2, θ∗

)
= h′

√
NSN (θ∗)− 1

2
h′I0 (θ∗) h + oQN (θ∗)(1), (9)

where
√

NSN (θ∗) →d N(0, I0 (θ∗)) under QN (θ∗).
(b) Under MWIV asymptotics,

ΛN

(
θ∗ + h ·N−1/2, θ∗

)
= h′

√
NSN (θ∗)− 1

2
h′Iα (θ∗) h + oQN (θ∗)(1), (10)

where
√

NSN (θ∗) →d N(0, Iα (θ∗)) under QN (θ∗).
Furthermore, the LIMLK estimator is asymptotically efficient within the class of reg-

ular invariant estimators under both SIV and MWIV asymptotics.

Comments: 1. Chioda and Jansson’s (2007) proof uses Johnson and Kotz’s (1970)

asymptotic results for Wishart distributions. The standard literature on limit of

experiments instead typically provides expansions around the score, e.g., Lehmann

and Romano (2005). Theorem 3 shows that the score is asymptotically normal with

variance given by the reciprocal of the inverse of the limit of the Hessian matrix. As

the remainder terms are asymptotically negligible, (9) and (10) hold true.

2. Theorem 4 requires the assumption of normal errors. Anderson, Kunitomo,

and Matsushita (2006) exploit the fact that WN involves double sums (in terms of N

and K) to obtain optimality results for nonnormal errors.

Under SIV asymptotics, the bound (I0 (θ∗)−1)11 for regular invariant estimators of

β is the same as the one achieved by limit of experiments applied to the likelihood of

Y . Hence, there is no loss of efficiency in focusing on the class of invariant procedures

under SIV asymptotics.

The LIMLK achieves the bound (Iα (θ∗)−1)11 under MWIV asymptotics. Propo-

sition 4 and Theorem 4(b) explain why. Standard optimality results apply to an

estimator that maximizes a (marginal) likelihood function that is locally asymptoti-

cally normal (LAN). Applying this principle to invariant likelihood delivers optimality

of MILE (within the class of regular invariant estimators). Because LIMLK coincides

with MILE, the LIMLK estimator must be optimal as well.
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5 A Nonstationary Dynamic Panel Data Model

Consider a simple dynamic panel data model with fixed effects:

yi,t = ρyi,t−1 + ηi + uit,

where yit ∈ R are observable variables and uit
iid∼ N (0, σ2) are unobservable errors,

i = 1, ..., N , t = 1, ..., T ; ηi ∈ R are incidental parameters, i = 1, ..., N ; θ = (ρ, σ2) ∈
RK × R are structural parameters; and yi,0 are the initial values of the stochastic

process. We follow Lancaster (2002) and seek inference conditional on the initial

values yi,0. Writing the model as

(yi,t − yi,0) = ρ(yi,t−1 − yi,0) + (ηi − yi,0(1− ρ)) + uit,

we can assume that yi,0 = 0 without loss of generality.

In its matrix form, we have

[y·1, y·2, ..., y·T ] = ρ [y·0, y·1, ..., y·T−1] + η1′T + [u·1, u·2, ..., u·T ] , (11)

where y·t = [y1,t, y2,t, ..., yN,t]
′ ∈ RN , u·t = [u1,t, u2,t, ..., uN,t]

′ ∈ RN , and η = [η1, ..., ηN ]′ ∈
RN . Solving (11) recursively yields

[y·1, y·2, ..., y·T ] = η(B1T )′ + [u·1, u·2, ..., u·T ] B′, where (12)

B =




1
...

. . .

ρT−1 · · · 1


 .

The inverse of B has a simple form:

B−1 ≡ D = IT − ρ · JT , where JT =

[
0′T−1 0

IT−1 0T−1

]

and 0T−1 is a T − 1-dimensional column vector with zero entries.

If individuals i are treated equally, the coordinate system used to specify the

vectors y·t should not affect inference based on them. In consequence, it is reasonable

to restrict attention to coordinate-free functions of y·t. Indeed, we find that orthogonal

transformations preserve both the model given in (12) and the structural parameter

γ = (ρ, σ2).
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Proposition 5 Let g be elements of the orthogonal group of transformations O (N).

If the actions on the sample and parameter spaces are, respectively, A1 (g, R) =

((gR1)
′, R′

2)
′ and A2 (g, (ρ, σ2, η)) = (ρ, σ2, gη), then

(a) the maximal invariant in the sample space is M = Y ′Y , and

(b) the maximal invariant in the parameter space is θN = (γ, λN), where λN =

η′η/ (Nσ2).

Comments: 1. The dimension of the maximal invariant M is T (T + 1) /2. For

example, if T = 2, the maximal invariant has dimension three.

2. The maximal invariant M has a noncentral Wishart distribution with T degrees

of freedom, covariance matrix Σ = σ2BB′, and noncentrality matrix Ω = Σ−1M
′
M

where M = η (B1T )′. We write that M is WT (K, Σ, Ω). If there is autocorrelation ΣT

that is homogeneous across individuals, the maximal invariant M remains the same.

The covariance matrix however changes to Σ = σ2BΣT B′.

For convenience, we standardize the distribution of M = Y ′Y .

Theorem 5 If N ≥ T , the density of WN ≡ N−1Y ′NZY evaluated at w is

g
(
w; ρ, σ2, λN

)
= C2,N ·

(
σ2

)−NT
2 |w|N−T−1

2 exp

(
− 1

2σ2
tr(DwD′)

)
exp

(
−NT

2
λN

)

×
(

N

√
λN

1′T DwD′1T

σ2

)−K−2
2

IK−2
2

(
N

√
λN

1′T DwD′1T

σ2

)
·N NT

2 , (13)

where C−1
2,N = 2

NT
2
−N−2

2 π
T (T−1)

4

∏T−1
i=1 Γ

(
N−i

2

)
.

Define MILE as

θ̂N ≡ arg max
θ∈Θ

QN (θ) ,

where QN (θ) ≡ (NT )−1 ln g (WN ; β, λ) and θN = (ρ, σ2, λN).3 The next result shows

that θ̂N = θ∗N + op (1) under general conditions.

Theorem 6 (a) Under the assumption that N → ∞ with T fixed, (i) if λ∗N is fixed

at λ∗ > 0, then θ̂N →p θ∗ = (ρ∗, σ∗2, λ∗), (ii) if λ∗N →p λ∗ > 0, then θ̂N →p

θ∗ = (ρ∗, σ∗2, λ∗), and (iii) if lim sup λ∗N < ∞, then θ̂N = θ∗N + op (1), where

3If N < T , WN is not absolutely continuous with respect to the Lebesgue measure. We will still
maximize the pseudo-likelihood to find θ̂N .
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θ∗N = (ρ∗, σ∗2, λ∗N).

(b) Under the assumption that T →∞ and |ρ∗| < 1, (i) if λ∗N is fixed at λ∗ > 0, then

θ̂N →p θ∗ = (β∗, λ∗), (ii) if λ∗N →p λ∗ > 0, then θ̂N →p θ∗ = (β∗, λ∗), and (iii) if

lim sup λ∗N < ∞, then θ̂N = θ∗N + op (1), where θ∗N = (ρ∗, σ∗2, λ∗N).

Comments: 1. This result also holds under nonnormal errors.

2. This theorem implies that ρ̂N →p ρ∗ under the assumption that NT → ∞
(regardless of the growing rate of N and T ).

The next result derives the limiting distribution of MILE when N →∞.

