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1 Introduction

A large literature documents an increase in wage inequality in the American economy over

the 1970’s and 1980’s (see Katz and Autor, 1999). This increase in wage inequality has

occurred both within and between education-experience groups.

Cunha, Heckman, and Navarro (2005), henceforth CHN, note that variability in wages

across people over time is not the same as uncertainty in wages. Some of the variability may

be due to variability in predictable components observed by agents but not observed by the

observing economist. CHN estimate that roughly half of all variability is due to uncertainty.

They look at uncertainty at a point in time. In this paper, we apply their methodology

to estimate how much of the recent increase in wage inequality is due to an increase in

components predictable by the agents at the age they make their college attendance decisions

and how much is due to components that are unpredictable at that age.

A large literature in empirical labor economics starting with the pioneering work of

Friedman and Kuznets (1945) uses panel data to decompose earnings into permanent and

transitory components. Using such statistical decompositions, Gottschalk and Moffitt (1994)

document an increase in measured earnings instability in recent decades. The variance of

transitory components greatly increases from the period 1970–1978 to the period 1979–

1987. However, purely statistical decompositions cannot distinguish uncertainty from other

sources of variability. Transitory components as measured by a statistical decomposition

may be perfectly predictable by agents, partially predictable or totally unpredictable.

This paper uses cross-cohort data on schooling choices and future earnings to estimate

the evolution of uncertainty in the labor market. We show that unforecastable components in

labor income have increased in recent years, especially for less skilled workers. Our findings

support the claim of Ljungqvist and Sargent (2004) that turbulence has increased in unskilled

labor markets. This increase is not revealed in traditional measures of earnings inequality

which do not distinguish between predictable and unpredictable components.

Our approach is based on the following simple idea. A decision variable D1 determined
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in period 1, say consumption in the first period, may depend on outcomes Y1, . . . , YT over

horizon T of another variable, say income, that is realized after the choice is taken. The

correlation between D1 and future Yt is a measure of how much of future Yt is known and

acted on when agents make their choices about D1.

When making their decisions, agents only imperfectly predict their future earnings using

information I. Suppose that D1 depends on future Yt only through expected present value,

E (PV | I) , where “E” denotes expectation, PV =
∑T

t=1
Yt

(1+ρ)t−1 , and ρ is the discount rate.

If, after the choice of D1 is made, we actually observe Y1, . . . , YT , we can construct PV ex

post. If the information set is properly specified, the residual corresponding to the component

of PV that is not forecastable in the first period, V = PV − E (PV | I), should not predict

D1. E (PV | I) is predictable. V is a measure of uncertainty. The variance in PV that is

unpredictable using I is a measure of uncertainty.1

This paper uses college attendance choices as D1. Following Becker (1964), these choices

depend on comparisons of earnings in the schooling level chosen and in alternative states.

We must modify the simple test just described to account for the economist’s inability to

measure realized earnings in schooling states not selected that govern choice.

Using choice data combined with earnings data, we find that both predictable and un-

predictable components of earnings variance have increased in recent years. The increase

in uncertainty is microeconomic, and is much greater for unskilled workers. Macroeconomic

uncertainty has decreased, especially for less skilled workers. For less skilled workers, roughly

60% of the increase in wage variability within schooling groups is due to uncertainty. For

more skilled workers, only 8% of the increase in inequality is due to uncertainty. Roughly

26% of the increase in the variance of returns to schooling is due to increased uncertainty.

The rest of this paper is in five parts. Part 2 summarizes the model of CHN used to

obtain our estimates. A web supplement presents semiparametric proofs of identification

1The Sims (1972) test for noncausality is based on a related idea in a linear prediction framework. Whereas
Sims tests whether future Yt predict current D1, we measure what fraction of future Yt predict current D1

and use a more general prediction process.
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based on their work. Part 3 presents empirical results. Part 4 concludes.

2 The CHN Model

To identify the forecastable components of future earnings and how they have changed over

time, we draw on the analysis of CHN, which we briefly summarize.

2.1 Earnings Equations

Using the Roy model (1951) and its generalizations, agents possess two ex post earnings

streams, (Y0,t, Y1,t), t = 1, . . . , T , for schooling levels “0” and “1” respectively. They are

assumed to have finite means. For conditioning variables X, we write:

Y0,t = Xβ0,t + U0,t (1)

Y1,t = Xβ1,t + U1,t, t = 1, . . . , T. (2)

The error terms Us,t are assumed to satisfy E (Us,t | X) = 0, s = 0, 1.2 Allowing for age-

specific returns incorporates post-school investment as a determinant of earnings.

2.2 Choice Equations

The human capital model of Becker (1964) is based on present value income maximization.

We extend that model by assuming that agents are risk neutral and make schooling choices

based on expected present value income maximization given information set I. Write the

index I of present values as

I = E

[
T∑

t=1

(
1

1 + ρ

)t−1

(Y1,t − Y0,t)− C

∣∣∣∣∣ I
]

, (3)

2Our analysis does not require linearity of the model in terms of parameters. See CHN. We use linearity
because of its familiarity and simplicity.
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where C is the cost of attending college. Z and UC denote, respectively, the observable and

unobservable determinants of costs. Assume that costs can be written as

C = Zγ + UC . (4)

Defining

µI(X, Z) =
T∑

t=1

(
1

1 + ρ

)t−1

X (β1,t − β0,t)− Zγ

and

UI =
T∑

t=1

(
1

1 + ρ

)t−1

(U1,t − U0,t)− UC ,

and substituting in (1), (2), and (4) into (3) we obtain

I = E [µI(X, Z) + UI | I] . (5)

E (UI |I) is the error term in the choice equation and it may or may not include U1,t, U0,t, or

UC , depending on what is in the agent’s information set. Similarly, µI(X, Z) may only be

based on expectations of future X and Z at the time schooling decisions are made. People

go to college if the expected present value of earnings is positive:

S = 1 [I ≥ 0] . (6)

2.3 Test Score Equations

In addition to data on earnings and choices, we also have access to data on a set of cognitive

test score equations. Let Mk denote the agent’s score on the kth test. Assume that the Mk
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have finite means and can be expressed in terms of conditioning variables XM . Write

Mk = XMβM
k + UM

k and E
(
UM

k | XM
)

= 0, k = 1, 2, . . . , K. (7)

Both the decision to attend college and realized earnings likely depend on the cognitive skills

that agents have at the time their schooling choices are made. Test scores facilitate but are

not essential to our identification strategy.

2.4 Heterogeneity and Uncertainty

The earnings of agents of schooling level s at age t can be decomposed into predictable and

unpredictable components

Ys,t = E (Ys,t | I) + Vs,t, s = 0, 1, t = 1, . . . , T.

The component E (Ys,t | I) is available to the agent to help make schooling choices. It is a

component of realized earnings. The component Vs,t does not enter the schooling equation

because it is unknown at the time schooling decisions are made. However, it determines

realized earnings.

