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ABSTRACT

Obesity has been one of the fastest growing health concerns among children, particularly among disadvantaged
children.  For children overall, obesity rates have tripled from 5% in the early 1970s to about 15%
by the early 2000s.  For disadvantaged children, obesity rates are closer to 20%.  In this paper, we
first examine the impact of various measures of disadvantage on children's weight outcomes over the
past 30 years, finding that the disadvantaged have gained weight faster.  Over the same period, adult
obesity rates have grown, and we expect parental obesity to be closely tied to children's obesity, for
reasons of both nature and nurture.  Thus, examining changes in the parent-child correlation in BMI
should give us some insight into the ways in which the environment that parents and children share
has affected children's body mass, or into how the interaction of genes and environment has changed.
We find that the elasticity between mothers' and children's BMI has increased since the 1970s, suggesting
that shared genetic-environmental factors have become more important in determining obesity.  Despite
the faster weight gain for the disadvantaged, there appears to be no clear difference for by disadvantaged
group in either the parent-child elasticity or in identifiable environmental factors.  On average, the
increases in parents' BMI between the early 1970s and the early 2000s can explain about 37 percent
of the increase in children's BMI.  Although common environmental/genetic factors play a larger role
now than in earlier time periods, child specific environments such as schools and day care play a potentially
important role in determining children's health status.
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I.  Introduction 

 Obesity has been one of the fastest growing health concerns among children, particularly 

among disadvantaged children.  Childhood obesity has risen starkly over the last three decades.  

For children overall, obesity rates have tripled from 5% in the early 1970s to about 15% by early 

2000s.  For disadvantaged children, the rates of obesity are even higher.  For example, in the 

years 1999-2004, nearly 18% of low income children qualified as obese. 

 Obesity carries with it both short term and long term consequences.  Obese children have 

higher incidences of type II diabetes, for example, and lower quality of life scores.  In addition, 

obese children are much more likely than normal weight children to become obese adults, and 

obese adults are more likely to suffer disability during their prime working years, and have 

adverse health outcomes like hypertension, heart attack and cancer.  While the precise impact of 

obesity on mortality remains a matter of debate, there is little debate that obesity increases 

morbidity and its attendant health care costs.  Since disadvantaged children and adults have 

higher rates of obesity than other segments of the population, they suffer more of the short term 

and long term consequences of this condition. 

 Understanding the increase in childhood obesity is important for devising policies to deal 

with this health problem.  Although recent research and policy activity surrounding this issue has 

focused particularly on the food available to children through schools, there is a gap in our 

knowledge when it comes to the impact of home environment on children’s obesity.  To address 

this question, we ask, how does parental obesity relate to children’s obesity? Is this different for 

disadvantaged families?  Have these relationships changed over time?  Parental obesity is very 

closely tied to children’s obesity, for reasons of both nature and nurture.  First, there is a strong 

genetic component to body composition.  Second, parents and children share many 
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environmental characteristics.  Additionally, parents have a great deal of influence over what 

their children, particularly their young children, eat and how much energy they expend.  Since 

genetics are unlikely to have changed dramatically over the past thirty years, if the correlation 

between parents’ and children’s obesity has changed over time, then it is likely that the 

environment and/or parental behavior has changed.  If the overall correlation has increased over 

time, it suggests that something in the common environment (or decisions made by the family) is 

affecting all family members. On the other hand, if the correlation has decreased over time, then 

it suggests a larger role for something unique to the environment that children – but not their 

parents – face, for example in child care settings and public schools.   

 In addition, there may be important differences in the relationship between parents’ and 

children’s obesity for disadvantaged children.  For example, if the parent-child correlation is 

lower for the disadvantaged, then it suggests that the child-specific environmental factors may be 

relatively more important for disadvantaged children.  Again, if the relationship is changing over 

time, it provides clues as to changes in the environment that may be contributing to the changes 

in obesity.  Thus, this paper focuses on a fundamental component of health status, obesity, for 

which disadvantaged children have particularly poor outcomes.  It sheds light on how parents’ 

health status is related to children’s health status, and how that relationship differs for 

disadvantaged and advantaged children, and how the relationship changes over time. 

 We find that the parent-child correlation in weight outcomes has increased substantially 

since the early 1970s.  This suggests that the importance of the shared family environment or 

genetic-environmental interactions has increased over time.  Despite the fact that disadvantaged 

groups have higher obesity rates, parent-child weight outcomes are similar for advantaged and 
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disadvantaged groups.  On average, the observed increase in parents’ body-mass-index1 (BMI) 

can explain about 37 percent of the increase in children’s BMI since the early 1970s.  Thus, for 

advantaged and disadvantaged groups,  genetic tendencies toward obesity and how these 

tendencies interact with the common environment are important, and increasingly so as obesity 

rates have risen over time.  Nonetheless, for both advantaged and disadvantaged children there is 

an important role in their health status is played by child-specific environments, which suggests 

that policies affecting schools, day cares, playgrounds and the like may have an effect on 

children’s obesity. 

II. Previous Research in this Area  

 Economic research on obesity has focused on changes in the (implicit) prices of food and 

exercise that have increased caloric intake and reduced energy expenditure (Cutler, Glaeser and 

Shapiro, 2003; Lakdawalla and Philipson, 2002).  While this work is important, it is not clear 

how well it applies to children, especially young children, who typically do not select the menu 

of food presented to them, nor do they have complete control over how they spend their time.  

Thus, work on childhood obesity has focused on changes in children’s environment that may 

have tilted their energy balance toward consuming more calories and expending less energy.  For 

example, work has focused on changes in maternal employment (Anderson, Butcher, Levine 

2003), and changes in the food available to children through schools (Anderson and Butcher 

2006b; Schanzenbach 2005), and how these changes in the two institutions, families and schools, 

in which children spend most of their time, may have affected obesity.   

 There is, of course, a substantial literature outside economics on childhood obesity. Much 

of this focuses on whether children who consume more of specific types of foods (e.g. fast food, 

soda) or engage in particular activities (e.g. television watching, video game playing) are more 

                                                           
1 Weight in kilograms divided by height in meters squared. 
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likely to be obese (see Anderson and Butcher, 2006a for a summary of this literature).  In 

addition, there is a large literature documenting that children from disadvantaged backgrounds 

are more likely to have weight problems than others (see e.g. Strauss and Pollack, 2001).  

Finally, there is a large literature documenting that there is an important genetic component of 

obesity (see e.g. Stunkard et. al., 1990). 

III. Our Approach 

 What we believe is missing is a better understanding of whether the obesity epidemic in 

children is simply part and parcel of the obesity epidemic in adults, or whether it represents a 

related, but separate, phenomenon.  If we see a high correlation between children’s and parents’ 

weight outcomes, then it suggests that increases in parents’ weight – or that the same factors that 

led to parents’ weight gain -- can explain a large fraction of the increase in children’s weight.  

This would be consistent with an explanation for the rise in children’s obesity where both parents 

and children are faced with an adverse environment that leads to more obesity, or that parents 

have always made determining choices about food and exercise that have affected their own and 

their children’s weight – and in recent years these choices have been poor choices.   

On the other hand, if we see that children’s weight outcomes are not highly correlated 

with their parents, then it suggests that there are other, non-shared, factors that determine 

children’s weight outcomes.  At any given point in time, there may be differences between 

advantaged and disadvantaged children in how closely related children’s weight is to parents’ 

weight.  For example, a parent who lives in a well-off neighborhood may walk to work for 

exercise and may encourage her children to walk to school as well.  On the other hand, a parent 

in a disadvantaged neighborhood may feel comfortable walking to work herself, but may be less 

comfortable with her children walking to school due to safety concerns (traffic safety or criminal 
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activity, for example).  We would expect parents and children in the well-off neighborhood to 

have more similar weight outcomes; while in the disadvantaged neighborhood parents and 

children would have less closely linked weight outcomes.  Parent-child correlations may change 

over time, and these changes may also differ between advantaged and disadvantaged children. 

For both advantaged and disadvantaged children, we will discuss how much of the change in 

children’s weight outcomes can be explained by parents’ weight outcomes, given the correlation 

between the two in a given time period.    

 To address the question of how the parent-child correlation in BMI has changed over 

time for disadvantaged and non-disadvantaged groups, we rely on data from the National Health 

and Nutrition Examination Survey (NHANES).  The nationally representative data were 

collected in 1971-1974 (NHANES 1), 1976-1980 (NHANES 2), 1988-1994 (NHANES 3).  

Beginning in 1999, the NHANES became a continuously running survey collected in 2-year 

panels.  We pool the surveys from 1999-2000, 2001-2002 and 2003-2004 and refer to them (for 

comparison’s sake) as “NHANES 4.” (See data appendix for more details). 

