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I. Introduction 

A large and growing literature suggests that individual choices are influenced by the choices of 

their friends and neighbors.  These peer effects have been found in dropping out, unemployment, 

crime, pregnancy and many other settings (Crane, 1991, Case and Katz, 1991, Glaeser et al., 

1996, Topa, 2001, Brock and Durlauf, 2001, Kuziemko, 2006).   The older work in this literature 

was criticized because the company you keep is rarely random (Manski, 1993).  Newer work in 

this area has documented peer effects in settings where there is real random assignment  like 

college dormitories (Sacerdote, 2001).   

There are many reasons to think that peers matter for health-related behaviors.  In many cases, 

health-related behaviors are more fun to do when others are doing them too (drinking, for 

example).  Peers are also a source of information (the benefits of a mammogram) or about what 

is acceptable in society (the approbation accorded smokers).  A recent study suggested that a 

good part of the obesity ‘epidemic’ in the United States is spread from person to person, in a 

manner reminiscent of viral infections (Christakis and Fowler, 2007).   

These interpersonal complementarities can have enormous social impact.  In addition to helping 

us understand how health behaviors operate, they magnify the impact of policy interventions.  

The existence of social interactions implies that a policy intervention has both a direct effect on 

the impacted individual and an indirect as that person’s behavior impacts everyone around.  

These indirect effects create a social multiplier where the predicted impact of interventions will 

be greater when the interventions occur at large geographic levels than when they occur 

individually (Glaeser, Sacerdote and Scheinkman, 2003).  The social multiplier also suggests that 

parameter estimates from aggregate regressions can mislead us about individual level 

parameters. 

In this paper, we assess the evidence on social interactions in one particularly important health-

related behavior: smoking.  There are a number of reasons we might expect to see social 

interactions in smoking, as we discuss in Section II.  These include direct social interactions 

(where one person’s utility is affected by whether others are doing the same thing); the social 

formation of beliefs; and supply-side interactions from market creation in a situation in fixed 

costs. 
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Section III lays out the empirical implications of social interactions.  The most straightforward 

implication of social interactions is that an exogenous variable that increases the costs of a 

behavior for one person will decrease the prevalence of that behavior is his or her peers.  Social 

interactions models also predict excess variance in smoking rates across aggregates.  Finally, the 

existence of social interactions implies that the measured impact of an exogenous variable on an 

outcome becomes larger at higher levels of aggregation.   

In Sections III and IV, we look at these three empirical predictions.  At the individual level, we 

examine the impact of workplace smoking bans on spousal smoking.  Evans, Farrelly and 

Montgomery (1999) show that workplace bans have a significant impact on the probability that 

an individual will smoke and that these bans survive various estimation strategies that address 

selection of smokers into smoke friendly workplaces.  We look at whether people are more likely 

to smoke if their spouse smokes, using workplace smoking bans as an instrument for spousal 

smoking.  The IV estimate is large: we estimate that an individual whose spouse smokes is 40 

percent more likely to smoke.  The instrumental variables estimate is higher for men than for 

women, suggesting that men are more influenced by spousal smoking.  These effects are also 

stronger for people with some college than for people with college degrees or people who were 

high school dropouts.   

In Section IV, we turn to the other empirical implications of social interactions.  We first show 

that the impact of smoking bans appears to be greater at the area level than at the individual 

level.  At an individual level, a workplace ban reduces the probability of smoking by about five 

percent.  At the metropolitan area level, a ten percent increase in the share of workers facing 

workplace bans reduces the share of people who smoke by more than three percent – six times 

greater than the .5 percent predicted by the individual model.  At the state level, the social 

multiplier rises to more than ten.  

We also examine the prediction that social interactions create excess variance of aggregate 

smoking rates.  We find that the standard deviation of smoking rates across metropolitan areas or 

states are about seven times higher than the rates that would be predicted if there were no social 

interactions and if there were no exogenous variables that differed across space.  Since there are 

significant exogenous variables that differ across space, we do not put complete stock in these 
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numbers.  Still these high variances provide suggest evidence supporting the existence of social 

interactions in smoking.  

Section VI turns to the question of whether social interactions can help us make sense of the time 

series of smoking.  Social interactions predict s-shaped adoption curves and changes are a 

function of current levels of smoking.  A simple regression suggests that social interactions are 

not obvious in the national dynamics of cigarette prevalence, but our samples for this regression 

are small.  The last section concludes.  

 

II. Sources of Social Interactions 

Why should one person’s smoking increase his neighbor’s tendency to smoke?  There are three 

broad categories of reasons for such social interactions: (1) direct social interactions, including 

social approval and stigma, (2) the social formation of beliefs and (3) market-mediated spillovers 

that occur because of fixed costs in the provision of healthy or unhealthy behavior.  In this 

section, we briefly review these three possible reasons for inter-personal complementarities in 

smoking and other health related behaviors.   

The first reason that one person’s smoking, or eating or exercise, might positively influence a 

neighbor’s choices is that it is more pleasant to do something together than alone.  This is most 

obvious in the context of eating, where it is more pleasurable (most of the time) to eat with 

others rather than eating alone.  Because of the desire to eat together, people are more likely to 

go to donut shops, steak houses, or McDonald’s, if their friends are also doing so.   Drinking is 

also a social activity; if one’s friends like to drink in bars, the returns from going to bars rises.  

