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ABSTRACT

In this paper we reassess the evidence on labor income risk. There are two leading views on the nature
of the income process in the current literature. The first view, which we call the "Restricted Income
Profiles" (RIP) process, holds that individuals are subject to large and very persistent shocks, while
facing similar life-cycle income profiles. The alternative view, which we call the "Heterogeneous Income
Profiles" (HIP) process, holds that individuals are subject to income shocks with modest persistence,
while facing individual-specific income profiles.We first show that ignoring profile heterogeneity,
when in fact it is present, introduces an upward bias into the estimates of persistence. Second, we estimate
a parsimonious parameterization of the HIP process that is suitable for calibrating economic models.
The estimated persistence is about 0.8 in the HIP process compared to about 0.99 in the RIP process.
Moreover, the heterogeneity in income profiles is estimated to be substantial, explaining between 56
to 75 percent of income inequality at age 55. We also find that profile heterogeneity is substantially
larger among higher educated individuals. Third, we discuss the source of identification -- in other
words, the aspects of labor income data that allow one to distinguish between the HIP and RIP processes.
Finally, we show that the main evidence against profile heterogeneity in the existing literature -- that
the autocorrelations of income changes are small and negative -- is also replicated by the HIP process,
suggesting that this evidence may have been misinterpreted.
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1 Introduction

The nature of labor income risk plays a central role in many economic decisions that indi-
viduals make. Among many economic questions that hinge on income risk are the life-cycle
consumption and portfolio choice behavior (Carroll and Samwick, 1997; Campbell, et al
2001; Gourinchas and Parker, 2002; Guvenen, 2007), the determination of wealth inequality
(Huggett, 1996; Castaneda, Diaz-Jimenez, and Rios-Rull, 2003), the welfare costs of business
cycles (Storesletten, Telmer and Yaron, 2001; Lucas 2003), and the determination of asset
prices (Constantinides and Du¢ e, 1996). The conclusions that a researcher reaches in these
analyses, clearly, depend on the properties of the labor income process used to calibrate these
models.

There are two leading views about the nature of the income process in the current liter-
ature. To provide context for the following discussion, suppose that the log labor income of
individual i with h years of labor market experience is given by:1

yih = �ih+ zih (1)

zih = �zih�1 + �
i
h;

where �i is the individual-speci�c income growth rate with cross-sectional variance �2�; and
�ih is the innovation to the AR(1) process with variance �

2
�. In this preliminary discussion

we abstract from heterogeneity in the intercept of income.

The early papers on income dynamics estimated versions of the process given in (1) from
labor income data and found: 0:5 < � < 0:7; and �2� � 0 (cf., Lillard and Weiss, 1979;
Hause, 1980; and more recently Baker, 1997; and Haider, 2001). Thus according to this
�rst view, which we call the �Heterogeneous Income Pro�les�(HIP) model, individuals are
subject to shocks with modest persistence, while facing life-cycle pro�les that are individual-
speci�c (and hence vary signi�cantly across the population). One theoretical motivation for
this speci�cation is the human capital model, which implies di¤erences in income pro�les,
for example, if individuals di¤er in their ability level.2

In an in�uential paper, MaCurdy (1982) cast doubt on these �ndings. He tested� and
did not reject� the restriction �2� = 0 against the more general alternative of HIP. He then
estimated versions of the income process given in (1) by imposing �2� � 0; and found � � 1
(see also Abowd and Card, 1989; Topel, 1990; and Topel and Ward 1992). Therefore,
according to this alternative view, which we call the �Restricted Income Pro�les� (RIP)
model, individuals are subject to extremely persistent� nearly random walk� shocks, while
facing similar life-cycle income pro�les.

In this paper, we examine labor income data from several angles to help distinguish
between these two income processes. We begin our analysis by showing that assuming away

1This income process is a simpli�ed version of the models estimated in the literature, but still captures
the components necessary for the present discussion. We study more general processes in Section 2.

2Becker (1964) and Ben-Porath (1967) contain classic treatments of these models. More recently, Guvenen
and Kuruscu (2007) apply a human capital model with ability heterogeneity to understand the trends in
wage inequality in the U.S. data since the 1970�s.
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the heterogeneity in income growth rates (as is done in the RIP process), when in fact it
is present, biases the estimated persistence parameter upward. It is easy to see why this
happens: an individual with high (alternatively, low) income growth rate will systematically
deviate from the average pro�le. Ignoring this fact will then lead the econometrician to
interpret this systematic fanning out as the result of persistent positive (or negative) income
shocks every period. We study an example which shows that this bias can be substantial:
when labor income is generated by the HIP process given above (equation (1)) with i.i.d
shocks, the persistence parameter is estimated to be about 0:90 if RIP is assumed, instead
of the true value of zero. This example, therefore, suggests that allowing for heterogeneity in
income growth rates can be critical for the consistent estimation of the persistence parameter.

We next estimate the HIP and RIP versions of a general labor income process. The
stochastic component of the income process has typically been modeled in one of two ways
in the literature. Following MaCurdy (1982), several studies have modeled the dynamics
with an ARMA(1,1) or (1,2) process (among others, Abowd and Card, 1989; Meghir and
Pistaferri, 2004). While this speci�cation is quite �exible and provides a good description of
income dynamics, it has one obvious drawback when used as input into an economic model:
the ARMA(1,1) and (1,2) processes require two and three state variables, respectively, to
form optimal forecasts of the income process. Consequently, the majority of the existing
life-cycle (or overlapping generations) models are instead calibrated using a somewhat sim-
pler speci�cation� one that features an AR(1) component plus a transitory shock.3 This
speci�cation introduces only one state variable into a dynamic programming problem, and
provides a good compromise between �t and parsimony. However, the existing estimates
of the HIP process in the literature also feature ARMA processes.4 Therefore, a second
contribution of this paper is to estimate a HIP process, where the stochastic component is
modeled parsimoniously as an AR(1) process plus a transitory shock, making it suitable as
a basis for calibration.

Using data from the Panel Study of Income Dynamics (PSID) covering 1968 to 1993, we
�nd statistically and quantitatively signi�cant heterogeneity in income pro�les. Furthermore,
the persistence of income shocks is estimated to be about 0.8 in the HIP process compared
to about 0.99 when RIP is imposed. Together, these estimates imply that between 65 to 80
percent of income inequality at the age of retirement is due to heterogeneous pro�les.

Third, we examine the di¤erences in income processes across education groups. While
several studies have investigated this question in the context of RIP processes (Hubbard et
al., 1994; Carroll and Samwick, 1997), there exists no corresponding analysis in the context
of HIP processes. We �nd that in the HIP process there is a major di¤erence between the
two groups: the dispersion of income growth rates, �2�; is more than twice as large for college
graduates than it is for high school graduates. This is in contrast to the estimates from

3Among many others, see Hubbard et al., 1995; Huggett, 1996; Campbell et al., 2001; Storesletten et al.,
2001; Heathcote et al., 2004.

4Baker experiments with an AR(1) process to provide a comparison to Lillard and Weiss (1979). But in
this speci�cation he does not (nor do Lillard and Weiss) allow for a separate serially independent shock. As
is well-known classical measurement error biases estimates of persistence downward when transitory shocks
are not allowed.
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the RIP process, which implies similar income processes for both groups (with some mild
evidence of larger innovation variances for lower educated individuals.)

We next turn to identi�cation. In particular, we examine what features of labor income
data help us distinguish between the HIP and RIP processes. The panel structure is essen-
tial in this respect, because it allows us to characterize the evolution of the cross-sectional
distribution of income as a cohort gets older. As we explain in Section 4, the autocovariance
structure implied by the two income processes di¤er in important ways, which make it pos-
sible to distinguish between them. While this analysis clari�es how theoretical identi�cation
is obtained, it also highlights some empirical di¢ culties with identi�cation: basically, higher
order autocovariances provide valuable information for identi�cation, but because of sample
attrition, fewer and fewer individuals contribute to these moments. This not only increases
the noise in these autocovariances, but perhaps more importantly, raises questions about
potential selectivity bias. As a result, it is not clear that income data alone can provide a
de�nitive verdict on the nature of income risk. An alternative approach would be to exploit
the information embedded in individuals�economic choices (which contain information about
how they perceive future income risks) and use them in conjunction with income data.