To determine which components are in the information set of the agent, we need to

determine which specification of the information set I best characterizes the dependence

between schooling choices and future earnings. CHN use factor structure approximations to

decompose earnings into predictable and unpredictable components. Other approximations

might be used (see, e.g., MaCurdy, 1982, 2007) but factor structures are computationally

and conceptually convenient and can approximate general error processes. The advantage

of factor models is that they enable analysts to partition realized earnings into orthogonal

components. Some of these components may be known by the agent when schooling choices

are made and some components may not. By factor analyzing earnings and choice equa-

tions we can determine which components (factors) of realized earnings appear in the choice
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equations. To show this, following CHN, we introduce an explicit factor structure for the

disturbance terms, starting with the test score equations.

2.5 Factor Models

Break the error term UM
k in the test score equations into two components. The first compo-

nent is a factor, θ1, that is common across all test score equations. The second component

is unique to test score equation k, εM
k . In this notation, we can write equation (7) as

Mk = XMβM
k + θ1α

M
k + εM

k , k = 1, . . . , K (8)

where the αM
k are “factor loadings”, i.e. coefficients that map θ1 into Mk.

Following the psychometric literature, the factor θ1 might be interpreted as a latent

cognitive ability which potentially affects all test scores but that interpretation is not essential

to our analysis. We assume that θ1 is independent of XM and εM
k . The εM

k are mutually

independent and independent of θ1. Modeling test scores in this fashion allows them to be

noisy measures of cognitive ability.3

2.5.1 Earnings and Choice Equations

We decompose the error terms in the earnings equations into factors and idiosyncratic errors.

Let factors and factor loadings be θ = (θ1, . . . , θK) and αs,t = (α1,s,t, . . . , αK,s,t), respectively.

The idiosyncratic error term, εs,t, affects only the period-t, schooling-s earnings equation.

We assume that U0,t and U1,t can be written in factor-structure form

Us,t = θα′
s,t + εs,t s = 0, 1, t = 1, . . . , T. (9)

3Applying the analysis of Schennach (2004), identification of the model can be secured under much weaker
conditions.
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We assume that factor components are mutually independent and independent of X and εs,t

for all s, t. The ε`,t, ` = 0, 1 and t = 1, . . . , T , are mutually independent. The cost equation

is decomposed in a fashion similar to the earnings equations, so that (4) can be rewritten as

C = Zγ + θα′
C + εC , (10)

where εC is independent of θ, X, Z, εs,t, s = 0, 1, t = 1, . . . , T . Given the factor representa-

tion (9) and (10), we can represent the choice index I for schooling as

I = E

[ ∑T
t=1

(
1

1+ρ

)t−1

X (β1,t − β0,t)− Zγ + θα′
I +

∑T
t=1

(
1

1+ρ

)t−1

(ε1,t − ε0,t)− εC

∣∣∣∣ I]
(11)

where we define

αI =
T∑

t=1

1

(1 + ρ)t−1
(α1,t − α0,t)− αC .

2.6 The Estimation of Predictable Components of Future Earn-

ings

We now illustrate how to apply the method of CHN to determine which components of

realized earnings are known to the agent when schooling choices are made. For expositional

simplicity, in this section alone we assume that X, Z, βs,t (s = 0, 1, t = 1, . . . , T ) and εC are

in the information set I.4 To fix ideas, suppose that there are two factors, θ1 and θ2. In our

empirical work reported below we use more factors.

Suppose that it is claimed that both θ1 and θ2 are known by the agent when schooling

choices are made but the εs,t are not, i.e. {θ1, θ2} ⊂ I, but εs,t /∈ I. If this is true, the index

function governing schooling choices is

I = µI(X, Z) + α1,Iθ1 + α2,Iθ2 + εC . (12)

4In our empirical analysis, we test for the presence or absence of ex post observables in X that are in ex
ante information sets.
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Using standard results in discrete choice analysis (see Matzkin, 1992, for precise con-

ditions), we can proceed as if we observed I in equations (6) and (12) up to an unknown

positive scale, i.e., from the discrete choices on schooling we observe the index generating the

choices up to scale. From the correlation between S and realized incomes, we can identify

(up to scale) the covariance between I and Ys,t, t = 1, . . . , T for s = 0 or 1. Conditional on

X, Z this covariance is

Cov (I, Ys,t|X, Z) = α1,Iα1,s,tσ
2
θ1

+ α2,Iα2,s,tσ
2
θ2

, s = 0, 1.

If θ2 is not known, or is known and not acted on by the agent when schooling choices are

made, α2,I = 0. If neither θ2 nor θ1 is known, or acted on, by the agent, α1,I = α2,I = 0.

Extending standard results in factor analysis, CHN show how to use test score data and

earnings data to identify the factor loadings and the distribution of the factors in test score

and earnings equations (8), (9) and (10) using self-selected samples.5 Self selection arises

because analysts only observe the earnings stream associated with s for persons who choose

s. CHN establish conditions for identifying σ2
θ1

, σ2
θ2

, α1,s,t and α2,s,t s = 0, 1, t = 1, . . . , T .

We review their conditions in our web appendix.6

Putting these ingredients together, we can determine which components (factors) that

determine realized Ys,t, s = 0, 1, t = 1, . . . , T are correlated with I. If component (factor) θ1

is correlated with I and is acted on by the agent in making schooling choices, then α1,I 6= 0.

If component θ2 is uncorrelated with I, then α2,I = 0 and θ2 is not acted on by the agent in

making schooling choices.7

5In our web supplement, we restate their formal proofs of identification. They identify the distributions
of factors nonparametrically. Test score data are not required to secure identification. See, e.g., Heckman,
Lochner, and Todd (2006).

6See Part III of the web supplement.
7CHN interpret the factor loadings in the earnings equations as prices of unobserved skills that they

interpret as factors. In this paper we do not adopt their interpretation. We allow agents to be uncertain
about their future skills, future prices, or both. We interpret the factor loadings as convenient statistical
devices for representing the components of realized earnings no matter what their source. Thus we do not
maintain the perfect foresight assumption about future skill prices used by CHN.
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3 Empirical Results

In order to study the evolution of uncertainty and inequality in labor earnings in the U.S.

economy, we analyze and compare two demographically comparable, temporally separated

samples. We study white males born between 1957 and 1964, sampled by the National

Longitudinal Survey of Youth (NLSY/1979).8 We also study an earlier sample of white males

born between 1941 and 1952, surveyed in the National Longitudinal Survey (NLS/1966).9

In what follows, we refer to the samples as NLSY/1979 and NLS/1966, respectively. These

data are described in detail in the data web appendix.10 Because we analyze only white

males, we do not present a comprehensive investigation of the rise of inequality in the U.S.

coming all within-group and between-group comparisons. However, we can abstract from

influences that operate differentially on various demographic groups and focus on the rise of

inequality that is due to forecastable versus unforecastable components.11

We analyze two schooling choices: high school and college graduation. Use s = 0 to

denote those who stop at high school and s = 1 to denote those who graduate college. The

Web Data Appendix Tables I-1 and I-2 present descriptive statistics on the NLSY/1979 and

NLS/1966 samples, respectively. In both samples, college graduates have higher test scores,

fewer siblings and parents with higher levels of education than those who stop at high school.

