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1 Introduction

Following the seminal work of Vasicek (1977) and Cox, Ingersoll and Ross (1985), most

academic studies in the economics and finance literature use representative-agent models to

analyze yield curve dynamics. These models typically derive bond pricing formulas based on

a representative agent’s risk preferences and belief processes. This approach leads to tractable

parametric yield curve models that researchers can directly apply to data, e.g., Duffie and

Kan (1996) and Dai and Singleton (2001). Despite their recent success in capturing certain

dynamics of the yield curve,1 representative-agent models have limitations that prevent them

from addressing several other aspects of bond markets, such as trading and liquidity, because

these models do not involve interactions among heterogeneous agents. In this paper, we aim

to provide an equilibrium model of bond markets, in which heterogeneous agents trade with

each other.

We allow agents to hold heterogeneous expectations of future economic conditions,2 and

then study the bond market dynamics resulting from the trading among these agents. Our

model builds on the equilibrium framework of Cox, Ingersoll and Ross (1985) with log-utility

agents and a constant-return-to-scale risky investment technology. Unlike their model, we

assume that there are two groups of agents using different learning models to infer the values

of an unobservable variable that determines the long-run returns of the risky technology. Be-

cause of the difference in the learning processes, the two groups of agents hold heterogeneous

expectations about future interest rates. Heterogeneous expectations motivate agents to take

speculative positions against each other in the bond markets, and market clearing conditions

determine equilibrium bond prices. We manage to solve this equilibrium in a closed form.

In particular, we derive that the price of a bond is a wealth weighted average of bond prices

in homogeneous economies, in each of which only one type of agent is present. We also
1See Dai and Singleton (2003) and Piazzesi (2003) for recent reviews of this literature.
2There is ample evidence supporting the existence of heterogeneous expectations among agents. Mankiw,

Reis and Wolfers (2004) find that the interquartile range among professional economists’ inflation expectations,
as shown in the Livingston Survey and the Survey of Professional Forecasters, varies from above 2% in the
early 1980s to around 0.5% in the early 2000s. Swanson (2005) finds that in the Blue Chip Economic Indicators
survey of major U.S. corporations and financial institutions between 1991 and 2004, the difference between
the 90th and 10th percentile forecasts of next-quarter real US GDP growth rate fluctuates between 1.5% and
5%, and the 90th and 10th percentile forecasts of four-quarter-behind 3-month Treasury bill rate fluctuates
between 0.8% and 2.2%.
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obtain similar results for nominal bond pricing when we extend the model to incorporate

heterogeneous expectations about future inflation. By analyzing this equilibrium, our model

shows that agents’ heterogeneous expectations provide implications for the joint dynamics

of trading volume, bond yield volatility, market liquidity, time-varying risk premia, and the

yield curve.

A direct implication of our model is that trading volume increases as the difference be-

tween agents’ beliefs widens. A higher belief dispersion causes agents to take larger speculative

positions against each other. As a result, they are more exposed to random shocks and have

to trade more to rebalance their portfolios after a shock.

Incorporating heterogeneous expectations and the resulting speculative trading into our

model helps resolve several challenges encountered by standard representative-agent mod-

els. Because aggregate consumption is rather smooth, standard representative-agent models

have difficulties in generating the large bond yield volatility and highly variable risk premia

observed in actual data. To this end, our model shows that the relative wealth fluctuation

caused by agents’ speculative positions against each other amplifies bond yield volatility.

Since agents who are more optimistic about future interest rates bet on rates rising against

more pessimistic agents, any positive news about future rates would cause wealth to flow from

the pessimistic agents to the optimistic agents, giving the optimistic belief a larger weight

in determining equilibrium bond yields. The relative-wealth fluctuation thus amplifies the

effect of the initial news on bond yields. Our calibration exercise shows that this mechanism

can cause a significant amount of volatility amplification even with a modest amount of belief

dispersion. This volatility amplification effect thus helps explain the “excess volatility puz-

zle” documented by Shiller (1979), Gurkaynak, Sack and Swanson (2005), and Piazzesi and

Schneider (2006a). These studies find that long-term yields appear to be too volatile relative

to the levels implied by standard representative-agent models.

Agents’ belief and wealth fluctuation can also cause the equilibrium risk premia to change

over time. From the view point of an econometrician who uses an objective learning pro-

cess to evaluate this equilibrium, the market price of risk (risk premium per unit of risk)

associated with the information shocks about future interest rates is proportional to the

difference between agents’ wealth weighted average belief and the econometrician’s belief.
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While agents’ belief fluctuation directly affects these risk premia, it is important to note

that agents’ relative wealth fluctuation can lead to time-varying risk premia even without

any belief fluctuation. The intuition is as follows. Suppose that the beliefs of the optimistic

group and the pessimistic group both stay constant over time and their average is exactly

that of the econometrician, which also stays constant. If the two groups have equal wealth

and so the wealth weighted average belief is the same as the econometrician’s belief, then the

current risk premia associated with the information shocks are exactly zero. However, after a

positive shock hits the market, the optimistic group would profit from the pessimistic group

through their existing positions against each other. As a result, the optimistic group’s belief

would carry a greater weight in the market, causing the two groups’ wealth weighted average

belief to rise above the econometrician’s belief and the risk premia to fluctuate.

The time-varying risk premia generated by our model shed some light on the failure of

the expectations hypothesis, one of the classic theories of the yield curve dating at least back

as Fisher (1896), Hicks (1939), and Lutz (1940). According to Lutz (1940, pp. 37), “An

owner of funds will go into the long (term bond) market if he thinks the return he can make

there over the time for which he has funds available will be above the return he can make

in the short (rate) market over the same time, and vice versa.” To make the fund owner,

a representative agent in the bond market, indifferent about investing in a long-term bond

or the short rate, this argument implies that when the spread between the long rate and

short rate is large, the long rate tends to rise further (or the long bond price tends to fall).

However, empirical studies, e.g., Fama and Bliss (1987), Campbell and Shiller (1991), and

Cochrane and Piazzesi (2005), reject this prediction by finding that long rates tend to fall

when their spreads relative to the short rate are high. This finding is often attributed to

time-varying risk premia, but their sources remain elusive. Our model proposes a mechanism

through agents’ belief and wealth fluctuation, as the resulting risk premia are negatively

correlated with the yield spread between long and short rates. Our calibration exercise also

demonstrates that, with reasonable parameters, this mechanism is able to generate enough

time variation in risk premia to explain the observed empirical finding.

By highlighting the effects caused by trading among agents with heterogeneous expecta-

tions, our analysis also cautions against a widespread practice of interpreting a representative

3



agent’s belief process as the outcome of an actual agent’s learning process. In fact, we could

replicate the equilibrium price dynamics in our model by constructing a representative agent

who always holds the wealth weighted average belief of the two groups. This exercise sug-

gests that the change in the representative agent’s belief not only responds to the two groups’

belief fluctuation, but also to their relative wealth fluctuation. As a result, the constructed

representative agent’s belief process is inconsistent with a realistic Bayesian learning process,

because the former compromises the effects caused by trading between the two groups of

agents with heterogeneous expectations.

In summary, our model provides a tractable but non-affine yield curve structure, which

simultaneously embeds stochastic volatility and time-varying risk premia. These features, as

emphasized by Dai and Singleton (2003) and Duffee (2002), are crucial for capturing the yield

curve dynamics. Our model also generates several testable predictions. First, higher belief

dispersion increases bond market trading volume. Second, higher belief dispersion increases

bond yield volatility and reduces bond market liquidity. Third, in an economy or a time

period with more belief dispersion among agents, spread between long-term bond yield and

short rate has a stronger predictive power for future yield changes. Finally, higher belief

dispersion reduces bond yields, especially for bonds with longer maturities.

Our model complements the earlier equilibrium models with heterogeneous beliefs, e.g.,

Detemple and Murthy (1994) and Basak (2000, 2005). These models study the effects of

heterogeneous beliefs on stock returns and short rates, but not on the yield curve dynamics.

In addition, they do not analyze the effects of heterogeneous beliefs on volatility amplification

and time-varying risk premia. Our model differs in emphasis from Dumas (1989) and Wang

(1996), which provide models to analyze the effects of agents’ preference heterogeneity on

their wealth distribution and the yield curve. These papers also do not address volatility am-

plification and time-varying risk premia generated by trading between heterogeneous agents.

Finally, Dumas, Kurshev and Uppal (2005) analyze the effects of some agents’ irrational be-

liefs on market volatility and equity premium. Their study especially focuses on the rational

investors’ optimal responses to the presence of irrational investors in a general equilibrium

set-up. In contrast, our model focuses on the impacts of agents’ belief dispersion on the yield

curve dynamics, especially highlighting the role of agents’ relative wealth fluctuation.
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The rest of the paper is organized as follows. Section 2 presents the model and derives

the equilibrium. Section 3 analyzes the effects of agents’ heterogeneous expectations on bond

market dynamics. Section 4 reconciles our model with standard representative-agent models

and Section 5 provides a calibration exercise of our model. Finally, Section 6 concludes the

paper. We provide all the technical proofs in Appendix A and an extension of our model in

Appendix B.

2 The Model

Our model adopts the equilibrium framework of Cox, Ingersoll and Ross (1985) with log-

utility agents and a constant-return-to-scale risky investment technology. Unlike their model,

ours assumes that agents cannot directly observe a random variable that determines future

returns of the risky technology, and that agents have to infer its value. There are two groups

of agents holding heterogeneous expectations regarding this variable. Because of this belief

dispersion, agents speculate in capital markets. We study a competitive equilibrium, in which

each agent optimizes consumption and investment decisions based on his own expectation.