Finally, we try to reconcile the test used by MaCurdy and others which does not reject
the RIP process, with the direct estimation results which lend support to the HIP process.
In related work, Baker (1997) has conducted a careful Monte Carlo study and argued that
the test lacks power in small sample against the alternative of HIP. Here we emphasize a
di¤erent point that applies even in large sample, where in�ated size or low power are not
relevant. We argue that the tests used by MaCurdy (1982) and Abowd and Card (1989)
are not appropriate for distinguishing between the RIP and HIP processes if the true data
generating process (such as HIP) contains an AR(1) component with � < 1. To see this
point, �rst it is easily shown from equation (1) that

cov(�yih;�y
i
h+n) = �

2
� � [�n�1(

1� �
1 + �

)�2�] for n � 2

Notice that the term in brackets vanishes as n gets large, so higher order autocovari-
ances of income changes must be positive if indeed �2� > 0. This observation forms the
basis of MaCurdy�s test. A key question however is, What is the lowest lag at which the
covariances should become positive? This is important because the aforementioned studies
have focused on the �rst 5 to 10 lags. By substituting the parameter values estimated in
Section 3 into the expression above, one can easily show that in the HIP process the �rst 11
covariances will be negative (see �gure 8), despite the fact that those estimates imply sub-
stantial heterogeneity in income pro�les. This point suggests that the negative covariances
of income changes reported in the literature is also implied by the HIP process. In Section 5
we show that the autocovariance and autocorrelation structures generated by the estimated
HIP process are also quantitatively similar to their empirical counterparts. Moreover, even
though autocovariances should eventually become positive according to the HIP process, in
sample sizes close to those used in the literature (less than 30,000 observations) even the 20th
autocovariance will not be signi�cantly positive. These results cast doubt on the previous
interpretation of this evidence in the literature as supporting the RIP process.
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The rest of the paper is organized as follows. The next section describes the data and the
estimation method. Section 3 presents the empirical results and quanti�es the heterogeneity
in income growth rates. Section 4 discusses identi�cation. Section 5 reconciles the direct
estimation evidence with earlier tests implemented in the literature, and Section 6 concludes.

2 Empirical Analysis

2.1 The PSID Data

This section brie�y describes the data and the variables used in the empirical analysis. The
labor earnings data are drawn from the �rst 26 waves of PSID covering the period from
1968 to 1993. Our main sample consists of male head of households between the ages of
20 and 64. We include an individual into the sample if he satis�es the following conditions
for twenty (not necessarily consecutive) years: the individual has (1) reported positive labor
earnings and hours; (2) worked between 520 and 5110 hours in a given year; (3) had an
average hourly earnings between a preset minimum and a maximum wage rate (to �lter
out extreme observations). We also exclude individuals who belong to the poverty (SEO)
subsample in 1968. These criteria are similar to the ones used in previous studies (Abowd
and Card, 1989; Baker, 1997; and Heathcote et al, 2004, among others). Further details of
the selection criteria are contained in Appendix A.

These criteria leave us with our main sample of 1270 individuals with at least twenty
years of data on each. To study the labor income processes of di¤erent education groups
separately, we further draw two subsamples: the �rst contains 335 individuals with at least
a four-year college degree (sixteen years of education or more), and the second contains 882
individuals with at most a high school degree (�fteen years of education or less). To make the
text more readable, we will refer to the former group as �college-educated�and the latter
as �high school educated,� at the expense of a slight abuse of language. The measure of
labor income includes wage income, bonuses, commissions, plus the labor portions of several
types of income such as farm income, business income, etc. Labor income in PSID refers
to the previous year, so our data covers 1967-92. The (potential) labor market experience
of an individual is de�ned as h = (age�max(years of schooling, 12) � 6). Further details
on variable de�nitions and some summary statistics for the primary sample are contained in
Appendix A.

2.2 A Statistical Model

In this section, we generalize the income process in equation (1) to make it suitable for
empirical analysis. Speci�cally, the process for log labor earnings, yih;t; of individual i with h
years of labor market experience in year t is given by

yih;t = g
�
�0t ;X

i
h;t

�
+ f

�
�i; �i;Xi

h;t

�
+ zih;t + �t"

i
h;t (2)
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where i = 1; ::; I ; h = 1; ::; H; and t = 1; ::; T:

The functions g and f denote the �life-cycle�components of earnings. The �rst one, g,
captures the part of variation that is common to all individuals (which is why the coe¢ cient
vector �0t is not indexed by i) and is assumed to be a cubic polynomial in experience, h.
Notice that the coe¢ cients of this polynomial are allowed to be time-varying. In addition to
the standard time e¤ects (aggregate shocks) in labor income movements captured by year-
to-year variations in the intercept of g, this �exible speci�cation also allows us to model
some important changes that took place in the labor market during our sample period.
For example, changes in the return to experience that took place during this period (Katz
and Autor, 1999) are accounted for by the time-varying higher order terms in experience.
Although, it is also possible to capture the rise in the skill premium during this period (Katz
and Murphy, 1992) by adding an education dummy into g, we do not pursue this approach
in the baseline speci�cation. (Instead we capture all the cross-sectional variation in income
growth rates in the f function). Later in the paper, we will estimate a separate income
process for each education group to fully control for the e¤ect of education on the life-cycle
pro�les as well as its e¤ect on the persistence and variance of income shocks.

Heterogeneity in Income Pro�les. The second function, f; is the centerpiece of
our analysis, and captures the component of life-cycle earnings that is individual- or group-
speci�c. For example, if the growth rate of earnings varies with the ability of a worker, or
is di¤erent across occupations, this variation will be re�ected in an individual- or occupation-
speci�c slope coe¢ cient in f:We assume this function to be linear in experience: f

�
�i; �i;Xi

h;t

�
�

�i + �ih; where the random vector
�
�i; �i

�
is distributed across individuals with zero mean,

variances of �2� and �
2
�, and covariance of ���.

5

Although it is straightforward to generalize f to allow for heterogeneity in higher order
terms, Baker (1997, p. 373) �nds that this extension does not noticeably a¤ect parameter
estimates or improve the �t of the model. In addition, recall that one goal of this study
is to estimate an income process that is parsimonious enough to be used for calibrating
macroeconomic models. However, each additional term introduced into f will appear as an
additional state variable in a dynamic programming problem (see, for example, Guvenen,
2007). The current speci�cation provides a reasonable trade-o¤ for this purpose.6

Modeling the Dynamics of Income. The stochastic component of income is modeled
as an AR(1) process plus a purely transitory shock. This speci�cation is fairly common in the
literature and, despite its parsimonious structure, it appears to provide a good description
of income dynamics in the data (Topel, 1990; Hubbard et al., 1994; Mo¢ tt and Gottschalk,

5The zero-mean assumption is merely a normalization since g already includes an intercept and a linear
term. Thus, in any given year, the population averages of the intercept and slope are given by the �rst two
coe¢ cients of g:

6Lillard and Reville (1999) on the other hand, provide some evidence suggesting that the quadratic term
may be important so this seems to be an extension worth considering in future work.
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1995; Storesletten et al., 2004).7 The AR(1) process can capture mean-reverting shocks,
such as human capital innovations that depreciate over time, or long-term nominal wage
contracts whose value decreases over time in real terms, as well as fully permanent shocks
as a special case. Furthermore, there have been some signi�cant changes in the sizes of both
persistent and transitory income shocks over the sample period under study (cf., Mo¢ tt and
Gottschalk, 1995; Meghir and Pistaferri, 2004). To capture this non-stationarity, we write
zih;t as an AR(1) process with heteroskedastic shocks:

zih;t = �z
i
h�1;t�1 + �t�

i
h;t; zi0;t = 0;

where �t captures possible time-variation in the innovation variance. Similarly, the transitory
shock in equation (2), "ih;t; is scaled by �t to account for possible non-stationarity in that
component. The innovations �ih;t and "

i
h;t are assumed to be independent of each other and

over time (and independent of �i and �i), with zero mean, and variances of �2� and �
2
"

respectively. Furthermore, measurement error is a pervasive problem in micro data sets,
and income data in PSID is no exception. This measurement error will be captured in the
transitory component if it is serially independent, or will be included in zih;t if it has an
autoregressive component (Bound and Krueger, 1991). It is important to keep this point in
mind when interpreting the empirical �ndings in the next section.