Theorem 7 Suppose that λ∗N is fixed at λ∗ > 0, and let the score statistic and the

Hessian matrix be

SN (θ) =
∂ ln QN (θ)

∂θ
and HN (θ) =

∂2 ln QN (θ)

∂θ∂θ′
,

respectively, and define the matrix

IT (θ∗) =




h1,T + h2,T + h3,T
λ∗

2σ∗2
1′T F1T

T
1+λ∗T
1+2λ∗T

1′T F1T

T
λ∗

2σ∗2
1′T F1T

T
1

2(σ∗2)2
+ λ∗

4σ∗2
2λ∗T

1+2λ∗T
1

4σ∗2
1+λ∗T
1+2λ∗T

1′T F1T

T
1

4σ∗2
1

4λ∗


 ,

where DB∗ ≡ IT + (ρ∗ − ρ) F and the three terms in the (1, 1) entry of HT (θ∗) are

h1,T =
tr(FF ′)

T
+ λ∗

1′T F ′F1T

T
, h2,T =

2λ∗2

(1 + 2λ∗T )

(1′T F1T )2

T
, and

h3,T = − λ∗

1 + λ∗T

{
1′T F ′F1T

T
+ λ∗

(1′T F1T )2

T

}
.

As N →∞ with T fixed,

(a) (i)
√

NTSN (θ) →d N(0, IT (θ∗)), (ii) HN (θ∗) →p −IT (θ∗), and (iii)
√

NT (θ̂N −
θ∗) →d N(0, IT (θ∗)−1), and

(b) the log-likelihood ratio is

ΛN

(
θ∗ + h · (NT )−1/2, θ∗

)
= NT (QN

(
θ∗ + h · (NT )−1/2

)−QN (θ∗)) (14)

= h′
√

NTSN (θ∗)− 1

2
h′IT (θ∗) h + oQN (θ∗)(1),

√
NTSN (θ∗) →d N (0, IT (θ∗)) under QN (θ∗). Furthermore, θ̂N is asymptotically

efficient within the class of regular invariant estimators under large N , fixed T as-

ymptotics.
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Comments: 1. If the convergence is uniform on a compact set that eventually con-

tains λ∗N , N(0, Hα (θ∗N)) provides an approximation of the finite sample distribution

of
√

NT (θ̂N − θ∗N) in the sense of Sweeting (1989). Because θ̂N = θ∗N + op (1) and

IT (·) is continuous, N(0, IT (θ̂N)) also provides a valid asymptotic approximation to

the distribution of
√

NT (θ̂N − θ∗N).

2. It is possible to extend parts (a)(i),(iii) to nonnormal errors by finding the

appropriate asymptotic distribution of
√

NTSN (θ∗).
3. The MILE estimator ρ̂N achieves the bound

(
IT (θ∗)−1)

11
as N →∞, whereas

the bias-corrected OLS estimator does not.

The next proposition considers minimum distance (MD) estimation based on the

expectation of WN ; standard semiparametric efficiency arguments (e.g., Chamberlain

(1987)) show that the MD estimator is optimal. This proposition also provides a

connection between the GMM and integrated likelihood approaches for the dynamic

panel data model. It shows that Arellano and Bond’s (1991) and Ahn and Schmidt’s

(1995) moment conditions are transformations of the expectation of the maximal

invariant. This result connects and builds on work by Chamberlain and Moreira

(2006) who show that the likelihood integrated with respect to the Haar measure (for

orthogonal groups) coincides with the marginal likelihood of the maximal invariant.

Proposition 6 Let wi = yi·y′i·, where yi· = [yi,1, yi,2, ..., yi,T ]′ ∈ RT , and define

m (WN ; θN) =
1

N

∑N

i=1
m

(
wi; ρ, σ2, (ηi/σ)2) where (15)

m
(
wi; ρ, σ2, (ηi/σ)2) = vech

(
wi − σ2B

{
IT +

(ηi

σ

)2

· 1T 1′T

}
B

)
.

(a) Arellano and Bond’s (1991) and Ahn and Schmidt’s (1995) moment conditions

are subsets of the T (T + 1)/2 moment conditions given by

Eθ∗N (m (WN ; θN)) = Eθ∗N

(
vech

(
WN − σ2B {IT + λN · 1T 1′T}B

))
(16)

= 0 if and only if θN = θ∗N .

(b) Consider the minimum distance (MD) estimator θ̃N that minimizes

Q (θN) = m (WN ; θN)′ ANm (WN ; θN) . (17)

Under the assumptions N → ∞ with T fixed, AN →p A p.d., and λ∗N is fixed at λ∗,
θ̃N →p θ∗ = (ρ∗, σ∗2, λ∗) and

√
N(θ̃N−θ∗) →d N(0, (ζ ′Aζ)−1ζ ′AΞAζ(ζ ′Aζ)−1), where

Ξ and ζ are defined as

√
Nm (WN ; θ∗) →d N(0, Ξ) and

∂m (WN ; θ∗)
∂θ

→p ζ.
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(c) The optimal MD estimator θ̃N achieves the semiparametric efficiency bound de-

rived under the assumption that (η∗i /σ
∗)2, i = 1, ..., N , are fixed at λ∗.

Comments: 1. The additional random effects assumption ηi
iid∼ N

(
0, σ2

η

)
specifies a

data covariance structure that depends on a finite number of parameters. Specifically,

yi·
iid∼ N

(
0, Ψ

(
ρ, σ2, σ2

η

))
for some covariance matrix Ψ that depends on ρ, σ2, and σ2

η,

and we can proceed as in Arellano (2003, Section 5.4) to make inference on ρ. This

approach differs from ours. We do not impose additional distribution assumptions.

As a result, the distribution of yi· depends on ρ, σ2, and η2
i , i = 1, ..., N . Use of

invariance, however, shows that the expectation of sample averages of wi = yi·y′i·
depends on only three parameters: ρ, σ2, and λN .

2. For T = 2, the number of nonredundant moments given by (16) equals the

dimension of θN , and the parameter θN is said to be just-identified.

3. The MD estimator dominates MILE under nonnormal errors with large N and

small T . For large T , the MD estimator does not perform well. If T grows sufficiently

fast with the sample size, the MD estimator is no longer consistent. Consistency of

MILE does not depend on particular rates at which both N and T grow with the

sample size.

4. If there is autocorrelation ΣT that is homogeneous across individuals, the

maximal invariant remains the same, but (16) changes to

Eθ∗N (m (WN ; θN)) = Eθ∗N

(
vech

(
WN −B

{
ΣT +

η′η
N
· 1T 1′T

}
B

))
.

In the IV model, the number of moment conditions does not increase with N or

K ; see Comment 2 to Corollary 1. In the panel data model, the number of moment

conditions increases (too quickly) with T . As a result, semiparametric efficiency

results (e.g., Newey (2004)) do not apply to (16) as T → ∞. Instead, Hahn and

Kuersteiner (2002) cleverly use Hájek’s convolution theorem to obtain an efficiency

bound for normal errors as T → ∞ for the stationary case |ρ∗| < 1. The bias-

corrected OLS estimator of ρ achieves Hahn and Kuersteiner’s (2002) bound for large

N , large T asymptotics.

Our efficiency bound
(
IT (θ∗)−1)

11
reduces to Hahn and Kuersteiner’s (2002)

bound when T → ∞. This shows that there is no loss of efficiency in focusing

on the class of invariant procedures under large N , large T asymptotics.
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Corollary 2 Under the assumption that |ρ∗| < 1, the efficiency bound given by the

(1, 1) coordinate of the inverse of I∞ (θ∗)−1 ≡
(

lim
T→∞

IT (θ∗)
)−1

converges to Hahn and

Kuersteiner’s (2002) efficiency bound of (1− ρ∗2) as T →∞.

As a final result, the MILE estimator ρ̂N also achieves the bound
(
IT (θ∗)−1)

11
for

large N , large T asymptotics.

Theorem 8 Under the assumption that N ≥ T → ∞, |ρ∗| < 1, and λ∗N is fixed

at λ∗ > 0, (i)
√

NTSN (θ) →d N(0, I∞ (θ∗)), (ii) HN (θ∗) →p −I∞ (θ∗), and (iii)√
NT (θ̂N − θ∗) →d N(0, I∞ (θ∗)−1).