Market clearing conditions determine the equilibrium short rate and bond prices. In the main

text of the paper, we focus on a model without inflation. In Appendix B, we obtain similar

results by extending the model to price nominal bonds.

2.1 The economy

We consider an economy with only one constant-return-to-scale technology. The return of

the technology follows a diffusion process:

dIt

It
= ftdt + σIdZI(t), (1)

where ft is the expected instantaneous return, σI is a volatility parameter, and ZI(t) is a

standard Brownian motion.

The expected instantaneous return from the risky technology, ft, follows another linear

diffusion process:

dft = −λf (ft − lt)dt + σfdZf (t), (2)
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where λf is a constant governing the mean reverting speed of ft, lt represents a moving long-

run mean of the risky technology’s expected return, σf is a volatility parameter, and Zf (t)

is a standard Brownian motion independent of ZI(t). As we will show later, the expected

instantaneous return of the technology ft, after adjusted for risk, determines the equilibrium

short rate, because this risky technology represents an alternative investment to investing in

the short term bond.

The long-run mean lt is unobservable and follows an Ornstein-Uhlenbeck process:

dlt = −λl(lt − l̄)dt + σldZl(t), (3)

where λl is a parameter governing the mean-reverting speed of lt, l̄ the long-run mean of lt,

σl a volatility parameter, and Zl(t) a standard Brownian motion independent of ZI(t) and

Zf (t). Since lt is the level, to which ft mean-reverts, it determines future short rates. As we

will later show, agents’ disagreement about lt thus leads to heterogeneous expectations about

future short rates.

2.2 Agents’ heterogeneous expectations

The existing economics and finance literature has pointed out several sources of heteroge-

neous expectations. First, Harris and Raviv (1993), Detemple and Murthy (1994), Morris

(1996) and Basak (2000) assume that agents hold heterogeneous prior beliefs about unobserv-

able economic variables. In these models, agents continue to disagree with each other even

after they update their beliefs using identical information and the difference in their beliefs

deterministically converges to zero. Second, Kurz (1994) argues that limited data make it

difficult for rational agents to identify the correct model of the economy from alternative

ones. As a result, model uncertainty could cause agents to use different learning models and

therefore to possess heterogeneous beliefs. Third, consistent with a broader interpretation

of heterogeneous priors and the model uncertainty argument, Scheinkman and Xiong (2003)

and Dumas, Kurshev and Uppal (2005) assume that agents use different model parameters in

their learning processes. As a result, agents could react differently to the same information,

and the difference in their posterior beliefs follows stationary processes.

Following the last approach, we also assume that agents use different model parameters

in their learning processes. Since these parameters are part of their model for the whole
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economy, they do not update these parameters, instead they use them as the basis for their

learning processes about unobservable economic variables such as the long-run mean of risky

technology returns. This approach is tractable and generates stationary processes for differ-

ences in agents’ expectations.

We now discuss agents’ expectations about future risky technology returns. In addition

to observing ft, agents also receive two public signals, S1 and S2, about the unobservable

long-run mean of the risky technology’s return lt. These two signals follow the following

processes:

dS1(t) = ltdt + σsdZs1(t), (4)

dS2(t) = ltdt + σsdZs2(t), (5)

where Zs1(t) and Zs2(t) are standard Brownian motions that are independent of each other

and all other Brownian motions. For symmetry, we assume that these two signals share the

same noise volatility parameter σs.

We assume that agents are divided in two groups and differ in their perceptions of the

signal processes. Specifically, agents in group 1 believe that S1 evolves according to

dS1(t) = ltdt + σs

[
φldZl(t) +

√
1− φ2

l dZs1(t)
]

. (6)

Although this process has the same instantaneous volatility as the actual process in equation

(4), group-1 agents believe that φl ∈ [0, 1] fraction of the innovations to dS1 comes from dZl,

the fundamental innovation to dlt itself. Thus, group-1 agents under-estimate the noise in S1.

The parameter φl measures the degree of this noise under-estimation.3 On the other hand,

group-1 agents perceive that S2 evolves according to the actual process in equation (5).

Similarly, we assume that group-2 agents perceive S1 in the actual process in equation

(4) and that they believe that S2 evolves according to

dS2(t) = ltdt + σs

[
φldZl(t) +

√
1− φ2

l dZs2(t)
]

. (7)

In the same way that group-1 agents perceive S1, group-2 agents incorrectly believe that φl

fraction of the innovation to S2 comes from dZl, and thus under-estimate the noise in S2. For
3Since group-1 agents have the correct volatility parameter of dS1 itself and the fundamental innovation

dZl is not observable, the value of φl cannot be directly inferred from the quadratic variation of dS1 and a
precise estimation would require a long series of data.
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the sake of symmetry, the degree of group-2 agents’ noise under-estimation, φl, is the same

as that of group-1 agents.

In summary, group-1 agents believe that these signals evolve according to equations (6)

and (5); while group-2 agents believe that these signals evolve according to equations (4)

and (7). Agents in each group make their economic decisions based on their own model

about the signals. We further assume that although agents in one group are aware of the

model used by the other group, they agree to disagree about the differences between their

models. The market equilibrium is thus determined by the interaction of the two groups of

agents. To evaluate the dynamics of this equilibrium, we will stand from the perspective of

an econometrician who believes the signals follow the actual processes in equations (4) and

(5). We will focus on the learning processes of the two groups in this section and derive the

econometrician’s in a later section.

Agents’ information set at time t about lt includes {fτ , S1(τ), S2(τ)}t
τ=0 . We assume

that agents’ prior beliefs about lt have a Gaussian distribution. Since their information

flow also follows Gaussian processes, their posterior beliefs must likewise be Gaussian. The

difference in agents’ perceptions about the signal processes would cause the mean of their

posterior beliefs to differ; however, because of their symmetry, they would still share the same

posterior variance. According to the standard results in linear filtering, e.g., Theorem 12.7

of Liptser and Shiryaev (1977), agents’ belief variance converges to a stationary level at an

exponential rate. For our analysis, we will focus on the stationary equilibrium, in which the

belief variance of agents in both groups has already reached its stationary level γ̄l, which is

the positive root to the following quadratic equation of γ:
(

λ2
f

σ2
f

+
2
σ2

s

)
γ2 + 2

(
λl +

φlσl

σs

)
γ − (

1− φ2
l

)
σ2

l = 0.

We denote group-i agents’ posterior distribution about lt at time t by

lt| {fτ , S1(τ), S2(τ)}t
τ=0 ∼ N

(
l̂it, γ̄l

)
, i ∈ {1, 2},

where l̂it is the mean of group-i agents’ posterior distribution. We will refer to l̂it as their

belief hereafter.
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Theorem 12.7 of Liptser and Shiryaev (1977) also provides that l̂it is determined by

dl̂it = −λl(l̂it − l̄)dt + λfσ−1
f γ̄ldẐi

f (t) + σ−1
s (γ̄l + φlσsσl) dẐi

si(t) + σ−1
s γ̄ldẐi

sj(t) (8)

where j ∈ {1, 2} and j 6= i. dẐi
f , dẐi

si and dẐi
sj are “surprises” in the three sources of

information to group-i agents:

dẐi
f =

1
σf

[
dft + λf (ft − l̂it)dt

]
, (9)

dẐi
si =

1
σs

[
dSi(t)− l̂itdt

]
, (10)

dẐi
sj =

1
σs

[
dSj(t)− l̂itdt

]
. (11)

Note that Ẑi
f , Ẑi

si and Ẑi
sj are independent standard Brownian motions in group-i agents’

probability measure. Equation (8) shows that under-estimation of noise in signal S1 causes

group-1 agents to “over-react” to dẐ1
s1(t), the surprise in dS1. Similarly, group-2 agents

over-react to the surprise in dS2. As a result, these two groups hold different beliefs about lt.

In group-i agents’ probability measure, ft, S1(t) and S2 (t) follow

dft = −λf (ft − l̂it)dt + σfdẐi
f (t), (12)

dS1 = l̂itdt + σsdẐi
s1(t), (13)

dS2 = l̂itdt + σsdẐi
s2(t). (14)

Thus, the difference in agents’ beliefs about lt translates into different views about the dy-

namics of these variables and, subsequently, into different expectations of future short rates.

2.3 Capital markets

The difference in agents’ beliefs causes speculative trading among them. Agents who are more

optimistic about lt would bet on interest rates going up against more pessimistic agents. Note

that, in each group’s measure, there are four types of random shocks. For group-i agents,

the shocks are dZI , dẐi
f , dẐi

s1, and dẐi
s2. Thus, the markets are complete if agents can

trade a risk free asset and four risky assets that span these four sources of random shocks.

In reality, bond markets offer many securities, such as bonds with different maturities, for

agents to construct their bets and to complete the markets. As a result, we analyze agents’
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investment and consumption decisions, as well as their valuations of financial securities, in a

complete-markets equilibrium.