In the NLSY/1979, college graduates are more likely to live in locations where the tuition

for four-year college is lower. This is not true for the college graduates in NLS/1966.12

We analyze the evolution of labor income from ages 22 to 36. For the NLS/1966 sample,

8See Miller (2004) for a description of the NLSY data.
9See documentation at http://www.nlsinfo.org/web-investigator/docs.php?mychrt=boys for a description

of the NLS data.
10http://jenni.uchicago.edu/evo-earn/. The Web Appendix has five parts: Web Supplement I contains a

description of the samples; Web Supplement II presents a description of the estimated model, including the
goodness of fit tests; Web Supplement III provides a thorough review on the identification of the model; Web
Supplement IV discusses the estimates of the joint distribution of outcomes; Web Supplement V presents
the results of the schooling choice on our measures of aggregate inequality.

11See Katz and Autor (1999) for a discussion of other factors contributing to the observed rise in wage
inequality.

12See Cameron and Heckman (2001) for details on the construction of the tuition variables used in this
paper.
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reliable data are not available after that age. Figures 1 and 2 display, respectively, the mean

earnings by age of high school and college graduates for NLSY/1979 and NLS/1966.13 In

both data sets, college graduates start off with lower mean labor income than high-school

graduates but overtake them. This is consistent with earlier evidence by Mincer (1974).

We plot the standard deviation of earnings by age for high school (Figure 3) and college

(Figure 4) graduates for both cohorts. The standard deviation of earnings increases with

age for high school and college graduates in both data sets. The standard deviation of

earnings by age is uniformly greater in the later cohort, for both high school and college

graduates.

Both data sets have measures of cognitive test scores.14 For the NLSY/1979, we use five

components of the ASVAB test battery: arithmetic reasoning, word knowledge, paragraph

comprehension, math knowledge and coding speed. We dedicate the first factor (θ1) to this

test system, and exclude other factors from it. Thus θ1 is a measure of cognitive ability.

In the NLS/1966 there are many different achievement tests, but in our empirical work we

use the two most commonly reported ones: the OTIS/BETA/GAMMA and the California

Test of Mental Maturity (CTMM). One problem with the NLS/1966 sample is that there

are no respondents for whom we observe scores from two or more achievement tests. That

is, for each respondent we observe at most one test score. We supplement the information

from these test scores by using additional proxies for cognitive achievement.15

We model the test score j, Mj by equation (8). The covariates XM include family

13Earnings figures are adjusted for inflation using the CPI and we take the year 2000 as the base year.
14M in the notation of section 2.
15We use information from three different tests from the “Knowledge of the World of Work” survey. The

first is a question regarding occupation: the respondent is asked about the duties of a given profession, say
draftsman. For this specific example, there are three possible answers: (a) makes scale drawings of products
or equipment for engineering or manufacturing purposes, (b) mixes and serves drinks in a bar or tavern, (c)
pushes or pulls a cart in a factory or warehouse. The second test is a test that asks for each occupation in the
first test, the level of education associated with that occupation. The third test is an earnings comparison
test. Specifically, it asks the respondent who he/she believes makes more in a year, comparing two different
occupations. In Web Data Appendix Table I-3 we show that even after controlling for parental education,
number of siblings, urban residence at age 14, and dummies for year of birth, the “Knowledge of the World of
Work” test scores are correlated with the cognitive test scores. The correlation with OTIS/BETA/GAMMA
and CTMM is stronger for the occupation and education tests than for the earnings-comparison test.
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background variables, year of birth dummies, and characteristics of the individuals at the

time of the test.16 To set the scale of θ1, we normalize αM
1 = 1. Using factor models instead

of working directly with test scores, recognizes that test scores may be noisy measures of

cognitive skills.

Salient features of our data are presented in Table 1. Fewer males graduate college in

the later cohort. This is consistent with a large body of evidence that shows enhanced

college participation in earlier cohorts to avoid the Vietnam War draft.17 For a variety of

specifications, Mincer returns increase for the later cohorts. This is consistent with a large

body of evidence on the returns to schooling (Katz and Autor, 1999).

Qualitatively similar models characterize both samples. For both cohorts, a three factor

model is sufficient to fit the data on ex post earnings, test scores and schooling choice.18

The identification of the model requires the normalization of some factor loadings because

the scale of θ is otherwise indeterminate. Web Supplement Appendix Table II-1 shows the

factor loading normalizations imposed in both data sets. In both samples, the covariates X

are urban residence at age 14, year effects, and an intercept.

The covariates Z in the cost function are urban residence at age 14, dummies for year

of birth, and variables that affect the costs of going to college but do not affect outcomes

Ys,t after controlling for ability, such as mother’s education, father’s education, number of

siblings, and local tuition.19 Because in both samples we only have earnings data into the

middle 30s, the truncated discounted earnings after the periods of observation (denoted

t = 1, . . . , T ∗) are absorbed into the definition of expected C in equation (3). Thus C

16In our analyses of both the NLSY/1979 and NLS/1966 data we include mother’s education, father’s
education, number of siblings, urban residence at age 14, dummies for year effects and an intercept. In the
NLSY/1979 sample we also control for whether the test taker is enrolled in school and the highest grade
completed at the time of the test. In the NLS/1966 all of the respondents were enrolled in school at the
time of the test (in fact, the test score is obtained in a survey from schools). We do not know the highest
grade completed at the time of the test for the NLS/1966 sample.

17See e.g. Heckman and LaFontaine (2007)
18In the next subsection and at our website, we discuss the goodness-of-fit measures used to select the

appropriate model for each sample.
19Because we control for ability and other unobservables captured by the factors, our parsimonious speci-

fication of the earnings equations is less controversial.
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estimated from the choice equation is not a pure measure of costs. We discuss this further

in Section 3.3.

Each factor θk is assumed to be generated by a mixture of Jk normal distributions,

θk ∼
Jk∑

j=1

pk,jφ (θk | µk,j, λk,j) ,

where φ (η | µj, λj) is a normal density for η with mean µj and variance λj and
Jk∑

j=1

pk,j = 1,

and pk,j > 0.20 The εs,t are also assumed to be generated by mixtures of normals. We

estimate the model using Markov Chain Monte Carlo methods as described in Carneiro,

Hansen, and Heckman (2003). For all factors, a four-component model (Jk = 4, k = 1, . . . , 3)

is adequate. For all εs,t we use a three-component model.21

The dependent variable in our analysis is earnings and not log earnings. Under risk

neutrality, agents act on expected earnings. The traditional argument for fitting log earnings

is based on goodness of fit considerations.22 Using a nonparametric estimation method for

determining the error distribution, our model fits the earnings data.

3.1 How the model fits the data

Figure 5 compares actual and predicted densities of earnings at age 33 for the overall sample

for the NLSY/1979. The fit is good overall and in subsamples disaggregated by education

and for all of the other age groups.23 When we perform formal tests of equality of predicted

versus actual densities, we pass these tests within schooling groups for most ages.24 The

model fits the NLS/1966 data marginally better than it fits the NLSY/1979 data. The

20Ferguson (1983) shows that mixtures of normals with a large number of components approximate any
distribution of θk arbitrarily well in the `1 norm.