The income residual, byih;t; is obtained by regressing yih;t on the polynomial g: Since the
individual-speci�c parameters, �i and �i; are not observable, f is treated as part of the
random component of the income process and is included in the residual. For a given year,
the cross-sectional second-order moments of this residual for a cohort of a given age are:

var
�byih;t� =

�
�2� + 2���h+ �

2
�h

2
�
+ var

�
zih;t
�
+ �2t�

2
" (3)

cov
�byih;t; byih+n;t+n� =

�
�2� + ��� (2h+ n) + �

2
�h (h+ n)

�
+ �nvar

�
zih;t
�
;

where n = 1; ::;min(H � h; T � t); and the variance of the AR(1) component is obtained
recursively:

var
�
zi1;t
�
= �2t�

2
�;

var
�
zih;1
�
= �21�

2
�

h�1X
j=0

�2j; t = 1; h > 1 (4)

var
�
zih;t
�
= �2var

�
zih�1;t�1

�
+ �2t�

2
�; t > 1; h > 1

Note that in the �rst line we implicitly assume that the initial value of the persistent
shock is zero for all individuals. In the second line we assume that the innovation variance
was constant over time before the sample started in 1968, so that the cross-sectional variance
for a cohort aged h in the �rst year of the sample can be determined by the accumulated

7As noted earlier, although it is also possible to model dynamics using an unrestricted ARMA (1,1) or
(1,2) process, the resulting speci�cation introduces additional state variables into dynamic programming
problems, making it unsuitable for our purposes.
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Figure 1: Ignoring Pro�le Heterogeneity Results in an Upward Bias in Estimated Persistence
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e¤ect over the last h years.8

Our estimation strategy (�rst proposed by Chamberlain, 1984) is based on minimizing
the �distance�between the elements of the (T � T ) empirical covariance matrix of income
residuals (denote it by C) and its counterpart implied by the statistical model described
above. A typical element of C (at location (� ; � + n)) is obtained by averaging

�byih;�byih+n;�+n�
across individuals of all ages who were present in these two years. The theoretical counterpart
is calculated by aggregating over h the formulas for the covariances given in (3) for each (h; t)
cell. This estimation method has been used extensively in the literature (including most of
the studies referenced in this paper), so it is familiar enough that we relegate its details
(including the choice of weighting matrix, the exact formulas used, and related issues) to
Appendix B.

2.3 Pro�le Heterogeneity and the Estimates of Persistence

Before proceeding further, we show that restricting income pro�les across the population (as
in the RIP process), when in fact such heterogeneity is present, leads to inconsistent estimates
of the persistence parameter. To see this point, consider two individuals with di¤erent income
growth rates, �H > �L; whose income pro�les are plotted in �gure 1. Clearly, the income

8The expressions in (3) and (4) make clear how the time-e¤ects �t and �t will be identi�ed in the
estimation: �t has a lasting e¤ect on subsequent covariances (that is, it shifts the entire covariance structure
after date t) whereas �t only a¤ects the variance at time t: One implication of this, however, is that �t and
�t are not separately identi�ed at the last date. To obtain identi�cation at T we make the assumption that
�2T�1 = �

2
T .
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paths of both of these individuals will deviate from the average pro�le (denoted with �-^�)
in a systematic way over time. Ignoring this fact (by assuming �H = �L � �) will then lead
the econometrician to interpret this systematic fanning out as the result of a sequence of
persistent positive (or negative) income shocks to these individuals, indicated by the up and
down arrows in the �gure.

To give an idea about the potential magnitude of this bias, a quantitative example will be
helpful. Consider a simpli�ed version of the income process given in (2): yih;t = �

i+�ih+"ih;t,
where �i has population mean �; and "ih;t is serially independent with zero mean. In addition,
suppose that the econometrician allows for a �xed e¤ect in the intercept, but not in the
growth rate (assuming a life-cycle pro�le of �i + �h for all individuals). In this case, the
income residuals are:

byih;t � yih;t � ��i + �h� = ��i � ��h+ "ih;t
It is easy to see that byih;t does not have zero mean for a given individual over time; instead

it will either trend up or down. Finally, suppose that the econometrician observes a single
cohort, and only when they are h and h + 1 years old (we relax this assumption below).
Then, under the (incorrect) assumption of RIP, a consistent estimator of the persistence
of income shocks is the minimizer of (1=I)

PI
i=1

�byih+1;t+1 � e�byih;t�2, which has a probability
limit given by e� = h (h+ 1)�2�

h2�2� + �
2
"

:

Notice that e� is increasing in h; and approaches 1 in the limit, when in fact the true
persistence is zero. To get a quantitative sense of the potential bias, we substitute some
plausible values (that is, values consistent with our estimates in the next section) into this
formula: �2� = 0:0004; and �2" = 0:03: If the observed cohort is 44 years old (h = 20) the
estimated persistence is e� = 0:87. Similarly, if h = 30; one obtains e� = 0:95: This calculation
can be easily extended to show that when there is a population of individuals uniformly
distributed from 25 to 64 years of age (h = 1 to 40); the estimated persistence would bee� = 0:91; even though the true persistence is, again, zero. It is also easy to show that,
under the same assumptions, the innovation variance of this perceived AR(1) process will be
estimated to be �2�[h (1� e�) + 1]2 + �1 + e�2��2"; which equals 0.058 at age 44 and 0.060 at
age 54. This is about twice the variance of the actual innovation variance, �2" = 0:03; used
to generate the data.

Finally, since this bias arises from heterogeneity in growth rates, the fact that we ac-
counted for �xed e¤ects in levels� as is commonly done in the literature� had no mitigating
e¤ects. In other words, if we also restrict �i across individuals in the calculations above,
the corresponding values of e� remain almost unchanged. This simple example illustrates
the close link between pro�le heterogeneity and the estimated persistence, and suggests that
modeling the former could be critical for a consistent estimation of the latter.
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Table 1: Estimating the parameters of the labor income process

Sample � �2� �2� corr�� �2� �2"
Panel A: �2� restricted to be zero (RIP process)

(1) All :988 :058 � � :015 :061
(.024) (.011) (.007) (.010)

(2) College :979 :031 � � :0099 :047
(.055) (.021) (.013) (.020)

(3) High-school :972 :053 � � :011 :052
(.023) (.015) (.007) (.008)
Panel B: �2� unrestricted (HIP process)

(4) All :821 :022 :00038 �:23 :029 :047
(.030) (.074) (.00008) (.43) (.008) (.007)

(5) College :805 :023 :00049 �:70 :025 :032
(.061) (.112) (.00014) (1.22) (.015) (.017)

(6) High-school :829 :038 :00020 �:25 :022 :034
(.029) (.081) (.00009) (.59) (.008) (.007)

(7) All :842 :072 :00043 �:33 :032 :044
(large sample) (.024) (.055) (.00007) (.40) (.006) (.008)

(8) All :899 :055 :00055 �:73 :016 :047
(�rst 10 cov.) (.042) (.060) (.00013) (.38) (.010) (.009)

Notes: Standard errors are in parentheses. Time e¤ects in the variances of persistent and transitory shocks are
included in the estimation in all rows, but are not reported to save space. The reported variances are averages
over the sample period.

3 Empirical Findings

We �rst estimate the parameters of the process (2) by ignoring individual-speci�c variation
in income growth rates� that is, by restricting �2� � 0� but allowing for an individual �xed-
e¤ect, �i (RIP process). The �rst row in Table 1 displays the results. The estimate of � is
0.988, and one cannot statistically reject that income shocks are permanent at conventional
signi�cance levels. The innovation standard deviation of z is also large� about 12 percent per
year� so in the long-run the persistent component dominates the cross-sectional distribution
of income.

In panel B (row 4), we allow for heterogeneity in income growth rates. The �rst main
�nding is that the estimated persistence falls from 0.988 to 0.82. As is well-known, the
di¤erence between these two estimates is substantial (�gure 2): *when � = 0:82; the e¤ect
of an income shock is reduced to fourteen percent of its initial value in ten years, whereas
for � = 0:988, it retains almost ninety percent of its initial value at the same horizon. After
twenty years, the e¤ect of the former shock almost vanishes whereas the latter shock still
keeps eighty percent of its initial impact. As can be anticipated from these comparisons,
individuals facing each of these processes are likely to make substantially di¤erent economic
choices.
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Figure 2: The Remaining E¤ect of an AR(1) Shock for Di¤erent Values of �
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As noted above, if measurement error follows an autoregressive process we have to be
careful about interpreting � purely as the persistence of income shocks. For example, if
measurement error has a lower persistence than income, the estimated � will understate the
true persistence of income shocks. Nevertheless, notice that � is estimated to be almost a
unit root under the RIP speci�cation, which suggests that such a downward bias is not likely
to be quantitatively large. Since the HIP process is estimated from the same income data,
and therefore, contains the same measurement error, it seems unlikely that the low estimate
of � in the HIP speci�cation is due to measurement error. Of course, if measurement error
is classical, as is commonly assumed, then this problem does not arise (it would be captured
in the transitory component, �2"; and would have no e¤ect on �).