6 Numerical Results

This section illustrates the MILE approach for estimation of the autoregressive

parameter ρ in the dynamic panel data model described in Section 5. The numeri-

cal results are presented as means and mean squared errors (MSEs) based on 1,000

Monte Carlo simulations. These results are also available for other fixed-effects esti-

mators: Arellano-Bond (AB), Ahn-Schmidt (AS), and bias-corrected OLS (BCOLS)

estimators.

We consider different combinations between short and large panels: N = 5, 10,

25, 100, and T = 2, 3, 5, 10, 25, 100.

Table I presents the initial design from which several variations are drawn.4 This

design assumes that η∗i
iid∼ N (0, 4) (random effects), uit

iid∼ N (0, 1) (normal errors),

and ρ∗ = 0.5 (positive autocorrelation). The value σ∗ is fixed at one for all designs.

MILE seems to be correctly centered around 0.5. Even in a very short panel with

N = 5 and T = 2, its bias of 0.0408 seems quite small. As N and/or T increases, its

mean approaches 0.5. For example, for N = 5 and T = 25, the bias is around 0.0129;

for N = 25 and T = 2, the simulation mean is around 0.0040. BCOLS estimator

seems to have smaller bias than the AB and AS estimators for small N and large T .

The AB and AS estimators have large bias with small N and T , but their performance

improves with large N and small T .

MILE also seems to have smaller MSE than the other estimators. The AS esti-

mator outperforms the AB estimator in terms of MSE. The BCOLS estimator has

4The full set of results for ρ, σ2, and λN using different designs will be available at
http://www.economics.harvard.edu/faculty/moreira/softwaresimulations.html.
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smaller MSE than AS. The MSE of the BCOLS estimator, however, does not decrease

if N increases but T is held constant. For T ≥ 25, its performance is comparable to

that of MILE. This provides numerical support for the theoretical finding that both

MILE and BCOLS reach our large N , large T bound.

Table II reports results for λ∗N = N (nonconvergent effects), normal errors, and

ρ∗ = 0.5. Table III presents results for random effects, uit
iid∼ (χ2 (1) − 1)/

√
2 (non-

normal errors), and ρ∗ = 0.5. In both cases, MILE continues to have smaller bias

and MSE than the other estimators. This result is surprising with nonnormal errors

as the AB and AS estimators could potentially dominate MILE when N is large and

T is small.

Tables IV and V differ from Table I only in the autoregressive parameter; respec-

tively, ρ∗ = −0.5 (negative autocorrelation) and ρ∗ = 1.0 (integrated model). Most

—but not all— conclusions drawn from Table I hold here. MILE continues to out-

perform the AB and AS estimators in terms of mean and MSE. If ρ∗ = −0.5, MILE

and BCOLS seem to perform similarly. If ρ∗ = 1.0, MILE again performs better than

BCOLS for small values of T .
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7 Appendix of Proofs

7.1 Proofs of Results Stated in Section 3

Proof of Lemma 1. Parts (a) and (b) follow from Newey and McFadden (1994) or

Potscher and Prucha (1997). Part (c) follows from Theorem 12.2.3 of Lehmann and

Romano (2005) and Lemma 8.14 of van der Vaart (1998).

Proof of Proposition 1. For part (a), we need to show that M (yi·) = M (ỹi·) if

and only if ỹi· = yi· + g̃ · 1T for some g̃. Clearly, M (yi·) is an invariant statistic:

M (yi· + g · 1T ) = D (yi· + g · 1T ) = Dyi· + g ·D1T = Dyi· = M (yi·) .

Now, suppose that M (yi·) = M (ỹi·). This implies that Dzi = 0 for zi = ỹi· − yi·,
which means that zi belongs to the space orthogonal to the row space of D. Because

rank (D) = T − 1, the orthogonal space has dimension one. As this space contains

the vector 1T , it must be the case that zi = g̃ · 1T for some scalar g̃. Therefore,

ỹi· = yi· + g̃ · 1T .

Part (b) follows from the fact that the group of transformations acts transitively

on ηi. Part (c) follows from the formula of the density of a normal distribution.

Proof of Proposition 2. For part (a), let Mit be the rank of yit in the collection

yi1, ..., yiT . Formally, we can define Mit through yit = yi(Mit). We shall abbreviate

the notation, e.g., (g(yi1), g(yi2), ..., g(yiT )) as g(yi·). The maximal invariant is Mi =

(Mi1, ...MiT ) = M (yi·). We need to show that M(yi·) = M(ỹi·) if and only if ỹi· =

g̃(yi·). Consider the case that if t 6= t̃, then yit 6= yit̃ (this set has probability measure

equal to one). Clearly, Mi is an invariant statistic. Now, suppose that M (yi·) =

M (ỹi·). This implies that Mi1 = M̃i1, ...,MiT = M̃iT . Therefore, yi1 < ... < yiT and

ỹi1 < ... < ỹiT . There is a continuous, strictly increasing transformation g̃ such that

ỹit = g̃(yit), t = 1, ..., T .

Part (b) follow from the fact that the group of transformations acts transitively

on ηi.

For part (c), we note that because ηi is an increasing transformation, Mit is also

the rank in the collection y∗i1, ..., y
∗
iT , where y∗it = x′itβ + uit. We note that y∗i1, ..., y

∗
iT

are jointly independent with marginal densities

fit (zit; β) =
1√
2π

exp

{
−1

2
(zit − x′itβ)

2

}
.

Now, we note that

P (Mi1 = mi1, ..., MiT = miT ) =

∫
...

∫
fi1 (zi1; β) ...fiT (ziT ; β) dzi1...dziT ,
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integrated over the set in which zit is the mit-th smallest element of zi1, ..., ziT . Trans-

forming wmit
= zit, we obtain

P (Mi1 = mi1, ..., MiT = miT ) =

∫

A

T∏
t=1

fit (wmit
; β) dw =

∫

A

T∏
t=1

fit (wmit
; β)

f (wmit
)

f (wmit
) dw,

where f (wt) is the density of a N (0, 1) distribution and A =
{
w ∈ RT ; w1 < ... < wT

}
.

Simple algebraic manipulations show that

P (Mi = mi) =

∫

A

exp

{
−1

2

T∑
t=1

(wmit
− x′itβ)

2
+

1

2

T∑
t=1

w2
mit

}
T∏

t=1

f (wmit
) dw

=

∫

A

exp

{
T∑

t=1

wmit
x′itβ −

1

2

T∑
t=1

(x′itβ)
2

}
T∏

t=1

f (wmit
) dw

=
1

T !

∫

A

exp

{(
T∑

t=1

wmit
x′it

)
β − 1

2
β′

(
T∑

t=1

xitx
′
it

)
β

}
T !

T∏
t=1

f (wmit
) dw,

where T !
∏T

t=1 f (wt) for w1 < ... < wT is the pdf of the order statistics V(1), ..., V(T ).

7.2 Proofs of Results Stated in Section 4

Proof of Proposition 3. For part (a), we need to show that M (R1, R2) =

M(R̃1, R̃2) if and only if (R̃1, R̃2) = (g̃R1, R2) for some g̃ ∈ O (K). Clearly, M (yi·) is

an invariant statistic:

M (gR1, R2) = (R′
1g
′gR1, R2) = (R′

1R1, R2) = M (R1, R2) .

Now, suppose that M (R1, R2) = M(R̃1, R̃2). This is equivalent to R′
1R1 = R̃′

1R̃1 and

R2 = R̃2. But this implies that R̃1 = g̃R1 (and, of course, R2 = R̃2).

Part (b) follows analogously.