Smoking and exercise may be somewhat less social activities, but many people like to exercise 

or smoke with friends around.   

Conversely, smoking around a non-smoker can be much less pleasant because of the discomfort 

caused by second-hand smoke to a non-smoker.  While there may be debate about the health 

consequences of second hand smoke, there is less disagreement about whether non-smokers 

dislike smoke.  If a smoker has some degree of altruism for the uncomfortable non-smoker, or if 

the non-smoker chooses to reciprocate his discomfort by scolding the smoker, then this will 

decrease the returns to smoking around non-smokers.  
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A second reason for social interactions in health behaviors is that beliefs may themselves be 

formed through social learning.  One type of social learning model suggests that people infer 

truth from the behavior of others (e.g. Ellison and Fudenberg, 1993).  A person may not know 

whether moderate drinking is good or bad, but they can get guidance on this by watching others 

they believe have more information.  In these models, the presence of friends and neighbors who 

smoke, drink or exercise will provide evidence about the benefits of these activities.  Conversely, 

the absence of smoking will be taken to mean that there is something wrong with lighting up.   

Of course, conversation also transmits information (e.g. DeMarzo, Vayanos and Zweibel, 2003).  

If smoking, or any other harmful activity, increases one’s belief in the net benefits of that activity 

– perhaps because of cognitive dissonance – then smokers are likely to articulate the view that 

cigarettes are pleasurable or not harmful.  These views will then be transmitted in conversation 

and perhaps persuade some peers that smoking is less harmful.  The power of these views will 

depend, of course, on the extent to which other messages about the benefits or harms of the 

activity are being regularly broadcast. 

The third reason for social interactions works through the market.  The typical assumption about 

markets is that supply curves slope up: when more people consume a good, the price of that good 

rises.  This creates a negative social interaction; more people smoking will drive up the price of 

cigarettes, and discourage some marginal smokers from smoking.  However, as Waldfogel 

(2003, 2006) has recently emphasized, in the presence of fixed costs these negative market-based 

social interactions can be reversed.  Suppliers are only likely to pay the fixed costs to set up if the 

market size is sufficiently high.  In that case, the market creates a strong positive social 

interaction.   

This market-based interpersonal complementarity is more likely in goods with fixed costs, such 

as restaurants, grocery stores, bars or health clubs.  Cigarettes production itself has large fixed 

costs, but since transport costs are low, cigarette availability does not depend on local market 

size.  However, several studies have shown that healthy foods are hard to buy in low income 

areas, presumably because of limited demand.  The presence of health clubs and bars also 

depend on the presence of sizable local demand.   



  5

The relative importance of these different types of social interactions will differ across behaviors.  

Direct interactions and belief formation seem more important for smoking.  Market-based 

interactions are more likely to be important for exercise and consumption of healthy food.  In the 

next section, we will not distinguish between these different sources of social interactions but 

discuss more generally the empirical implications of interpersonal complementarities in health-

related behaviors. 

 

III.  Empirical Tests of Social Interactions 

The literature on social interactions has broadly identified four different empirical implications 

of social interactions.  First, social interactions imply that a person is more likely to undertake an 

activity when his or her peers are also undertaking that activity.  Second, the existence of social 

interactions implies a social multiplier, where the impact of some exogenous characteristic on the 

outcome at an individual level is much smaller than the impact of that same characteristic on the 

outcome at an aggregate level.  Third, social interactions imply high levels of variance in the 

activity across space (Glaeser, Sacerdote and Scheinkman, 1996).  Fourth, in a dynamic setting, 

social interactions lead to an S-shaped adoption curve.  In this section, we present a particularly 

simple social interaction model that illustrates the first three points.  In Section VI, we discuss a 

dynamic model.    

We start with a simple model of social interactions.  We assume that individual i receives private 

benefits from an activity, Xi, of AiXi, where Ai differs across individuals.  The cost of the activity 

is .5X2.   To capture social interactions, we assume that benefits increase by b times that average 

consumption of X among person i’s friends, which we denote iX̂ .    The utility of individual i is 

therefore 2)ˆ( iiii XXXbA −+ .   When individuals set marginal benefits equal to marginal costs, 

the optimal level of X will satisfy iii XbAX ˆ+= .   

Aggregating this relationship implies that )1/(ˆˆ bAX ii −= , where iÂ  refers to the average value 

of A in i’s peer group.  Substituting this term in then implies that individual X will equal 
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)1/(ˆ bAbA ii −+ .  If b is greater than ½, then the impact of average “A” is greater than the impact 

of individual “A”.   

These calculations deliver the basic empirical implications of social interactions models.  First, 

there will be greater variation in the outcome across space than would be predicted based on 

individual differences alone.  Within groups, the variance of the outcome will be Var(Ai) while 

the variance of outcomes across groups will equal 2)1/()ˆ( bAVar i − .  If there are N people in each 

group who are allocated randomly, then NAVarAVar ii /)()ˆ( = , so in that case, the ratio of the 

aggregate variance to the individual within group variance should equal 1/N(1-b)2.  High group 

level variance is a sign that “b” is high.1    

While we implement this test, we note one obvious difficulty with it: the ratio of across to within 

group variance is likely to be biased upwards because of omitted characteristics that differ at the 

group level.  For example, if exogenous tastes for smoking differ across areas and we cannot 

control for tastes, we will attribute the variation in smoking rates across areas to social spillovers 

rather than tastes.  One method of dealing with this problem is to control extensively for 

observable characteristics and then to assume that the heterogeneity across groups in the 

unobservable characteristics is some multiple of the heterogeneity across groups in observable 

characteristics.   