We introduce a zero-net-supply risk free asset and three zero-net-supply risky financial

securities in the capital markets, in addition to the risky production technology.4 At time

t, the risk free asset offers a short rate rt. The rate is determined endogenously in the

equilibrium. The three risky financial securities offer the following return processes:

dpf

pf
= µf (t)dt + dft, (15)

dps1

ps1
= µs1(t)dt + dS1 (t) , (16)

dps2

ps2
= µs2(t)dt + dS2 (t) . (17)

We refer to these securities as security f , security S1, and security S2, respectively. Like

futures contracts, these securities are continuously marked to the fluctuations of dft, dS1 (t) ,

and dS2 (t) , respectively. Since agents hold different views about the underlying innovation

processes of these securities, they disagree about their expected returns. As a result, some

agents want to take long positions, while others want to take short positions. Through

trading, the contract terms µf (t), µs1(t), and µs2(t) are continuously determined so that

the aggregate demand for each of the securities is zero at any instant. We could also view

these financial securities as synthetic positions constructed by dynamically trading bonds.

We choose to introduce these securities instead of specific bonds to simplify notation, and

our specific choice of securities does not affect the equilibrium in complete markets.

To further simplify notation, we put the return processes of securities f , S1, and S2 in a

column vector:

d~Rt =
(

dpf

pf
,
dps1

ps1
,
dps2

ps2

)′
,

where ′ is the transpose operator. By substituting equations (12), (13), and (14) into the

return processes of the risky securities, we can rewrite them in group-i agents’ probability

measure as

d~Rt = ~µi
tdt + Σ · d~Zi (t) ,

4We also allow agents to short-sell the risky technology. This can be implemented by offering a derivative
contract on the return of the technology. The market clearing conditions, however, require that agents in
aggregate hold a long position in the risky technology.
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where the vector of expected returns is given by

~µi
t =




µ̂i
f (t)

µ̂i
s1(t)

µ̂i
s2(t)


 =




µf (t)− λf (ft − l̂it)
µs1(t) + l̂it
µs2(t) + l̂it


 , (18)

and the volatility matrix Σ and the diffusion vector d~Zi (t) are given by

Σ =




σf

σs

σs


 and d~Zi (t) =




dẐi
f (t)

dẐi
s1(t)

dẐi
s2(t)


 .

We assume that all agents have an identical logarithmic preference. Agents in group

i maximize their lifetime utility from consumption by investing in all available securities

according to their beliefs:

max
{ci

t,x
i
I , ~Xi}

Ei

∫ ∞

0
e−βtu(ci

t)dt,

where Ei is the expectation operator under their probability measure, β is their time-

preference parameter, and

u(ci
t) = log(ci

t)

is their utility function from consumption. Agents can choose their consumption ci
t, the

fraction of their wealth invested in the risky technology xi
I , and the fractions of their wealth

invested in the three financial securities:

~Xi =
(
xi

f , xi
s1, x

i
s2

)′

with each component of ~Xi corresponding to the fraction of wealth invested in securities f ,

S1, and S2.

Given group-i agents’ investment and consumption strategies, their wealth process follows

dW i
t

W i
t

=
[
rt − ci

t/W i
t + xi

I (ft − rt) + ~Xi · (~µi
t − rt

)]
dt + ~Xi · Σ · d~Zi (t) + xi

IdZI(t). (19)

We can solve these agents’ consumption and investment problems using the standard dynamic

programming approach developed by Merton (1971). The results for logarithmic utility are

well known. Agents always consume wealth at a constant rate equal to their time preference

parameter:

ci
t = βW i

t,
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and they invest in risky assets according to the assets’ instantaneous risk-return tradeoff –

the ratio between expected excess return and return variance:

xi
I =

ft − rt

σ2
I

and ~Xi =
(
~µi

t − rt

)′ · Σ−2. (20)

2.4 Equilibrium asset prices

We adopt a standard definition of competitive equilibrium. In the equilibrium, each agent

chooses optimal consumption and investment decisions in accordance with his expectations

and all markets clear. Market clearing conditions ensure: 1) the aggregate investment to the

risk free asset is zero; 2) the aggregate investment to each of the risky securities f , S1, and

S2 is also zero; and 3) the aggregate investment to the risky technology is equal to the total

wealth in the economy. We describe the equilibrium in the following theorem, and provide

the proof in Appendix A.1.

Theorem 1 In equilibrium, the real short rate is

rt = ft − σ2
I . (21)

Let ωi
t is the wealth share of group-i agents in the economy:

ωi
t ≡

W i
t

Wt
, Wt ≡

2∑

i=1

W i
t .

Then, the contract terms µf (t), µs1(t), and µs2(t) of the risky securities are determined by

µf = rt + λfft − λf

2∑

i=1

ωi
t l̂

i
t, (22)

µs1 = rt −
2∑

i=1

ωi
t l̂

i
t, (23)

µs2 = rt −
2∑

i=1

ωi
t l̂

i
t. (24)

The aggregate wealth in the economy fluctuates according to

dWt

Wt
= (ft − β) dt + σIdZI(t). (25)
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This theorem shows that the short rate is the expected instantaneous return of the risky

technology adjusted for risk (equation (21)) This is because agents would demand a higher

return from lending out capital when the expected return from the alternative option of

investing in the risky technology is higher. Equations (22)-(24) provide the contract terms

of the three financial securities. Each of these terms is determined by the short rate, rt,

minus the wealth weighted average of agents’ beliefs about the drift rate of the corresponding

security’s underlying factor. Equation (25) shows that the aggregate wealth in the economy

grows at a rate determined by the return from the risky technology, ftdt + σIdZI(t), minus

agents’ consumption rate, βdt. This is because the risky technology is the only storage

technology in the economy.

We denote the wealth ratio between agents in groups 1 and 2 by ηt ≡ W 1
t

W 2
t
, and the

difference in beliefs by gl (t) ≡ l̂1t − l̂2t . Then we will refer to the absolute value of gl (t),

|gl (t) |, as the belief dispersion. The following proposition characterizes the dynamics of the

wealth ratio, with the proof in Appendix A.2.

Proposition 1 The wealth ratio process ηt evolves in group-2 agents’ probability measure

according to
dηt

ηt
= gl

[
λf

σf
dẐ2

f (t) +
1
σs

dẐ2
s1(t) +

1
σs

dẐ2
s2(t)

]
. (26)

Moreover, if XT is a random variable to be realized at time T > t and E1[XT ] < ∞, then

group-1 agents’ expectation of XT at time t can be transformed into group-2 agents’ expecta-

tion through the wealth ratio process between the two groups:

E1
t [XT ] = E2

t

[
ηT

ηt
XT

]
.

Equation (26) shows that the volatility of the wealth ratio is proportional to belief dis-

persion |gl (t) |. Intuitively, higher belief dispersion induce agents to take more aggressive

speculative and so their wealth ratio becomes more volatile. Proposition 1 also shows that

the wealth ratio process between agents in groups 1 and 2 acts as the Randon-Nikodyn

derivative of group-1 agents’ probability measure with respect to group-2 agents’ measure.

The intuition is as follows. If group-1 agents assign a higher probability to a future state

than group-2 agents, it is natural for these agents to trade in such a way that the wealth
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ratio between them, W 1/W 2, is also higher in that state. Proposition 1 implies that, as a

consequence of logarithmic preference, the ratio of probabilities assigned by these groups to

different states is perfectly correlated with their wealth ratio. This result allows us to derive a

simple asset pricing formula in the heterogeneous economy. It is also important to note that

no single group would be able to drive out the other one and eventually dominate the market.

Due to the symmetric structure in the two groups’ learning models, the wealth distribution

is stationary.5

The property of the two groups’ wealth ratio process in Proposition 1 leads to a simple

expression of asset prices in the heterogeneous economy, as shown in the following theorem.

We provide the proof in Appendix A.3.

Theorem 2 In a heterogeneous economy with two groups of agents, the price of an asset,

which provides a single payoff XT at time T , is given by

Pt = ω1
t P

1
t + ω2

t P
2
t ,

where P i
t is the value of the asset in a homogeneous economy, whereby only group-i agents

are present.

Theorem 2 shows that the price of an asset is the wealth weighted average of each group’s

valuation of the asset in a corresponding homogeneous economy. This result allows us to

derive asset prices in a heterogeneous economy using prices in homogeneous economies. Thus,

asset pricing is remarkably simple even in a complex environment with heterogeneous agents.

While this result depends on agents’ logarithmic preference and linear risky technology, it is

independent of the specific information structure in our model. Detemple and Murthy (1994)

provide a similar result in a model with heterogeneous prior beliefs.

2.5 Bond pricing with homogeneous agents

Theorem 2 allows us to express the price of a bond as the wealth weighted average of each

group’s bond valuation in a homogeneous economy. Thus, before analyzing the effects of
5See Kogan, Ross, Wang, Westerfield (2004) and Yan (2005) for more discussions on the possibility that

one group might dominate in the long run when it has a more accurate belief process than the other group.
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agents’ heterogeneous expectations on bond markets, we first derive bond prices in homoge-

neous economies in the following proposition 2, with a proof in Appendix A.4.

Proposition 2 In a homogeneous economy with only group-i agents, the price of a zero-

coupon bond with a maturity τ is determined by

BH
(
τ, ft, l̂

i
t

)
= e−af (τ)ft−al(τ)l̂it−b(τ),

where

af (τ) =
1
λf

(
1− e−λf τ

)
, (27)

al(τ) =
1
λl

(
1− e−λlτ

)
+

1
λf − λl

(
e−λf τ − e−λlτ

)
, (28)

b(τ) =

τ∫

0

[
λl l̄al(s)− 1

2
σ2

faf (s)2 − 1
2

(
σ2

l − 2λlγ̄l

)
al(s)2 − λf γ̄laf (s)al(s)− σ2

I

]
ds.