Proof of Theorem 1. The matrix M has a noncentral Wishart distribution with

K degrees of freedom, covariance matrix Σ, and noncentrality matrix Ω = Σ−1M
′
M

where M = (Z ′Z)1/2πa′. We write that M is W2(K, Σ, Ω). Following Anderson

(1946), the density function of M at q is

f (q) = C1,K · exp

(
−1

2
tr(Σ−1M

′
M)

)
|Σ|−K/2 |q|K−3

2 exp

(
−1

2
tr(Σ−1q)

)

×
(√

tr(qΣ−1M
′
MΣ−1)

)−K−2
2

IK−2
2

(√
tr(qΣ−1M

′
MΣ−1)

)
.
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Using the fact that Σ−1M
′
M = Σ−1aπ′Z ′Zπa′, we obtain

tr(Σ−1M
′
M) = (NλN)a′Σ−1a and tr(qΣ−1aπ′Z ′Zπa′Σ−1) = (NλN)a′Σ−1qΣ−1a.

As a result, the density function of M at q simplifies to

f (q) = C1,K · exp

(
−NλN

2
a′Σ−1a

)
|Σ|−K/2 |q|K−3

2 exp

(
−1

2
tr(Σ−1q)

)

×
(√

NλN · a′Σ−1qΣ−1a
)−K−2

2
IK−2

2

(√
NλN · a′Σ−1qΣ−1a

)
.

The density function of WN is then

g (w; β, λN) = f (q (w)) · |q′(w)| = f (q (w)) N
2·3
2 ,

which simplifies to (4).

Proof of Theorem 2. The log-likelihood function divided by N is

QN (θ) = −1

2
λ · a′Σ−1a +

1

N
ln

(
Z
−K−2

2
N IK−2

2

(
N

2
ZN

))
(18)

− K

2N
ln |Σ| − K − 3

2N
ln |WN | − 1

2
tr(Σ−1WN) +

1

N
ln(2

K−2
2 N

3K+2
4 C1,K),

where ZN = 2
√

λ · a′Σ−1WNΣ−1a.

All terms in the second line converge under both SIV and MWIV asymptotics

(the only exception is ln |WN | under SIV asymptotics and under MWIV asymptotics

with α = 0). For example, the last term is

1

N
ln

(
2

K−2
2 N

K+2
2 C1,K

)
=

1

N
ln

(
2

K−2
2 N

K+2
2

2
K+2

2 π
1
2 Γ

(
K−1

2

)
)

=
1

N
ln

(
N

K+2
2

Γ
(

K−1
2

)
)

+ o(1)

under both SIV and MWIV asymptotics. Under SIV asymptotics,

1

N
ln

(
N

K+2
2

Γ
(

K−1
2

)
)
→ 0.

Under MWIV asymptotics, we can use Stirling’s formula to obtain

1

N
ln

(
N

K+2
2

Γ
(

K−1
2

)
)

=
1

N
ln


 N

K+2
2

(2π)1/2
(

K−1
2

)K−2
2 exp

(−K−1
2

)


 + o(1)

→ −α

2

{
1 + ln

(α

2

)}
.
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However, the second line in (18) does not depend on θ. As a result, these terms

can be ignored in finding the limiting behavior of θ̂N . Hence, define the objective

function

Q̂N (θ) = −1

2
λ · a′Σ−1a +

1

N
ln

(
Z
−K−2

2
N IK−2

2

(
N

2
ZN

))
.

The quantity ZN depends on WN . Following Muirhead (2005, Section10.2):

E (WN) =
K · Σ + M

′
M

N
=

K · Σ + π′Z ′Zπ · a∗a∗′
N

=
K

N
Σ + λ∗N · a∗a∗′,

From here, we split the result into SIV or MWIV with α = 0 asymptotics, and MWIV

with α > 0.

For part (a), define

W ∗
N ≡ λ∗N · a∗a∗′.

Because V (WN) → 0, we have WN = W ∗
N + op (1). Hence, ZN = Z∗

N + op (1), where

Z∗
N ≡ 2

√
λ · λ∗N (a′Σ−1a∗)2.

The same holds for nonnormal errors as long as V (WN) → 0.

Because K is fixed and N → ∞, Q̂N (θ) = QN (θ) + op (1) (uniformly in θ ∈ Θ

compact), where

QN (θ) = −1

2
λ · a′Σ−1a + λ1/2λ

∗1/2
N a∗′Σ−1a.

The first order condition (FOC) for QN (θ) is given by

∂QN (θ)

∂β
= −λ · a′Σ−1e1 + λ1/2λ

∗1/2
N a∗′Σ−1e1

∂QN (θ)

∂λ
= −1

2
a′Σ−1a +

1

2
λ−1/2λ

∗1/2
N a∗′Σ−1a.

The value θ∗ = (β∗, λ∗N) minimizes QN (θ), setting the FOC to zero.

For parts (a)(i),(ii), QN (θ) →p Q (θ) given by

Q (θ) = −1

2
λ · a′Σ−1a + λ1/2λ∗1/2a∗′Σ−1a.

Since θ ∈ Θ compact and Q (θ) is continuous, θ̂N →p θ.
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For part (a)(iii), we can define τ (θ, θ∗N) ≡ QN (θ) which is continuous. For each

point θ∗N , the function τ (θ, θ∗N) reaches the minimum at θ = θ∗N . Because θ ∈ Θ

compact and τ (·, θ∗N) is continuous,

sup
θ∈Θ;‖θ−θ∗N‖≥ε

QN (θ)−QN (θ∗N) = max
θ∈Θ;‖θ−θ∗N‖≥ε

QN (θ)−QN (θ∗N) ≡ δ (θ∗N) < 0.

Because 0 < lim inf λ∗N and lim sup λ∗N < ∞, there exists a compact set Θ∗ such that

0 /∈ Θ∗ in which θ∗N ∈ Θ∗ eventually. Using continuity of δ (·),

inf
θ∗N

δ (θ∗N) = min
θ∗N∈Θ∗

δ (θ∗N) = δ < 0

for large enough N . This implies θ∗N is an identifiably unique sequence of maximizers

of QN (θ):

lim sup sup
θ∈Θ;‖θ−θ∗N‖≥ε

QN (θ)−QN (θ∗N) < 0.

The result now follows from Potscher and Prucha (1997, Lemma 3.1).

For part (b), define

W ∗
N = αΣ + λ∗N · a∗a∗′.

Because V (WN) goes to zero under SIV and MWIV asymptotics, we have WN =

W ∗
N + op (1). Hence, ZN = Z∗

N + op (1), where Z∗
N is defined as

Z∗
N ≡ 2

√
λ · a′Σ−1 (αΣ + λ∗N · a∗a∗′) Σ−1a.

The same holds for nonnormal errors as long as V (WN) → 0. Because K/N → α > 0,

Q̂N (θ) = QN (θ) + op (1) (uniformly in θ ∈ Θ compact), where

QN (θ) = −1

2
λ · a′Σ−1a +

α

2

(
1 +

Z∗2
N

α2

)1/2

− α

2
ln

(
1 +

(
1 +

Z∗2
N

α2

)1/2
)

.

The first order condition (FOC) for QN (θ) is given by

∂QN (θ)

∂β
= −λ · a′Σ−1e1 +

2λ

α

α · a′Σ−1e1 + λ∗N · a∗′Σ−1a · a∗′Σ−1e1

1 +
(
1 +

Z∗2N

α2

)1/2

∂QN (θ)

∂λ
= −1

2
a′Σ−1a +

a′Σ−1a

α

α + λ∗N · a′Σ−1a

1 +
(
1 +

Z∗2N

α2

)1/2
.

The value θ∗N = (β∗, λ∗N) minimizes QN (θ), setting the FOC to zero.
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For parts (b)(i),(ii), QN (θ) →p Q (θ) given by

Q (θ) = −1

2
λ · a′Σ−1a +

α

2

(
1 +

Z∗2
N

α2

)1/2

− α

2
ln

(
1 +

(
1 +

Z∗2
N

α2

)1/2
)

,

where Z∗ ≡ 2
√

λ · a′Σ−1 (αΣ + λ∗ · a∗a∗′) Σ−1a. Since θ ∈ Θ compact and Q (θ) is

continuous, θ̂N →p θ.