A second implication of the model is the existence of a social multiplier.  To see this, assume 

that iii zaA δ+=  where δ is a constant and zi is an exogenous characteristic such as income or 

public policy regulations.  In this case, regressing the outcome on z at the individual level will 

give a coefficient of δ, while the same regression at the aggregate level will give a coefficient of 

δ /(1-b).  Thus, the group level relationship will be stronger than individual relationship, which is 

the definition of a social multiplier.  

The most common empirical approach to social interactions has been at the individual level, 

estimating a regression of one person’s outcomes on the outcomes of a neighbor. The reflection 

problem (Manski, 1993) means that a direct regression of this sort does not recover the parameter 
                                                            
1 We conduct our test using standard deviations: the ratio of the standard deviation at the group level, to the standard 
deviation at the individual level divided by the square root of N is an estimate of 1/(1-b). 
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b.  For example, assume a peer group of two people, i and j.  Then, person i’s outcome is Ai+bXj 

and person j’s outcome is Aj+bXi.  Solving these two equations implies that person i’s outcome 

equals (Ai+bAj)/(1-b2) and person j’s outcome equals (Aj+bAi)/(1-b2).  Straightforward analysis 

shows that a univariate regression where person i’s outcome is regressed on person j’s outcome 

does not yield the parameter b, but rather 2b/(1+b2).   

External factors can help us with this problem, however.  Specifically, if iii zaA δ+= and zj is 

used as an instrument for Aj then the instrumental variables estimate of the social interaction 

(Cov(Ai,zj) / Cov(Aj,zj)) will equal b.  We will follow this approach in our analysis.   

 

IV. Social Interactions in Smoking: Direct Tests 

Surely a spouse is among the most important of all social influences.  For all of the reasons 

discussed above, we would expect the influence of behaviors to be particularly large within a 

family.  In addition, smoking might be sensitive to peers or other people similarly situated.  In 

this section, we look at the influence of one spouse’s smoking decisions on the smoking 

propensity of the other spouse.  We also look at the influence of smoking rates for people with 

similar demographic characteristics.  Clearly the decision of two married people or friends to 

smoke is endogenous.  To address the endogeneity issues discussed above, we follow Evans, 

Farrelly and Montgomery (1999) and use the presence of workplace smoking bans as an 

instrument for the smoking of one spouse.   

We use the Current Population Survey (CPS) tobacco supplement data for information on 

smoking rates and workplace smoking bans.  The CPS asks about smoking and smoking bans in 

four periods: 1992/93, 1995, 1998 and 2002.  We sample people between the ages of 15 and 64.  

The smoking data is asked of everyone.  The smoking ban question is asked only of indoor 

workers.  We discuss this more below.   

Table 1 shows the means and standard deviations from this data sources.  Between 1992 and 

2002, the overall smoking rate declined from 25 percent to 20 percent, a reduction of one-fifth.  

The decline for indoor workers, who are those effected by smoking bans, was similar: 24 percent 

in 1992/93 to 20 percent in 2002.   
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Smoking bans for indoor workers were spreading rapidly in the 1990s.   While the overall share 

of the sample with a smoking ban increases from 35 percent in 1992/93 to 45 percent in 2002, 

the share of the indoor workers with smoking bans increased from 66 percent in 1992/93 to 79 

percent ten years later.  The current omnipresence of workplace bans represents a remarkable 

change over 25 years.  Evans, Farrelly and Montgomery (1999) report that as late as 1985, only 

one-quarter of workplaces banned smoking.   

As Evans, Farrelly and Montgomery (1999) discuss, the estimated impact of smoking bans on 

smoking may be biased because of sorting across jobs.  Smokers may choose jobs that are 

particularly smoke-friendly, and this will cause a negative correlation between workplace bans 

and smoking that does not reflect the impact of the bans.  Their own instrumentation strategy 

suggests that this selection (within indoor jobs) is relatively weak.  We have no comparable 

sources of exogenous variation.  As such, we will look at the impact of workplace bans directly 

without using instruments.   

We start by looking at the impact of smoking bans on the smoking rates of people affected by 

them.  To do this, we estimate a model of smoking rates as a function of demographics and the 

presence of a smoking ban: 

(1) iiii ZBanSmokingSmoke εβββ ++⋅+= 10   

where i denotes individuals and Z is the control variables.  We include a number of standard 

controls: age and its square, gender, family size, family income, a dummy for missing income, 

education (<high school, high school, some college, college grad, >college), race/ethnicity 

(white, black, Hispanic, other race), marital status (married, divorced, separated, widowed, never 

married), industry dummies, occupation dummies, a dummy for whether the person is employed, 

and a dummy for whether the person is an indoor worker.  We also control for metropolitan area 

and year fixed effects so that our results reflect changes in smoking bans within regions over 

time. 