 The NHANES are the most frequently used data for tracking obesity trends in the U.S. 

population.  The data collection procedures include an examination component, so the children 

in our sample were weighed and measured by trained personnel.  These measurements go into 

our calculation of BMI for children.  For each of the first three NHANES, reported height and 

weight is consistently available for the parents of examined children under age 12.  Thus, we 

focus on children 2-11 years old.  In addition to the restrictions imposed by data availability, 

questions about the impact of parental choices on children’s BMI may be particularly germane 

for this group since adults are likely to have a greater influence over these children’s food and 

exercise options than would be the case for teenagers.  In the fourth NHANES, reported parental 
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height and weight are not available, however, for both the third and fourth NHANES there are 

enough children in the sample who have an adult household member who is also in the sample 

that we can match children and adults within households and use measured heights and weights 

for both children and adults.2  The Data Appendix describes more fully how we do the within-

household matching and how this matched sample compares with the parental report sample in 

NHANES 3, where both are available. 

 

IV. Changes in Obesity and BMI 

A.  Measures of Obesity 

 Obesity for adults is typically defined as having a BMI of 30 or above.  Children are 

classified as obese if they have a BMI above the 95th percentile of an age-sex specific BMI 

distribution (calculated with data that pre-dates the current increase in obesity).3 

 One can also examine obesity using alternative measures of body composition.  BMI 

does have drawbacks – in particular, muscular individuals may have a higher body-mass-index 

than someone of the same build who is less muscular, and higher BMI in this case presumably 

does not indicate a poor health outcome.  Ideally, one would like a measure of “fatness” that we 

know is related to poorer health outcomes both within and across individuals.  Alternative 

measures to BMI, for example, subscapular skin-fold measurements are available in the 

NHANES.  While the levels of obesity sometimes differ by these different measures, the trends 

in obesity over time show similar increases regardless of the measure chosen to define obesity 

(Burkhauser et al., 2007). 

                                                           
2 We can also match children to adults within the household in the first two waves of the NHANES, but this results 
in losing about ¾ of our sample.   
3 The nomenclature in the medical literature is different for children and adults. Children whose BMI is above the 
95th percentile for their age-sex distribution are called “overweight” and those above the 85th percentile are called 
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 Most researchers have chosen to focus on BMI since there tend to be very high 

correlations between obesity rates as measured by any of the available outcomes, and BMI is 

relatively easily measured in surveys.  A recent study on measuring obesity in children found no 

additional information was gleaned from subscapular skinfold measurements once BMI was 

accounted for (Mei, et. al., 2007).  Thus, we focus on BMI and obesity rates as defined by BMI 

in our analysis below.4 

B.  Measures of Disadvantage 

Disadvantage is difficult to define, but has many correlates.  Our approach is to examine 

BMI and obesity outcomes by several different potential measures of disadvantage.  We examine 

differences in weight outcomes between race and ethnic groups, by educational attainment of 

adults in the household, and by income-to-poverty line measures.  In general, these measures 

give similar pictures of obesity levels and trends and the parent-child correlation in BMI for 

advantaged and disadvantaged children.   

C.  Trends in Obesity  

Before turning to our investigation of children’s weight outcomes, it is worth establishing 

how quickly adult obesity has been spreading throughout the United States.  Figure 1 shows 

maps for 1990, 1995 and 2005 created by the Centers for Disease Control and Prevention using 

data from the Behavioral Risk Factor Surveillance System (Centers for Disease Control and 

Prevention, 2007).  In 1990, in almost all states less than 15 percent of the adult population was 

obese.  By 2005, many states have more than 25 percent of their adult population that is obese.  

Given our interest in the role of disadvantage, it is important to note that states known to have a 

                                                                                                                                                                                           
“at-risk-for-overweight.”  In order to simplify the discussion, we will use the adult terminology for both children and 
adults.  
4 We have also conducted many of our analyses using subscapular skinfold measurements and get very similar 
results for the effect of disadvantage and for our parent-child correlations in outcomes.  
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relatively large poor population appear to be the leading edge of the obesity wave.  In 1990, it is 

states such as West Virginia, Louisiana and Alabama that have over a 15% obesity rate.  

Similarly, by 2005, these same states, along with their neighboring states, have exceeded a 25% 

obesity rate.  

 Turning now to children, Figure 2 uses NHANES data to illustrate the differences across 

time in obesity rates for children age 2 to 11 (the focus of our study), as well as demonstrating 

the differences by the level of disadvantage for each time period.  Here we are using the income-

to-poverty line ratio as our indicator of level of disadvantage, examining obesity rates for 

children from families who fall into each quartile of the income-to-poverty-line ratio.5    This 

figure clearly demonstrates the increase in obesity among children between 1971-1975 and 1999-

2004.  As seen in the last set of bars, the overall percentage obese almost triples from 5 percent 

in the earliest years to about 15 percent in the more recent years.  We can also see that this 

increase over time applies to children in all family income groups.  Although children in each of 

the family income groupings have increased their obesity rates, the gains have not all been the 

same.  By the last period there is a clear gradient to children’s obesity, with the lowest family 

income group having the highest fraction obese and children in the highest family income group 

having the lowest fraction obese.  However, this gradient is not as clear in the earlier years. 

 Focusing on the fraction obese may mask some important features of changes in obesity, 

though. While an adult will be labeled as obese with a BMI greater than or equal to 30, it seems 

unlikely that someone with a BMI of 30.1 will have much worse health outcomes than someone 

with a BMI of 29.9.  Thus, if the increase in obesity is driven solely by small increases in BMI 

                                                           
5 Information on family income itself is only available in bracketed form, but a continuous income-to-poverty ratio 
measure is available in each year, which is a measure of reported family income relative to the poverty line.  Thus, 
anything above 1 indicates the family’s income is above the poverty line for that time period, and as it increases, 
families are better off. 
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that push individuals across a (somewhat) arbitrary threshold that labels obesity, then we might 

not worry much about the future health consequences of these changes.  Since children’s obesity 

status is determined by a similar comparison to a (in this case age and gender specific) threshold, 

we want to examine what is happening to BMI among the obese, not just to the fraction of 

children whose BMI is above the cutoff.   

In fact, the obesity epidemic is generally characterized by an increase in weight among 

those who are already heavy (Cutler et. al. 2003, Anderson et. al. 2003b).  Figure 3 shows how 

average BMI among obese children has changed over time and by family income groups.  

Average BMI among all obese children increased from 22.5 to 23.6 during this time period 

(about a 5 percent increase).  In addition, by the later period we see a family income gradient 

emerge in average BMI among the obese. In the first period, there is if anything a reverse 

gradient – that is, the average BMI of the more advantaged obese children is higher than that of 

disadvantaged obese children.  In the middle years, there is little systematic difference in the 

BMI between advantaged and disadvantaged obese children.  By the later period, though, obese 

children in the poorer families are heavier than obese children in wealthier families.  As 

differences in BMI get larger between the obese and the non-obese, we expect that long term 

health outcomes between them will also get larger.  It is important to keep in mind, however, that 

differences in the age and sex composition across these groups and over time could be driving to 

these changes in BMI levels.  In the next section we turn to regression analysis that allows us to 

hold constant age and gender as we examine the changes in BMI by different measures of 

disadvantage.   

D. Changes in BMI over Time by Measures of Disadvantage   
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 We first present simple regressions of children’s log BMI on various measures of 

disadvantage for our four time periods.  These regressions control for a cubic in age, gender, and 

interactions between these variables.6  This should account for the fact that as children age, we 

expect their BMI to increase, and to increase at different rates for boys and girls.  We control for 

age and gender in the regressions so that differences in BMI by measures of disadvantage will 

not be due to differences in the age-sex composition across these groups.  Heteroskedasticity-

robust standard errors are in parenthesis below the estimated coefficients.   

 The top panel of Table 1 presents regressions of log BMI on racial and ethnic categories.   

The second panel shows regressions of log BMI on the highest grade of the household reference 

person.7  The third panel shows the results for the income-to-poverty ratio. The fourth panel 

includes all measures of disadvantage simultaneously.  In all years, there is some evidence that 

disadvantaged children are heavier, although the strength of that correlation varies with the 

measure and the time period.  For example, black children do not have significantly higher BMIs 

than white children prior to 1999, although in the 1988-1994 wave of the NHANES the point 

estimate implies black children have an almost 1.0 percent higher BMI.  By the 1999-2004 wave, 

that difference had increased to 2.1 percent and was statistically significant.  Currently, the 

median 8-year-old girl stands at 4’2” and weighs 56 pounds, so we would expect her to be 1.2 

pounds heavier if she were black. Hispanic children have significantly higher BMIs than white 

non-Hispanic children in all but the first time period, and in the time periods when the difference 

is statistically significant it is stable at about 3.5 percent.  For the same median 8-year-old girl 

then, we would expect her to be about 2 pounds heavier if she were Hispanic. 