Proposition 2 implies that the yield of a τ -year bond in a homogeneous economy

Y H
(
τ, ft, l̂

i
t

)
= −1

τ
log

(
BH

)
=

af (τ)
τ

ft +
al(τ)

τ
l̂it+

b(τ)
τ

is a linear function of two fundamental factors: ft and l̂it. This specific form belongs to the

general affine structure proposed by Duffie and Kan (1996).

The loading on ft, af (τ)/τ , has a value of 1 when the bond maturity τ is zero and

monotonically decreases to zero as the maturity increases, suggesting that short-term yields

are more exposed to fluctuations in ft. The intuition of this pattern is as follows. ft is the

expected instantaneous return from the risky technology, which can serve as a close substitute

for investing in short-term bonds. As a result, the fluctuation in ft has a greater impact on

short-term yields. As bond maturity increases, the impact of ft becomes smaller.

Agents’ belief about lt determines their expectation of future returns from the risky

technology, because lt is the level to which ft mean-reverts. In the case with mean-reversion

(λl > 0 ), the loading of the bond yield on l̂it, al(τ)/τ , has a humped shape. As the bond

maturity increases from 0 to an intermediate value, al(τ)/τ increases, suggesting that agents’

expectation has a greater impact on longer term yields. As the bond maturity increases

further, al(τ)/τ drops. This is caused by the mean reversion of lt, which causes any shock
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to lt to eventually die out. This force causes the yields of very long-term bonds to have low

exposure to agents’ belief about lt. In the case where mean reversion is no present (λl = 0 ),

the factor loading al(τ)/τ is a monotonically increasing function of bond maturity.

3 Effects of Heterogeneous Expectations

In this section, we discuss the effects of agents’ heterogeneous expectations on bond markets.

We combine Proposition 2 with Theorem 2 to express the price of a τ -year zero-coupon bond

at time t as

Bt = ω1
t B

H
(
τ, ft, l̂

1
t

)
+ ω2

t B
H

(
τ, ft, l̂

2
t

)
, (29)

where ω1
t and ω2

t are the two groups’ wealth shares in the economy, and BH
(
τ, ft, l̂

i
t

)
, given

in Proposition 2, is the bond price in a homogeneous economy wherein only group-i agents

are present. The implied bond yield is

Yt(τ) = −1
τ

log (Bt)

=
af (τ)

τ
ft+

b(τ)
τ

− 1
τ

log
[
ω1

t e
−al(τ)l̂1t + ω2

t e
−al(τ)l̂2t

]
.

Note that Yt is not a linear function of agents’ beliefs l̂1t and l̂2t . That is, bond yields in this

heterogeneous economy have a non-affine structure. This structure derives from the market

aggregation of agents’ heterogeneous valuations of the bond. This structure serves as the

basis for our analysis of the effects of heterogeneous expectations. Note that this structure

still holds for nominal bond pricing, as illustrated in Appendix B.

3.1 Trading volume

Heterogeneous expectations cause agents to take speculative positions against each other in

bond markets. These speculative positions can cause fluctuations in agents’ wealth upon

the arrivals of random shocks. As a result, agents trade with each other to rebalance their

positions. Intuitively, when belief dispersion increases, the size of their speculative positions

becomes larger. This in turn leads to a higher volatility of agents’ wealth and therefore

a larger trading volume in the bond markets. We use the volatility of one group’s position

changes as a measure of trading volume. This measure corresponds to the conventional volume
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measure in a discrete-time set up. We summarize the effect of agents’ belief dispersion on

trading volume in Proposition 3, and provide a formal derivation and further discussion on

our volume measure in Appendix A.5.

Proposition 3 Trading volume (fluctuation in agents’ speculative positions) increases with

the belief dispersion between the two groups of investors.

There is now a growing literature analyzing trading volume caused by heterogeneous

beliefs, e.g., Harris and Raviv (1993) and Scheinkman and Xiong (2003). While these models

demonstrate that heterogeneous beliefs lead to trading, trading typically occurs when agents’

beliefs flip, that is, gl changes its sign. Thus, trading volume of this type only increases with

the frequency that agents’ beliefs flip. Our model adds to this literature by showing that even

without agents’ beliefs flipping, the wealth fluctuation caused by their speculative positions

already leads to trading.

3.2 Volatility amplification

The wealth fluctuation caused by agents’ speculative positions against each other not only

leads to trading in bond markets, but also amplifies bond yield volatility. Loosely speaking,

bond yields are determined by agents’ wealth weighted average belief about future interest

rates. Since agents who are more optimistic about future rates bet on these rates rising

against more pessimistic agents, any positive news about future rates would cause wealth

to flow from pessimistic agents to optimistic agents, making the optimistic belief carry a

greater weight in bond yields. The relative-wealth fluctuation thus amplifies the impact of

the initial news on bond yields. As a result, a higher belief dispersion increases the relative-

wealth fluctuation and so increases bond yield volatility. We summarize this intuition in the

following proposition, and provide a formal proof in Appendix A.6.

Proposition 4 Bond yield volatility increases with belief dispersion.

This volatility amplification mechanism can help explain the “excess volatility puzzle”

for bond yields. Shiller (1979) shows that the observed bond yield volatility exceeds the

upper limits implied by the expectations hypothesis and the observed persistence in short
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rates. Gurkaynak, Sack and Swanson (2005) also document that bond yields exhibit ex-

cess sensitivity to particular shocks, such as macroeconomic announcements. Furthermore,

Piazzesi and Schneider (2006a) find that by estimating a representative agent asset pricing

model with recursive utility preferences and exogenous consumption growth and inflation,

the model predicts less volatility for long yields relative to short yields. Relating to this

literature, Proposition 4 shows that extending standard representative-agent models with

heterogeneous expectations can help account for the observed high bond yield volatility. In

Section 5, we provide a calibration exercise to illustrate the magnitude of this mechanism.

Through the volatility amplification effect, heterogeneous expectations could also shed

some light on the time variation of market liquidity in bond markets. Let’s consider the

following thought experiment. Suppose that agents in one group suffer a liquidity shock and

need to sell a fraction of their positions. The resulting price impact is a commonly used

measure of liquidity. Since this selling would suppress prices and reduce these agents’ wealth,

the initial price impact of these sales would be further amplified by the change in these agents’

wealth relative the other group. As a result, if there exists a larger belief dispersion among

the two groups (or if agents’ existing positions are larger), the amplification effect is stronger

and the net price impact of one group’s liquidity selling will be larger, causing the market

liquidity to be lower.6

3.3 Time-varying risk premia

Fluctuations in agents’ belief dispersion and relative wealth also cause risk premia in the

economy to vary over time. To examine risk premia, we analyze the dynamics of the stochastic

discount factor from the perspective of an econometrician who uses the actual signal processes

in forming his expectations. We derive this econometrician’s learning process and stochastic

discount factor in Appendix A.7 and summarize the result in the following Proposition.

6A similar wealth amplification mechanism has been employed by Xiong (2001) to explain the observed
high volatility and low liquidity during the crisis period of the hedge fund Long-Term Capital Management
in the late summer of 1998. His model shows that the wealth fluctuation of some highly leveraged market
participants can lead to large price reactions to liquidity shocks. By explicitly relating the magnitude of this
wealth amplification effect to agents’ belief dispersion, our model demonstrates fluctuation in agents’ belief
dispersion as a source of time-varying volatility and liquidity.
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Proposition 5 From the view point of an econometrician who holds the objective probability

measure, the stochastic discount factor has the following process

dMt

Mt
= −(ft − σ2

I )dt− σIdZI −
(

l̂Rt −
2∑

i=1

ωi
t l̂

i
t

)(
λf

σf
dZR

f +
1
σs

dZR
s1 +

1
σs

dZR
s2

)
,

where l̂Rt is the econometrician’s belief about lt, and dZR
f , dZR

s1, and dZR
s2, defined in equations

(39)-(41), are independent information shocks in the econometrician’s probability measure.

Proposition 5 shows that from the view point of the econometrician the market price

of risk (risk premium per unit of risk) for the aggregate production shock dZI is σI . The

market prices of risk for the three information shocks related to lt (dZR
f , dZR

s1, and dZR
s2) are

proportional to l̂Rt −
∑2

i=1 ωi
t l̂

i
t, the difference between the econometrician’s belief about lt and

the wealth weighted average belief of group-1 and group-2 agents. If the two groups’ wealth

weighted average belief about lt happens to equal the econometrician’s, the instantaneous

risk premia for the information shocks are zero. However, as the two groups’ beliefs and their

relative wealth change over time, these risk premia also fluctuate.

It is simple to see how agents’ belief fluctuation affects risk premia. When all agents

become more optimistic about lt than the econometrician, the current bond price would

appear low to the econometrician. As a result, the econometrician expects a high bond

return going forward, or equivalently, he perceives positive risk premia associated with the

information shocks about lt. It is important to note that agents’ relative wealth fluctuation

could lead to time-varying risk premia even without any belief fluctuation. The intuition

works as follows. Suppose that the beliefs of the optimistic group and the pessimistic group

both stay constant over time and their average is exactly that of the econometrician, which

also stays constant. If the two groups have equal wealth, and therefore the difference between

their wealth weighted average belief and the econometrician’s belief is zero, then the current

risk premia associated with the information shocks are exactly zero. However, after a positive

shock hits the market, the optimistic group would profit from the pessimistic group through

their existing positions against each other. As a result, the optimistic group’s belief would

carry a greater weight in the market, causing the two groups’ wealth weighted average belief

to rise above the econometrician’s belief and the risk premia to become positive. Thus,
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as long as the two groups hold heterogeneous expectations, the relative wealth fluctuation

caused by their speculative positions could generate time-varying risk premia even without

any fluctuation in their beliefs.