Part (b)(iii) follows analogously to Part (a)(iii).

Proof of Proposition 4. It follows from Chamberlain (2007) that (in his notation)

the Bayes estimator of φ (integrated over Haar measures for orthogonal groups of

transformations) equals the MLE. The integrated likelihood equals the marginal like-

lihood of the maximal invariant and φ is a transformation of β. As a result, MILE is

equivalent to LIMLK.

Proof of Theorem 3. For part (a), when K is fixed or K/N → 0,

Q̂N (θ) = −1

2
λ · a′Σ−1a + λ1/2

(
a′Σ−1WNΣ−1a

)1/2
+ op

(
N−1

)
. (19)

All results below hold up to op

(
N−1/2

)
order.

The components of the score function SN (θ) are

∂QN (θ)

∂β
= −λ · a′Σ−1e1 + λ1/2 a′Σ−1WNΣ−1e1

(a′Σ−1WNΣ−1a)1/2

∂QN (θ)

∂λ
= −a′Σ−1a

2
+

(a′Σ−1WNΣ−1a)
1/2

2λ1/2
.

The components of the Hessian matrix HN (θ) ≡ H (WN ; θ) are

∂2QN (θ)

∂β2 = −λ · e′1Σ−1e1 + λ1/2 e′1Σ
−1WNΣ−1e1

(a′Σ−1WNΣ−1a)1/2
− λ1/2 (a′Σ−1WNΣ−1e1)

2

(a′Σ−1WNΣ−1a)3/2

∂2QN (θ)

∂β∂λ
= −a′Σ−1e1 +

a′Σ−1WNΣ−1e1

2λ1/2 (a′Σ−1WNΣ−1a)1/2

∂2QN (θ)

∂λ2 = −1

4

(a′Σ−1WNΣ−1e1)
1/2

λ3/2
.

Because WN →p W ∗, HN (θ) →p −I0 (θ∗). Furthermore, HN (θ) →p H (W ∗
N ; θ)

uniformly on θ = (β, λ) for a compact set containing θ∗ as long as λ > 0. This

completes part (a)(ii). To show part (a)(i), we write

√
NSN (θ∗) ≡

√
NS (WN ; θ∗) ≡

√
N [S (WN ; θ∗)− S (W ∗; θ∗)] .
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Using vec (WN) = DT vech (WN), where DT is the duplication matrix (e.g. Magnus

and Neudecker (1988)), we write

√
NSN (θ∗) ≡

√
N [L (vech (WN) ; θ∗)− L (vech (W ∗) ; θ∗)] ,

where L : R3 → R2. Now,
√

N (vech (WN)− vech (W ∗)) converges to a normal dis-

tribution by a standard CLT. As a result, using the delta method and the information

identity,
√

NSN (θ∗) converges to a normal distribution with zero mean and variance

Iα (θ∗). Part (iii) follows from Newey and McFadden (1994).

For part (b), when K/N → α > 0,

Q̂N (θ) = −1

2
λ · a′Σ−1a +

α

2

(
1 +

Z2
N

α2

)1/2

− α

2
ln

(
1 +

(
1 +

Z2
N

α2

)1/2
)

(20)

up to an op (N−1) term. All results below hold up to op

(
N−1/2

)
order.

The components of the score function SN (θ) are

∂QN (θ)

∂β
= −λ · a′Σ−1e1 +

2λ

α

a′Σ−1WNΣ−1e1

1 +
(
1 +

Z2
N

α2

)1/2

∂QN (θ)

∂λ
= −a′Σ−1a

2
+

1

α

a′Σ−1WNΣ−1a

1 +
(
1 +

Z2
N

α2

)1/2
.

The components of the Hessian matrix HN (θ) are

∂2QN (θ)

∂β2 = −λ · e′1Σ−1e1 +
2λ

α

e′1Σ
−1WNΣ−1e1

1 +
(
1 +

Z2
N

α2

)1/2
− 8λ2

α3
(
1 +

Z2
N

α2

)1/2

(a′Σ−1WNΣ−1e1)
2

(
1 +

(
1 +

Z2
N

α2

)1/2
)2

∂2QN (θ)

∂β∂λ
= −a′Σ−1e1 +

2

α

a′Σ−1WNΣ−1e1

1 +
(
1 +

Z2
N

α2

)1/2
− 4λ · a′Σ−1WNΣ−1e1

α3
(
1 +

Z2
N

α2

)1/2

a′Σ−1WNΣ−1a(
1 +

(
1 +

Z2
N

α2

)1/2
)2

∂2QN (θ)

∂λ2 = − 2

α3
(
1 +

Z2
N

α2

)1/2

(a′Σ−1WNΣ−1a)
2

(
1 +

(
1 +

Z2
N

α2

)1/2
)2 .

Parts (b)(i)-(iii) follow analogously to parts (a)(i)-(iii).

Proof of Corollary 1. The determinant of Iα (θ∗) simplifies to

|Iα (θ∗)| = λ∗2 (a∗′Σ−1a∗)2

α + 2λ∗ · a∗′Σ−1a∗
a∗′Σ−1a∗ · e′1Σ−1e1 − (a∗′Σ−1e1)

2

2 (α + λ∗ · a∗′Σ−1a∗)
.
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Hence, the entry (1, 1) of the inverse of Iα (θ∗) equals

(
Iα (θ∗)−1)

11
=

(a∗′Σ−1a∗)2

2(α + 2λ∗a∗′Σ−1a∗)
|Iα (θ∗)|−1

=
α + λ∗ · a∗′Σ−1a∗

λ∗2 · a∗′Σ−1a∗
a∗′Σ−1a∗

a∗′Σ−1a∗ · e′1Σ−1e′1 − (a∗′Σ−1e1)
2

=
σ2

u

λ∗2

{
λ∗ +

α

a∗′Σ−1a∗

}
.

This expression coincides with the asymptotic variance of LIMLK as described in

equation (4.7) of Bekker (1994):

(
Iα (θ∗)−1)

11
=

σ2
u

λ∗2

{
λ∗ + α · e′2Σe2 − α

(b′Σe2)
2

b′Σb

}
.

Proof of Theorem 4. This result follows from standard limit of experiment argu-

ments; see Chioda and Jansson (2007). Part (a) follows from expansions based on

(19). Part (b) follows from expansions based on (20).

7.3 Proofs of Results Stated in Section 5

For the next proofs, define the following four quantities:

c1 = tr (DB∗B∗′D′) + λ∗N1′T B∗′D′DB∗1T

c2 = 1′T DB∗B∗′D′1T + λ∗N (1′T DB∗1T )
2

c3 = 1′T F1T + (ρ∗ − ρ) 1′T F ′F1T + λ∗1′T DB∗1T · 1′T F1T

c4 = (ρ∗ − ρ) tr (F ′F ) + λ∗ {1′T F1T + (ρ∗ − ρ) 1′T F ′F1T} .

Proof of Proposition 5. We omit the original proof here as it has been generalized

by Chamberlain and Moreira (2006).

Proof of Theorem 5. The density function of M at q is

f (q) = C2,N · exp

(
−1

2
tr(Σ−1M

′
M)

)
|Σ|−N/2 |q|N−T−1

2 exp

(
−1

2
tr(Σ−1q)

)

×
(√

tr(qΣ−1M
′
MΣ−1)

)−K−2
2

IK−2
2

(√
tr(qΣ−1M

′
MΣ−1)

)
.