The first column in Table 2 shows our basis results.  Since the dependent variable is 

dichotomous, we report marginal effects from a Probit regression.  We estimate that workers 

who face workplace smoking bans are 4.6 percent less likely to be smokers.  The coefficient is 

highly statistically significant.  The magnitude here is similar to that found in Evans, Farrelly and 
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Montgomery (1999), who estimated that smoking bans reduce workplace smoking by five 

percent. 

We are less concerned with the other variables, but some are worthy of note.  Surprisingly, we do 

not find a significant effect of cigarette taxes on smoking.  The coefficient is negative, as 

expected, but not statistically significant.  It may be that by the late 1990s, the most price 

sensitive smokers have already left the market.  More education is negatively related to smoking, 

with large coefficients.  College graduates are 15 percent less likely to smoke than high school 

graduates.  Blacks and Hispanics are less likely to smoke than are whites, and employed people 

smoke less. 

We now turn to the models including spillovers.  In regression (2), we show the ordinary least 

squares regression when individual smoking is regressed on all of the variables in the first 

regression and on an indicator variable for whether the spouse smokes.2  The regression shows 

that people whose spouse smokes are 21 percent more likely to smoke themselves.  We would 

normally expect this coefficient to be biased upwards both because of the endogeneity of spousal 

smoking and because of selection of spouses.   

Regression (3) looks at the spillovers of smoking in a more general peer group.  As is common in 

the literature, we define the peer group as people in the same metropolitan area and cohort group 

within the same metropolitan area and with the same age (14-30, 31-50, and 51-64) and 

education level (<high school, high school, come college, college graduate).  There is a very high 

correlation of smoking rates across people in a common reference group.  The coefficient on 

reference group smoking is 0.8, which means that as the share of peers that smokes increases by 

10 percent, the probability that an individual will himself smoke increases by eight percent.  As 

in the case of the spousal smoking coefficient, we expect this coefficient to be biased upwards 

because individuals influence their peers and because of omitted variables that are correlated 

across peers.   

The obvious solution in each case is instrumental variables.  In the case of spousal smoking, we 

instrument with whether the spouse has a smoking ban at work.  In the case of peer group 

                                                            
2 Since this is a prelude to the instrumental variables estimates, we also include dummies for whether the spouse is 
employed, and whether the spouse is an indoor worker. 
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smoking, we instrument with the share of the peer group that has a smoking ban at work.  

Regressions (4) and (5) show these results – the former for spousal smoking only, and the latter 

for spousal and reference group smoking. 

The instrumentation has very different effects on the estimated spouse and reference group 

coefficients.  When we instrument using smoking bans facing one’s spouse, we find that the 

estimated impact of spousal smoking increases to .4, so that people whose spouses smoke are 40 

percent more likely to smoke themselves.  While the magnitude of this coefficient is not 

unreasonable, we are somewhat skeptical about the fact that the estimated coefficient rises.  One 

interpretation of this might be that we are not measuring the intensity of spousal smoking, and 

working in a place without a ban might be particularly correlated with intensive smoking.  An 

alternative interpretation is that spouse’s workplace smoking bans are correlated with other 

characteristics, like the pro-smoking atmosphere in one’s social group, that we cannot adequately 

control for.   

In regression (5), we see that the instrumental variables approach completely eliminates the 

estimated impact of peer smoking on an individual’s decision to smoke.  While the standard error 

is large (29 percent), the coefficient is very small (5 percent).  The coefficient on spousal 

smoking, in contrast, is essentially unchanged.  One interpretation of these results is that spousal 

smoking does have spillovers, but peer group smoking does not.  Another view is that our 

instrumental variables peer group coefficient is not precisely estimated enough to really say 

much about the impact of peers on smoking.   

One question commonly speculated about is how spillovers differ by demographic group.  One 

often hears that less educated groups might be more response to peer influences, though 

information dissemination is perhaps greater in better educated groups.  In Table 3, we estimate 

the spillover effects separately for different population subgroups.  The regressions are all similar 

to those in Table 2, though but we only report the coefficients on workplace bans, spousal 

smoking and peer group smoking.  The first row in the table reports our benchmark results from 

column (5) of Table 2.   

The next two rows report these results separately for men and women.  Workplace smoking bans 

have a larger impact on men (5.2 percent) than on women (2.9 percent).  This may be because 
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men are more likely to work full time, or because men infer more from a workplace smoking ban 

than do women.  Men are also more sensitive to spousal smoking than are women.  The 

coefficient on (instrumented) spousal smoking is 0.50 for men and 0.37 for women.  According 

to these findings, wives have a bigger impact on husbands than husbands have on wives.  The 

reference group smoking rate is insignificant for both genders.   

The next four rows show the results for four separate education groups: high school dropouts, 

high school graduates with no college, people with some college education and people with 

college degrees.  The impact on workplace bans is strongest for those individuals in the middle 

education categories.  The impact of spousal smoking is strongest for people with some college 

and weakest for people who are high school dropouts.  The reference group effects differ 

substantially across education subgroups but are never statistically significant.   

Overall, these findings support the idea of a substantial social interaction in smoking between 

spouses.  While we are not confident that the right coefficient is .4, rather than .2, we are 

reassured by the fact that the positive social spillover is robust to our instrumental variables 

strategy.  The reference group may also be important, but the fact that it is not robust to our 

instrumental variables strategy makes us less confident about its strength.  