The time variation of risk premia in our model can help explain the failure of the ex-

pectations hypothesis. The expectations hypothesis posits that a representative agent in the

bond market should be indifferent about the choice to invest his money in a long-term bond

or in the short rate over the same period. A direct implication of this argument is that when

the spread between the long rate and short rate is large, the long rate tends to rise further

(or the long bond price tends to fall), because otherwise the representative agent could not

be indifferent about the investment choice between the long-term bond and the short rate.

Despite its intuitive appeal, this prediction is rejected by many empirical studies, e.g., Fama

and Bliss (1987), Campbell and Shiller (1991) and, more recently, Cochrane and Piazzesi

(2005). By regressing the monthly change of the yield of a zero coupon bond onto the spread

between the bond yield and one-month short rate, Campbell and Shiller (1991) find negative

coefficients for bonds with maturities ranging from 3 months to 10 years.

The literature often attributes the failure of the expectations hypothesis to time-varying

risk premia. Dai and Singleton (2002) find that certain classes of affine term structure models

with time-varying risk premia are able to match the aforementioned bond yield regression

results. However, the economic determinants of the time-varying risk premia still remain

elusive. Some studies, e.g., Wachter (2006) and Dai (2003), argue for the time-varying risk

preference of the representative agent, while our model proposes a new mechanism based

on agents’ heterogeneous expectations. The intuition is quite simple. When agents’ wealth

weighted belief about lt is high relative to the econometrician’s, the yield spread between a

long-term bond yield and the short rate tends to be large. Proposition 5 provides that the risk

premia associated with the information shocks on lt are negative in this case. Since the long-

term bond price loads negatively on these shocks (bond prices are inversely related to lt), the

expected bond return from the econometrician’s view point is high, or equivalently, the bond

yield is expected to fall. Thus, the time-varying risk premia in our model lead to a negative

relationship between the yield spread and future bond yield changes. In Section 5, we provide

a simulation exercise to show that, with reasonable parameter values, this mechanism can
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generate bond yield regression coefficients close to those obtained in empirical studies.

3.4 Convex price aggregation

Aggregating agents’ heterogeneous bond valuations also directly affects the levels of equilib-

rium bond prices. Proposition 2 shows that the price of a bond in a homogeneous economy

is a convex function of agents’ beliefs about lt:

BH
(
τ, ft, l̂

i
t

)
∼ e−al(τ)l̂it .

This property is a natural outcome of the fact that the bond price is a convex function of

the bond yield. Since the price of the bond in a heterogeneous economy is a wealth weighted

average of each group’s bond valuation in the corresponding homogeneous economy, Jensen’s

inequality implies that agents’ belief dispersion would increase the bond price.7 We state this

effect in Proposition 6, with the proof in Appendix A.8.

Proposition 6 Bond prices increase in belief dispersion. Furthermore, the price increases

are larger for bonds with longer maturities.

It is important to note that the effect of belief dispersion on bond prices does not rely

on short-sales constraints. The existing literature, e.g., Miller (1977), Harrison and Kreps

(1978), Morris (1996), Chen, Hong and Stein (2002) and Scheinkman and Xiong (2003),

has shown that when short-sales of assets are prohibited or costly, investors’ heterogeneous

beliefs would cause asset overvaluation because asset prices are determined by optimists’

beliefs with pessimists sitting on the sideline. Our model shows that even without short-sales

constraints, heterogeneous beliefs could still increase bond prices through the aggregation

of agents’ (convex) bond valuations.8 We have also examined various numerical examples

and find that, while this effect is small when agents’ beliefs are close to each other, it could

become large when agents’ belief dispersion is great.9

7Note that even though agents’ belief dispersion increases bond prices, shorting bonds does not provide an
arbitrage profit. This is because that bond prices fluctuate randomly before maturities and the interim price
volatility is particularly high when belief dispersion is larger, as shown in Proposition 4.

8Yan (2006) analyzes a similar mechanism on the aggregation of noise trading.
9To save space, we do not report these examples in the paper, but they are available upon request.
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There is some evidence supporting the effect of heterogeneous expectations on bond prices.

Bomberger and Frazer (1981) examine the relationship between long-term interest rates and

dispersion of inflation forecasts in the Livingston survey data. They find that the 3 to 5-year

rate and 10-year rate are both negatively related to the dispersion in inflation forecasts. Their

result implies that belief dispersion increases bond prices, thus is consistent with our model.

4 Reconciling with Representative-Agent Models

Standard results suggest that we can construct a representative agent to replicate price dy-

namics in a complete-markets equilibrium with heterogeneous agents. Does this mean that

we can simply focus on the representative agent’s belief process and ignore the heterogeneity

between agents? This section explains why the answer is no.

We could construct a representative agent model to replicate the above equilibrium.10 If

we restrict the representative agent to having the same logarithmic preference as the group-1

and group-2 agents, we obtain the same equilibrium as before by “twisting” the representative

agent’s belief, as summarized in the following proposition with a proof in Appendix A.9.

Proposition 7 Suppose that we want to construct a representative agent model to replicate

the equilibrium in Section 2, and that the representative agent has the same logarithmic pref-

erence as agents in the heterogeneous economy. Then, at any point of time, the representative

agent’s belief about lt, l̂At , has to be the wealth weighted average belief of group-1 and group-2

agents:

l̂At = ω1
t l̂

1
t + ω2

t l̂
2
t . (30)

It is important to stress that the representative agent’s belief must equal the wealth

weighted average belief not only at one point of time, but also at all future points. Thus,

over time, the representative agent’s belief would change in response to not only the belief

fluctuation of each group, but also to the relative wealth fluctuation caused by trading between

the two groups. Note that the relative wealth fluctuation can be affected by some factors,

which are unrelated to lt. In this case, although any rational Bayesian investor’s belief
10See Jouini and Napp (2005) for a recent discussion on the existence of a “consensus” belief for the

representative agent in markets with agents holding heterogeneous beliefs.
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about lt should not respond to these factors, Proposition 7 suggests that the representative

agent’s belief would respond to these unrelated factors because they affect the relative wealth

distribution.11

Another issue concerns the interpretation of the uncertainty faced by this constructed

representative agent. Intuitively, in the presence of agents with heterogeneous expectations,

there are two distinct concepts: belief dispersion and uncertainty. Belief dispersion captures

the interpersonal variation in expectations, while uncertainty represents the intrapersonal

variation.12 However, these two concepts collapse into one when we construct the represen-

tative agent. We illustrate this point by applying Ito’s lemma to equation (30) to derive the

representative agents’ belief dynamics from the econometrician’s view point:

dl̂At = −λl

(
l̂Rt − l̄

)
dt−

[
λl +

(
λ2

f

σ2
f

+
2
σ2

s

)(
γ̄l +

g2
l ηt

(ηt + 1)2

)
+

φlσl

σs

](
l̂At − l̂Rt

)
dt

+
λf

σf

(
γ̄l +

g2
l ηt

(ηt + 1)2

)
dẐR

f +
1
σs

(
γ̄l +

g2
l ηt

(ηt + 1)2
+

ηt

ηt + 1
φlσlσs

)
dẐR

s1

+
1
σs

(
γ̄l +

g2
l ηt

(η + 1)2
+

1
ηt + 1

φlσlσs

)
dẐR

s2 (31)

where dẐR
f , dẐR

s1, and dẐR
s2 are independent information shocks to the econometrician.

One fact we extract from the above formula is that the uncertainty faced by this represen-

tative agent reflects both individual investors’ uncertainty and the belief dispersion among

them. More precisely, we can compare the representative agent’s belief process with that of

an individual agent in equation (8). The representative agent’s response coefficient to the

information shock in dft is λf

σf

(
γ̄l + g2

l ηt

(ηt+1)2

)
, while a group-i agent’s response coefficient is

λf

σf
γ̄l. The difference in these two coefficients suggests that we can interpret γ̄l +

g2
l ηt

(ηt+1)2
as the

11For example, when we extend our model to incorporate price inflation and agents’ speculation about
future inflation rates in Appendix B, the two groups’ relative wealth also fluctuates with shocks related to
future inflation rates. In this case, the representative agent’s belief about future technology returns would also
respond to these inflation related shocks, even though they contain no information about future technology
returns.

12Belief dispersion is often taken for granted as a symptom of greater uncertainty. However, these are two
distinct concepts. However, Zarnowitz and Lambros (1987) clarify this conceptual difference, and empirically
examine it using survey data from the Survey of Professional Forecasters. Since this survey also asks re-
spondents to supplement their point estimates with estimates of the probability that GDP and the implicit
price deflator will fall into various ranges, Zarnowitz and Lambros measure uncertainty from these probability
estimates. By comparing the uncertainty measure with measures of interpersonal forecast dispersion, they
find only weak evidence that uncertainty and belief dispersion are positively correlated.
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representative agent’s uncertainty level. Hence, the representative agent’s uncertainty reflects

both individual investors’ uncertainty γ̄, and the belief dispersion among them |gl|. When

the belief dispersion increases, the representative agent would act as if there was greater

uncertainty even though the uncertainty faced by each agent remains unchanged. The same

effect also exists in the representative agents’ response coefficients to the information shocks

in dS1 and dS2.