We obtain

Σ−1 =
D′D
σ2

, tr(Σ−1M
′
M) =

η′η
σ2

T , and tr(qΣ−1M
′
MΣ−1) =

η′η

(σ2)2 1′T DqD′1T
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to simplify the density function of M to

f (q) = C2,N · exp

(
− η′η

2σ2
T

) (
σ2

)−NT
2 |q|N−T−1

2 exp

(
− 1

2σ2
tr(DqD′)

)

×
(√

η′η

(σ2)2 1′T DqD′1T

)−K−2
2

IK−2
2

(√
η′η

(σ2)2 1′T DqD′1T

)
.

The density function of WN is then

g (w; β, λN) = f (q (w)) · |q′(w)| = f (q (w)) N
T (T+1)

2 ,

which simplifies to (13).

Proof of Theorem 6. The log-likelihood divided by NT is

QN (θ) = −1

2
ln σ2 − 1

2σ2

tr(DWND′)
T

− 1

2
λ +

1

NT
ln

(
Z
−N−2

2
N IN−2

2

(
N

2
ZN

))

+
N − T − 1

2NT
ln |WN |+ 1

NT
ln

(
2

N−2
2 N

NT
2
−N−2

2 C2,N

)
, (21)

where ZN = 2

√
λ

1′T DWND′1T

σ2 .

The second line is well-behaved when N → ∞ with T fixed. Using Stirling’s

formula,

1

NT
ln

(
2

N−2
2 N

NT
2
−N−2

2 C2,N

)
=

1

T
ln

(
N

NT
2
−N−2

2 21/2

∏T−1
t=1 (N − t)

N−t−1
2N exp

(−N−t
2N

)
)

+ o(1)

=
ln (2)

2T
− 1

T
ln

(
T−1∏
t=1

(
1− t

N

)1/2

exp

(
−1

2

))
+ o (1)

=
ln (2)

2T
+

T − 1

2T
+ o (1) .

In addition,

E (WN) =
N · Σ + M

′
M

N
= σ∗2B∗ (IT + λ∗N1T 1′T ) B∗′ ≡ W ∗

N ,

Because V (WN) → 0, we have WN = W ∗
N + op (1). Now,

|W ∗
N | = |B∗| ·

∣∣σ∗2 (IT + λ∗N1T 1′T )
∣∣ · |B∗′| = (

σ∗2
)T |IT + λ∗N1T 1′T | =

(
σ∗2

)T
(1 + λ∗NT ) .

As a result, ln (WN) = T ln (σ∗2) + ln (1 + λ∗NT ) + op (1) .
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It is unknown whether the second line in (21) is well-behaved with T → ∞.

However, since it does not depend on θ, it can be ignored when finding the limiting

behavior of θ̂N . Hence, define the objective function

Q̂N (θ) = −1

2
ln σ2 − 1

2σ2

tr(DWND′)
T

− 1

2
λ +

1

NT
ln

(
Z
−N−2

2
N IN−2

2

(
N

2
ZN

))
.

From here, we split the result into fixed T and large T asymptotics.

For part (a), in which N →∞ with T fixed, ZN = Z∗
N + op (1), where

Z∗
N ≡ 2

√
λ

1′T DW ∗
ND′1T

σ2
.

Furthermore, Q̂N (θ) = QN (θ) + op (1), where

QN (θ) = −1

2
ln σ2− 1

2σ2

tr(DW ∗
ND′)

T
−1

2
λ+

1

2T

(
1 + Z∗2

N

)1/2− 1

2T
ln

(
1 +

(
1 + Z∗2

N

)1/2
)

.

The first order condition (FOC) for QN (θ) is given by

∂QN (θ)

∂ρ
=

σ∗2

σ2

(ρ∗ − ρ) tr (FF ′) + λ∗ {1′T F1T + (ρ∗ − ρ) 1′T F ′F1T}
T

−σ∗2

σ2

λ∗

1 + (1 + Z∗2
N )1/2

1′T F1T + (ρ∗ − ρ) 1′T F ′F1T − λ∗ (T + (ρ∗ − ρ) 1′T F1T )

T

∂QN (θ)

∂σ2
= − 1

2σ2
+

σ∗2

2 (σ2)2

c1

T
− σ∗2

(σ2)2

λ∗N
1 + (1 + Z∗2

N )1/2

c2

T

∂QN (θ)

∂λ
= −1

2
+

σ∗2

σ2

1

1 + (1 + Z∗2
N )1/2

c2

T
.

The value θ∗ = (ρ∗, σ∗2, λ∗N) minimizes QN (θ), setting the FOC to zero.

For parts (a)(i),(ii), QN (θ) →p Q (θ) (uniformly in Θ compact) given by

QN (θ) = −1

2
ln σ2− 1

2σ2

tr(DW ∗D′)
T

−1

2
λ+

1

2T

(
1 + Z∗2)1/2− 1

2T
ln

(
1 +

(
1 + Z∗2)1/2

)
,

where W ∗ and Z∗ are defined as

W ∗ = σ∗2B∗ (IT + λ∗1T 1′T ) B∗′ and Z∗ = 2

√
λ

1′T DW ∗D′1T

σ2
. (22)

Since θ ∈ Θ compact and Q (θ) is continuous, θ̂N →p θ.

Part (a)(iii) follows analogously to Theorem 2-(a)(iii).
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For part (b), the dimension of WN changes as T →∞. Yet, for |ρ∗| < 1,

tr(DWND′)
T

=
tr(DW ∗

ND′)
T

+ op (1) and

1′T DWND′1T

T 2
=

1′T DW ∗
ND′1T

T 2
+ op (1) .

As a result, QN (θ) = QN (θ) + op (1), where

QN (θ) = −1

2
ln σ2 − 1

2σ2

tr(DW ∗
ND′)

T
− 1

2
λ +

1

2

Z∗
N

T
.

The first order condition (FOC) for QN (θ) is given by

∂QN (θ)

∂ρ
=

σ∗2

σ2

(ρ∗ − ρ) tr (FF ′) + λ∗ {1′T F1T + (ρ∗ − ρ) 1′T F ′F1T}
T

− (σ∗2)1/2

(σ2)1/2

λ∗1/2λ1/2

1 + (1 + Z∗2
N )1/2

1′T F1T

T

∂QN (θ)

∂σ2
= − 1

2σ2
+

σ∗2

2 (σ2)2

c1

T
− (σ∗2)1/2

λ1/2λ∗1/2

2 (σ2)3/2

1′T DB∗1T

T

∂QN (θ)

∂λ
= −1

2
+

(σ∗2)1/2
λ∗1/2

2 (σ2)1/2 λ1/2

1′T DB∗1T

T
.

The value θ∗ = (ρ∗, σ∗2, λ∗N) minimizes QN (θ), setting the FOC to zero.

For parts (b)(i),(ii), QN (θ) = Q (θ) + op (1) (uniformly in Θ compact), given by

Q (θ) = −1

2
ln σ2 − 1

2σ2
lim

T→∞
tr(DW ∗D′)

T
− 1

2
λ

+ lim
T→∞

1

2T

(
1 + Z∗2)1/2 − lim

T→∞
1

2T
ln

(
1 +

(
1 + Z∗2)1/2

)
.

where W ∗ and Z∗ are defined in (22). Since θ ∈ Θ compact and Q (θ) is continuous,

θ̂N →p θ.

Part (b)(iii) follows analogously to Theorem 2-(a)(iii).

Proof of Theorem 7. First, we prove part (a). The objective function is

Q̂N (θ) = − ln σ2

2
− tr(DWND′)

2σ2T
− λ

2
+

(1 + Z2
N)

1/2

2T
−

ln
(
1 + (1 + Z2

N)
1/2

)

2T
(23)

up to an op (N−1) term. All results below hold up to op

(
N−1/2

)
order.
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The components of the score function SN (θ) are

∂QN (θ)

∂ρ
=

1

σ2

tr (JT WND′)
T

− 2λ

1 + (1 + Z2
N)1/2

1′T JT WND′1T

T

∂QN (θ)

∂σ2
= − 1

2σ2
+

1

2 (σ2)2

tr (DWND′)
T

− 1

(σ2)2

λ

1 + (1 + Z2
N)1/2

1′T DWND′1T

T

∂QN (θ)

∂λ
= −1

2
+

1

σ2

1

1 + (1 + Z2
N)1/2

1′T DWND′1T

T
.