21Additional components do not improve the goodness of fit of the model to the data.
22See Heckman and Polachek (1974).
23The Web Supplement Appendix shows fits for all ages. See Web Supplement Appendix Figures II-1.1

through II-3.30 for the overall, high-school, and college earnings, for both the NLSY/1979 and NLS/1966.
24See Web Supplement Appendix Table II-2.
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estimated factor distributions are non-normal.25 Our tests reveal that agents know θ1 and

θ2 but not θ3 at the time that they make their schooling decisions. Thus the third factor is

revealed after schooling choices are made. In addition, they do not know the εs,t, s = 0, 1,

t = 1, . . . , T ∗, or the year dummies in the earnings equations.

3.2 The Evolution of Joint Distributions of Earnings and the Re-

turns to College

A standard approach to estimating the distribution of earnings in counterfactual schooling

states (e.g., the distributions of college earnings for people who choose to be high school

graduates under a particular policy regime) assumes that college and high school distribu-

tions are the same except for an additive constant — the coefficient of a schooling dummy in

an earnings regression conditioned on covariates. Using the methods developed in CHN and

reviewed in Part III of the web supplement, we can identify both ex ante and ex post joint

distributions without making this strong assumption or the other strong assumptions con-

ventionally used to identify joint distributions of counterfactuals.26 We discuss our estimates

of ex ante and ex post joint distributions in Web Appendix IV.

Knowledge of the joint distributions allows analysts to compare factual with counterfac-

tual distributions. Take agents who choose to be high-school graduates. We can compare

the density of the present value of truncated ex post earnings in the high-school sector with

the density of the truncated present value of earnings in the college sector earnings for the

high-school graduates. Both densities are plotted in Figures 6A and 6B for the NLSY/1979

and NLS/1966, respectively. For both data sets, the high-school attenders would have higher

earnings if they had chosen to be college graduates. For college graduates, we compare the

actual density of present value of truncated earnings in the college sector with that in the

25Figures II-5.1–5.6 plot the estimated densities of the factors for the NLS 1966 and 1979 NLSY samples
by attained schooling level.

26Abbring and Heckman (2007) discuss a variety of alternative assumptions used to identify joint coun-
terfactual distributions, including the work of CHN on which we draw.
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high-school sector. We display these densities in Figures 7A and 7B for the NLSY/1979

and NLS/1966, respectively. Again, in both data sets the densities of high-school truncated

present value of earnings is to the left of the college density.

From such distributions, we can generate the distribution of ex post gross rate of return

R to college (excluding costs) as R = Y1−Y0

Y0
.27 The typical high school student would have

annual gross returns of around 6% for a college education in the earlier cohort and around

9.5% for the later cohort. (See Table 2.) For the typical college graduate, the annual return

is around 8.7% for the earlier cohort and 13.5% for the later cohort. For individuals at the

margin, these figures are 7.5% and 11.8% respectively.

3.3 The Evolution of Uncertainty and Heterogeneity

Under risk neutrality, the valuation or net utility function for schooling is

I = E

(
T ∗∑
t=1

Y1,t − Y0,t

(1 + ρ)t−1

∣∣∣∣∣ I
)
− E (CT ∗| I) ,

where

CT ∗ = −
T̄∑

t=T ∗+1

1

(1 + ρ)t−1
(Y1,t − Y0,t) + C.

Because of the truncation of lifetime earnings in our data, the estimated cost includes a

component due to the expected return realized after period T ∗. Individuals go to college if

I > 0. As previously explained, the correlation between schooling choices and realized future

income allows the analyst to disentangle predictable components from uncertainty. For both

cohorts, we test, and do not reject, the hypothesis that, at the time they make college going

decisions, individuals know their Z and the factors θ1 and θ2. They do not know the time

dummies (year effects) in X and the factor θ3 or εs,t, s = 0, 1, t = 1, . . . , T ∗, at the time

they make their educational choices. We now explore the implications of our estimates for

the growth of uncertainty in the American economy.

27See Web Appendix II–4.1–4.8 for plots of the densities of returns and costs.
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3.3.1 Total Residual Variance and Variance of Unforecastable Components

The unforecastable component of the residual is the sum of the components that are not in

the information set of the agent at the time schooling choices are made. For both data sets,

the unforecastable component of the present value of earnings estimates up to age T ∗ is

Ps =
T ∗∑
t=1

θ3α3,s,t + Ttφ + εs,t

(1 + ρ)t−1
, (13)

where the Tt are the year dummies in the future earnings equation that we estimate to

be unknown to agents at the time they make their schooling choices. The variance of the

unforecastable component in the present value of earnings up to age T ∗ for schooling level s

is Var (Ps).

Table 3 displays the total variance and the variance of the unforecastable components

for each schooling level for both NLS/1966 and NLSY/1979. Total variance of the present

value of earnings up to age T ∗ increases from 195.9 (NLS/1966) to 292.4 (NLSY/1979).

This implies an increase of almost 50% in the total variance. The increase is smaller for

the variance of the present value of high school earnings up to age 36: it goes from 137 in

NLS/1966 to 165, an increase of almost 21%.

The variance of the unforecastable components up to age 36 has also increased. For

college earnings, it is 76.3 in the early cohort and becomes 84.4 in the more recent cohort.

For high school earnings, it is 31.6 in the NLS/1966 and becomes 48.1 in the NLSY/1979. In

percentage terms, this implies that the variance of the unforecastable component increased

10.6% for college and 52% for high school. Table 3 shows that total variance in the present

value of gross returns to college up to age 36 increased from 611 in NLS/1966 to 823 in

NLSY/1979, an increase of about 35%. The variance of the unforecastable components

increased from 167 to 222, or roughly 33%.

The increase in the variance of the unforecastable components of earnings is a key element

in explaining the increase in the total variance in earnings for high school graduates. It is
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much less of a driving force in explaining the increase in the variance of college earnings.

Figures 9A and 9B plot the densities of realized and unforecastable high-school earnings

for the 1979 and 1966 samples, respectively. Figures 10A and 10B make the analogous com-

parison for college earnings for the 1979 and 1966 samples, respectively. Finally, Figures 11A

and 11B show the corresponding figures for returns. Unforecastable components are a major

component of total earnings variance.

Table 3 also presents the total variance and the variance of forecastable components for

each schooling level for both NLS/1966 and NLSY/1979. In the recent cohort, individuals

who attend college have become more diverse in predictable ways possibly associated with

greater possibilities for specialization in the modern economy. There is only a small change

in the predictability of high school earnings. For college earnings, the variance of forecastable

components is 119.5 for the NLS/1966 and 207.9 for the NLSY/1979 corresponding to a 74%

increase. For high school earnings, it is 105 for the NLS/1966 and 117.2 for the NLSY/1979,

which implies an increase of only 11%. There is a substantial increase in the variance of

predictable returns to college for the more recent cohort.

In summary, this analysis shows that about 8% of the increase in the variability in college

earnings, 60% of the increase in the variability in high school earnings, and about 26% of

the increase in the variability of gross returns to college is due to an increase in uncertainty

in the American labor market. We next turn to an analysis of how the increase in variance

is apportioned by age.

3.3.2 The Variance of the Unforecastable and Forecastable Components by Age

The increase in uncertainty is not uniform across age groups. Figure 12A plots the variances

of unforecastable components by age in high school earnings in NLS/1966, and NLSY/1979.