 

V. Social Multipliers and Excess Variance in Smoking 

We now turn to other evidence for social spillovers in smoking: variability across groups and 

social multipliers.  We start with non-parametric evidence: the variability in smoking rates across 

groups.  At the individual, our estimated smoking rate of 24 percent implies a standard deviation 

of .43.  If there were no omitted variables across metropolitan areas and if there were no social 

interactions, then this variance should decline substantially with group size.  Specifically, the 

standard deviation of smoking rates across a group of size N should equal N/42. .   

Our metropolitan area samples have, on average, 3,238 individuals, which implies that the 

standard deviation of smoking rates across groups should equal approximately .008.  As table 3 

shows, this is approximately one-sixth of the actual variation in smoking rates across our 

metropolitan area samples.  At the state level, our average sample size is 10,684 which implies 
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that the standard deviation of smoking rates across state groups should equal approximately .004.  

Again, the actual standard deviation is almost seven times larger than this amount.     

Using the calculations in Section II, an aggregate to individual standard deviation of 6 suggests a 

value of b of .83.  Surely, this estimate is biased upwards because of omitted group level 

characteristics.  Nonetheless, there is a high level of variation at the group level, which supports 

the idea that social interactions may be important in smoking.   

A third test for social multipliers is to look at the impact of external factors on smoking rates at 

the individual and group level.  As Section II pointed out, in a situation of social multipliers, the 

aggregate impact of a particular factor will be greater than the individual impact.  We test this 

using the individual, MSA, and state-level samples.  The basic approach of these regressions is to 

regress smoking on the same characteristics at the individual, metropolitan area and state level.  

If social interactions are important then we should expect the impact of characteristics to become 

more important at higher levels of aggregation (Glaeser, Sacerdote and Scheinkman, 2003).   

In principle, a social multiplier could show up in any variable, but we would be less inclined to 

see it in variables that are strongly correlated with social groupings.  For example, even though 

age is correlated with smoking, we might not expect to find that a large social multiplier in age, 

because people of similar age groups tend to sort together.  Thus, the presence of a large number 

of young smokers in a particular locale would not have a large impact on the smoking habits of 

older people.  With this in mind, we focus most heavily on our key variable—the presence of 

smoking bans—and look at whether the impact of this variable increases at higher levels of 

aggregation.  We also look at the spillovers associated with years of education, income, and basic 

demographics (age and gender).  

Table 5 shows the results of this estimation.  The first column of Table 5 shows our basic 

individual level specification.  The coefficient is similar to Table 2, though slightly larger, 

reflecting the restriction to 2001 and the compression of education into a single variable.  The 

second and third columns repeat this specification at the metropolitan area level, and the state 

level.  The coefficient on the smoking ban variable increases across columns.  The individual 

coefficient of -.061 increases to -.257 at the metropolitan area level and -.713 at the state level.   
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A social multiplier of four at the metropolitan area level and 12 at the state level gives us another 

estimate of 1/(1-b) which is again compatible with an estimate of “b” ranging from .75-.9.  Of 

course, just as the variance estimates can potentially be biased by omitted area level 

characteristics, the social multiplier numbers are also likely to be biased upwards.  Nonetheless, 

this provides suggestive support for significant social interactions in the smoking.   

Perhaps the other two most natural candidates for variables in which to look for social 

multipliers are income and education.  The years of education measure shows essentially no 

social multiplier.  The logarithm of income shows a much stronger social multiplier of three at 

the metropolitan level and five at the state level.  Again, this is compatible with high levels of 

social interactions, between .67 and .8. 

Table 6 looks at these social multipliers within education categories.  In this case, we just look at 

the social multiplier on the smoking ban variable.  We find the largest social multipliers for high 

school graduates and the smallest for college graduates.  In these regressions, social influence in 

smoking is more important for less educated people. 

 

VI.  The Smoking Time Series 

In the previous two sections, we focused on cross-sectional implications of social interactions.  

In this section, we turn to the dynamic implications of social interaction models and their 

connection with the time series of cigarette consumption.  The basic structure of dynamic social 

interactions models is to assume that the rate at which individuals choose a behavior is an 

increasing function of the share of the population that is already selecting that behavior.   

For example, if the population was fixed and infinitely lived, and if people who started smoking 

never stopped, then a dynamic social interaction model might take the form:   

(2) S(t+1)-S(t)  =  (a0+a1S(t)) (1-S(t)),  

where S(t) is the share of the population that smokes at time t and a0 and a1 are parameters.  In 

this framework, all non-smokers have some probability of switching to become smokers (a0) and 
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this probability increases with the share of the population that is already smoking.  The 

parameter a1 determines the power of the social interactions.   

In this formulation, higher values of S(t) are associated with a more S-shaped curve, and it is this 

S-shaped curve that is the hallmark of dynamic social interaction models.  For example, Figure 1 

shows the time paths implied by three different values of a1.  In all three cases, we assume that 

S(0)=.05, and a0 =.02.  We show results for a1 =.1, a1 =.2 and a1 =.3.  Higher values of a1 imply 

both a faster convergence to everyone smoking and also a more s-shaped curve.   