In summary, we could construct a representative agent model to replicate the model with

heterogeneous expectations. However, this does not mean that the effects of heterogeneous

expectations are not important. First, one has to be cautious when interpreting the con-

structed representative agent’s belief process as representing a realistic learning process. In

the presence of heterogenous beliefs, the representative agent’s belief about a fundamental

variable has to respond to informationally irrelevant factors. Moreover, the “uncertainty”

faced by this representative agent reflects both individual investors’ uncertainty and the belief

dispersion among them. Second, incorporating agents’ heterogeneous expectations and the

resulting speculation and wealth fluctuation can help resolve several challenges to standard

representative-agent models, such as large bond yield volatility and time-varying risk premia,

as we discussed in the previous section.

5 Calibration

In this section, we illustrate the impact of agents’ heterogeneous expectations on bond mar-

kets by simulating 50 years of monthly bond yield data based on a set of calibrated model

parameters. In particular, we highlight the magnitudes of the volatility amplification effect

and of the bond-yield regression result.

In our model, the short rate process is independent of agents’ heterogeneous expectations

of future rates. Applying Ito’s lemma to the short rate (rt = ft − σ2
I ) provides that

drt = −λf [rt − (lt − σ2
I )]dt + σfdZf .

The short rate mean-reverts to a time-varying long-run mean lt − σ2
I . Baldduzzi, Das and

Foresi (1998) and Fama (2006) estimate two-factor interest rate models with the same struc-

ture as described above. Baldduzzi, Das and Foresi find that the long-run mean of the short
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rate moves slowly with a mean-reversion parameter as low as 0.03. Fama argues that this

long-run mean process might be nonstationary or have a mean reversion parameter close to

zero. Since the mean-reversion parameter of this long-run mean process corresponds to λl,

we choose λl to be 0.02, as a compromise between these two studies. This number implies

that it takes log(2)/λl = 34.66 years for the effect of a shock to the long-run mean of the

short rate to die out by half. Baldduzzi, Das and Foresi also show that the mean-reversion

parameter of the short rate (λf in our model) ranges from 0.2 to 3 in different sample periods

between 1952 and 1993. Thus, we choose a value of 1.5 for λf . This number implies that it

takes log(2)/λf = 0.46 year for the difference between the short rate and its long-run mean

to converge by half.13

We choose σf = 1.2% to match the short rate volatility in the data, and set σl = 1.5% so

that the implied volatility of each agent’s belief about lt is 0.44% per month, in the middle

of the range from 0.1% to 0.6% estimated by Balduzzi, Das, and Foresi (1998). Furthermore,

since σI measures agents’ aggregate consumption volatility (Theorem 1), we choose σI = 2%

to match the aggregate consumption volatility in the data.14

Parameters φ and σs directly affect the amount of belief dispersion between the two

groups. We choose φl = 0.7 and σs = 5% to generate some modest belief dispersion: In

our simulated data, the average dispersion between the two groups, |gl|, is only 0.67%. This

amount is rather modest compared with the typical dispersion in survey forecasts of future

inflation and GDP growth rates (see footnote 2 for examples). We choose the following

initial conditions for our simulation. The two groups have an equal wealth share at t = 0,

i.e., η0 = 1; Both f0 and l0 start with their steady state value l̄ and the two groups also

share an identical prior belief equal to the steady value l̄: f0 = l0 = l̂10 = l̂20 = l̄ = 5%. All the

model parameters are summarized below:

λl = 0.02, λf = 1.5, σf = 1.2%, σl = 1.5%, σI = 2%,

φl = 0.7, σs = 5%, η0 = 1, f0 = l0 = l̂10 = l̂20 = l̄ = 5%. (32)
13Note that these two mean-reversion parameters are important for agents’ belief dispersion effect. Intu-

itively, a larger λl parameter causes lt to revert faster to its mean, therefore making agents’ belief dispersion
about lt less important for bond prices; while a larger λf parameter causes ft to revert faster to lt, therefore
making agents’ belief dispersion about lt more important for bond prices.

14One could also choose σI to match the volatility of the aggregate production. This would have little or
no impact on the volatility amplification effect and the bond-yield regression result.
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Figure 1: The term structure of bond yield volatility. This figure is based on a simulation
exercise using 50 years of bond yields, using parameters specified in equation (32). The
volatility is monthly volatility measured in basis points. The solid line plots the volatility
curve in a heterogeneous economy with two groups of agents holding different beliefs, while
the dash line plots the volatility curve in a homogeneous economy with a representative agent
holding the equal weighted average belief of the two groups in the heterogeneous economy.

Based on these model parameters, we simulate a heterogeneous economy with two groups

of agents, as described in our model, for 50 years at a daily interval.15 The length of 50 years

roughly matches the sample duration used in most empirical studies of the yield curve. We

extract bond yields for various maturities at the end of each month. The solid line in Figure

1 plots the monthly bond yield volatility for different maturities from zero to 10 years. As the

maturity increases from zero to five year, the yield volatility increases from 37 to above 40

basis points. As the maturity further increases, the yield volatility then starts to fall slightly.

The magnitude and shape of this volatility curve is similar to those estimated in Piassezi

(2005) and Dai and Singleton (2003).
15We also perform the simulation 1000 times and the average results across the 1000 paths are similar those

reported here.
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To further illustrate the volatility amplification effect discussed in Section 3.2, we compute

the volatility curve in a homogeneous economy in which the representative agent holds the

equal weighted average belief of the two groups in the simulated heterogeneous economy.

Note that the representative agent’s belief reflect the changes in the two groups’ beliefs, but

not their relative wealth fluctuation. As a result, the volatility curve in the homogeneous

economy does not capture the volatility amplification effect caused by the two groups’ relative

wealth fluctuation. The dashed line in Figure 1 plots the volatility curve in the homogeneous

economy. While this line maintains a similar shape as the solid line, it is always below

the solid line. The difference between the solid and dashed lines measures the volatility

amplification effect. This effect is small at short maturities, but increases dramatically from

zero to near 5 basis points per month as maturity increases from zero to 5 years. This number

shows that the volatility amplification caused by agents’ relative wealth fluctuation could be

economically meaningful even for a modest amount of belief dispersion.

Based on the simulated bond yield data in both the heterogeneous and homogeneous

economies, we further regress the change over the next month in the yield of a n−month zero

coupon bond onto the yield spread between the yield and 1-month rate:

Yt+1(n− 1)− Yt(n) = αn + βn
Yt(n)− Yt(1)

n− 1
, (33)

where Yt(n) is the n-month yield at month t, αn is the regression constant, and βn is the

regression coefficient. This regression is directly motivated by the expectations hypothesis

and has been examined by numerous empirical studies, e.g., Campbell and Shiller (1991).

Intuitively, Yt(n)−Yt(1)
n−1 represents the excess yield from holding the n-month bond over the 1-

month rate each month. The expectations hypothesis suggests that a representative investor

in the bond markets must be indifferent about investing in the bond or in the short rate, thus

he must expect the bond price to fall or the bond yield to rise by the same amount over the

next month:
Yt(n)− Yt(1)

n− 1
= Et[Yt+1(n− 1)− Yt(n)].

Hence, the expectations hypothesis provides a null hypothesis for the regression exercise:

βn = 1.
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n 2 3 6 12 24 48 120

A. Results from Campbell-Lo-MacKinlay
βn 0.003 −0.145 −0.835 −1.435 −1.448 −2.262 −4.226
s.e. (0.191) (0.282) (0.442) (0.599) (1.004) (1.458) (2.076)

B. Results from our simulation (heterogeneous economy)
βn −0.644 −0.678 −0.786 −1.028 −1.574 −2.693 −4.644
s.e. (0.359) (0.372) (0.417) (0.524) (0.777) (1.321) (2.764)

C. Results from our simulation (homogeneous economy)
βn −0.325 −0.344 −0.406 −0.546 −0.859 −1.440 −1.932
s.e. (0.416) (0.429) (0.473) (0.577) (0.820) (1.336) (2.595)

Table 1: The coefficients of yield change regressions. This table reports the βn coefficients
and their standard errors of regressions in equation (33) for bond maturities of 2 months, 3
months, 6 months, 12 months, 24 months, 48 months and 120 months. Panel A is taken from
Table 10.3 of Campbell, Lo and MacKinlay (1997), which uses U.S. treasury bond yield data
from 1952-1991. Panel B uses the 50-year bond yield data extracted from our simulation of
a heterogeneous economy with two groups of agents holding different beliefs. Panel C uses
the yield data constructed from a homogeneous economy with a representative agent holding
the equal weighted average belief of the two groups in the heterogeneous economy.

Table 1 reports the regression coefficients. Panel A takes the empirical results from Table

10.3 of Campbell, Lo and MacKinlay (1997), which uses 40 years of U.S. treasury bond yield

data from 1952-1991. The panel shows that βn starts with a value of 0.003 for 2-month yield,

and then monotonically decreases as the bond maturity increases to 3 months, 6 months, 1

year, 2 years, 4 years and 10 years. βn eventually takes a value of -4.226 for 10-year yield.

All these coefficients are significantly different from 1 (the null), and the coefficient of 10-year

yield is significantly negative. Taken together, these regression coefficients clearly reject the

expectations hypothesis. Panel B reports the regression results using the 50-year bond yield

data from our simulation of the heterogeneous economy. The regression coefficient decreases

monotonically from -0.644 to -4.644 as the bond maturity increases from 2 months to 10 years,

with a similar trend and magnitude to that in Panel A. Therefore, extending a standard asset

pricing model with heterogeneous expectations offers a potential explanation for the failure

of the expectations hypothesis in actual data.

To further examine the source of this result, in Panel C, we report the regression results
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using bond yield data constructed from the homogeneous economy in which the represen-

tative agent holds the equal weighted average belief. In this case, the regression coefficient

ranges from -0.325 to -1.932 when the bond maturity increases from 2 months to 10 years.