An important question is whether the estimates are sensitive to the sample selection
criteria used to obtain the primary sample. In particular, recall that we require an individual
to satisfy these criteria for twenty years to be included in our sample. Although, as we discuss
further below, there are good reasons for this requirement, one could be concerned that we
are eliminating individuals with unstable jobs who might be facing more persistent shocks
than the rest of the population. Including these individuals could therefore result in a higher
estimated persistence as well as maybe a di¤erent estimate for the dispersion of income
growth rates. To explore this possibility, we draw a new subsample using the same criteria
as before except that we now require individuals to stay in the sample for at least four years
instead of twenty. The resulting sample has 4381 individuals with at least four observations
each. Row 7 displays the results. The estimated persistence goes up slightly compared to
the baseline, from 0.82 to 0.84, and the innovation variance also increases from 0.029 to
0.032. The dispersion of income growth rates is also higher at 0.00043. While these results
are consistent with the fact that the new sample contains more heterogeneous households,
the di¤erence in estimates is not large.
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Before closing this section, it is useful to compare these results to earlier work that
estimates alternative versions of the HIP process using representative samples of U.S. house-
holds. Among these, Haider (2001) employs a rotating panel design using PSID data and
includes individuals satisfying sample selection criteria for three years or more. He also �nds
evidence of large heterogeneity in income growth rates (�2� = 0:00041) and estimates � to be
0:64. Notice that while his estimate of �2� is very close to what we �nd here, the persistence
parameter is signi�cantly lower. This is also the case in Baker (1997, table 4) who uses a
fully balanced panel from PSID (1968-88) and obtains: �2� = 0:00039 and � = 0:67. One
reason for the lower estimates of � found by these authors could be that they model the
dynamics of income as an unrestricted ARMA (1,1) or (1,2) process, compared to the more
parsimonious speci�cation adopted here. To sum up, the estimates of � obtained in this pa-
per are substantially lower than a unit root. At the same time, they still represent an upper
bound of the values found in the literature using HIP processes. However, the estimates of
�2� appear to be very similar across these three studies.

3.1 The labor income process by education group

We next examine if, and how, the labor income process di¤ers by education group. This
question has so far only been investigated in the context of RIP processes (Hubbard et
al., 1994, and Carroll and Samwick, 1997). Thus, to provide a benchmark, we begin by
estimating the RIP process for college- and high school-educated individuals. Rows 2 and 3
of table 1 report the parameter estimates for the two groups: � is estimated to be 0.979 and
0.972 for the college- and high school educated-groups respectively. Similarly, the innovation
variances of the AR(1) shocks are very close to each other: 0:0099 and 0:011 respectively.
Overall, the estimated parameters reveal very similar income processes for the two education
groups.

Although this �nding may seem surprising (given the many di¤erences one could think
of between the labor market risks faced by di¤erent education groups), it is in fact consis-
tent with the results obtained in previous studies. Table 2 displays the estimated income
processes from two studies that are most often used for calibrating macroeconomic models.
In Hubbard, et al. (1994), the estimated persistence ranges from 0.946 to 0.955 but shows no
systematic pattern with education. The innovation variance seems to go down with higher
education, but the di¤erence is not statistically signi�cant. Carroll and Samwick (1997)
impose the further restriction that income shocks are permanent for all groups (� � 1) ; and
only estimate the variances. They �nd innovation variances to be increasing with education
at lower levels, but then fall back at higher education levels. The di¤erences between groups
are again not statistically signi�cant. They �nd some evidence that transitory shock vari-
ances get smaller with education. The conclusion that emerges from these studies and our
�ndings is that in the RIP process income risk does not vary substantially by education level.
If anything, there is some evidence that income risk is somewhat greater for lower educated
individuals.

We next estimate the income process of each group allowing for HIP (rows 5 and 6 of
Table 1). The estimated persistence is now signi�cantly lower for both groups (�C = 0:81
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Table 2: Estimates of the RIP Model By Education Level in the Literature

Paper Group � �2� �2"
Hubbard, Skinner, <12 yrs of education :955 :033 :040
and Zeldes (1994) (:106) (:076) (:075)

12-15 yrs of education :946 :025 :021
(:129) (:063) (:054)

16+ yrs of education :955 :016 :014
(:121) (:040) (:033)

Carroll and 0-8 grades 1:0y :0190 :0894
Samwick (1997) � (:0137) (:0256)

9-12 grades 1:0 :0214 :0658
� (:0090) (:0168)

High school diploma 1:0 :0277 :0431
� (:0069) (:0129)

Some College 1:0 :0238 :0342
� (:0047) (:0088)

College graduates 1:0 :0146 :0385
� (:0068) (:0126)

Notes: One di¤erence between these studies and ours is that these studies estimate income processes for
household income whereas we estimate for individuals. yThe persistence parameter is restricted to 1.0 (random
walk shocks) in Carroll and Samwick and hence is not estimated.

versus �H = 0:83), but there is still little di¤erence across education groups. However, there
is now a major di¤erence in an important dimension: the dispersion of income pro�les is
signi�cantly larger for college-educated individuals (�2� = :00049) compared to high school-
educated individuals (�2� = :00020). In fact, this di¤erence could be partly anticipated from
�gure 4, which shows a larger increase in within-cohort income inequality among the former
group than the latter.

Finally, the correlation between the slope and the intercept is negative in all rows of Table
1 (although not precisely estimated), consistent with earlier work. A natural interpretation
of this negative correlation is suggested by the human capital model: individuals who invest
more early in life� perhaps in response to higher learning ability� and su¤er from lower
income are compensated by higher income growth. Moreover, the correlation is more negative
for the college-educated group (�0:70) compared to the rest (�0:25), suggesting that human
capital accumulation could be more important for wage growth in high-skill occupations
(Mincer, 1974; Hause, 1980).

3.2 Quantifying the heterogeneity in income pro�les

The second main �nding (in row 4 of Table 1) is that the heterogeneity in income growth rates
measured by �2� is (statistically) signi�cant. To show that this estimate is also economically
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signi�cant, we rearrange the expression for cross-sectional income inequality (given in (3))
to obtain:

vari(byih) = ��2� + �2"�+ �1� �2h+11� �2 �2�

�
+
�
2���h+ �

2
�h

2
�
;

where we substituted var (zih) from (4), and set �t and �t equal to 1.

This expression provides a useful decomposition of inequality into its components. The
�rst set of parentheses contain terms that do not depend on age (and hence make up the
intercept of the age-inequality pro�le). The second set of parentheses capture the rise in
inequality due to the accumulated e¤ect of AR(1) shocks. The solid line in the left panel of
�gure 1 plots the magnitude of this term over the life-cycle of a cohort. For the estimated
value of b� = 0:82; this component increases slightly in the �rst seven years and then remains
roughly constant.

The last set of parentheses contain terms that capture the e¤ect of HIP on inequality.
It consists of a decreasing linear term (since ��� < 0), and an increasing quadratic term, in
h. It is easy to see that even when �2� is very small, the e¤ect of pro�le heterogeneity on
income inequality will grow rapidly with h2, as the cohort gets older. As the dashed line in
the left panel shows, early in the life-cycle the contribution of pro�le heterogeneity to income
inequality is very small. In fact, until about age 47 more than half of the income inequality
is generated by the �xed e¤ect, and transitory and persistent shocks. However, the e¤ect of
pro�le heterogeneity increases rapidly with age, and results in substantial inequality later in
life.

The right panel of �gure 3 plots the fraction of total inequality attributable to HIP. In
the sample of all individuals (denoted �-o�), HIP accounts for 70 percent of inequality at age
55 (33 years of experience). More importantly, at the same age, HIP accounts for 75 percent
of the inequality among college-educated individuals (�-+�) and 56 percent of the inequality
among high school-educated individuals (�-x�).9 The fact that heterogeneity in income
pro�les is substantial even within these education groups has an important implication for
calibrating macroeconomic models. It suggests that the common practice of allowing for
a di¤erent income pro�le for each education group, while omitting within-group variation,
captures only a small part of the pro�le heterogeneity in the population.

4 What is the Source of Identi�cation?

The problem of distinguishing between the RIP and HIP processes is reminiscent of the
familiar debate in macroeconomics about whether GDP growth is better represented by a
stochastic trend (RIP process), or by stationary shocks around a deterministic trend (HIP

9Notice that in the college sample the contribution of HIP to inequality is negative (i.e., HIP reduces
inequality) in the �rst 10 years of the life-cycle. This is due to the large negative correlation (�:70) between
the slope and intercept of income pro�les in this group. As a result, early in life individuals with low initial
income but fast income growth catch up with those with slow income growth but high initial income, which
reduces inequality early on.
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Figure 3: Quantifying the Contribution of HIP to Income Inequality
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process). Given the well-known di¢ culties associated with distinguishing between those two
hypotheses (cf., Christiano and Eichenbaum (1990)), it seems reasonable to suspect a similar
di¢ culty in the current context.10 Thus an important question to answer is the following:
Where does identi�cation between the RIP and HIP processes come from?

The main di¤erence between the present problem and the debate in macroeconomics
is that in our case we have access to panel data on labor income, unlike macroeconomists
who had to rely on a single time-series of GDP observations. With panel data, we can
characterize the evolution of the cross-sectional distribution of income as a cohort gets older.
As we explain below, it then becomes possible to distinguish between the RIP and HIP
processes by exploiting the di¤erent implications of each process for the evolution of this
cross-sectional distribution.