While this one-sided model might be appropriate for a time period when smoking was rising – 

the first half of the century, for example – it seems ill-suited for the last 40 years, when cigarette 

smoking has been declining.  A more sensible model might assume that both smokers and non-

smokers have a probability of transitioning into the other group.  For example, we might assume 

that a non-smoker becomes a smoker between time t and t+1 with probability a0+a1S(t), and a 

smoker becomes a non-smoker between time t and time t+1 with probability b0+b1(1-S(t)).  In 

this formulation, both the constant transition probabilities and the social impacts of smoking may 

differ.  A particularly natural assumption might be that a1= b1 so that the social impacts of 

smoking and non-smoking are identical, but that the basic transition probabilities (a0 and b0) 

differ.  We think of changes in beliefs about the health consequences of smoking as reflecting 

changes in those parameters. 

With these assumptions, the new difference equation characterizing smoking rates is: 

(3)       S(t+1) - S(t)  =  (a0+a1S(t))(1-S(t)) - (b0+b1(1-S(t))S(t).   

The change in smoking includes non-smokers who become smokers (the first term on the right 

hand side) and smokers who become non-smokers (the second term on the right hand side).  This 

equation can be rewritten: S(t+1)-S(t)= a0 + (a1-a0-b0-b1)S(t)+(b1- a1)S(t)2.  In the case that social 

interactions are the same for smoking and non-smoking (a1=b1), this equation reduces to: 

(4) S(t+1) - S(t)  =   a0 -(a0+b0)S(t).   
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In this case, the system will converge to a steady state S = a0 /(a0+b0).  Figure 2 shows two cases 

where the impact of social interactions on both transitions is the same.3 In the first case, S(t) 

converges to the steady state level from below (starting at a smoking rate of 5 percent) and in the 

second case it converges from above (starting at a rate of 95 percent). 

Our modest empirical implementation of this is to regress changes in the smoking rates since 

1965 on the initial share of the population that smokes and the square of that share.  We use data 

from 1965 because that is when data on adult prevalence are first available from the National 

Health Interview Survey (NHIS).  Not all years of the NHIS asked about smoking; we use data 

from all the years that do, and consider adjacent years of the data.  When we estimate this 

equation, we find: 

(4) ΔRate   =   2.88   -   .23*Lagged Rate   +   .004*Lagged Rate2 
                 (5.57)     (.38)                             (.56) 

Standard errors are in parentheses.  There are 18 observations and the r-squared is essentially 

zero (2 percent).  Changes in the smoking rate over the past 25 years some to be uncorrelated 

with the initial level.  This seems to suggest that social interactions operate weakly at an 

aggregate level, though clearly the number of observations makes us cautious of drawing strong 

conclusions. 

 

VII. Conclusion  

This paper discusses the possible reasons why the decision to smoke might depend on the 

smoking decisions of one’s peers, and the empirical implications of social interactions in 

smoking.  The most obvious implication is that exogenous forces that make one person’s 

smoking less likely will decrease the probability that a peer will also smoke.  Other implications 

are that social interactions will create high levels of variance across aggregates, and that there 

will be social multipliers, where exogenous attributes matter more at higher levels of 

aggregation.    

 

                                                            
3 We assume a0=.02 and b0=.04, so that the steady state smoking rate is 33 percent. 
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We found that individuals whose spouse faced a workplace smoking ban where less likely to 

smoke themselves.  The instrumental variables estimate of the impact of spousal smoking 

suggests a 40 percent reduction in the probability of being an individual smoking if a spouse 

quits.  These impacts were greatest for people who modest levels of education, although not 

uniformly so.  The variance in smoking rates across states and metropolitan areas is about seven 

times higher than it would be if there were no social interactions and if there were no exogenous 

variables differing across space.  We also find a significant social multiplier in the impact of 

smoking bans.  The bans have a much stronger impact at higher levels of aggregation. 

 

These results suggest that policy interventions that impact an individual’s smoking habit will 

have both direct effects and also indirect effects through on the smoking of peers.  Workplace 

bans seem not only to have reduced worker smoking but also the smoking of the worker’s 

spouse.  Our results also suggest that interventions are likely to have larger impacts when they 

are imposed at higher levels of aggregation, although we found little evidence suggesting that 

social interactions can explain the shape of the time series of smoking rates.     
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Figure 1: Simulated Smoking Rate with Initiation Only
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Figure 2: Simulated Smoking Rate with Quitting and Initiation
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Table 1: Trends in smoking rates and smoking bans 
Measure 1992/93 1995 1998 2002 
Smoking rate, overall 25% 25% 24% 20% 
Smoking rate, indoor workers 24 24 23 20 
Percent with smoking ban, overall 35 42 44 45 
Percent with smoking ban, indoor workers 66 75 78 79 
Note: The sample is self-respondents aged 15-64 from the Current Population 
Survey.  Data are weighted using sample weights.  
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Table 2: Explaining Smoking Decisions 

Individual 
Ban Only 

 
With Peer Effects 

OLS  OLS OLS  IV IV Independent 
Variable (1)  (2) (3)  (4) (5) 
Smoking        
  Smoking ban -0.046 

(0.005)*** 
 -0.043 

(0.005)*** 
-0.042 

(0.005)*** 
 -0.041 

(0.005)*** 
-0.041 

(0.005)*** 
  Spouse smokes ---  0.211 

(0.005)*** 
0.180 

(0.006)*** 
 0.401 

(0.082)*** 
0.400 

(0.084)*** 
  Reference grp  
    smoking rate 

---  --- 0.880 
(0.012)*** 

 --- 0.050 
(0.285) 