They are flat until age 27/28. A similar pattern characterizes college earnings (Figure 12B).

After age 27/28, college and high school variances in both cohorts increase with age. Until

age 36 the NLSY/1979 cohort experiences a much more rapid increase in variances with
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age than does the NLS/1966 cohort. The college sample shows a similar flat and identical

pattern until age 27. Again, components due to uncertainty increase with age but the only

divergence between the younger cohort and the older cohort is in the 28-31 age range.

The age profile of the variance of forecastable components is different. (See Figures 13A

and 13B.) For both college and high school graduates it rises up to age 27 and then declines

somewhat. For high school graduates, the increase is greater for the more recent cohort up to

age 27 but then the two curves coincide. For college graduates, the predictable components

of variance are uniformly higher at each age for the more recent cohort.

3.3.3 Accounting for Macro Uncertainty

The literature in macroeconomics documents that aggregate instability has decreased in the

past 30 years (see Gordon, 2005). To capture reduced macro uncertainty, we have introduced

time dummies into the earnings equation.28 Our tests indicate that the time dummies in the

ex post earnings equations do not enter the schooling choice equation. Thus, we estimate

that macro uncertainty is not forecastable by agents at the time schooling choices are made.

Macro uncertainty decreased by 90% for later cohorts of high school educated workers (see

Table 4). Macro shocks have decreased slightly if at all for college educated workers. These

estimates are consistent with the evidence that US business cycle volatility has decreased in

recent years. At the same time, macro uncertainty is a tiny fraction of total uncertainty for

both cohorts(6.8% for 1966, 3.3% for 1979).

3.3.4 Inequality Accounting

In deriving the estimates presented in this paper, we have assumed risk neutrality and/or full

insurance against all shocks. It would be informative to estimate a more general model with

risk aversion by agents explicitly modeled. Introducing risk aversion and market structure

28We face the standard problem of the lack of simultaneous identification of age, period and cohort effects
so we cannot identify cohort effects in the presence of age and time effects. Thus our estimates of uncertainty
of time effects can also be interpreted as estimates of uncertainty of cohort effects. See Heckman and Robb
(1985) for a discussion of this problem and a discussion of the interactions that can be identified.
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raises a more general set of questions about the identification of the model discussed in

CHN.29 Navarro (2007) reports estimates of a related model with risk aversion.

Instead of estimating a model with risk aversion, in this paper we draw on a large liter-

ature on inequality measurement that evaluates alternative distributions of earnings using

a variety of indices and social welfare functions.30 These criteria embody social preferences

toward inequality aversion. We contribute to this literature by distinguishing the contribu-

tions to inequality arising from uncertainty and the contributions arising from predictable

components, which we term heterogeneity. These are measured with respect to information

sets at the college going age.

We simulate the distribution of the observed present value of truncated earnings for

which we compute the Gini coefficient, the Theil Entropy Index, and the Atkinson Index

under different scenarios. For each cohort k, we write earnings of individual i at the time t,

schooling level s as Yk,i,t. Let Sk,i = 1 if a person graduates college and Sk,i = 0 if a person

graduates high school. We may write

Yk,i,t = Sk,iYk,1,i,t + (1− Sk,i)Yk,0,i,t

29A basic question first posed by CHN (2005) is “What can be identified in more general environments?” In
the absence of perfect certainty or perfect risk sharing, preferences and market environments also determine
schooling choices. The separation theorem used in this paper that allows consumption and schooling decisions
to be analyzed in isolation of each other breaks down.

If we postulate information arrival processes a priori, and assume that preferences are known up to
some unknown parameters as in Flavin (1981), Blundell and Preston (1998) and Blundell, Pistaferri, and
Preston (2004), we can identify departures from specified market structures. Flavin (1981), Blundell and
Preston (1998) and Blundell, Pistaferri, and Preston (2002) specify explicit time series processes for the
unobservables (e.g., ARMA or fixed effect/AR-1 models) with unknown coefficients but prespecified serial
correlation structures and assume that the innovations in these processes are the uncertainty components
while the predictable components are heterogeneity. Hansen (1987) shows a fundamental nonidentification
result for the Flavin model estimated on aggregate data. Our use of micro panel data circumvents the
problem he raises. An open question, not yet fully resolved in the literature, is how far one can go in
nonparametrically jointly identifying preferences, market structures and agent information sets. One can
add consumption data to the schooling choice and earnings data to secure identification of risk preference
parameters (within a parametric family) and information sets, and to test among alternative models for
market environments. Navarro (2007) attempts to do this. Alternative assumptions about what analysts
know produce different interpretations of the same evidence. The lack of full insurance interpretation given
to the empirical analysis by Flavin (1981) and Blundell, Pistaferri, and Preston (2004), may instead be a
consequence of their misspecification of the generating processes of agent information sets.

30See Anand (1983), Foster and Sen (1997), Sen (2000), Atkinson and Bourguignon (2000) and Cowell
(2000) for surveys of this literature.
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and

Yk,i =
T ∗∑
t=1

Yk,i,t

(1 + ρ)t−1
.

We show that the distribution of Yk,i for each cohort, displayed in the first row of Table 5A

(for the Gini index), Table 5B (for the Theil index) and Table 5C (for the Atkinson index),

the NLSY/1979 cohort is more unequal than the NLS/1966 cohort under any inequality

measurement we use. The Gini coefficient (Table 5A) grows by 16% from the earlier cohort

to the later cohort.31 Table 5B shows that the Theil Entropy Index T grew by 38% from the

NLS/1966 to the NLSY/1979. One of the advantages of the Theil Index is that it can be

used to decompose overall inequality within and between schooling groups. Within inequality

grew by 28% and between inequality grew by 450%.

An explicit social welfare approach to measuring earnings inequality proceeds by con-

structing indexes based on social welfare functions defined over earnings distribution (see

Cowell, 2000; Foster and Sen, 1997).32 For each cohort k, let µk denote the average income

level computed over incomes of agents i in all schooling groups,

µk =
1

nk

nk∑
i=1

Yk,i,

where nk is the number of persons in our samples of cohort k. Given a social welfare function

U (Yk,i) , the Atkinson index (1970) is defined as the per-capita level of present value of income

Ȳk such that, if equally distributed, would generate the same level of social welfare as the

distribution of earnings in cohort k. That is, Ȳk satisfies:

(
Ȳk

)1−ε − 1

1− ε
=

1

nk

nk∑
i=1

Y 1−ε
k,i − 1

1− ε
.

The parameter ε is a measure of inequality aversion (ε = 0 corresponds to no inequality

31The low level of the Gini coefficient arises from the averaging of incomes that arises in constructing
present values, because we study of white males only, and from the truncation of the present value term due
to data limitations.

32Anand (1983) presents a useful summary of the indices used in this literature.
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aversion; ε → −∞ corresponds to Rawlsian inequality aversion). The Atkinson index A is

defined as:

A = 1−
(

Ȳk

µk

)
.

Table 5C computes the Atkinson Index for each cohort and its growth, for different values

of inequality aversion parameter ε. Regardless of the value of ε, inequality has increased by

between 40% to 60% according to the Atkinson Index.