The Hessian matrix HN (θ) →p −IT (θ), whose components are

∂2QN (θ)

∂ρ2
=

σ
∗2

σ2

2λ

1 + (1 + Z∗2
N )1/2

1′T F ′F1T + λ (1′T F1T )2

T
− σ

∗2

σ2

tr (F ′F ) + λ∗1′T F ′F1T

T

−
(

σ
∗2

σ2

)2
8λ2

(1 + (1 + Z∗2
N )1/2)

2

1

(1 + Z∗2
N )1/2

(c3)
2

T

∂2
NQ (θ)

∂ρ∂σ2
= − σ

∗2

(σ2)2

c4

T
+

σ
∗2

(σ2)2

2λ

1 + (1 + Z∗2
N )1/2

c3

T

×
{

1− σ
∗2

σ2

2λc2

1 + (1 + Z∗2
N )1/2

1

(1 + Z∗2
N )1/2

}

∂2
NQ (θ)

∂ρ∂λ
= −σ

∗2

σ2

2

1 + (1 + Z∗2
N )1/2

c3

T

{
1− σ

∗2

σ2

2λc2

1 + (1 + Z∗2
N )1/2

1

(1 + Z∗2
N )1/2

}

∂2
NQ (θ)

∂ (σ2)2 = −
(
σ
∗2

)2

(σ2)4

2λ2

(1 + (1 + Z∗2
N )1/2)

2

1

(1 + Z∗2
N )1/2

(c2)
2

T

+
1

2 (σ2)2 −
σ
∗2

(σ2)3

c1

T
+

σ
∗2

(σ2)3

2λ

1 + (1 + Z∗2
N )1/2

c2

T

∂2
NQ (θ)

∂σ2∂λ
= − σ

∗2

(σ2)2

1

1 + (1 + Z∗2
N )1/2

c2

T

{
1− σ

∗2

σ2

2λc2

1 + (1 + Z∗2
N )1/2

1

(1 + Z∗2
N )1/2

}

∂2
NQ (θ)

∂λ2 = −
(

σ
∗2

σ2

)2
2

(1 + (1 + Z∗2
N )1/2)

2

1

(1 + Z∗2
N )1/2

(c2)
2

T
.

This convergence is uniform on θ = (β, λ) for a compact set containing θ∗ as long as

λ > 0. This completes part (a)(ii). To show part (a)(i), we write

√
NTSN (θ∗) ≡

√
NTS (WN ; θ∗) ≡

√
NT [S (WN ; θ∗)− S (W ∗; θ∗)] .

Using vec (WN) = DT vech (WN), where DT is the duplication matrix (e.g. Magnus

and Neudecker (1988)), we write

√
NTSN (θ∗) ≡

√
NT [L (vech (WN) ; θ∗)− L (vech (W ∗) ; θ∗)] ,
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where L : R
T (T+1)

2 → R3. Now,
√

NT (vech (WN)− vech (W ∗)) converges to a nor-

mal distribution by a standard CLT. As a result, using the delta method and the

information identity,
√

NTSN (θ∗) converges to a normal distribution with zero mean

and variance IT (θ). Part (iii) follows from Newey and McFadden (1994).

Part (b) follows from the asymptotic normality of the score (whose variance is

given by the reciprocal of the inverse of the limit of the Hessian matrix). As the

remainder terms from expansions based on (23) are asymptotically negligible, (14)

holds true.

Proof of Proposition 6. First, we prove part (a). The first moment of WN is

EθN
[WN ] = σ2B {IT + λN · 1T 1′T}B. (24)

The matrix EθN
[WN ] is symmetric and has T (T + 1) /2 nonredundant elements.

For each observation i, m
(
wi; ρ, σ2, (ηi/σ)2) depends on a different parameter

(ηi/σ)2. By averaging out (15), we can identify the parameter θ∗N = (ρ∗, σ∗2, λ∗N):

Eθ∗N [m (WN ; θN)] = Eθ∗N

[
1

N

∑N

i=1
m

(
wi; ρ, σ2, (ηi/σ)2)

]

= Eθ∗N

[
vech

(
WN − σ2B {IT + λN · 1T 1′T}B

)]

= 0 if and only if θN = θ∗N .

Every GMM estimator of ρ that we are aware of is invariant to orthogonal trans-

formations and implicitly uses a subset of the T (T + 1)/2 moment conditions given

by (16). This includes Arellano and Bond’s (1991) and Ahn and Schmidt’s (1995)

estimators. Specifically, the existing GMM estimators use the moment given by

EθN

[
m0 (WN ; θN)

]
= 0, (25)

where m0 (WN ; θN) = δ0′m (WN ; θN) for a suitably chosen matrix δ0 with T (T +1)/2

columns. For example, Arellano and Bond’s (1991) differentiates the data to construct

a (T − 2)(T − 1)/2-dimensional function m0 (WN ; θN) with entries

1

N

∑N

i=1
yi,t′ (4yi,t − ρ · 4yi,t−1) , t = 3, . . . , T, t′ = 1, . . . , t− 2.

This choice of m0 (wi; θN) yields the (T − 2)(T − 1)/2 × T (T + 1)/2 block-diagonal
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matrix

δ0 =




HT−2

HT−3

. . .

H1




, where Ht is a matrix with t lines:

Ht =




ρ − (1 + ρ) 1

ρ − (1 + ρ) 1
. . . . . . . . .

ρ − (1 + ρ) 1




. (26)

It is interesting to see Arellano and Bond’s (1991) moment conditions using

m0 (WN ; θN) = δ0′m (WN ; θN). Their moment conditions arise exactly because

δ0′m (WN ; θN) = δ0′ [{vech (WN)− vech
(
σ2B {IT + λN · 1T 1′T}B′)}]

= δ0′vech (WN)− δ0′D+
T (B ⊗B)vec(σ2 {IT + λN · 1T 1′T})

= δ0′vech (WN) , (27)

where D+
T is the Moore-Penrose inverse of DT (e.g. Magnus and Neudecker (1988)).

Expressions (26) and (27) also illustrate how differentiating the data imposes partic-

ular structures on δ0:

Eθ∗N [m (WN ; θN)] = vech
(
σ∗2B∗ {IT + λ∗N · 1T 1′T}B∗ − σ2B {IT + λN · 1T 1′T}B

)

Eθ∗N

[
m0 (WN ; θN)

]
= Eθ∗N

[
δ0′vech

(
σ∗2B∗ {IT + λ∗N · 1T 1′T}B∗)] .

Part (b) follows from standard results, e.g., Theorems 2.1 and 3.2 of Newey and

McFadden (1994).

For part (c), we assume that (η∗i /σ
∗)2 is known to be fixed at λ∗, i = 1, ..., N :

m
(
wi; ρ, σ2, λ

)
= vech (wi)− vech

(
σ2B {IT + λ · 1T 1′T}B

)
.

Hence, we can apply Chamberlain’s (1987) efficiency bound to moment conditions:

{
E

(
∂m (wi; θ

∗)
∂θ

)′ {
E

(
m (wi; θ

∗) m (wi; θ
∗)′

)}−1
E

(
∂m (wi; θ

∗)
∂θ′

)}−1

= (ζ ′Ξζ)−1.