More speci�cally, consider the covariance matrix of income residuals for a given cohort.
The diagonal elements of this matrix correspond to the cross-sectional variance of log income,
whereas the o¤-diagonal elements correspond to autocovariances at various lags. For a cohort
with a working life of 40 years, there are 40 variance terms and, many more, up to 780
autocovariance terms. To understand identi�cation it is thus instructive to examine the

10This resemblance is on the methodological level. Substantively, the two questions are quite di¤erent:
in the macroeconomics literature most researchers agreed that GDP movements were extremely persistent,
but the question was whether the autoregressive parameter was equal to 1 or slightly lower than that.
Instead here, the RIP model implies an autoregressive parameter close to 1, whereas the HIP model implies
substantially less persistence. Therefore, the distinction between the two income processes is not merely a
technical curiosity, but has important substantive implications.
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covariance matrix by focusing on the diagonal and o¤-diagonal elements separately.11 This
is what we do next.

4.1 Age Structure of Variances

The �rst piece of information is provided by the change in the cross-sectional variance of
income as the cohort ages. The formula for these variances (equation (3)) is reproduced here
for convenience:

var
�byih;t� = ��2� + 2���h+ �2�h2�| {z }

HIP component

+ var
�
zih;t
�| {z }

AR(1) component

+ �2t�
2
";t (5)

For the clarity of this discussion, we �rst consider the case where the panel data on income
is from a single cohort and income shocks have stationary variances over time: �2t = �

2
t � 1

for all t. We relax these assumptions in a moment.

The terms in square brackets capture the e¤ect of pro�le heterogeneity, which is a convex
function of age (notice that the coe¢ cient on h2 is �2�). The second term captures the e¤ect
of the AR(1) shock, which is a concave increasing function of age as long as � < 1 and
becomes linear in age when � = 1. Thus, if the within-cohort variance of income increases
in a convex fashion in the data as the cohort gets older, this would be captured by the
HIP terms, whereas a non-convex shape (including a linear one) would be captured by the
presence of AR(1) shocks.

To construct the empirical counterpart of the age-variance pro�le, however, we do need
to account for time-variation in shock variances (i.e., time-e¤ects), and also account for
the fact that our panel data pertains to more than one cohort who could di¤er in their
income variances (i.e., cohort-e¤ects). Nevertheless, it is well-known that attempting to
simultaneously identify time, cohort, and age e¤ects is problematic, since any one of these
e¤ects can be written as a linear combination of the other two.12 Therefore, we follow the
bulk of the literature and control for cohort and time e¤ects in turn.

Cohort e¤ects in variances. We �rst generate the empirical graphs by controlling
for cohort e¤ects only (following Deaton and Paxson (1994) and Storesletten, Telmer and
Yaron (2004), which is the more common approach of the two. To this end, we �rst construct
�ve-year overlapping experience bands by grouping all individuals who have experience level

11Notice that the estimation uses the T �T matrix of covariances over time. The elements of that matrix
are obtained by aggregating the underlying covariances of each cohort studied here appropriately as explained
in section 2.
12Hall (1971) is one of the early papers to notice this problem. For a detailed treatment of the identi�cation

of time, cohort, and age e¤ects see Heckman and Robb (1985). As these authors show even if one allows
for a higher order polynomial in these three e¤ects, it is only possible to identify a subset of the polynomial
coe¢ cients. There are certain cases under which it is possible to distinguish between the three e¤ects in
principle; however even those cases identi�cation typically remains weak empirically.
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Figure 4: Age-Variance Pro�le of Log Income in PSID
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h� 2 to h + 2 and assign the mid-point (h) as the experience of that group. This prevents
having a very small number of observations in a given experience cell thereby mitigating the
noise that results from sampling variation. Because our sample consists of individuals from
age 20 to 64, there are 41 experience bands ranging from (mid-point) age 22 to 62. Next,
we group individuals by experience and (year-of-birth) cohort and compute the variances in
each experience-cohort cell. We then regress these raw variances on a full set of experience
and cohort dummies, and report the coe¢ cients on the experience dummies in Figure 4. To
preserve the overall level of inequality in the data, the dummies are scaled to match the level
of variance in the data at h = 15.

The lines marked with circles in the three panels show the resulting experience-variance
pro�le for the whole population (left) and for college (middle) and high-school (right) grad-
uates. As can be seen in these graphs, variances increase in a slightly convex fashion in
all three cases consistent with the heterogeneity in income pro�les found in the estimation.
Moreover, the experience-variance pro�le rises the most, and appears to be the most convex,
for the college sample, consistent with the large estimate of �2� for this group. The opposite
is true for the high school sample, again consistent with the small estimate of �2� for this
group.

Time e¤ects in variances. In a recent paper, Heathcote, Storesletten and Violante
(2005) argue that it might be important to control for time e¤ects when constructing the
experience-variance pro�le since income inequality has increased substantially during the
1980�s (which is included in our sample period). To address this issue, we now control for
time e¤ects only. More speci�cally, after constructing the raw variances for all experience-
cohort cells described above, we regress them on a full set of experience and time dummies.
The dashed lines marked with x�s plot the coe¢ cients on experience dummies.
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Figure 5: Theoretical Experience-Variance Pro�le of Log Income Implied by HIP and RIP
Processes
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A couple of remarks are in order. First, comparing these �cleaned variances�to the raw
data (solid lines), we notice that controlling for time e¤ects raises the experience-variance
pro�le early in life (up to about 15 years of experience), whereas controlling for cohort
e¤ects raises them later in life. Second, while we con�rm Heathcote et al (2005)�s �nding
that controlling for time e¤ects results in a smaller overall rise in the variance of log income
over the lifecycle, the pro�le continues to be slightly convex for the full sample as well as for
the high-school sample. For the college sample, the experience-variance pro�le is still convex
but now goes down until about 15 years of experience after which point it starts to increase
�rst slowly and then more rapidly. Overall, while controlling for cohort versus time e¤ects
could be important for some questions, the slight convexity of the experience-variance pro�le
seems to be robust to whichever route is chosen. It should also be stressed that in both cases
the convexity is typically moderate in the data (except for the college sample).

In �gure 5, for comparison, we plot (solid line) the theoretical experience-variance pro�le
implied by the HIP process (using equation (3) and the parameter estimates in rows 4, 5
and 6 of Table 1) which is slightly convex as in the data. The dashed lines plot the variances
implied by the RIP process (using the parameters in rows 1, 2, and 3 of the same table)
which shows a slightly concave shape instead. Notice that, in principle, a RIP process could
also generate a convex pattern if the AR(1) process have age-dependent innovation variances.
However, this would require innovation variances to be increasing with age, which is at odds
with the empirical evidence presented in Baker and Solon (2003, �gure 2) and Meghir and
Pistaferri (2004, table 5) who �nd a decreasing (or U-shaped) pattern over the life-cycle.13

To sum up, we conclude that the experience-variance pro�le is slightly convex in the U.S.

13Clearly, AR(1) shocks can also generate a convex pro�le if � > 1: But, as we discuss below, this would
imply that covariances increase with the lag order, which is at odds with empirical evidence.
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data, which is one reason the estimation in the previous section revealed evidence of HIP.

4.2 Age Structure of Autocovariances

The second source of identi�cation is provided by the o¤-diagonal elements of the covariance
matrix. As before, we begin by assuming that we observe a single cohort over time, in which
case the formula is

cov
�byih; byih+n� = ��2� + ��� (2h+ n) + �2�h (h+ n)�| {z }

HIP component

+ �nvar
�
zih
�| {z }

AR(1) component

; (6)

where we dropped the t subscript since it is perfectly correlated with h.

As shown in this equation, the covariance between experience h and h + n is again
composed of two parts. As before, the terms in square brackets capture the e¤ect of hetero-
geneous pro�les and is a convex function of experience. Moreover, and more importantly,
the coe¢ cients of the linear and quadratic terms depend on both h and n, which allows co-
variances to be decreasing, increasing, or non-monotonic in the lag order for each experience
level. The second term captures the e¤ect of AR(1) shocks, and notice that for a given h, it
depends on the covariance lag n only through the geometric discounting term �n: The strong
prediction of this form is that, starting at h, covariances should decay geometrically at the
rate �; regardless of h. Thus, in the RIP process (which only has the AR(1) component)
covariances are restricted to decay at the same rate at every experience level, and cannot be
non-monotonic in n:

To construct the empirical counterpart we proceed as before. We �rst compute the
entire structure of raw autocovariances for each cohort in the sample (using the age-cohort
cells constructed above). Then we regress these raw autocovariances on a full set of cohort
dummies and average the resulting residuals across all cohorts. Figure 6 plots these �cleaned�
autocovariances separately for the college (top panel) and high-school (bottom) samples. For
example, the left most (solid) line plots cov

�byi1; byi1+n� for n = 1; 2; ::; 20, and other lines plot
the same for h = 2; 3; :::; 25, subject to h + n � 34; which corresponds to a real life age of
about 55. (The autocovariances that start from even (odd) numbered ages are shown with
solid (dashed) lines to make the graph easier to read).