                                                           
6 Note that sample sizes do not match those from later tables, as for these regressions we use all possible data.  
Regressions run on consistent samples are not substantively different from those shown here. 
7 For NHANES 4, we define the reference person as the father, if present, otherwise, it is the mother.  For the other 
three panels, the reference person is defined within the NHANES.  See the Data Appendix for more details. 
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Being from a household where the reference person has a higher level of education is 

statistically significantly negatively correlated with BMI in all four time periods, increasing from 

a 0.2 percent lower BMI for each additional year of parental education in the early 1970s to a 

0.6 percent reduction for each additional year by the early 2000s.   Prior to 1980, children from 

families with higher income-to-poverty ratios did not have significantly lower BMIs.  After 

1988, however, that correlation is negative and statistically significantly different from zero, and 

becoming steeper over time.  By the last period, a from a family with income at the poverty line 

would be about 2.4 percent heavier than one with income three times the poverty line, compared 

to just 1.8 percent heavier in the previous period. 

When we include all measures of disadvantage simultaneously, we find that once the 

income-to-poverty ratio and education are held constant, being black is no longer significantly 

positively correlated with BMI in any of the years, but being Hispanic is still associated with a 

higher BMI in all but the first period.  Each additional year of education of the household 

reference person is associated with a 0.1 to 0.5 percent reduction in BMI, but the effect is no 

longer increasing over time, and in fact is not significantly different from zero in the final period.   

Finally, in all but the third wave, the income-to-poverty ratio is significantly correlated with 

children’s BMI, however in the first two periods the effect is positive.  Overall, then, these 

regressions show that disadvantaged children are generally heavier, using a variety of measures 

of disadvantage.   Additionally, for most of these measures, the effect of disadvantage has been 

growing over time.   

V. Parent’s and Children’s Weight Outcomes 

A. Mothers and Fathers 
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 Parents and children share common genetics, and, if they live together, share a common 

environment.  Thus, we expect to see a strong correlation between the BMI of parents and 

children.  Note that the literature on nature versus nurture typically uses the standard behavioral 

genetics model to carry out a decomposition of these two effects by assuming that an outcome is 

a linear combination of the independent effects of genetics, shared family environment, and 

unexplained factors.  Given that, in fact, genetics and the shared environment are unlikely to be 

independent, it is typical to interpret the genes component as incorporating both the direct effect 

of genes and the effect of the gene-environment interaction (Sacerdote, 2007).  Thus, while we 

do not expect that the underlying genetic predisposition toward obesity will have changed over 

the twenty or so years that childhood obesity has been increasing, examining changes in the 

parent-child correlation in BMI should give us insight into the ways in which the environment 

that parents and children share has affected children’s body mass, or into how the interaction of 

shared genes and the environment has changed.   

 We investigate the parent-child correlation in BMI by running regressions of log(Child’s 

BMI) on log(Parent’s BMI). The coefficient on log(Parent’s BMI) tells us the elasticity of 

children’s BMI with respect to their parents – a one percent change in parent’s BMI is correlated 

with what percent change in children’s BMI.   A larger elasticity implies a greater role for the 

common environment and genes that parents and children share; a smaller elasticity implies a 

greater role for environments that children do not share with their parents. 

 Table 2 presents regressions of the log of child’s BMI on his or her mother’s log BMI 

(column 1), his or her father’s BMI (column 2), and both simultaneously (column 3).  These 

regressions control for race, ethnicity, education of the reference person, the family’s income-to-
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poverty ratio, and a cubic in the child’s age fully interacted with gender.8  The results in the first 

panel show that a 10 percent increase in either mothers’ or fathers’ BMI is correlated with about 

a 1.4 percent increase in child’s BMI.  When both parents’ BMI measures are in the regression 

the individual coefficients decline somewhat – as is to be expected since mothers’ and fathers’ 

BMI are correlated as well – but both are statistically significant.  If children, on average, shared 

the same amount of common genetics with their mothers and their fathers, but shared more 

common environment with their mothers we might expect that mothers’ BMI would be more 

important in explaining children’s BMI than fathers’ – as mothers’ BMI would pick up both the 

effect of common genetics and common environment.  These results suggest that the common 

environment shared by mothers and their children and fathers and their children is similar.  One 

caveat to this is that fathers’ reported BMI is more likely to be missing than mothers. Thus, one 

might say that the parent-child correlation in BMI is about the same for fathers and mothers, 

when the father is present.  Since including fathers’ BMI in the regression does not make much 

difference to the estimated mother-child correlation in BMI and we lose observations when we 

require non-missing father BMI data (and those children who are missing fathers’ BMI data are 

more likely to be disadvantaged), we focus on mother-child BMI elasticities in the analyses that 

follow. 

 Looking down the panels in Table 2 we can see how the mother-child BMI elasticity has 

changed over time.  Between the first and second wave of the NHANES, recall, children’s 

obesity rates and BMIs do not change very much.  Here we see that the mother-child BMI 

elasticity is nearly identical in these two periods as well, implying that a 10 percent increase in 

mothers’ BMI is correlated with a 1.4 percent increase in children’s BMI.  In the third wave of 

the NHANES, the mother-child elasticity has grown larger. Now, a 10 percent increase in 

                                                           
8 Results look similar if the child’s own birth weight is included as a control variable. 
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mothers’ BMI is correlated with a 2.1 percent increase in children’s BMI.  In the fourth wave, 

the mother-child elasticity remains larger than in the earlier periods, with a 10 percent increase in 

mothers’ BMI being correlated with about a 2 percent increase in children’s BMI. 

 We can use the parent-child elasticity to estimate how much of the increase in children’s 

average BMI over time would be predicted, given the mothers’ average increase over the same 

time.  We use the average BMI for mothers and children shown in Appendix Table 1 to calculate 

the percentage change in children’s BMI and the percentage change in mothers BMI between the 

first and fourth period.  Using the standard midpoint formula, this would imply that mothers’ 

BMI grew 13.7 percent and the children’s BMI grew 7.3 percent.9  However, even using the 

larger, later period, elasticity, the growth in mothers’ BMI would imply less than a 3 percent 

growth in children’s BMI.10  The growth in mothers’ BMI can explain 37.5 percent of the 

increase in children’s BMI between the beginning and the end periods. Clearly, there are other 

factors besides the shared genetic-environmental factors of mothers and children that are driving 

the increase in children’s BMI.    

B. Interpreting the BMI Elasticity 

 As noted above, the parent-child BMI elasticity cannot be used to isolate pure genetic and 

pure environmental determinants of weight status. The observed increase in mother-child BMI 

elasticity is best interpreted as reflecting an increase in the shared environment of mothers and 

their children, or the effect of the interaction of shared genes with the environment.11   Using a 

sample of adult adopted and genetic siblings collected in 2004, Sacerdote (2007) estimates that 

the shared environment explains 30.8 percent of the variance in BMI, genes (and their correlation 

                                                           
9 This is obtained by dividing the change between the first and last period by the average of the two periods. 
10 Percentage change in children’s BMI = (elasticity* percentage change in mothers’ BMI) = (0.2*13.7 percent) 
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with the environment) explain 11.5 percent, and the rest (57.7 percent) is unexplained.  

Interestingly, this decomposition is very close to the one he calculates for family income, even 

though this is an outcome that  typically might not be considered to be as genetically determined 

as BMI.  That said, the role of genetics in the mother-child BMI elasticity is made clear when 

comparing estimates using the adopted children to those using the biological children.12  Running 

a regression similar to that shown in column (1) of Table 2 using these data13, one obtains an 

elasticity (standard error) for the biological children of 0.221 (0.045), but only 0.025 (0.025) for 

the adoptees.  Thus, the elasticity for biological children for this sample is similar to our later 

elasticities, but it is unlikely to reflect current shared environment.  The implication is that the 

interaction of shared genes and the general, not just the intra-household, environment is likely 

very important.  Thus, suppose that some parents and children are pre-disposed to eat too much 

junk food, and vending machines go from being rare in the early period to being ubiquitously 

available in the later period both at work and in schools.  We would observe an increase in BMI 

in both parents and children for the genetically pre-disposed that we would attribute to shared 

genetic-environmental factors. However, it is not necessarily the case that these shared 

environmental factors are solely within the walls of the household.   