Our previous analysis established that some portion of the inequality in observed present

value of earnings is predictable at the age college decisions are made by the information in

I. We can compare the inequality that is produced by predictable factors (heterogeneity)

versus overall earnings inequality. This allows us to determine the contribution of uncertainty

to overall inequality using a variety of measures. We simulate counterfactual economies in

which uncertainty is eliminated. Eliminating uncertainty can be accomplished by simulating

an economy in which the unforecastable components are set at their means. We can keep

schooling choices fixed at their values in the factual economy or allow agents to re-optimize

and see how that affects inequality measurement. We do both, but differences arising from

re-optimized schooling choice are of second order. See the tables in Appendix V (Tables V-A,

V-B and V-C, respectively). In the text, we report results holding schooling fixed at their

value in the factual economy.

The second row of Table 5A presents the Gini coefficient for the economy without un-

certainty in future earnings fixing schooling choices as in the factual economy. In this case,

the Gini coefficient for the NLS/1966 would be 0.16 and for the NLSY/1979 would be 0.18,

which represents a growth of less than 15% in inequality as measured by the Gini coefficient.

The analogous calculation for the Theil index reported in Table 5B shows that the Overall

Theil Index would have grown only by 34% if uncertainty were eliminated, while the Within

and Between Theil Indexes would have grown by 22% and 394%, respectively. The analogous

exercise for the Atkinson index predicts an increase between 35% and 42%. (See Table 5C .)

These calculations show that rising inequality in the aggregate as measured by conven-
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tional inequality indices is largely driven by rising heterogeneity. However, as documented

in Table 3, there are sharp differences in the contribution of rising uncertainty to inequality

for different schooling groups. High school graduates’ earnings variability is due to a sub-

stantial rise in inequality due to uncertainty. Uncertainty in college graduate earnings has

not increased substantially, although predictable components have become more variable.

4 Summary and Conclusion

This paper investigates the sources of rising wage inequality in the US labor market for white

males. We find that increasing inequality arises both from increasing micro uncertainty and

increasing heterogeneity that is predictable by agents. The latter could arise from increased

specialization in labor markets, but we present no direct evidence on this question. Both

predictable and unpredictable components have increased since the late 1960s. The fraction

of the variability due to micro uncertainty has increased especially for less skilled workers.

Aggregate uncertainty has decreased especially for unskilled workers. The recent increase in

uncertainty has microeconomic origins. Our evidence of substantially increased uncertainty

at the micro level for recent cohorts of unskilled labor supports the increased turbulence

hypothesis of Ljungqvist and Sargent (2004). Conventional measures of aggregate inequality

do not reveal the substantial contribution of the rise in the uncertainty of the earnings of

less skilled workers to their observed rise in the inequality of their earnings.

22



References

Abbring, J. H. and J. J. Heckman (2007). Econometric evaluation of social programs, part

III: Distributional treatment effects, dynamic treatment effects, dynamic discrete choice,

and general equilibrium policy evaluation. In J. Heckman and E. Leamer (Eds.), Handbook

of Econometrics, Volume 6B. Amsterdam: Elsevier. Forthcoming.

Anand, S. (1983). Inequality and Poverty in Malaysia: Measurement and Decomposition.

New York: Published for the World Bank by Oxford University Press.

Atkinson, A. B. (1970, September). On the measurement of inequality. Journal of Economic

Theory 2 (3), 244–266.

Atkinson, A. B. and F. Bourguignon (2000). Introduction: Income distribution and eco-

nomics. In A. B. Atkinson and F. Bourguignon (Eds.), Handbook of Income Distribution,

Volume 1, pp. 1–58. Amsterdam: North-Holland.

Becker, G. S. (1964). Human Capital: A Theoretical and Empirical Analysis, with Special

Reference to Education. New York: National Bureau of Economic Research, distributed

by Columbia University Press.

Blundell, R., L. Pistaferri, and I. Preston (2002). Partial insurance, information and con-

sumption dynamics. Technical Report IFS Working Papers: W02/16, Institute for Fiscal

Studies, London.

Blundell, R., L. Pistaferri, and I. Preston (2004, October). Consumption inequality and

partial insurance. Technical Report WP04/28, Institute for Fiscal Studies.

Blundell, R. and I. Preston (1998, May). Consumption inequality and income uncertainty.

Quarterly Journal of Economics 113 (2), 603–640.

Cameron, S. V. and J. J. Heckman (2001, June). The dynamics of educational attainment

for black, hispanic, and white males. Journal of Political Economy 109 (3), 455–99.

23



Carneiro, P., K. Hansen, and J. J. Heckman (2003, May). Estimating distributions of treat-

ment effects with an application to the returns to schooling and measurement of the effects

of uncertainty on college choice. International Economic Review 44 (2), 361–422.

Cowell, F. A. (2000). Measurement of inequality. In A. B. Atkinson and F. Bourguignon

(Eds.), Handbook of Income Distribution, Volume 1, pp. 87–166. Amsterdam: North-

Holland.

Cunha, F., J. J. Heckman, and S. Navarro (2005, April). Separating uncertainty from het-

erogeneity in life cycle earnings, The 2004 Hicks Lecture. Oxford Economic Papers 57 (2),

191–261.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In

H. Chernoff, M. Rizvi, J. Rustagi, and D. Siegmund (Eds.), Recent Advances in Statistics:

Papers in Honor of Herman Chernoff on his Sixtieth Birthday, pp. 287–302. New York:

Academic Press.

Flavin, M. A. (1981, October). The adjustment of consumption to changing expectations

about future income. Journal of Political Economy 89 (5), 974–1009.

Foster, J. E. and A. K. Sen (1997). On Economic Inequality. New York: Oxford University

Press.

Friedman, M. and S. S. Kuznets (1945). Income from Independent Professional Practice.

New York: National Bureau of Economic Research.

Gordon, R. J. (2005). What caused the decline in U. S. business cycle volatility? In C. Kent

and D. Norman (Eds.), The Changing Nature of the Business Cycle, pp. 61–104. Sydney,

Australia: Economics Group, Reserve Bank of Australia. Proceedings of a conference held

at the H.C. Coombs Centre for Financial Studies, Kirribilli, Australia on 11-12 July 2005.

24



Gottschalk, P. and R. Moffitt (1994). The growth of earnings instability in the U.S. labor

market. Brookings Papers on Economic Activity 2, 217–254.

Hansen, L. P. (1987). Calculating asset prices in three example economies. In T. F. Bewley

(Ed.), Advances in Econometrics: Fifth World Congress, Volume 1, pp. 207–243. New

York: Cambridge University Press.

Heckman, J. J. and P. A. LaFontaine (2007). The American high school graduation rate:

Trends and levels. Unpublished manuscript, University of Chicago, Department of Eco-

nomics.

Heckman, J. J., L. J. Lochner, and P. E. Todd (2006). Earnings equations and rates of return:

The Mincer equation and beyond. In E. A. Hanushek and F. Welch (Eds.), Handbook of

the Economics of Education, Chapter 7, pp. 307–458. Amsterdam: North-Holland.

Heckman, J. J. and S. Polachek (1974, June). Empirical evidence on the functional

form of the earnings-schooling relationship. Journal of the American Statistical Asso-

ciation 69 (346), 350–354.