  Cigarette tax -0.005 
(0.009) 

 -0.006 
(0.009) 

0.006 
(0.009) 

 -0.006 
(0.010) 

-0.005 
(0.010) 

 
Demographics  

 
 

  
 

 

Age 0.025 
(0.001)*** 

 0.024 
(0.001)*** 

0.013 
(0.001)*** 

 0.023 
(0.001)*** 

0.023 
(0.004)*** 

Age2 -0.0003 
(9.4E-6)*** 

 -0.0003 
(1.1E-5)*** 

-0.0002 
(1.1E-5)*** 

 -0.0003 
(1.2E-5)*** 

-0.0003 
(4.5E-5)***

Female -0.036 
(0.003)*** 

 -0.04 
(0.003)*** 

-0.039 
(0.003)*** 

 -0.044 
(0.003)*** 

-0.044 
(0.004)*** 

Family Size -0.018 
(0.001)*** 

 -0.017 
(0.001)*** 

-0.016 
(0.001)***  

-0.017 
(0.001)*** 

-0.017 
(0.001)*** 

Ln(family inc) -0.047 
(0.002)*** 

 -0.044 
(0.002)*** 

-0.038 
(0.002)***  

-0.041 
(0.003)*** 

-0.041 
(0.004)*** 

Income missing -0.524 
(0.024)*** 

 -0.487 
(0.026)*** 

-0.421 
(0.026)***  

-0.458 
(0.030)*** 

-0.455 
(0.038)*** 

< High school 0.019 
(0.006)*** 

 0.017 
(0.006)*** 

0.016 
(0.005)***  

0.016 
(0.006)*** 

0.014 
(0.006)** 

Some college -0.05 
(0.004)*** 

 -0.045 
(0.004)*** 

0.015 
(0.004)*** 

 -0.041 
(0.004)*** 

-0.036 
(0.020) 

College grad -0.148 
(0.005)*** 

 -0.137 
(0.005)*** 

0.034 
(0.005)*** 

 -0.127 
(0.006)*** 

-0.114 
(0.056)** 

> College -0.17 
(0.005)*** 

 -0.156 
(0.005)*** 

0.014 
(0.006)** 

 -0.143 
(0.008)*** 

-0.13 
(0.055)** 

Black -0.078 
(0.005)*** 

 -0.073 
(0.005)*** 

-0.067 
(0.005)*** 

 -0.069 
(0.005)*** 

-0.069 
(0.006)*** 

Hispanic -0.13 
(0.005)*** 

 -0.122 
(0.005)*** 

-0.096 
(0.005)*** 

 -0.116 
(0.006)*** 

-0.114 
(0.011)*** 

Other Race -0.056 
(0.007)*** 

 -0.052 
(0.006)*** 

-0.051 
(0.006)*** 

 -0.049 
(0.006)*** 

-0.049 
(0.007)*** 
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Table 2 (continued) 
Individual 
Ban Only 

 
With Peer Effects 

OLS  OLS OLS  IV IV Independent 
Variable (1)  (2) (3)  (4) (5) 
Divorced 0.098 

(0.005)*** 
 0.125 

(0.006)*** 
0.113 

(0.006)*** 
 0.154 

(0.014)*** 
0.153 

(0.014)*** 
Separated 0.108 

(0.010)*** 
 0.135 

(0.010)*** 
0.122 

(0.011)*** 
 0.165 

(0.017)*** 
0.164 

(0.017)*** 
Widowed 0.066 

(0.010)*** 
 0.093 

(0.012)*** 
0.083 

(0.011)*** 
 0.122 

(0.016)*** 
0.122 

(0.017)*** 
Never Married 0.03 

(0.004)*** 
 0.055 

(0.005)*** 
0.048 

(0.005)***  
0.082 

(0.012)*** 
0.082 

(0.013)*** 
Employed -0.074 

(0.008)*** 
 -0.071 

(0.008)*** 
-0.059 

(0.008)*** 
 -0.068 

(0.008)*** 
-0.068 

(0.008)*** 
Indoor worker 0.041 

(0.006)*** 
 0.038 

(0.006)*** 
0.037 

(0.006)*** 
 0.035 

(0.006)*** 
0.036 

(0.007)*** 
Spouse employed ---  -0.009 

(0.005)** 
-0.008 
(0.004) 

 -0.012 
(0.005)** 

-0.012 
(0.005)** 

Spouse indoor 
worker 

---  -0.009 
(0.004)** 

-0.005 
(0.003) 

 -0.014 
(0.004)*** 

-0.014 
(0.005)*** 

Pct reference 
group employed 

---  --- -0.074 
(0.013)*** 

 --- 0.004 
(0.030) 