   Finally, recall that although BMI has increased for everyone, the BMI for the obese has 

increased more than for the median person, which corresponds to a model of obesity such that 

there may be some people who are particularly susceptible to weight gain when the environment 

                                                                                                                                                                                           
11 One concern is whether the increase in elasticity is real, or an artifact of changes in measurement error in BMI 
over  time.  We find that changes in measurement error would have to be implausibly large to be the underlying 
driver of the observed increase in parent-child BMI elasticities.  See data appendix for a more detailed explanation.   
12 Recall that these “children” are actually adults – the average age is 28 for the adoptees and 32 for the biological 
children.  Thus, it is unlikely that mother and child are literally sharing an environment at this point.  
13 We thank Bruce Sacerdote for making his data available to us. 
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is right, and in the last two decades, the environment has been right.14  Thus the impact of 

common genetic and environmental factors may be different for children who occupy different 

points in the BMI distribution.  Given that we have seen that disadvantaged kids are heavier, it is 

important to investigate whether the mother-child elasticity is constant throughout the BMI 

distribution or not.  Thus, we estimate models identical to column (1) from Table 2, but using 

quantile regression rather than OLS.  We estimate elasticities that fit at each of 20 quantiles of 

the BMI distribution (versus OLS, which fits at the mean).    

 Figures 4-7 plot these quantile regression estimates and 95 percent confidence intervals 

for the mother-child BMI elasticity for NHANES 1-4. First, we see that the elasticity is generally 

higher at higher quantiles of the BMI distribution, suggesting that for heavier children, the shared 

environmental-genetic component captured by mothers’ BMI is more important in determining 

their BMI.  Second, this relationship seems to have gotten steeper over time.  That is, while the 

elasticity is around 10 percent for the lowest quantiles in all periods, in the earlier periods it does 

not rise much above that level until increasing sharply at about the 80th percentile.  By contrast, 

in the later periods the elasticity rises smoothly throughout the quantiles. 15 The heavier the child, 

the more important the common family genes and environment appear to be in determining her 

weight outcomes.  

C. Differences in Mother-Child Elasticities by Measures of Disadvantage  

Since disadvantaged children are heavier, the results in the preceding section might lead 

one to believe that parent-child elasticities would be higher for disadvantaged groups. Table 3 

                                                           
14 Note that how this all works is far from settled science.  Recent evidence suggests that the obese may have 
different body chemistry such that for a given number of calories ingested, their digestive tract can extract more 
calories for use (Weill Medical Center, 2007).  
15 Note, of course, that children at the middle quantiles in NHANES 3 and 4 have BMIs that would have placed 
them farther up the quantile distribution in the earlier year, but since we are using ln(BMI) the shift is not as stark as 
it would be in levels. Thus, across NHANES 2 and 3, median ln(BMI) only increases from 2.77 to 2.78, while 75th 
percentile ln(BMI) increases from 2.85 to 2.88. 
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investigates whether the mother-child elasticity, which has increased on average, has changed in 

similar ways for advantaged and disadvantaged groups.    The regressions control for a cubic in 

age fully interacted with gender, and all measures of disadvantage.  Interactions between 

mother’s log BMI and specific measures of disadvantage are entered separately. The top panel 

shows the interaction of log of mothers’ BMI with race/ethnicity; the second panel shows the 

interaction with the reference person’s highest grade completed; the third panel shows the 

interaction with the income-to-poverty-line ratio.  The results for the different waves of the 

NHANES are reported in the four columns.   

 Looking down the panels we see, in general, that there is little consistent role for 

disadvantage in terms of its effect on the mother-child elasticity.16  In the first panel, the majority 

of the point estimates imply that the mother-child elasticity for blacks and for Hispanics is 

smaller than for white non-Hispanics, but the estimates are not significantly different from zero 

and are not consistently negative in all periods.  In the second panel, using the household 

reference person’s education as a measure of disadvantage, there is again no real impact on the 

elasticity.  In the final panel, when we use perhaps the most straightforward measure of 

disadvantage - the income-to-poverty-line ratio - the majority of the point estimates imply a 

lower elasticity for the disadvantaged, but again the difference is not significantly different from 

zero. 

 Nonetheless, Table 4 uses the point estimates from Table 3 to calculate the implied 

mother-child BMI elasticity for different groups.  Doing this calculation makes clear that this 

elasticity has increased over time for most groups, but indicates that it may have decreased 

slightly (albeit not significantly) for the more advantaged groups in the last period.  Recall from 

Table 1 that the effect of disadvantage on children’s BMI was positive and growing over time.  
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That is, that the disadvantaged were increasingly heavier than the non-disadvantaged.   However, 

it does not appear that this increasing effect of disadvantage can be attributed to differences in 

the shared genetic-environmental factors of these mothers and their children. 

 These results are somewhat puzzling when contrasted with the quantile regression results 

in the previous section.  We expected that since heavier children show higher parent-child BMI 

elasticities, and disadvantaged children tend to be heavier, that we would find higher parent child 

elasticities for the disadvantaged.  However, the quantile regression results suggest that common 

genetic-environment factors play a larger role for heavier children, and that this difference is 

better captured by one’s place in the log BMI distribution itself than by coarse measures of 

disadvantage that are simply correlated with one’s place in the BMI distribution.    

 

VI. Common Parent-Child Environmental Factors 

The above analysis suggests that, overall, common-parent child factors are becoming 

increasingly important in determining weight outcomes. Ideally, we would like to be able to 

observe the factors that determine BMI – caloric in-take and expenditure – and correlate these 

underlying factors for both adults and children.  We would like to be able to do this for different 

measures of disadvantage in order to see whether it is differences in food consumed or exercise 

that determines differences in BMI across disadvantaged groups.  Further, we would ideally be 

able to observe the environments in which the advantaged and disadvantaged live and examine 

whether these differences affect caloric in-take or expenditure.  In this section, we present some 

evidence on these environmental factors, while also discussing the many challenges in 

examining these direct determinants of BMI.   

A. Caloric In-take by Disadvantage 

                                                                                                                                                                                           
16 There continues to be no significant interaction effect when using quantile regression. 
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 Since we know that BMI is higher for disadvantaged groups, it seems likely we should 

find that caloric in-take is higher for these groups or energy expended is lower.  However, it is 

very difficult to find evidence of these differences.  First, over time, relatively small caloric 

imbalances can result in a relatively large amount of weight gain.  In fact, Cutler, Glaeser and 

Shapiro (2003) estimate that the weight gain observed for the median adult male between the 

early 1970s and the early 2000s can be entirely accounted for by just a daily 150-calorie 

imbalance.  Thus, just one extra 12 ounce can of non-diet soda per day is sufficient to cause the 

increase in the median man’s weight gain seen in recent years.  Even fewer excess calories can 

explain the increase in obesity for children (Schanzenbach, 2005).  Second, good data on caloric 

intake and expenditure are difficult to obtain.  While food diary data (as is available in the 

NHANES), is generally considered fairly reliable, the caloric intake is still likely measured with 

error.  Caloric expenditure data tends to be more problematic, since accurately describing the 

intensity of exercise can be difficult.  As a result, analyses of caloric imbalance will likely have 

difficulty precisely estimating differences in calorie intake that are as small as those required to 

explain a great deal of weight gain over time. 

 Nonetheless, we will use the food diary data from the NHANES to try to get a feel for 

eating patterns over time and by disadvantage status.  We will investigate caloric intake overall, 

and from a set of food types that may be markers of better or worse nutritional habits.  In 

particular, we focus mainly on food away from home, fast food and fruits and vegetables.  

Table 5 presents a regression of log(calories+1) for each of these food types on the income-to-

poverty ratio along with a cubic in age fully interacted with gender.17  Thus, these models are 

identical to those shown in the third panel of Table 1, but using calories instead of BMI in the 

                                                           
17 We add one to all of the calorie counts so as not to have to drop observations with no consumption in a specific 
food group.  See the Data Appendix for further details. 
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dependent variable.  The regressions using total calories show an inconsistent pattern in the 

correlation between the income-to-poverty line ratio and total calories. In the first wave, the 

relationship is positive, but insignificant. In the second wave, it is positive and significant – 

meaning that children from wealthier families report consuming more calories.  In the third wave 

it is negative and insignificant; in the fourth, it is very small and insignificant.  Thus, if anything, 

we observe a change between NHANES 2 and 3 in which disadvantage no longer implies fewer 

calories, but rather more calories, but that in more recent years, all children have similar caloric 

intake.   

 While total calories (if well-measured) are what ought to matter for weight gain or loss, 

we also examine calorie in-take from fruits and vegetables and calories consumed away from 

home. Consumption of fruits and vegetables may be viewed as a “marker” of healthful eating 

habits, and thus may give us some insight into how disadvantage may correlate with poor 

nutrition. Similarly, we examine calories from food consumed away from home.  One popular 

explanation for the rise in obesity is that consumption of food from fast food and other 

restaurants has increased.  The notion is that with professionally prepared food individuals are 

less aware of the calorie content of what they are eating, have less control over portion size, and 

may find the food more palatable, than food prepared at home.  Note that French fries are 

included in this measure of fruits and vegetables – for some of the years we can separate out 

certain food types and food venders and we will do that when we examine parent-child 

correlations in calorie consumption.   