In the top panel of �gure 6, the �rst observation is that the autocovariance structure
displays rich patterns that change over the lifecycle. For example, autocovariances decay
monotonically and rather rapidly with the lag order for small hs (less than about 6 or 7).
However, as h grows, the autocovariance structure appears to become �atter �rst, and then
becomes U -shaped at older ages: it decreases, and then increases, steeply with lag order.
Notice that for h + n � 25 almost all covariances are increasing with lag order. Turning to
the high school sample in the bottom panel, the covariance structure looks quite di¤erent.
Although we do see a �attening of covariance pro�les up to about h = 15 similar to that in
the college sample, there is no tendency of covariances to become U-shaped or increasing at
older ages, unlike in the college sample. In contrast, they appear to steepen again at higher
experience levels.
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Figure 6: Covariance Structure of Log Income for College- (Top) and High school- (Bottom)
Educated Individuals in PSID
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Figure 7: Theoretical Covariance Structure of Log Income for College-Educated Individuals:
HIP (Top) and RIP (Bottom) Processes.
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To understand how this information could help distinguish between the two income
processes, we now turn to the theoretical covariance structures implied by the HIP and
RIP processes (shown in �gure 7). These graphs are plotted using the parameter estimates
for the college sample from rows 5 and 2 of Table 1 respectively. The top panel plots the
autocovariance structure generated by the HIP process (lines marked circles), as well as the
separate contributions of the AR(1) component and HIP component. As noted earlier the
AR(1) component (dashed lines) generates a geometric decay in autocovariances with the
lag order at the same rate for all experience levels. The HIP component (solid lines) in-
stead generates autocovariances that are downward sloping in lag order (n) at young ages,
whereas they become upward sloping at older ages. As a result, the HIP process generates
autocovariances (which is the sum of the two components just mentioned) that is downward
sloping at young ages, but becomes upward sloping (and even slightly U-shaped) at older
ages. Comparing this �gure to the empirical counterpart for college graduates, it is fair to
say that the HIP process is broadly consistent with the pattern in the data, while missing
on some important features, such as the deep U-shape observed at later ages. Although it
seems possible to accommodate this pronounced U-shape in the HIP framework by allowing
an individual-speci�c quadratic term (in addition to the linear term), this would introduce
an additional state variable into a dynamic programming problem. Therefore, we do not
pursue this extension here.

We next turn to the RIP process shown in the lower panel. Since the autocovariance
structure is generated entirely by the AR(1) component, they all decay towards zero at the
same geometric rate � regardless of h. However, this does not imply that the slope of the
autocovariance pro�le is the same for all h: This is because the slope is:

cov
�byih; byih+n+1�� cov �byih; byih+n� = �n (�� 1) var �zih� :

In the RIP process, var (zih) increases over the life cycle (due to the accumulation of
highly persistent shocks), implying a more negative slope, and therefore an autocovariance
pro�le that is steeper, as individuals get older.14 This feature does not �t well with the
generally �attening pattern of autocovariances observed in the college sample. In contrast,
recall that in the high school sample, covariances do become somewhat steeper at older ages.
This is broadly consistent with a RIP process and visually it is di¢ cult to see the e¤ect of a
large HIP component on covariances for this group (except for some �attening and rising up
to h = 15). Consistent with this observation, the formal estimation reveals a much smaller
estimate of �2� for the high school graduates compared to college graduates.

15

So far we have only controlled for cohort e¤ects when constructing the autocovariance
structure. But notice that the formula for autocovariances in (6) does not explicitly depend
on time e¤ects in shock variances (i.e., �t and �t). Of course, time-variation would a¤ect the

14In other words, even though the ratio of subsequent autocovariances are constant for all hs, the di¤erence
is getting more negative as h gets larger.
15The features of the shape of the autocovariance matrix discussed here are preserved in the larger sample

described earlier (which includes all individuals that satisfy the selection criteria for four years or more). We
omit these results for brevity but they are available upon request.
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level of var (zih) and, therefore, the level of the autocovariance structure for each h, but not
how covariances change with the lag order n, which is the focus of the preceding analysis.
This implies that, unlike the age-variance structure, we do not need to control for time-e¤ects
in autocovariances.16

To sum up, the empirical autocovariance structure of income residuals display some rich
patterns that change as an individual gets older. The autocovariance structure implied
by AR(1) shocks alone, as in the RIP process, appears too restrictive. Instead, the HIP
process, while not capturing some important aspects of the autocovariance structure in the
data, allows for more �exibility and seems to a better job of �tting the autocovariance matrix
of the college sample. As a result, the minimum distance estimation in the previous section
�nds evidence of large heterogeneity in income growth rates to �t this matrix. In contrast,
the estimate of heterogeneity in the high school sample is smaller consistent with what one
could conjecture by studying the covariance structure.

Some Empirical Di¢ culties in Identi�cation: A Discussion The preceding analy-
sis of the covariance matrix also highlights some empirical di¢ culties in distinguishing be-
tween the HIP and RIP processes. The main di¢ culty is that while higher order autoco-
variances contain information that is valuable for identi�cation, fewer and fewer individuals
contribute to these covariances because of sample attrition, raising concerns about potential
selectivity bias. In most of the analysis we required individuals to be present for twenty
years. Although this requirement creates a subsample that may not exactly be a random
sample of U.S. households, it has the important advantage that autocovariances at di¤erent
lags are computed for roughly the same groups of households. Therefore, it is possible to
interpret the covariance matrix (and the resulting estimates) as valid for this subsample. If,
instead, we include all individuals who are in the sample for, say, three years or more, then
the number of individuals contributing to the 20th autocovariance will be about a quarter of
the number of individuals contributing to the 3rd autocovariance. To the extent that these
individuals are not a completely random subsample of the original sample, covariances at
di¤erent lags will have variation due to sample selection that can confound the identi�cation
between HIP and RIP processes.

While the similarity between the estimates obtained from the primary sample and the
larger sample is somewhat reassuring (rows 4 and 7 in table 1), this potential di¢ culty should
not be easily dismissed. To further illustrate this point, we re-estimated the HIP process
using only the autocovariances up to the 10th order. This can be thought of as an extreme
case where higher order autocovariances are so noisy that they are completely uninformative.
As can be seen in row 8 of table 1, the estimate of � rises to 0.90, although the heterogeneity
in income growth rates also increases from 0.00038 to 0.00055. This result suggests that
while the evidence on the existence of heterogeneity in income growth rates is less sensitive
to the inclusion of higher covariances, this information is important for the estimate of �:

16In other words, time e¤ects would shift the covariance structure starting for a given h up or down
but would have no e¤ect on how covariances change for a given h as we vary n: When we regress the
autocovariances on time e¤ects, this is exactly what we �nd. These results are not reported for brevity but
are available from the author upon request.
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Overall, the importance of higher order autocovariances also underscores the limitation of
relying on income data alone for distinguishing between these alternative income processes.
Another, and arguably better, approach would be to base inference on individuals�economic
choices, which contain valuable information about the environment faced by individuals,
including the future income risks they perceive. For example, the response of forward looking
choices, such as consumption and savings, to movements in income can be exploited to
distinguish between di¤erent views about the income process. This is the approach taken in
Guvenen (2007) who studies some well-known empirical facts about consumption behavior
to learn about the nature of income risk. Guvenen and Smith (2007) take this one step
further and conduct a full blown econometric analysis in an attempt to fully use the joint
dynamics of consumption and income.

5 A Comparison to the Existing Literature

In this section we try to reconcile the direct estimation results of the previous section sup-
porting the HIP process with some previous tests used in the literature, which have been
interpreted as supporting the RIP process (among others, MaCurdy, 1982; and Abowd and
Card, 1989).

MaCurdy (1982) The basic idea of these tests is based on the simple observation
that with pro�le heterogeneity, individual income growth should be positively autocorrelated.
This can be shown easily. From equation (2), the autocovariance of income growth at lag n
is:

cov(�byih;�byih+n) = �2� � �n�1�1� �1 + �
�2�

�
; (7)

for n � 2. Thus, covariances involve a positive constant term
�
�2�
�
that arises from the

presence of HIP, and a negative term, which goes to zero as a geometric function of n:
According to the HIP process then covariances should be positive� after a certain lag� if �2�
is positive after all. Moreover, if � = 1 (income shocks are permanent) the negative term
disappears and autocovariances should always be positive at any lag greater than 1. On
the other hand, it is also easy to see that in the absence of HIP, autocovariances should
be either negative or zero (depending on whether � < 1 or � = 1): This suggests that one
way to distinguish between HIP and RIP processes is to test if higher order autocovariances
are greater than zero. The �rst column of table 3 reports the results of this test using
our primary sample. As seen here, starting from the second lag, there is no evidence of a
positive covariance: they are mostly negative and statistically not di¤erent from zero, which
seemingly casts doubt on the HIP process.