Heckman, J. J. and R. Robb (1985). Using longitudinal data to estimate age, period and

cohort effects in earnings equations. In W. M. Mason and S. E. Fienberg (Eds.), Cohort

Analysis in Social Research: Beyond the Identification Problem. New York: Springer-

Verlag.

Katz, L. F. and D. H. Autor (1999). Changes in the wage structure and earnings inequality. In

O. Ashenfelter and D. Card (Eds.), Handbook of Labor Economics, Volume 3, Chapter 25,

pp. 1463–1555. New York: North-Holland.

Ljungqvist, L. and T. J. Sargent (2004, April-May). European unemployment and turbulence

revisited in a matching model. Journal of the European Economic Association 2 (2-3),

456–468.

25



MaCurdy, T. E. (1982, January). The use of time series processes to model the error structure

of earnings in a longitudinal data analysis. Journal of Econometrics 18 (1), 83–114.

MaCurdy, T. E. (2007). A practitioner’s approach to estimating intertemporal relationships

using longitudinal data: Lessons from applications in wage dynamics. In J. J. Heckman

and E. Leamer (Eds.), Handbook of Econometrics, Volume 6A of Handbooks in Economics,

Chapter 62. Amsterdam: Elsevier. Forthcoming.

Matzkin, R. L. (1992, March). Nonparametric and distribution-free estimation of the binary

threshold crossing and the binary choice models. Econometrica 60 (2), 239–270.

Miller, S. (2004). The National Longitudinal Surveys NLSY79 User’s Guide 1979-2002.

Washington, DC: Bureau of Labor Statistics, U.S. Department of Labor.

Mincer, J. (1974). Schooling, Experience and Earnings. New York: Columbia University

Press for National Bureau of Economic Research.

Navarro, S. (2007). Reconsidering the importance of borrowing constraints, uncertainty and

preferences for college attendance: Using observed choices to infer agent’s information.

Unpublished manuscript, University of Wisconsin, Department of Economics.

Roy, A. (1951, June). Some thoughts on the distribution of earnings. Oxford Economic

Papers 3 (2), 135–146.

Schennach, S. M. (2004, January). Estimation of nonlinear models with measurement error.

Econometrica 72 (1), 33–75.

Sen, A. K. (2000). Social justice and the distribution of income. In A. B. Atkinson and

F. Bourguignon (Eds.), Handbook of Income Dynamics, Volume 1, pp. 59–85. Amsterdam:

North-Holland.

Sims, C. A. (1972, September). Money, income, and causality. American Economic Re-

view 62 (4), 540–552.

26



Table 1:
Schooling Choice and Rates of Return per Year of College

Comparison Across Cohorts
NLS/66 NLSY/79

High School Graduates 58.17% 64.19%
College Graduates 41.83% 35.81%
Mincer Returns to College1 9.01% 11.96%
Mincer Returns to College2 10.17% 12.41%
Mincer Returns to College3 8.17% 11.00%
1Pooled OLS Regression, controlling only for Mincer Experience and
Mincer Experience Squared
2Pooled OLS Regression, controlling for Mincer Experience, Mincer
Experience Squared, and Year Dummies
3Pooled OLS Regression, controlling for Mincer Experience, Mincer
Experience Squared, Cognitive Skills, Urban and South Residence
at Age 14, and Year Dummies (Dependent Variable: Log Earnings).
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Table 2:
Mean Rates of Return per Year of College by Schooling Group

NLS/66 NLSY/79
Schooling Group Mean Returns Standard Error Mean Returns Standard Error
High School Graduates 0.0592 0.0046 0.0955 0.0063
College Graduates 0.0877 0.0070 0.1355 0.0080
Individuals at the Margin 0.0750 0.0178 0.1184 0.0216
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Table 4:
Share of Variance of Business Cycle

in Total Variance of Unforecastable Components

NLS/1966 NLSY/1979
Point Estimate Standard Error Point Estimate Standard Error

High School 0.1111 0.0147 0.0156 0.0020
College 0.0452 0.0077 0.0392 0.0052
Overall 0.0679 0.0107 0.0328 0.0042
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Table 5:
A

Gini Decomposition
NLS/66 NLSY/79 %Growth

Factual Economy: Heterogeneity and Uncertainty1 0.1803 0.2088 15.85%
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.1591 0.1825 14.73%

B
The Theil Entropy Index T

Overall
NLS/66 NLSY/79 %Growth

Factual Economy: Heterogeneity and Uncertainty1 0.0502 0.0693 37.98%
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.0390 0.0522 33.76%

Within Schooling Groups
NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0491 0.0631 28.53%
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.0378 0.0465 22.85%

Between Schooling Groups
NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0011 0.0062 447.37%
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.0011 0.0057 394.22%

1Let Yk,s,t,i denote the earnings of an agent i, i = 1, ..., nk, at age t, t = 22, ..., 36, in schooling level s,
s = high school, college, and cohort k, k = NLS/1966, NLSY/1979. We model earnings Yk,s,t,i as:

Yk,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i + θ3,k,iα3,k,s,t,i + εk,s,t,i. (i)

The present value of earnings at schooling level s, Yk,s,i, is Yk,s,i =
∑T ∗

t=1
Yk,s,t,i

(1+ρ)t−1 . The observed present
value of earnings satisfies Yk,i = Sk,iYk,1,i+(1− Sk,i) Yk,0,i where Sk,i = 1 if agent i in cohort k graduates
college, and Sk,i = 0 if the person graduates high school. Let Ck,i denote the direct costs for individual
i in cohort k. The schooling choice is:

Sk,i = 1 ⇔ E (Yk,1,i − Yk,0,i − Ck,i| Ik) ≥ 0. (ii)

This is the factual economy. In this row, we show the inequality measure in the subtitle.
2We simulate the economy by replacing (i) with:

Y h
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Y h
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The

present value of earnings when only heterogeneity is accounted for is constructed in a similar manner:

Y h
k,s,i =

∑T ∗

t=1

Y h
k,s,t,i

(1+ρ)t−1 . The schooling choices are as determined in (ii). In this row, we show the
inequality measure for the concept given in the subtitle for the observed truncated present value of
earnings Y h

k,s,i when we constrain schooling choices to be the same as in the economy that generates
the first row.
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Table 5C:
Atkinson Index

ε = 0.5 ε = 1.0
NLS/66 NLSY/79 %Change NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0276 0.0389 0.4111 0.0586 0.0847 0.4446
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.0213 0.0286 0.3437 0.0447 0.0604 0.3503

ε = 1.5 ε = 2.0
NLS/66 NLSY/79 %Change NLS/66 NLSY/79 %Change

Factual Economy: Heterogeneity and Uncertainty1 0.0968 0.1467 0.5147 0.1627 0.2627 0.6149
Counterfactual: Fixing Schooling Choices as in Factual Economy
Heterogeneity Only2 0.0716 0.0980 0.3687 0.1060 0.1506 0.4205

1Let Yk,s,t,i denote the earnings of an agent i, i = 1, ..., nk, at age t, t = 1, ..., T, in schooling level s, s = high school, college, and cohort
k, k = NLS/1966, NLSY/1979. We model earnings Yk,s,t,i as:

Yk,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i + θ3,k,iα3,k,s,t,i + εk,s,t,i. (i)

The present value of earnings in schooling level s, Yk,s,i, is Yk,s,i =
∑T ∗

t=1
Yk,s,t,i

(1+ρ)t−1 . The observed truncated present value of earnings is
Yk,i = Sk,iYk,1,i + (1− Sk,i) Yk,0,i. Let Ck,i denote the direct costs for individual i in cohort k. The schooling choice is:

Sk,i = 1 ⇔ E (Yk,1,i − Yk,0,i − Ck,i| Ik) ≥ 0. (ii)

This is the factual economy. We then compute the average present value of earnings across all individuals in cohort k, µk = 1
n

∑nk
i=1 Yk,i.