 For now, note that the second column of Table 5 indicates that in the first three 

NHANES, higher income is associated with significantly more calories from fruits and 

vegetables.  In the last two NHANES, higher incomes are associated with significantly more 
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calories consumed away from home.  Thus, there is some evidence that advantaged and 

disadvantaged children consume calories from different sources, and that these relationships may 

have changed over time. However, with these broad measures of caloric in-take it is hard to see 

how this may translate into differences in BMI. 

B. Mother-Child Calorie Elasticies 

 Having seen that the intra-household correlation in BMI has increased over time, but with 

no real pattern by disadvantaged, we now turn to looking more closely at intra-household 

correlations in eating patterns.  With NHANES 3 and 4, we have enough data to look at children 

matched to an adult household member.  The matched data looks very similar to the total data 

that are both available for NHANES 3.  Appendix Table 2 repeats the relevant panel of Table 5, 

and then replicates it using the matched data.  Additionally, the more detailed food codes allow 

us to remove French fries and potato chips from the fruit and vegetable category, and to identify 

fast food consumption.  The final columns, then, reflect these two additional food groups.  Note 

that without French fries and chips, the effect of disadvantage on fruit and vegetable 

consumption becomes more important.  Similarly, while the more advantaged do eat more fast 

food, the effect is much smaller than for the broader food-away-from-home category, and is not 

significantly different from zero.   

 Having seen that the matched data is similar to the full data, we now use NHANES 3 and 

4 data to estimate intra-household calorie elasticities in a manner identical to those calculated for 

BMI in Table 2. For each of the five food groups (i.e. total calories, fruit and vegetable calories, 

calories away from home, fruit and vegetable calories without fries and chips, and fast food 

calories), we regress the child’s log(calories+1) on first the mother’s log(calories+1), then the 

father’s log (calories+1), and then both.  The results are in Table 6.  For total calories, the results 
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show patterns that are similar to the BMI estimates.  That is, both the mother and the father 

matter; estimates are similar whether the parents are included together or separately; and there is 

no significant difference between mother and father.  Additionally, unlike for the BMI elasticity, 

the point estimate of the calorie elasticity increases somewhat between the two later periods. 

For the specific food groups, the mother elasticity is always larger, and is sometimes 

significantly different from the father elasticity when included together.  In the earlier period, 

while mother is not significantly different from father for all fruits and vegetables, once we 

remove French fries and chips there is a marginally statistically significant difference.   When 

looking specifically at fast food, the maternal elasticity of 0.319 is twice the size of the paternal 

elasticity of 0.151.  This finding is consistent with a story where fathers have opportunities to eat 

fast food that do not include their children -- for example, lunch on a work day.   In the second 

period, however, only the elasticity of calories from fast food shows a statistically significant 

difference between the mother and father.   

Some interesting patterns emerge when comparing the food subgroup results across 

periods.  For the main markers of poor diet – food away from home and fast food, the calorie 

elasticity increases over time, while for both measures of fruits and vegetables, the calorie 

elasticity decreases, as does the total calorie elasticity.  This pattern holds for both the mothers 

and the fathers.   Recall that the data with which we can calculate parent-child calorie elasticities 

come from only the last two NHANES.  In these data, the parent-child BMI elasticity was higher 

than in the earlier two periods, but about the same between these two years.  Thus, it is not 

necessarily a conflict that we do not see an increase in, for example, the total calorie elasticity 

between these two years.     
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While it appears that both mother’s and father’s eating patterns influence children, 

mothers seem to play the dominant role.  Thus, as was the case with the BMI elasticities, we will 

just focus on the maternal elasticity when investigating the role of disadvantage. 

 Table 7 is parallel to the bottom panel of Table 3, in that it uses the income-to-poverty 

ratio as the measure of disadvantage, and interacts it with the maternal log(calorie+1) measure.  

Here, each column is a different food group.  Looking first at column (1), we see that the 

elasticity of total calories is larger for the more disadvantaged, but this difference is only 

marginally statistically significant in the last period. This point estimate may be due to the fact 

that by this time period advantaged mothers are more likely to work (and work longer hours) 

than disadvantaged mothers (Anderson et. al., 2003).  Advantaged mothers may thus be spending 

more time away from their children than disadvantaged mothers, leading to a lower elasticity in 

calories consumed.  Overall, though, as was the case with Table 3, there little evidence of a 

statistically significant difference in the mother-child calorie elasticity for the disadvantaged.  

C. Other Environmental Factors 

 Above we examined reported caloric in-take patterns for insight into the shared 

environment between mothers and their children that might affect their BMI.  This intake is 

clearly a small subset of the complex environmental factors that affect body mass, however.  One 

would clearly like information on calories expended as well as calories consumed. The 

measurement problems that attend collecting information on calories consumed are increased for 

calories expended – not only does one need information on the number of minutes spent running, 

for example, but the intensity of that activity.  Carefully controlled medical studies are able to 

document how calories expended and consumed affect BMI, however these necessarily give us 
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little insight into who chooses to participate in different caloric in-take and expenditure behavior 

and why they make those different decisions.   

 In order to explain differences in body mass between the advantaged and disadvantaged, 

many social science researchers have turned to documenting differences in the living 

environment that each group faces.  We examined county business pattern data for 1980-1986  

and 1988-1994 (years which roughly correspond to the second and third waves of the NHANES 

data – the period when we see an initial jump in children’s obesity rates) in order to see whether 

the environments in which the disadvantaged live have changed differentially from the 

environments in which the advantaged live in ways that are likely to affect body mass.  The 

results showed no consistent pattern between changes in the availability of restaurants, grocery 

stores or recreation outlets and various measures of disadvantage. 

 There are several problems with this approach. First, the establishment definitions are 

coarse, for example many types of restaurants are grouped together.  Growth in the count of 

restaurants in an advantaged area may represent growth in establishments that cater to a health 

conscious crowd, while in a disadvantaged area it may represent growth in fast food restaurants.  

Thus, it is perhaps not surprising that we found no consistent pattern in changes in establishment 

types over time by county level measures of disadvantage.   

 A second problem is more fundamental, and would be a problem even if we had very 

detailed and accurate measures of establishment type linked to specific geographic areas.  

Ideally, we would like to examine whether an exogenous increase in concentration of fast food 

restaurants, for example, increases caloric in-take and increases body mass. Similarly, we would 

like to know whether an exogenous increase in recreational space, for example, increases 

exercise, and reduces weight.  Without that exogenous variation, it is very hard to say whether 
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fast food restaurants cause people to eat unhealthful foods, or whether restaurant owners simply 

open franchises near where they perceive their customers to live – e.g., obese individuals would 

likely consume fast food whether or not there is one around the corner, but franchise owners, in 

an attempt to get customers into their particular store, may try to locate very close to the 

customers.  Given the importance for policy purposes of understanding whether location of fast 

food restaurants, for example, has a causal impact on obesity, research with a design that 

credibly answers this question is a high priority.   

 

VII. Conclusion  

  Designing good policies to affect childhood obesity will require an understanding of how 

the environment that children face is related to their body mass.  Although our attempts to 

directly measure changes in the food and exercise environments faced by advantaged and 

disadvantaged children were not very fruitful, our earlier results on child-parent BMI elasticity 

indirectly suggest that shared environment/genetics do play an important role.  In fact, we find 

that the shared mother-child component of BMI became increasingly important over this time 

period, reflected in the increase in the mother-child BMI elasticity.   However, if the only 

determinants of children’s body mass were their genes and the environment they share with their 

parents, we would expect to find that increases in parents’ BMI can go a long way toward 

explaining the increases we have seen in children’s BMI over the last few decades.  Instead, on 

average, based on our estimates of the mother-child BMI elasticity, the 13.7 percent increase in 

mothers’ average BMI over the 30-year period we examine can explain at most 40 percent of the 

7.3 percent increase in children’s average BMI.   
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The title of this paper asks whether in determining children’s obesity, “nurture” is 

trumping “nature” and whether that is different for disadvantaged children.  While we find that 

common parent-child factors are becoming more important in determining children’s weight 

outcomes, this result is consistent with both an increasing role for “nurture” and an increasing 

role for “nature.” For example, there is either an increasing role for the shared environments that 

affect both parents’ and children’s body mass, or an increasing role of the overall environment 

for certain genetic profiles (which may be shared by parents and their children).  The former 

situation might fit what we loosely mean by “nurture” – parental choices that  involve such 

things as increasingly sharing meals and snacks made up of unhealthful foods or sharing more 

sedentary, rather than vigorous, activities.  The latter situation might fit what we loosely think of 

as “nature”-- or at least how one’s natural susceptibility towards obesity interacts with one’s 

environment --  and might include eating increasingly available unhealthful foods in separate 

environments (say at school for children, at work for parents) that have similar effects on those 

with the same genetic susceptibility to weight gain.  Note that Anderson and Butcher (2006b) 

finds evidence for a different effect of “environment” on those with a genetic susceptibility 

toward weight gain since that study finds that the availability of junk food in schools results in 

higher weights only for those adolescents who have an overweight parent.  