Proof of Corollary 2. As a preliminary result, we need to find the limits of

T−1tr(FF
′
), T−11′T F1T , and T−11′T F ′F1T , as T →∞. For the first term,

1

T
tr (FF ′) =

1

T

T−2∑
j=0

j∑
i=0

ρ∗2i =
T − 1

T

T−1∑
i=0

ρ∗2i − 1

T

T−1∑
i=0

iρ∗2i → 1

1− ρ∗2
,
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because
∑T−1

i=0 i(ρ∗2)i is a convergent series. This is true because a sufficient condition

for a series
∑T

i=0 ai to converge is that lim T
√
|aT | < 1 as T →∞. Taking ai = i(ρ∗2)i,

lim T
√
|aT | = lim T

√
|T (ρ∗2)T | = ρ∗2 lim T

√
T = ρ∗2 < 1. Analogously,

1

T
1′T F1T =

1

T

T−2∑
j=0

j∑
i=0

ρ∗i =
T − 1

T

T−1∑
i=0

ρ∗i − 1

T

T−1∑
i=0

iρ∗i → 1

1− ρ∗
.

because
∑T−1

i=0 iρ∗i also converges. Finally, by the Cauchy–Schwarz inequality,

(
1

T
1′T F1T

)2

≤ 1

T
1′T F ′F1T =

1

T

T−2∑
j=0

(
j∑

i=0

ρ∗i
)2

≤ T − 1

T

(
1

1− ρ∗

)2

.

Taking limits, we obtain

1

(1− ρ∗)2 ≤ lim inf
1

T
1′T F ′F1T ≤ lim sup

1

T
1′T F ′F1T ≤ 1

(1− ρ∗)2 .

Hence, the limit of T−11′T F ′F1T exists and equals (1− ρ∗)−2. This result implies that

(T−11′T F1T )
2

T−11′T F ′F1T

=
(1′T F1T )2

(1′T 1T ) (1′T F ′F1T )
=

〈xT , yT 〉2
〈xT , xT 〉 〈yT , yT 〉 → 1 as T →∞,

where xT and yT are sequences of elements in the Hilbert space (with 〈xT , yT 〉 as the

usual inner product) in which the first T entries equal 1T and F1T , respectively, and

zero otherwise.

Therefore, the limiting information matrix I∞ (θ∗) simplifies to

I∞ (θ∗) =




1
1−ρ∗2 + λ∗

(1−ρ∗)2
λ∗

2σ∗2(1−ρ∗)
1

2(1−ρ∗)
λ∗

2σ∗2(1−ρ∗)
2+λ∗

4(σ∗2)2
1

4σ∗2
1

2(1−ρ∗)
1

4σ∗2
1

4λ∗


 .

The entry (1, 1) of the inverse of I∞ (θ∗) is

(
I∞ (θ∗)−1)

11
= (A11 − A12A

−1
22 A21)

−1,

where the matrices Ajk are partitions of I∞ (θ∗):

A11 =
1

1− ρ∗2
+

λ∗

(1− ρ∗)2 , A12 =
[

λ∗
2σ∗2(1−ρ∗)

1
2(1−ρ∗)

]

A21 =

[
λ∗

2σ∗2(1−ρ∗)
1

2(1−ρ∗)

]
, and A22 =

[
2+λ∗

4(σ∗2)2
1

4σ∗2
1

4σ∗2
1

4λ∗

]
.
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The following holds true:

A12A
−1
22 A21 =

1

(1− ρ∗)2

[
λ∗
σ∗2 1

] [
2+λ∗
(σ∗2)2

1
σ∗2

1
σ∗2

1
λ∗

]−1 [
λ∗
σ∗2

1

]

=
λ∗(σ∗2)2

2 (1− ρ∗)2

[
λ∗
σ∗2 1

] [
1
λ∗

−1
σ∗2

−1
σ∗2

2+λ∗
(σ∗2)2

][
λ∗
σ∗2

1

]

=
λ∗(σ∗2)2

2 (1− ρ∗)2

{
λ∗

(σ∗2)2
− 2λ∗

(σ∗2)2
+

2

(σ∗2)2
+

λ∗

(σ∗2)2

}

=
λ∗

(1− ρ∗)2 .

As a result, we obtain

(
I∞ (θ∗)−1)

11
=

(
1

1− ρ∗2
+

λ∗

(1− ρ∗)2 −
λ∗

(1− ρ∗)2

)−1

= 1− ρ∗2.

Proof of Theorem 8. When T →∞, the objective function is

Q̂N (θ) = −1

2
ln σ2 − 1

2σ2

tr(DWND′)
T

− 1

2
λ− 1

2T
ZN

up to an op (N−1) term. All results below hold up to op

(
N−1/2

)
order.

The components of the score function SN (θ) are

∂QN (θ)

∂ρ
=

1

σ2

tr (JT WND′)
T

− λ1/2

(σ2)1/2

1′T JT WND′1T

T (1′T DWND′1T )1/2

∂QN (θ)

∂σ2
= − 1

2σ2
+

1

2 (σ2)2

tr (DWND′)
T

− λ1/2

2 (σ2)3/2

(1′T DWND′1T )1/2

T

∂QN (θ)

∂λ
= −1

2
+

1

2 (σ2)1/2 λ1/2

(1′T DWND′1T )1/2

T
.

If |ρ∗| is bounded away from one, as T →∞,

tr(JT WND′)
T

→ p lim
tr(JT W ∗

ND′)
T

,
1′T JT WND′1T

T 2
→p lim

1′T JT W ∗
ND′1T

T 2

tr(DWND′)
T

→ p lim
tr(DW ∗

ND′)
T

, and
1′T DWND′1T

T 2
→p lim

1′T DW ∗
ND′1T

T 2
.
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As a result, the Hessian matrix −HN (θ) →p I∞ (θ), whose components are limits of

−∂2QN (θ)

∂ρ2
=

σ
∗2

σ2

tr (F ′F ) + λ∗1′T F ′F1T

T

−∂2QN (θ)

∂ρ∂σ2
=

σ
∗2

(σ2)2

c4

T
− λ1/2λ∗1/2

(
σ
∗2

)1/2

2 (σ2)3/2

1′T F1T

T

−∂2QN (θ)

∂ρ∂λ
=

(σ∗2)1/2
λ∗1/2

2 (σ2)1/2 λ3/2

1′T F1T

T

−∂2QN (θ)

∂ (σ2)2 =
σ
∗2

(σ2)3

c1

T
− 3

4

(
σ
∗2

)1/2
λ1/2λ∗1/2

(σ2)5/2

1′T DB∗1T

T
− 1

2 (σ2)2

−∂2QN (θ)

∂σ2∂λ
=

(σ∗2)1/2
λ∗1/2

4 (σ2)3/2 λ1/2

1′T DB∗1T

T

−∂2QN (θ)

∂λ2 =
(σ∗2)1/2

λ∗1/2

4 (σ2)1/2 λ3/2

1′T DB∗1T

T
.

This convergence is uniform on θ = (β, λ) for a compact set containing θ∗ as long as

|ρ∗| is bounded away from one. This completes part (ii). To show part (i), define

WN =
(

tr(JT WND∗′)
T

1′T JT WND∗′1T

T 2

tr(D∗W ′
ND∗′)

T

1′T D∗W ′
ND∗′1T

T 2

)′
and

W∗
N =

(
tr(JT W ∗

ND∗′)
T

1′T JT W ∗
ND∗′1T

T 2

tr(D∗W ∗
ND∗′)

T

1′T D∗W ∗
ND∗′1T

T 2

)′
,

and write √
NTSN (θ∗) ≡

√
NT [L (WN ; θ∗)− L (W∗

N ; θ∗)] ,

where L : R4 → R3. Now,
√

NT (WN −W∗
N) converges to a normal distribution

by a standard CLT and the Cramér-Wold device. Using the delta method and the

information identity,
√

NTSN (θ∗) converges to a normal distribution with zero mean

and variance I∞ (θ∗) as long as N ≥ T . Part (iii) follows from Newey and McFadden

(1994).
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