There are two separate issues about the use of this test. The �rst one is that the non-
rejection may be due to the low power of the test. To address this issue, consider the case
where the covariances are most likely to be positive, that is, when � = 1: But note that while
in this case covariances must be positive for all n � 2, their magnitude is very small (0:00038)
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Table 3: Covariance Structure of Income Growth: U.S. Data versus the HIP model

Autocovariances Autocorrelations
Data Model Model Data Model

Lag
#

N ! 27,681 27,681 500,000 27,681 27,681

0 :1215 .1136 .1153 1:00 1:00
(.0023) (.00088) (.00016) (0.000) (.000)

1 �:0385 �:04459 �:04826 �:3174 �:3914
(.0011) (.00077) (.00017) (0.010) (.0082)

2 �:0031 �:00179 �:00195 �:0261 �:0151
(.0010) (.00075) (.00018) (0.008) (.0084)

3 �:0023 �:00146 �:00154 �:0192 �:0128
(.0008) (.00079) (.00020) (0.009) (.0087)

4 �:0025 �:00093 �:00120 �:0213 �:0080
(.0007) (.00074) (.00019) (0.010) (.0083)

5 �:0001 �:00080 �:00093 �:0012 �:0071
(.0008) (.00081) (.00020) (0.007) (.0090)

6 �:0000 �:00073 �:00067 �:0020 �:0063
(.0008) (.00076) (.00018) (0.007) (.0085)

7 :0001 �:00046 �:00049 :0004 �:0043
(.0010) (.00077) (.00019) (0.009) (.0086)

8 :0004 �:00030 �:00033 :0036 �:0027
(.0008) (.00080) (.00020) (0.010) (.0091)

9 �:0010 �:00027 �:00018 �:0085 �:0024
(.0007) (.00074) (.00018) (0.011) (.0084)

10 �:0017 �:00003 �:00010 �:0143 �:0003
(.0006) (.00072) (.00019) (0.009) (.0081)

11 :0012 :00013 �:00001 :0103 :0011
(.0008) (.00075) (.00017) (0.008) (.0085)

12 �:0009 :00011 :00005 �:0078 :0010
(.0010) (.00076) (.00020) (0.011) (.0086)

13 :0006 :00009 :00012 :0051 :0083
(.0009) (.00079) (.00021) (0.009) (.0088)

14 �:0023 :00024 :00017 �:0188 :0021
(.0008) (.00080) (.00019) (0.010) (.0089)

15 :0053 :00017 :00021 :0438 :0015
(.0007) (.00076) (.00020) (0.008) (.0086)

16 �:0045 :00020 :00024 �:0372 :0018
(.0008) (.00077) (.00018) (0.009) (.0088)

17 :0014 :00029 :00027 :0116 :0025
(.0009) (.00083) (.00017) (0.010) (.0092)

18 :0012 :00036 :00030 :0094 :0032
(.0009) (.00076) (.00018) (0.011) (.0087)

Notes: N denotes the sample size (number of individual-years) used to compute the statistics.
Standard errors are in parenthesis. The statistics in the �data�columns are calculated from the
primary sample. The counterparts from simulated data are calculated using 27681 observations,
which is the total number of observations in the primary sample . Standard deviations are
calculated using bootstrap and 1000 replications.
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Figure 8: Evaluating MaCurdy�s Test: The Covariance Structure of Income Growth
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making it di¢ cult to distinguish it from a value of zero implied by the RIP process.17

There is, however, a second important concern about the use of this test. To see this
point, recall that if in fact � < 1; the second (negative) term is present, so the covariances
are not positive up to a certain lag. A key question then is the following: what is the lowest
lag at which the covariances should be expected to become positive? This is critical because
both the studies mentioned above have focused on the �rst 5 to 10 lags. Figure 8 plots the
autocovariances of income growth for the �rst 20 lags using our parameter estimates of the
HIP process from Table 1. For the sample of all individuals (denoted �-o�) autocovariances
are negative up to the 12 th lag, simply because �2� is quantitatively so small compared to the
term in brackets. Similar calculations for individuals with college- and high school-education
show that the covariances become positive only at the 10th and 15th lags respectively. These
calculations show that the �ndings of negative autocovariances reported in MaCurdy (1982),
Topel (1990) and Topel and Ward (1992) is also generated by the HIP process. Notice that
this issue is separate from the power of the test, and suggests that even if an econometrician
had access to a very large data set, the signs of these lower order covariances are dominated
by the AR(1) component and are not very informative about HIP versus RIP.

We conduct a Monte Carlo exercise to further explore this issue. We simulate income

17Notice that even though McCurdy (1982)�s test cannot distinguish the autocovariances from zero, we are
able to get statistically signi�cant estimates of pro�le heterogeneity. The reason is that taking the averages
of �rst order autocorrelations results in the loss of useful information. Instead we exploit the information in
the entire variance covariance matrix which yields more precise information.
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paths using the HIP process and the parameter values from the second row of Table 1.18

The second column in table 3 displays the averages of autocovariances over 1000 replications
along with the standard errors of the sampling distribution. The key point to notice from this
table is that even though the average value of the autocovariances become positive after the
10th lag, none of the autocovariances up to the 18th lag are statistically signi�cantly di¤erent
from zero. In other words, for the sample size used in this paper, one should not expect to
�nd empirical covariances to be statistically di¤erent from zero up to the 18th lag even if
the true data generating process is HIP. In column 3, we repeat the Monte Carlo experiment
assuming a sample size of 500,000, which is about 18 times larger than our primary sample,
and close to 100 times larger than MaCurdy�s sample (of 5130 observations). Even in this
case, the 17th autocovariance is not signi�cant while the 18th becomes barely signi�cant at 5
percent level. Finally, the next two columns display the autocorrelation structure of income
changes using simulated data along with its empirical counterpart. Again, the same pattern
is apparent here: very weak negative autocorrelations, not signi�cant after the �rst lag.

Abowd and Card (1989) A similar concern applies to the variant of this test imple-
mented by Abowd and Card (1989, page 427-28). As an extension to MaCurdy�s idea, these
authors proposed to test if all higher order autocovariances are jointly equal to zero. The
test essentially entails computing a weighted sum of squared autocovariances from lags 2 to
10, and comparing it to the corresponding critical value from the �2 distribution. However,
as shown in �gure 8 the deviations of autocovariances from zero up to the 10th lag are mainly
due to the AR(1) component, and is in negative direction, rather than being due to HIP, and
in the positive direction. But because covariances are squared, the test does not distinguish
between negative and positive deviations. Therefore, with a large enough sample size, Abowd
and Card�s test would reject the null of zero even when the income process contains only
an AR(1) component and there was no pro�le heterogeneity.19 In other words, if one rejects
this null hypothesis (of zero joint covariances), that would not necessarily support the HIP
process either. Therefore, the interpretation of the results of this test is not straightforward
when the data generating process has an AR(1) component. This is true regardless of sample
size.

A second di¢ culty with interpreting Abowd and Card�s test results as providing evidence
against the HIP process is that they jointly test if both labor earnings and labor hours contain
heterogenous pro�les. More speci�cally, they stack the autocovariances of income change (28
moments), hours change (28 moments), and the cross-covariances between the two variables
at all lags and leads (56 moments) into a vector and test if all moments are jointly equal to
zero (see table 8, columns 1 and 2 in that paper). But it seems unlikely that labor hours will
display signi�cant heterogeneity in growth rates over the lifecycle (if they grow at all), in

18We �rst simulated income paths for 500,000 individuals. Then we drew 27681 pairs of observations
(�yih, �y

i
h+n) without replacement for randomly selected initial age, h; and n = 1; ::18: The �rst eighteen

autocovariances of income changes are then calculated using this sample and the exercise is repeated 1000
times.
19In fact in this case the null would be rejected more easily because the covariance structure would shift

downward making the lower order covariances more negative (and hence their squared value farther away
from zero)
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which case 84 of these moments should be expected to be zero. If this is the case, including
these moments will bias their joint test towards non-rejection even when the �rst 28 moments
are in fact non-zero. Notice that this problem is independent of the concerns with the AR(1)
component raised above.

To summarize, these results suggest that the tests based on the sign of autocovariances
used in the previous literature do not provide evidence on the absence or existence of pro�le
heterogeneity. The HIP process generates the same negative and statistically insigni�cant
autocovariance structure that was previously used to reject it.

6 Conclusion

The existing evidence from labor income data has commonly been interpreted by macro-
economists as strongly in favor of the RIP process. Consequently, almost all life-cycle (or
overlapping generations) models in the literature are currently calibrated using the RIP
process as the income process. In this paper we have reassessed the existing evidence. We
found that there are several pieces of evidence that lend support the HIP process. However,
we have also discussed some issues that makes it di¢ cult to de�nitively distinguish between
the two hypothesis using income data alone.