 Overall, it appears that the parent-child elasticity is similar for advantaged and 

disadvantaged children, for both it has increased over time,  but, as noted above, that changes in 

parents’ BMI  still does not explain most of the change in children’s BMI.  Regardless of 

whether one wants to interpret the finding that the elasticity has increased as evidence for 

increasing importance of parental choices for children (“nurture”) or the increasing importance 

of the environment for both children and parents who share a similar genetic susceptibility to 
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weight gain (“nature” interacting with the environment), there appear to be different factors that 

affect parents’ and children’s body-mass. Child-specific environments like schools, childcare 

facilities, and playgrounds may play an important role in determining children’s weight 

outcomes.  This is an important implication since it suggests policies targeted at changing 

children’s environment outside the family, rather than solely targeting parental choices, may be 

an effective way to address childhood obesity.   
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Data Appendix 

A. Variable Definitions and Parent-Child Match 

 All of the data used in the paper are from the National Health and Nutrition Examination 

Survey (NHANES).  Most of these data are publicly available from the National Center for 

Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC) at their website 

(http://www.cdc.gov/nchs/nhanes.htm).  We use four waves of this survey.  The first, known as 

NHANES 1 was collected between 1971 and 1975, the second, NHANES 2, was collected 

between 1976 and 1980 while the third, NHANES 3, was collected between 1988 and 1994.  

With sampling weights, these data are representative of the U.S. population at the midpoint of 

the survey years.  For each of these three waves, we extract publicly available information from 

the youth examination files on professionally measured body mass index (BMI) for all children 

age 2 to 11.  For each of these children reported BMI is also publicly available for each of their 

resident parents, along with basic demographics such as age, gender and race/ethnicity.  For an 

adult household reference person, we also have completed education in years, and for the family 

as a group we have the ratio of family income to the poverty line for a family of that size in that 

year. 

 Also publicly available for the children is information from a 24-hour recall food diary.  

Each food item consumed is separately recorded, giving the food category, along with key 

nutritional information such as calories.  The exact food codes used differ slightly over the 

waves, but we can always identify whether the food item was consumed at home or away, and 

the major food group (e.g. fruits and vegetables; dairy products, etc.).  For consistency across 

waves, we choose to look at total calories, calories from the major category, “all fruits and 

vegetables” and calories consumed away from home.  For each individual, then, we aggregate 
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the calories from food items in those categories to obtain a per-person measure of total calories 

consumed, calories consumed from fruits and vegetables, and calories consumed away from 

home.  We then add one to each of these aggregates.  While one calorie is fairly incidental in an 

individual’s diet, this addition allows us to take logs of our calories subgroups, even if an 

individual did not eat any calories from that group in the 24 hours captured by the diary.   

 The fourth wave is slightly different from the first three.  First, what we will refer to as 

NHANES 4 is actually made up of 3 separate sub-waves named NHANES 1999-2000, NHANES 

2001-2002 and NHANES 2003-2004.  These data can pooled and appropriate six-year sample 

weights computed such that the data are also representative of the U.S. population at the 

midpoint of the survey years.  As with the other waves, we extract publicly available data on 

professionally measured BMI for children age 2 to 11, along with basic demographics such as 

age, gender and race/ethnicity.  Also available for each child is the income-to-poverty line ratio 

for the child’s family.  Unfortunately, the reported parental BMI is not available in these data.  

As a result, we must create a “matched” data set using a confidential household identifier to 

compute intra-household BMI elasticities.  Since NHANES 3 is also large enough to create a 

similar matched data set (using the publicly available household identifier), we can evaluate the 

importance of this alternate approach. 

 Based on results from NHANES 3, which determined that 89 percent of households had 

only one adult (age 20-50) male and 88 percent had only one adult female, we settled on a very 

simple matching algorithm.  For each household, the adult females age 20-50, adult males age 

20-50 and children age 2-11 were separated out and sorted by age.  The first adult female in the 

household was then assigned to be the child’s “mother” and the first adult male was assigned to 

be the “father.”  Based on the reported parental information in NHANES 3, it appeared that only 



 

 33

4 percent of the matched mothers had a BMI and age that were inappropriate.  As a result models 

identical to those in Tables 2 and 3 run using the matched NHANES 3 data looked very much 

like those presented using the larger data set with reported parental BMI.   

 Unfortunately, with NHANES 4, we cannot make this same comparison, but again given 

the large number of households with only one adult female or adult male, we feel confident that 

the results are reliable.  A few other differences in NHANES 4 are potentially problematic.  First, 

education was not reported for the household reference person.  Thus, we must use the matched 

“mother” and “father” to determine the reference person’s education.  When we have education 

for a “father” in the household, we choose that as the reference person’s education.  Otherwise, 

we use the “mother” in the household.  Second, in NHANES 4, education is not recorded as 

years completed, but rather is categorical – less than high school, high school graduate, beyond 

high school.  To maintain consistency with the previous waves, we code these categories as 10 

years of education, 12 years, and 14 years, respectively.  The results from this approximation to 

continuous years of education do not differ substantively from including the categorical 

dummies.  Appendix Table 1 presents summary statistics for the variables used in our main 

analyses for all four waves of the NHANES. 

 As noted above, the 24-hour food recall diaries (used in our secondary analyses) are 

available for everyone, making it possible to examine the effect of disadvantage on eating 

patterns for all waves of the NHANES.  However, within-household correlations can only be 

computed when children are matched to adults in the household.  While we can follow the 

matching procedures outlined above for NHANES 1 and 2, the resulting sample sizes are too 

small to provide useful estimates.  Thus, we limit our in-depth analysis of intra-household eating 

behaviors to the NHANES 3 and 4. 



 

 34

 Across these two waves, we try to maintain as much consistency in the definition of food 

groups as possible.  One area where this is not entirely possible is in the definition of fast food 

calories.  In NHANES 3, calories are coded based on the item being described using a set of 

detailed codes for branded products (e.g. Burger King Whopper, Wendy’s Frosty, etc.   Thus, 

“fast food calories” implies having consumed any kind of food from a fast food restaurant, no 

matter where it was consumed.  .In NHANES 1999-2000, we can identify that a food item was 

eaten at a fast food establishment, but if it was brought home and eaten, it will not be coded as 

“fast food.”  In NHANES 2003-2004, we can identify that a food item was obtained from a fast 

food restaurant, no matter where it was consumed, while in NHANES 2001-2002 we cannot 

identify fast food at all.  As a result, for NHANES 4, “fast food calories” implies calories from 

food items that were either eaten at a fast food restaurant in the early years or obtained from a 

fast food restaurant in the later years. 

B. Implications for Estimated Elasticity of Changing Measurement Error in BMI  

While it appears that between the 1971-1980 and 1988-2004 periods there was a marked 

increase in the parent-child BMI elasticity, a concern with this conclusion may be that, in fact, 

the true elasticity has not changed, but rather the amount of measurement error in BMI has 

fallen, allowing us to estimate this true elasticity more precisely (e.g. the signal-to-noise ratio has 

risen).  If one makes the assumption of a constant true elasticity, one can use the estimated 

elasticities, along with the variance in log mothers’ BMI to estimate what combination of 

constant elasticity and error variance would be consistent with these estimated elasticities.  The 

result is an implausibly large error variance of 0.030 combined with a constant elasticity of 0.52.  