The magnitude of the difference in the corresponding coefficients in Panels B and C is sub-

stantial. This difference also becomes statistically significant when we increase the length

of the simulation period. As we discussed before, the simulated homogeneous economy fails

to account for the relative wealth fluctuation between the two groups in the simulated het-

erogeneous economy. The difference in the regression coefficients between the two economies

shows that the relative wealth fluctuation between the two groups plays an important role in

generating the regression result in Panel B.

6 Conclusion and Further Discussion

This paper provides a dynamic equilibrium model of bond markets, in which two groups of

agents hold heterogeneous expectations about future economic conditions. Heterogeneous

expectations motivate agents to take speculative positions against each other. We are able

to solve the equilibrium in a closed form. In particular, the price of a bond equals the

wealth weighted average of bond prices in homogeneous economies, in each of which only

one group of agents is present. Our model shows that heterogeneous expectations can not

only lead to speculative trading, but can also help resolve several challenges facing standard

representative-agent models of the yield curve. First, the relative wealth fluctuation between

the two groups of agents caused by their speculative positions amplifies bond yield volatility,

thus providing an explanation to the “excessive volatility puzzle” in the bond markets. In

addition, the fluctuation in the two groups’ expectations and relative wealth also generates

time-varying risk premia, which in turn helps explain the failure of the expectation hypothesis.

These implications, essentially induced by trading between agents, highlight the importance

of incorporating heterogeneous expectations into economic analysis of bond markets.

Our model also provides a tractable but non-affine yield curve structure, which is ready

for econometric estimation. This structure simultaneously embeds stochastic volatility and

time-varying risk premia. Both features, as emphasized by Dai and Singleton (2003) and

Duffee (2002), are crucial for capturing the actual yield curve dynamics. Our model provides
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several testable implications of belief dispersion. First, higher belief dispersion increases bond

market trading volume. Second, higher belief dispersion increases bond yield volatility and

reduces bond market liquidity. Third, in an economy or a time period with greater belief

dispersion among agents, the spread between long-term bond yield and short rate has a

stronger predictive power for future yield changes. Finally, higher belief dispersion reduces

bond yields, especially for bonds with longer maturities and when belief dispersion is large.

There is now a burgeoning empirical literature analyzing the effects of agents’ heteroge-

neous beliefs on stock markets (see Hong and Stein (2006) for a recent survey of these studies).

There is, however, little effort analyzing the effects on bond markets. As we discussed in the

introduction, a substantial amount of belief dispersion exists in various surveys of agents’

expectations of future economic conditions. These survey data invite future studies of the

impacts of belief dispersion on bond markets.

The existence of heterogeneous expectations also has potential implications for monetary

policies. Usually, a monetary authority only directly controls the overnight interest rate.

For the overnight interest rate to affect long term interest rates and other prices, the links

rely almost entirely on market expectations for the future course of short-term rates. Many

monetary economists have pointed out the importance of managing market expectations in

monetary policies, e.g., Blinder (1998) and Bernanke (2004). Consistent with this view, our

model highlights that dispersion in market expectations can directly affect long-term interest

rates and increase their volatility. Heterogeneous expectations could also affect the broad

economy. For instance, a recent study by Piazzesi and Schneider (2006b) argues that, due

to collateral constraints, households’ heterogeneous expectations about future inflation rates

can lead to housing booms. Thus, if the objective of monetary authorities is to stabilize

prices, our model suggests that they should pay close attention to the dispersion in market

expectations, and reduce this dispersion in their capacity.
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A Some Proofs

A.1 Proof of Theorem 1

The market clearing conditions require that the aggregate investment to the risky technology

is equal to the total wealth in the economy:

2∑

i=1

xi
I(t)W

i
t = Wt.

By substituting agents’ investment strategy in equation (20) and dividing both sides by Wt,

we obtain that
ft − rt

σ2
I

2∑

i=1

ωi
t = 1.

Since
∑2

i=1 ωi
t = 1, we have that rt = ft − σ2

I .

The market clearing conditions also require that the aggregate investment to the security

f is zero:
2∑

i=1

xi
f (t)W i

t = 0.

By substituting agents’ investment strategy in equation (20) and dividing both sides by Wt,

we obtain that
2∑

i=1

ωi
t

µ̂i
f − rt

σ2
f

=
2∑

i=1

ωi
t

µf (t)− λf (ft − l̂it)− rt

σ2
f

= 0.

Thus,

µf (t) = rt +
2∑

i=1

ωi
tλf (ft − l̂it) = rt + λfft − λf

2∑

i=1

ωi
t l̂

i
t.

Following a similar procedure, we can also derive µs1(t) and µs2(t).

Since the risky technology is the only storage tool in the economy and every agent con-

sumes a fraction β of his wealth, the aggregate wealth fluctuates according to

dWt

Wt
= dIt/It − βdt = (ft − β) dt + σIdZI(t).

A.2 Proof of Proposition 1

Under group-2 agents’ probability measure, applying Ito’s lemma to ηt we obtain

dηt

ηt
=

dW 1
t

W 1
t

− dW 2
t

W 2
t

+
(

dW 2
t

W 2
t

)2

−
(

dW 1
t

W 1
t

)(
dW 2

t

W 2
t

)
. (34)
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By substituting group-2 agents’ consumption and investment strategies into equation (19),

we obtain their wealth process:

dW 2
t

W 2
t

=

[
rt − β +

(
ft − rt

σI

)2

+
(
~µ2

t − rt

)′ · Σ−2 · (~µ2
t − rt

)
]

dt +
(
~µ2

t − rt

)′ · Σ−1 · d~Z2 (t) .

By substituting group-1 agents’ consumption and investment strategies into equation (19)

and expressing the security returns in group-2 agents’ probability measure, we obtain group-

1 agents’ wealth process as

dW 1
t

W 1
t

=

[
rt − β +

(
ft − rt

σI

)2

+
(
~µ1

t − rt

)′ · Σ−2 · (~µ2
t − rt

)
]

dt +
(
~µ1

t − rt

)′ · Σ−1 · d~Z2 (t) .

By substituting dW 2
t

W 2
t

and dW 1
t

W 1
t

into equation (34), we obtain

dηt

ηt
=

[(
~µ1

t − ~µ2
t

)′ · Σ−2 · (~µ2
t − rt

)]
dt +

(
~µ1

t − ~µ2
t

)′ · Σ−1 · d~Z2 (t)

+
[(

~µ2
t − rt

)′ · Σ2 · (~µ2
t − rt

)− (
~µ1

t − rt

)′ · Σ2 · (~µ2
t − rt

)]
dt

=
(
~µ1

t − ~µ2
t

)′ · Σ−1 · d~Z2 (t) .

Equation (18) implies that (
~µ1

t − ~µ2
t

)′ = (λfgl, gl, gl) .

Then, by substituting
(
~µ1

t − ~µ2
t

)′ and Σ−1 into dηt

ηt
above, we obtain equation (26).

For any random variable XT with E1[XT ] < ∞, we can define YT = W 1
T

W 1
t
XT . Suppose

there is a financial security which is a claim to the cash flow YT . Then group-1 agents’

valuation for this security is

E1
t

[
u′(c1

T )
u′(c1

T )
YT

]
= E1

t

[
c1
t

c1
T

YT

]
= E1

t

[
W 1

t

W 1
T

YT

]
= E1

t [XT ] ,

where the second equality follows from these agents’ consumption rule c1
t = βW 1

t . Similarly,

investor 2’s valuation for this security is

E2
t

[
u′(c2

T )
u′(c2

T )
YT

]
= E2

t

[
c2
t

c2
T

YT

]
= E2

t

[
W 2

t

W 2
T

YT

]
= E2

t

[
ηT

ηt
XT

]
.

In the absence of arbitrage, group-1 and group-2 agents should have the same valuation:

E1
t [XT ] = E2

t

[
ηT

ηt
XT

]
.
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A.3 Proof of Theorem 2

To derive asset prices, we start with agents’ stochastic discount factor. When agents are

homogeneous, they share the same stochastic discount factor, which is determined by their

marginal utility of consumption. With a logarithmic preference, agents consume a fixed

fraction of their wealth and the stochastic discount factor is inversely related to their aggregate

wealth. More specifically, the stochastic discount factor, which we denote by MH
t , is

MH
t

MH
0

= e−βt u′(ct)
u′(c0)

= e−βt c0

ct
= e−βt W0

Wt
. (35)

When agents have heterogeneous beliefs about the probabilities of future states, they have

different stochastic discount factors. However, in the absence of arbitrage, they have to share

the same security valuations. For our derivation, we will use the probability measure and the

stochastic discount factor of group-2 agents. Group-2 agents’ consumption is

c2
t = βW 2

t =
ω2

t∑2
i=1 ω2

t

βWt =
1

ηt + 1
βWt.

The implied stochastic discount factor is

Mt

M0
= e−βt u

′(c2
t )

u′(c2
0)

= e−βt c
2
0

c2
t

= e−βt W0

Wt

ηt + 1
η0 + 1

= e−βt W0

Wt

(
ηt

η0 + 1
+

1
η0 + 1

)

= e−βt W0

Wt

(
ω1

0

ηt

η0
+ ω2

0

)

=
(

ω1
0

ηt

η0
+ ω2

0

)
MH

t

MH
0

.