We �rst argued that imposing a priori restrictions on income growth rate heterogeneity,
as is done in the RIP process, introduces an upward bias into the estimated persistence if
the true data generating process features heterogeneous pro�les. When we allow for HIP,
the estimates we obtained indicate substantial heterogeneity in income pro�les, and income
shocks with modest persistence. Second, we also show that the HIP process we estimate
generates small and negative autocovariances, quantitatively similar to their empirical coun-
terpart, casting doubt on the previous interpretation of this �nding as supporting the RIP
process.

The HIP process also implies that the income processes of high and low educated individ-
uals di¤er in a key dimension: the dispersion of income growth rates is much larger for the
former group than the latter. This is in contrast to the RIP process which indicates similar
income processes for both groups (or more uncertainty for the latter group). This �nding has
potentially important implications for life-cycle studies which attempt to understand certain
di¤erences in economic behavior among education groups. Existing studies have used the
RIP process as the income process, which often implies puzzling di¤erences in behavior by
education level (see for example, Hubbard, et al., 1994; and Davis, Kubler and Willen, 2002).

We also show that identi�cation between the two income processes relies on information
throughout the covariance matrix, including the higher order covariances. However, because
computing these higher order covariances require us to observe individuals at far apart points
in their lifecycle, fewer and fewer individuals contribute to these moments, raising issues with
selection and smaller sample sizes. A fruitful complementary approach could be to study
forward looking economic choices which would contain valuable information about perceived
future income risks.
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It is important not to interpret the results of this paper (to the extent they are viewed
as lending more support to the HIP process) as suggesting that income uncertainty is not as
large as that implied by the RIP process. The statistical analysis conducted in this paper
reveals an important systematic component by examining realized (ex post) wages, but is
silent about whether (or how much) each individual knows about his own pro�le ex ante.
The latter cannot be determined by examining labor income data alone, though it could in
principle be inferred by studying the choices made by individuals. In Guvenen (2007) we
conduct such an analysis and argue that in fact a substantial part of this systematic variation
is likely to be unknown to individuals early on, and is revealed very slowly, implying that
the HIP process also features substantial income uncertainty. However, the nature of this
risk and its distribution over the life-cycle is di¤erent than in the RIP process.

A Data Appendix

The data are drawn from the �rst 26 waves of the PSID. We include an individual into our sample
if he satis�es the following criteria for a total of twenty (not necessarily consecutive) years between
1968 and 1993. The individual (i) is a male head of household, (ii) is between 20 and 64 years old
(inclusive), (iii) is not from the SEO sample (which oversamples poor households), (iv) has positive
hours and labor income, (v) has hourly labor earnings more than Wmin and less than Wmax, where
we set Wmin to $2 and Wmax to $400 in 1993 and adjust them for previous years using the average
growth rate of nominal wages obtained from BLS, (vi) worked for more than 520 hours (10 hours
per week) and less than 5110 hours (14 hours a day, everyday)

There were a total of 1270 individuals satisfying these conditions for at least twenty years who
comprise the primary sample. If, instead, we required these criteria to be satis�ed for twenty
consecutive years, there would be 210 fewer observations resulting in a sample size of 1060, so this
�exibility in selection criteria increases the sample size by about 20 percent. When constructing
the two subsamples de�ned by education used in Section 3.1, we exclude 53 individuals who have
inconsistencies in their education variables over time.

Variable De�nitions

Age of the head is constructed by taking the �rst report of age by the individual and by adding
the necessary number of years to obtain the age in other years (variable name V16631 in 1989).
This is done to eliminate the occasional non-changes or two-year jumps in the age variable between
consecutive interviews as a result of interviews not being conducted exactly one year apart.

Head�s total labor income measure is comprehensive and includes salary income, bonuses, over-
time, commissions, and the labor part of farm, business, market gardening, and roomers and
boarders income, as well as income from professional practice or trade (variable name V17534 in
1989).

Annual labor hours of the head is the self-reported annual hours worked by the individual
(variable name V16335 in 1989).

Head�s average hourly earnings is calculated by the PSID as the ratio of total labor income to
annual labor hours (variable name V17536 in 1989).

Education is based on the categorical education variable in the years it is available (variable
name V17545 in 1989), and on years of schooling completed when this variable was not available
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(variable name V30620 in 1989). Potential labor market experience is constructed from this latter
variable.

The traditional approach to panel construction (Lillard and Weiss, 1979; MaCurdy, 1982;
Abowd and Card, 1989; and Baker, 1997, among others) requires an individual to satisfy the
selection criteria for every year of the sample period to be included in the panel. Although this
condition has the advantage of creating a balanced panel, it also has the drawback of reducing
the sample size signi�cantly as the time horizon expands, since individuals with even one year of
missing data are excluded. We also require the individuals to be present in the sample for a long
period of time while allowing for up to six missing observations for each individual. This is intended
to make our panel construction comparable to earlier studies, while at the same time keeping a
reasonably large number of observations. An alternative approach pursued by some recent studies
is to include an individual into the panel if certain criteria are satis�ed for a few� usually two or
three� years (Haider (2001); Storesletten et al. (2004)). Haider�s estimates from the HIP speci�ca-
tion are similar to ours (in particular, � = 0:64; and �2� = 0:00041). Table 4 reports some summary
statistics for the primary sample.

B The Estimation Method

This appendix describes the minimum distance estimation (MDE) of the parameters of the income
process given in equation (2). Let cn be a typical element of the covariance matrix C of the in-
come residuals, where n = 1; ::; N (= T (T + 1) =2) enumerates unique elements of this matrix,
and let dn (Xi; b) denote the corresponding model covariances given by equation (3), where b de-
note the parameters of the income process. De�ne Fn (b;Xi;�in) = �in [cn � dn (Xi; b)] ; where
�in is an indicator function that is equal to 1 if individual i contributes to moment condition n;
and zero otherwise. Finally, stack all moment conditions into an (N � 1) vector: F (b;Xi;�i) �
[F1 (b;Xi;�i1) ; :::; FN (b;Xi;�iN )]

0, where �i is the indicator functions stacked into a vector con-
formably to F: The moment conditions that we are estimating are of the form:

Ei [F (b;Xi;�i)] = 0:

Education is based on the categorical education variable in the years it is available (variable
name V17545 in 1989), and on years of schooling completed when this variable was not available
(variable name V30620 in 1989). Potential labor market experience is constructed from this latter
variable.

The traditional approach to panel construction (Lillard and Weiss, 1979; MaCurdy, 1982;
Abowd and Card, 1989; and Baker, 1997, among others) requires an individual to satisfy the
selection criteria for every year of the sample period to be included in the panel. Although this
condition has the advantage of creating a balanced panel, it also has the drawback of reducing the
sample size signi�cantly as the time horizon expands, since individuals with even one year of missing
data are excluded. We also require the individuals to be present in the sample for a long period of
time while allowing for up to six missing observations for each individual. This is intended to make
our panel construction comparable to earlier studies, while at the same time keeping a reasonably
large number of observations. An alternative approach pursued by some recent studies is to include
an individual into the panel if certain criteria are satis�ed for a few� usually two or three� years
(Haider (2001); Storesletten et al. (2004)). Haider�s estimates from the HIP speci�cation are similar
to ours (in particular, � = 0:64; and �2� = 0:00041).
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The MD estimator is the solution to

min
b

"
I�1

IX
i=1

F (b;Xi;�i)

#0 eAN "I�1 IX
i=1

F (b;Xi;�i)

#

where eAN is a positive de�nite matrix. Chamberlain (1984) discusses the choice of the asymptoti-
cally optimal weighting matrix. However, Altonji and Segal (1996) provide Monte Carlo evidence
showing that the optimal weighting matrix often results in substantial small sample bias and recom-
mend the use of an identity matrix instead, and we follow their recommendation. Notice however
that because the panel is not balanced, each moment in the vector F is calculated using a di¤erent
number of observations (determined by the non-zero elements of �in). To adjust for this di¤erence,
we set eAN � ANAN ; where AN is a diagonal matrix with element (I=In) at the nth diagonal, where
In is obtained by summing �in over i: This choice implies that each moment is calculated using all
available observations and the resulting moments are weighted with an identity matrix.

Finally, the estimator bbN is consistent, asymptotically Normal with an asymptotic covari-
ance matrix � � (D0D)�1D0
D (D0D)�1 ; where D is the Jacobian of the vector of moments,
E [@F (b;Xi;�i) =@b

0] ; and 
 is the covariance matrix E [F (b;Xi;�i)F (b;Xi;�i) 0] : Both expec-
tations are replaced by sample averages when implemented.
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