Note that in NHANES 3, since we have both reported and measured maternal BMI, we can 

calculate an alternate measure of the error variance (and thus of the true elasticity) from a 
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regression of the measured BMI on the reported BMI.  This exercise implies a true elasticity of 

0.23, with an error variance of just 0.004 in NHANES 3.  Thus, we conclude that it is very 

unlikely that a simple measurement error story is behind the increase in the estimated elasticity, 

and that there has indeed been an increase in the true elasticity. 
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  Figure 1: Changes over Time in Adult Obesity Rates, By State 
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Figure 2: Fraction Obese by Year and Quartile of Income-to-Poverty Ratio: 
Children 2-11 years old
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Figure 3: Average BMI Among the Obese by Year and 
Quartile of Income-to-Poverty Ratio: 

Children 2-11 years old
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Figure 4: NHANES 1 Mother-Child log(BMI) Relationship
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Figure 5: NHANES 2 Mother-Child log(BMI) Relationship
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Figure 6: NHANES 3 Mother-Child log(BMI) Relationship
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(1) (2) (3) (4)

Race on log BMI
NHANES 1: 

1971-75
NHANES 2: 

1976-80
NHANES 3: 

1988-94
NHANES 4: 
1999-2004

Black -0.008 0.001 0.008 0.021
(0.006) (0.007) (0.006) (0.006)**

Hispanic 0.016 0.034 0.037 0.035
(0.009) (0.010)* (0.006)** (0.006)**

Other Non-white 0.006 -0.016 0.004 -0.002
(0.020) (0.014) (0.012) (0.013)

Observations 4374 4781 7694 5586
R-squared 0.16 0.18 0.17 0.20

Education on log BMI NHANES 1: 
1971-75

NHANES 2: 
1976-80

NHANES 3: 
1988-94

NHANES 4: 
1999-2004

-0.002 -0.004 -0.003 -0.006
(0.001)** (0.001)** (0.001)** (0.002)**

Observations 4260 4688 7582 2869
R-squared 0.16 0.18 0.17 0.18

Poverty on log BMI NHANES 1: 
1971-75

NHANES 2: 
1976-80

NHANES 3: 
1988-94

NHANES 4: 
1999-2004

0.002 -0.002 -0.006 -0.008
(0.002) (0.002) (0.002)** (0.002)**

Observations 4276 4637 7095 5142
R-squared 0.16 0.17 0.17 0.20

All 3 on log BMI NHANES 1: 
1971-75

NHANES 2: 
1976-80

NHANES 3: 
1988-94

NHANES 4: 
1999-2004

Black -0.009 -0.003 0.003 0.004
(0.007) (0.008) (0.006) (0.009)

Hispanic 0.011 0.026 0.024 0.033
(0.009) (0.011)* (0.008)** (0.009)**

Other Non-white 0.000 -0.018 -0.003 0.016
(0.024) (0.014) (0.012) (0.019)

-0.002 -0.005 -0.002 -0.001
(0.001)* (0.001)** (0.001)* (0.003)

0.005 0.006 -0.002 -0.007
(0.002)* (0.003)* (0.003) (0.003)*

Observations 4175 4567 7011 2646
R-squared 0.16 0.19 0.17 0.19

Table 1: Disadvantage and Children’s log BMI

Notes:  All models also include a cubic in child’s age fully interacted with gender.  BMI is 
measured.  Standard errors are in parentheses.  Statistical significance level: *10%, **5%, ***1%.  
Sample is limited to children age 2-11.

Income/Poverty Line Ratio

Highest Grade for Reference 
Person

Highest Grade for Reference 
Person

Income/Poverty Line Ratio
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NHANES 1: 1971-75 (1) (2) (3)

log Mother's BMI 0.142 0.131
(0.014)** (0.015)**

log Father's BMI 0.141 0.126
(0.016)** (0.016)**

Observations 3918 3609 3552
R-squared 0.20 0.19 0.22
F test: Mom=Dad 0.04
Prob > F 0.843

NHANES 2: 1976-80 (1) (2) (3)

log Mother's BMI 0.141 0.120
(0.016)** (0.018)**

log Father's BMI 0.180 0.152
(0.021)** (0.021)**

Observations 4402 4173 4116
R-squared 0.22 0.22 0.24
F test: Mom=Dad 1.05
Prob > F 0.305

NHANES 3: 1988-94 (1) (2) (3)

log Mother's BMI 0.206 0.178
(0.020)** (0.022)**

log Father's BMI 0.208 0.150
(0.023)** (0.022)**

Observations 6555 6016 5817
R-squared 0.24 0.22 0.26
F test: Mom=Dad 0.66
Prob > F 0.415

NHANES 4: 1999-2004 (1) (2) (3)

log Mother's BMI 0.196 0.188
(0.019)** (0.025)**

log Father's BMI 0.201 0.126
(0.030)** (0.029)**

Observations 2249 1770 1394
R-squared 0.27 0.23 0.30
F test: Mom=Dad 1.95
Prob > F 0.163

Table 2: Intergenerational BMI Elasticity

Notes: Dependent variable is the log of the child’s measured BMI.  Parental BMI data 
are reported for NHANES 1-3, and measured and matched for NHANES 4 (see data 
appendix for details).  All models also control for race, highest grade completed by the 
household reference person, the household income-to-poverty ratio, and a cubic in 
child’s age fully interacted with gender.  Standard errors are in parentheses.  Statistical 
significance level: *10%, ** 5%, ***1%.  
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(1) (2) (3) (4)
Race on log BMI NHANES 1: 

1971-75
NHANES 2: 

1976-80
NHANES 3: 

1988-94
NHANES 4: 
1999-2004

log Mother's BMI 0.155 0.146 0.211 0.190
(0.016)** (0.019)** (0.031)** (0.025)**

Black 0.156 0.036 0.162 -0.064
(0.122) (0.120) (0.112) (0.126)

Hispanic 0.181 0.004 0.040 0.130
(0.172) (0.238) (0.127) (0.164)

Other race -0.569 0.379 -0.155 -0.529
(0.435) (0.189)* (0.177) (0.316)

-0.054 -0.015 -0.053 0.014
(0.035) (0.038) (0.035) (0.038)

-0.056 0.006 -0.010 -0.026
(0.054) (0.075) (0.040) (0.049)

0.180 -0.125 0.045 0.173
(0.140) (0.059)* (0.056) (0.098)

Observations 3918 4402 6555 2249
R-squared 0.20 0.22 0.24 0.27

Education on log BMI NHANES 1: 
1971-75

NHANES 2: 
1976-80

NHANES 3: 
1988-94

NHANES 4: 
1999-2004

log Mother's BMI 0.172 0.177 0.172 0.371
(0.053)** (0.060)** (0.077)* (0.135)**

0.008 0.006 -0.011 0.048
(0.015) (0.016) (0.022) (0.036)

-0.003 -0.003 0.003 -0.014
(0.005) (0.005) (0.007) (0.011)

Observations 3918 4402 6555 2249
R-squared 0.20 0.22 0.24 0.27

Poverty on log BMI NHANES 1: 
1971-75

NHANES 2: 
1976-80

NHANES 3: 
1988-94

NHANES 4: 
1999-2004

log Mother's BMI 0.119 0.101 0.171 0.217
(0.025)** (0.030)** (0.029)** (0.031)**

-0.034 -0.065 -0.055 0.031
(0.036) (0.045) (0.051) (0.036)

0.013 0.023 0.018 -0.010
(0.012) (0.014) (0.016) (0.011)

Observations 3918 4402 6555 2249
R-squared 0.20 0.22 0.24 0.27

Notes:  See notes to Table 2.

Table 3: Interactions between Disadvatage and Mother's BMI

Income/Poverty Line 
Ratio

log Mother's BMI* 
Income/Poverty Line 

log Mother's BMI*Black

log Mother's 
BMI*Hispanic

log Mother's BMI*Other 
race

Highest grade for 
Reference Person

log Mother's 
BMI*Highest grade
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(1) (2) (3) (4)
NHANES 1: 
1971-1975

NHANES 2: 
1976-1980

NHANES 3: 
1988-1994

NHANES 4: 
1999-2004

White 0.155 0.146 0.211 0.190

Black 0.101 0.131 0.158 0.204

Hispanic 0.336 0.150 0.251 0.320

Other race -0.414 0.525 0.056 -0.339

Reference Person's 
Education = 10 0.142 0.147 0.202 0.231

Reference Person's 
Education = 12 0.136 0.141 0.208 0.203

Reference Person's 
Education = 16 0.124 0.129 0.220 0.147

Income-to-Poverty 
Ratio = 1st Quartile 
Cutoff

0.135 0.126 0.188 0.207

Income-to-Poverty 
Ratio = 2nd Quartile 
Cutoff

0.144 0.142 0.206 0.198

Income-to-Poverty 
Ratio = 3rd Quartile 
Cutoff

0.155 0.165 0.226 0.181

Notes: Calculations based on elasticities reported in Table 4.