Pct reference grp 
indoor worker 

---  --- -0.03 
(0.011)*** 

 --- -0.031 
(0.012)** 

MSA dummy 
variables 

Yes  Yes Yes  Yes Yes 

Year dummy 
variables 

Yes  Yes Yes  Yes Yes 

N 195,579  195,579 195,579  195,579 195,579 
R2 0.10  0.11 0.17  0.10 0.11 
Notes:   Data are from CPS Sept. 1992/May 1993, Sept. 1995, Sept. 1998, and Feb. 2002 
Tobacco Supplement Surveys. Sample composition is of people aged 15-64.  All 
regressions also include major industry (21 dummies) and major occupation (13 dummies) 
effects, and are weighted by the self-response supplement sample weight.  Models for 
individuals and spouses are clustered by family id.  Models including cohort effects are 
clustered by clustered by the MSA-cohort-education level with cohort ages of 14-30, 31-
50, and 51-64 and education levels of less than high school, high school, some college, and 
college graduates or higher.  Spouse smokes instrumented by spouse smoking ban, and 
reference group smoking rate instrumented by share of reference group with a smoking 
ban.  ** (***) indicates statistical significance at the 5% (1%) level. 
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Table 3: Examining the Response to Smoking Bans by Demographic Group 

Instrumental Variable Estimates 
 
Group 

Smoking 
ban 

Spouse 
smokes 

Reference group 
smoking rate 

 
N 

 
R2 

All  -0.041 
(0.005)*** 

0.400 
(0.084)***

0.050 
(0.285) 

195,579 0.11 

By Gender      
  Men -0.052 

(0.008)*** 
0.502 

(0.196)** 
-0.002 
(0.416) 

86,321 0.1 

  Women -0.029 
(0.006)*** 

0.365 
(0.073)***

-0.264 
(0.628) 

109,258 0.04 

By Education     
  <High School -0.033 

(0.014)** 
-0.080 
(0.525) 

-0.054 
(2.235) 

29,392 0.18 
 

  High School -0.050 
(0.012)*** 

0.289 
(0.261) 

-3.198 
(5.203) 

61,744 -- 

  Some College -0.042 
(0.011)*** 

0.663 
(0.177)***

-0.269 
(0.668) 

52,175 -- 

  College + -0.020 
(0.008)*** 

0.346 
(0.191) 

1.201 
(1.148) 

52,268 
 

0.07 
 

Note: The reference group is based on the msa-cohort-education level.   All 
regressions include age, age squared, family size, log(family income), missing 
income dummy, three indicators for ethnicity, four indicators for marital status, 
cigarette tax (state + federal), 21 industry indicators, and 13 occupation 
indicators.  Regression for all, men, and women also include 4 indicators for 
educational attainment. Regressions for all and education bins include indicator 
for gender.  Spouse smokes instrumented by spouse smoking ban, and reference 
group smoking rate instrumented by share of reference group with a smoking 
ban.  Regressions weighted by self-response supplement weight.  ** (***) 
indicates statistical significance at the 5% (1%) level. 
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Table 4: The Variability of Smoking Across Areas 

  

Average 
observations 

per unit 

Predicted 
standard 
deviation 

Actual 
standard 
deviation

Ratio: 
Actual/ 

Predicted 
Individual 1 0.427 0.427 --- 
MSA 3,238 0.008 0.046 6.1 
State 10,684 0.004 0.027 6.5 
Note: The sample is self-respondents aged 15-64 from the Current 
Population Survey.  Data are weighted using sample weights. 
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Table 5: The Spillover Effects of Smoking 
Independent 
Variable 

 
Individual 

 
MSA 

 
State 

Smoking ban -0.061 
(0.007)*** 

-0.257 
(0.112)** 

-0.713 
(0.312)** 

Years of education -0.013 
(0.001)*** 

-0.011 
(0.009) 

0.010 
(0.026) 

Log (Income) -0.053 
(0.003)*** 

-0.156 
(0.039)*** 

-0.271 
(0.082)*** 

N 64,660 243 51 
R2 0.05 0.26 0.59 
Note: Data are from CPS June 2001 Tobacco Supplement 
Survey.  Sample composition is respondents 18 years and 
older.  Regressions weighted by self-response supplement 
weight.  Regressions include controls for age, gender, 
employed, indoor worker, and a dummy for missing income.  
For years of education, first, second, third, and fourth grades 
were averaged to 2.5 years.  Fifth and sixth grades were 
averaged to 5.5 years, seventh and eighth grades were averaged 
to 7.5 years, high school diploma and GEDs were treated as 12 
years, some college and associates degrees were treated as 14 
years, bachelors degrees were treated as 16 years, masters 
degrees were treated as 18 years, professional degrees (such as 
MD’s, DD’s) were treated as 20 years, and doctorate degrees 
(such as PhD’s or EdD’s) were treated as 21 years.  For 
income, <$5,000 was coded as $2,500, and >$75,000 was 
coded as $75,000.  All other categories were averaged over the 
range in the choice.  ** (***) indicates statistical significance at 
the 5% (1%) level. 
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Table 6: Spillover Effects by Education 
 Impact of Smoking Ban 
Education Group Individual MSA State 
<High School -0.028 

(0.025) 
0.075 

(0.202) 
-0.859 
(0.469) 

High School Grad -0.059 
(0.013)*** 

-0.223 
(0.129)* 

-1.303 
(0.423)*** 

Some College -0.081 
(0.013)*** 

-0.426 
(0.123)*** 

-0.573 
(0.320) 

College Grad -0.027 
(0.011)** 

-0.075 
(0.079) 

-0.347 
(0.187) 

Note:  Data are from CPS June 2001 Tobacco Supplement 
Survey.  The sample is individuals aged 18 and older.  
Regressions are weighted and control for age, gender, 
employed, and indoor working. 

 
 
 
 