For a given inequality aversion parameter ε, we compute the level of permanent income Ȳk (ε) that generates the same welfare as the
social welfare of the actual distribution in cohort k:[

Ȳk (ε)
]1−ε − 1

1− ε
=

1
nk

nk∑
i=1

(Yk,i)
1−ε − 1

1− ε

For each value of ε, the Atkinson Index is A (ε) = 1 − Ȳk(ε)
µk

. In this row, we show the Atkinson Index for the observed present value of
earnings Yk,i for different values of ε.
2We simulate the economy by replacing (i) with:

Y h
k,s,t,i = µs,k (Xk) + θ1,k,iα1,k,s,t,i + θ2,k,iα2,k,s,t,i,

where Y h
k,s,t,i are the individual earnings when idiosyncratic uncertainty is completely shut down. The present value of earnings when

only heterogeneity is accounted for is constructed in a similar manner: Y h
k,s,i =

∑T ∗

t=1

Y h
k,s,t,i

(1+ρ)t−1 . The schooling choices are as determined in
(ii). In this row, we show the Atkinson Index for the observed present value of earnings Y h

k,i for different values of ε when we constrain
schooling choices, Sk,i, to be observed in the factual economy.
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Figure 1
Mean Earnings Profile

NLS/66 Sample
Comparison Across Schooling Within Cohorts
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Figure 2
Mean Earnings Profile

NLSY/79 Sample
Comparison Across Schooling Within Cohorts
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Figure 3
Standard Deviation of Earnings

High School Sample
Comparison Within Schooling Groups Across Cohorts
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Figure 4
Standard Deviation of Earnings 

College Sample
Comparison Within Schooling Groups Across Cohorts
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Let Y denote earnings at age 33 in the overall sample. Here we plot the density
functions f(y) generated from the data (the solid curve), against that predicted 
by the model (the dashed line).
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Densities of earnings at age 33

Overall Sample NLSY/79
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Present value of earnings from age 22 to 36 for High School Graduates discounted
using an interest rate of 5%. Here we plot the factual density function f(y0|S=0)
(the solid curve), against the counterfactual density function f(y1|S=0) (the dashed line).  
We use kernel density estimation to smooth these functions.
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Densities of present value of earnings
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Densities of present value of earnings 
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Counterfactual

Present value of earnings from age 22 to 36 for High School Graduates discounted
using an interest rate of 5%. Here we plot the factual density function f(y0|S=0)
(the solid curve), against the counterfactual density function f(y1|S=0) (the dashed line).  
We use kernel density estimation to smooth these functions.
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Figure 7A
Densities of present value of earnings to age 36
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Factual
Counterfactual

Present value of earnings from age 22 to 36 for College Graduates discounted
using an interest rate of 5%. Here we plot the factual density function f(y1|S=1)
(the solid curve), against the counterfactual density function f(y0|S=1) (the dashed line).  
We use kernel density estimation to smooth these functions.
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Figure 7B
Densities of present value of earnings to age 36
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Factual
Counterfactual

Present value of earnings from age 22 to 36 for College Graduates discounted
using an interest rate of 5%. Here we plot the factual density function f(y1|S=1)
(the solid curve), against the counterfactual density function f(y0|S=1) (the dashed line).  
We use kernel density estimation to smooth these functions.



Let Y0,Y1 denote the present value of earnings from age 22 to age 36 in the high school
and college sectors, respectively. Define ex post returns to college as the ratio R=(Y1-Y0)/Y0.  
Let f(r) denote the density function of the random variable R.  The solid line is the density of 
ex post returns to colege for high school graduates, that is f(r|S=0).  The dashed line is the density
of ex post returns to college for college graduates, that is, f(r|S=1). This assumes that the agent 
chooses schooling without knowing q3 and the innovations es,t for s = high school, college
and t = 22, ..., 36.
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Let Y0,Y1 denote the present value of earnings from age 22 to age 36 in the high school
and college sectors, respectively. Define ex post returns to college as the ratio R=(Y1-Y0)/Y0.  
Let f(r) denote the density function of the random variable R.  The solid line is the density of 
ex post returns to colege for high school graduates, that is f(r|S=0).  The dashed line is the density
of ex post returns to college for college graduates, that is, f(r|S=1). This assumes that the agent 
chooses schooling without knowing q3 and the innovations es,t for s = high school, college
and t = 22, ..., 36.
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Figure 9A
The densities of total and unforecastable components

in present value of high school earnings for the NLSY/79 sample
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In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings
from ages 22 to 36 for the NLSY/79 sample of white males. The present value of earnings is 
calculated using a 5% interest rate.
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Figure 9B
The densities of total and unforecastable components

in present value of high school earnings for the NLS/66 sample

In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings
from ages 22 to 36 for the NLS/66 sample of white males. The present value of earnings is 
calculated using a 5% interest rate.
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In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of college earnings
from ages 22 to 36 for the NLSY/79 sample of white males. The present value of earnings is 
calculated using a 5% interest rate.

Figure 10A
The densities of total and unforecastable components

in present value of college earnings for the NLSY/79 sample
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Figure 10B
The densities of total and unforecastable components

in present value of college earnings for the NLS/66 sample

In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of college earnings
from ages 22 to 36 for the NLS/66 sample of white males. The present value of earnings is 
calculated using a 5% interest rate.
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Figure 11A
The densities of total and unforecastable components for the gross

returns college vs high school for the NLS/66 Sample  

In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences
(or returns to college) from ages 22 to 36 for the NLSY/79 sample of white males.
The present value of earnings is calculated using a 5% interest rate.
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Figure 11B
The densities of total and unforecastable components for the
gross returns college vs high school for the NLS/66 Sample  
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In this figure we plot the density of total (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences
(or returns to college) from ages 22 to 36 for the NLS/66 sample of white males.
The present value of earnings is calculated using a 5% interest rate.



Figure 12A
Profile of Variance of Uncertainty

High School Sample
NLS/66 vs NLSY/79
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Figure 12B
Profile of Variance of Uncertainty

College Sample
NLS/66 vs NLSY/79
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Figure 13A
Profile of Variance of Heterogeneity Forecastable Components of Variance by Age

High School Sample
NLS/66 vs NLSY/79
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Figure 13B
Profile of Variance of Heterogeneity Forecastable Components of Earnings by Age

College Sample
NLS/66 vs NLSY/79
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