Table 4: Mother-Child BMI Elasticity by Group
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(1) (2) (3)

NHANES 1: 1971-75 log(Total Calories +1) log(Calories from Fruits & 
Vegetables +1)

log(Calories Eaten Away 
from Home +1)

Income/Poverty Line Ratio 0.006 0.080 0.002
(0.005) (0.022)** (0.037)

Observations 4092 4092 4092
R-squared 0.11 0.01 0.09

NHANES 2: 1976-80 log(Total Calories +1) log(Calories from Fruits & 
Vegetables +1)

log(Calories Eaten Away 
from Home +1)

Income/Poverty Line Ratio 0.011 0.081 0.065
(0.006)* (0.030)** (0.052)

Observations 4466 4466 4466
R-squared 0.14 0.01 0.05

NHANES 3: 1988-94 log(Total Calories + 1) log(Calories from Fruits & 
Vegetables +1)

log(Calories Eaten Away 
from Home +1)

Income/Poverty Line Ratio -0.009 0.066 0.284
(0.006) (0.025)** (0.040)**

Observations 7046 7046 7046
R-squared 0.16 0.01 0.09

NHANES 4: 1999-2004 ln(Total Calories + 1) Ln(Calories from Fruits   & 
Vegetables +1)

Ln(Calories eaten away 
from home +1)

Income/Poverty Line Ratio 0.000 -0.026 0.357
(0.006) (0.024) (0.042)**

Observations 3099 3099 3099
R-squared 0.11 0.02 0.08

Notes:  Other covariates include a cubic in age fully interacted with gender.  BMI is measured.  Standard errors are in 
parentheses.  Statistical significance level: *10%, **5%, ***1%.

Table 5: Calorie Intake Among Children Age 2-11
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(1) (2) (3) (4) (5) (6)

0.101 0.101 0.150 0.116
(0.021)** (0.030)** (0.029)** (0.037)**

0.147 0.131 0.120 0.071
(0.034)** (0.034)** (0.038)** (0.038)

Observations 3342 1859 1859 1229 994 748
R-squared 0.17 0.18 0.19 0.14 0.15 0.15
F test: Mom=Dad 0.39 0.70
Prob > F 0.532 0.403

0.288 0.202 0.329 0.292
(0.027)** (0.035)** (0.034)** (0.043)**

0.179 0.145 0.244 0.196
(0.042)** (0.042)** (0.040)** (0.047)**

Observations 3342 1859 1859 1229 994 748
R-squared 0.16 0.11 0.15 0.23 0.19 0.29
F test: Mom=Dad 0.92 1.73
Prob > F 0.339 0.189

0.246 0.248 0.111 0.099
(0.036)** (0.049)** (0.039)** (0.048)*

0.237 0.179 0.077 0.009
(0.047)** (0.049)** (0.041) (0.044)

Observations 3342 1859 1859 1229 994 748
R-squared 0.07 0.08 0.13 0.05 0.03 0.04
F test: Mom=Dad 0.79 1.67
Prob > F 0.375 0.197

0.263 0.270 0.165 0.158
(0.029)** (0.042)** (0.040)** (0.048)**

0.229 0.146 0.132 0.080
(0.038)** (0.042)** (0.041)** (0.046)

Observations 3342 1859 1859 1229 994 748
R-squared 0.09 0.09 0.16 0.06 0.04 0.07
F test: Mom=Dad 2.98 1.24
Prob > F 0.084 0.266

0.375 0.319 0.506 0.447
(0.038)** (0.046)** (0.037)** (0.049)**

0.229 0.151 0.353 0.204
(0.041)** (0.035)** (0.038)** (0.042)**

Observations 3342 1859 1859 1229 994 748
R-squared 0.19 0.10 0.21 0.29 0.18 0.35
F test: Mom=Dad 6.99 9.67
Prob > F 0.008 0.002

log(Calories from Fruits & Vegetables, Less French Fries +1)

log(Mom's Total 
Calories)

log(Dad's Total 
Calories)

NHANES 3 (1988-1994)

log(Calories from Fruits & Vegetables +1)

log(Dad's Fruit/Veg 
Calories, No Fries)

log(Mom's Fast Food 
Calories)

log(Dad's Fast Food 
Calories)

ln(Calories from Fast Food +1)

Note: Data are for the matched NHANES 3 (1988-94) and NHANES 4 (1999-2004) samples.  Other covariates 
include a cubic in age fully interacted with gender, race, income-to-poverty ratio and head's education level.

NHANES 4 (1999-2004)

Table 6: Relationship between Parent and Child Calorie Intake

log(Total Calories +1)

log(Calories Eaten Away from Home +1)

log(Mom's Calories 
Away from Home)

log(Dad's Calories 
Away from Home)

log(Mom's Fruit/Veg 
Calories)

log(Dad's Fruit/Veg 
Calories)

log(Mom's Fruit/Veg 
Calories, No Fries)
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(1) (2) (3) (4) (5)

log (Total 
Calories + 1)

log (Calories 
from Fruits & 

Vegetables +1)

log (Calories 
Eaten Away 

from Home +1)

log (Calories 
from Fruit/Veg, 

No Fries +1)

log (Calories from 
Fast Food +1)

0.162 0.224 0.310 0.267 0.360
(0.039)** (0.064)** (0.042)** (0.049)** (0.063)**

-0.030 0.011 -0.011 -0.002 0.007
(0.019) (0.030) (0.019) (0.021) (0.026)

Observations 3342 3342 3342 3342 3342
R-squared 0.17 0.07 0.16 0.09 0.19

(1) (2) (3) (4) (5)

log (Total 
Calories + 1)

log (Calories 
from Fruits & 

Vegetables +1)

log (Calories 
Eaten Away 

from Home +1)

log (Calories 
from Fruit/Veg, 

No Fries +1)

log (Calories from 
Fast Food +1)

0.229 0.120 0.341 0.243 0.502
(0.048)** (0.064) (0.059)** (0.068)** (0.063)**

-0.041 -0.004 -0.003 -0.038 0.002
(0.019)* (0.029) (0.021) (0.029) (0.023)

Observations 1229 1229 1229 1229 1229
R-squared 0.15 0.05 0.22 0.06 0.29

Notes: See Table 6.

Table 7: Relationship between Calories, Disadvantage and Mother's Calories

log(Mother's Calories)* 
Income/Poverty Line Ratio

log(Mother's Calories)

log(Mother's Calories)* 
Income/Poverty Line Ratio

Panel A: NHANES 3 (1988-1994)

Panel B: NHANES 4 (1999-2004)

log(Mother's Calories)
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(1) (2) (3) (4)
NHANES 1: 

1971-75
NHANES 2: 

1976-80
NHANES 3: 

1988-94
NHANES 4: 
1999-2004

BMI 16.41 16.58 17.05 17.65
(2.29) (2.61) (3.02) (3.52)

Mother's BMI 24.14 23.93 24.90 27.68
(4.96) (4.91) (5.54) (6.89)

Father's BMI 28.68 25.62 26.12 27.86
(5.30) (3.65) (4.05) (5.39)

Black 0.14 0.15 0.16 0.10
(0.34) (0.36) (0.36) (0.30)

Hispanic 0.07 0.08 0.08 0.19
(0.25) (0.27) (0.28) (0.39)

Other race 0.01 0.03 0.10 0.05
(0.10) (0.16) (0.30) (0.23)

Female 0.49 0.49 0.49 0.49
(0.50) (0.50) (0.50) (0.50)

11.54 11.87 12.60 12.49
(3.16) (3.25) (3.05) (1.61)

Income/Poverty line ratio 2.12 1.99 2.21 2.35
(1.22) (1.09) (1.42) (1.55)

Observations 4092 4594 7124 2870
Note: Standard deviations in parentheses.

Highest grade of reference 
person

Appendix Table 1: Summary Statistics
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(1) (2) (3) (4) (5)

NHANES III: Overall 
Sample

log (Total 
Calories + 1)

log (Calories from 
Fruits & 

Vegetables +1)

log (Calories 
Eaten Away 

from Home +1)

log (Calories 
from Fruit/Veg, 

No Fries +1)

log (Calories from 
Fast Food +1)

-0.009 0.066 0.284 0.117 0.035
(0.006) (0.025)** (0.040)** (0.026)** (0.028)

Observations 7046 7046 7046 7046 7046
R-squared 0.16 0.01 0.09 0.01 0.00

NHANES III: 
Matched Sample

log (Total 
Calories + 1)

log (Calories from 
Fruits & 

Vegetables +1)

log (Calories 
Eaten Away 

from Home +1)

log (Calories 
from Fruit/Veg, 

No Fries +1)

log (Calories from 
Fast Food +1)

-0.002 0.039 0.251 0.081 0.044
(0.010) (0.043) (0.059)** (0.042) (0.043)

Observations 3365 3365 3365 3365 3365
R-squared 0.15 0.00 0.07 0.01 0.00

Income/Poverty Line 
Ratio

Notes: See Table 6.

Income/Poverty Line 
Ratio

Appendix Table 2: Comparing Reported and Matched NHANES 3 Samples

 
 
 