Thus, at time t, the price of a financial security that pays off XT at time T is

Pt = E2
t

[
MT

Mt
XT

]

= E2
t

[
e−β(T−t) Wt

WT

(
ω1

t

ηT

ηt
+ ω2

t

)
XT

]

= ω1
t E

2
t

[
e−β(T−t) Wt

WT

ηT

ηt
XT

]
+ ω2

t E
2
t

[
e−β(T−t) Wt

WT
XT

]
.

Since ηT
ηt

is the Randon-Nikodyn derivative of group-1 agents’ probability measure with re-

spect to the measure of group-2 agents (Proposition 1),

E2
t

[
e−β(T−t) Wt

WT

ηT

ηt
XT

]
= E1

t

[
e−β(T−t) Wt

WT
XT

]
.
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Thus,

Pt = ω1
t E

1
t

[
e−β(T−t) Wt

WT
XT

]
+ ω2

t E
2
t

[
e−β(T−t) Wt

WT
XT

]

= ω1
t E

1
t

[
MH

T

MH
t

XT

]
+ ω2

t E
2
t

[
MH

T

MH
t

XT

]
,

where Ei
t

[
MH

T

MH
t

XT

]
is the price of the security in a homogeneous economy where only group-i

agents are present.

A.4 Proof of Proposition 2

The price of the bond in a homogeneous economy has the following function form:

Bi
t = BH

(
τ,ft, l̂

i
t

)
. (36)

The bond’s return has to satisfy the following relationship with the stochastic discount factor

in the homogeneous economy:

Ei
t

(
dBH

BH

)
+ Ei

t

(
dMH

t

MH
t

)
+ Ei

t

(
dBH

BH

dMH
t

MH
t

)
= 0. (37)

Applying Ito’s lemma to equations (35) and (36) provides

dMH
t

MH
t

=
(−ft + σ2

I

)
dt− σIdZI ,

and

dBH

BH
=

{
−BH

τ

BH
− λf (ft − l̂it)

BH
f

BH
− λl(l̂it − l̄)

BH
l

BH
+

1
2
σ2

f

BH
ff

BH

+
1
2

[
σ2

l − 2λlγ̄l

] BH
ll

BH
+ λf γ̄l

BH
fl

BH

}
dt +

[
ρθσθ

BH
θ

BH
+ ρπσπ

BH
π

BH

]
dZI(t)

+

(
σf

BH
f

BH
+

λf γ̄l

σf

BH
l

BH

)
dẐi

f (t) +
(

γ̄l

σs
+ φlσl

)
BH

l

BH
dẐi

s1 +
γ̄l

σs

BH
l

BH
dẐi

s2.

By substituting dBH

BH and dMH
t

MH
t

into equation (37), we obtain the following equation:

0=−BH
τ

BH
−λf (ft− l̂it)

BH
f

BH
−λl(l̂it− l̄)

BH
l

BH
+

1
2
σ2

f

BH
ff

BH
+

1
2

(
σ2

l − 2λlγ̄l

)BH
ll

BH
+λf γ̄l

BH
fl

BH
− ft +σ2

I

(38)
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We conjecture the following solution

BH
(
τ, ft, l̂

i
t

)
= e−af (τ)ft−al(τ)l̂it−b(τ).

By substituting the conjectured solution into the differential equation in (38) and collecting

common terms, we obtain the following algebra equation:

0 =
[
a′f (τ) + λfaf (τ)− 1

]
ft +

[
a′l(τ)− λfaf (τ) + λlal(τ)

]
l̂it

+[b′(τ)− λl l̄al(τ) +
1
2
σ2

faf (τ)2 +
1
2

(
σ2

l − 2λlγ̄l

)
al(τ)2 + λf γ̄laf (τ)al(τ) + σ2

I ].

Since this equation has to hold for any values of ft and l̂it, their coefficients must be zero.

Thus, af (τ), al(τ), and b (τ) satisfy the following differential equations

a′f (τ) + λfaf (τ)− 1 = 0,

a′l(τ)− λfaf (τ) + λlal(τ) = 0,

b′(τ)− λl l̄al(τ) +
1
2
σ2

faf (τ)2 +
1
2

(
σ2

l − 2λlγ̄l

)
al(τ)2 + λf γ̄laf (τ)al(τ) + σ2

I = 0,

subject to the boundary conditions

af (0) = al(0) = b (0) = 0.

Solving these equations provides the bond price formula given in Proposition 2.

A.5 Proof of Proposition 3

Agents’ belief dispersion about lt leads to speculative positions in risky securities f , S1 and

S2. We can directly compute group-2 agents’ positions in these securities. Equation (20)

shows that their position in security f is

nf (t) = W 2
t

µ̂2
f (t)− rt

σ2
f

= Wtω
2
t

µf (t)− λf

(
ft − l̂2t

)
− rt

σ2
f

.

By substituting in µf (t) from Theorem 1, we obtain that

nf (t) =
λf

σ2
f

Wt
ηt

(ηt + 1)2
gl (t) .

Similarly, we can derive group-2 agents’ positions in securities S1 and S2:

ns1 (t) = ns2 (t) =
1
σ2

s

Wt
ηt

(ηt + 1)2
gl (t) .
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Note that group-2 agents’ positions in all these securities are proportional to the same ran-

dom variable Wt
ηt

(ηt+1)2
gl (t). This implies that these positions have the same time-series

properties. As the belief dispersion |gl(t)| widens, group-2 agents take larger positions in

securities f , S1 and S2.

Since group-2 agents have to trade with group-1 agents to change their positions, the

absolute values of the changes in group-2 agents’ positions determine trading volume in the

bond markets. In our model, the changes in agents’ positions follow diffusion processes. It is

well known that diffusion processes have infinite variation over a given time interval. However,

since actual trading occurs in discrete time, it is reasonable to analyze trading volume through

the change in agents’ positions across a finite time interval. Since the absolute value of a

realized position change across a finite but small interval is finite and on average increases

with the volatility of the position change, this motivates us to use the volatility as a measure

of trading volume.

Here, we examine the change in group-2 agents’ position in security f , dnf (t), whose

diffusion terms are

λf

σ2
f

[
ηt

(ηt + 1)2
gl (t) dWt −Wtgl (t)

ηt − 1
(ηt + 1)3

dηt + Wt
ηt

(ηt + 1)2
dgl (t)

]
.

The fluctuation in the position is determined by the fluctuations in the aggregate wealth, in

the wealth ratio between the two groups, and in the difference in agents’ beliefs.

By deriving the diffusion processes of dWt, dηt and dgl (t), and substituting them into the

equation above, we can derive the variance of the position change as

V ar [dnf (t)] =

[
λ2

fσ2
I

σ4
f

(Wt)
2 η2

t

(ηt + 1)4
g2
l (t) +

λ4
f

σ6
f

(Wt)
2 (ηt − 1)2

(ηt + 1)6
g4
l (t)

+
2λ2

f

σ2
sσ

4
f

(Wt)
2 (ηt − 1)2

(ηt + 1)6
g4
l (t) +

2λ2
fφ2

l σ
2
l

σ4
f

(Wt)
2 η2

t

(ηt + 1)4

]
dt

It is direct to see that the variance of the position change increases with g2
l (t). Thus, trading

volume of security f increases with agents’ belief dispersion.

A.6 Proof of Proposition 4

By the definition of bond yield Yt(τ) = − 1
τ log(Bt), its volatility is proportional to that of

the bond return:

V ol[dY (τ)t] =
1
τ
V ol(dBt/Bt).
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Applying Ito’s lemma to equation (29) provides the following diffusion terms of dBt
Bt

:

−
[
af (τ)σf + al(τ)λfσ−1

f γ̄l −
λf

σf

ηt

(ηt + 1)
gl (t)

e−al(τ)gl(t)/2 − eal(τ)gl(t)/2

ηte−al(τ)gl(t)/2 + eal(τ)gl(t)/2

]
dẐR

f

−
[
al(τ)

(
σ−1

s γ̄l +
φlσl

2

)
− 1

σs

ηt

(ηt + 1)
gl (t)

e−al(τ)gl(t)/2 − eal(τ)gl(t)/2

ηte−al(τ)gl(t)/2 + eal(τ)gl(t)/2

](
dẐR

s1 + dẐR
s2

)

−φlσl
al(τ)

2
ηte

−al(τ)gl(t)/2 − eal(τ)gl(t)/2

ηte−al(τ)gl(t)/2 + eal(τ)gl(t)/2

(
dẐR

s1 − dẐR
s2

)
.

Since the diffusion term in each row is independent to each other, we obtain
(

dBt

Bt

)2

=
[
af (τ)σf + al(τ)λfσ−1

f γ̄l +
λf

σf

ηt

(ηt + 1)
K1(gl)

]2

dt

+2
[
al(τ)

(
σ−1

s γ̄l +
φlσl

2

)
+

1
σs

ηt

(ηt + 1)
K1(gl)

]2

dt +
φ2

l σ
2
l

2
a2

l (τ)K2(gl)dt

where

K1 (gl) = −gl (t)
e−al(τ)gl(t)/2 − eal(τ)gl(t)/2

ηte−al(τ)gl(t)/2 + eal(τ)gl(t)/2
,

and

K2 (gl) =

[
ηte

−al(τ)gl(t)/2 − eal(τ)gl(t)/2

ηte−al(τ)gl(t)/2 + eal(τ)gl(t)/2

]2

.

Direct derivations of K1 and K2 provide that both of them increase as |gl| increases. Thus,

the conditional variance of the bond return increases in the belief dispersion.

A.7 Proof of Proposition 5

We first derive the learning processes of an econometrician who uses the objective probabil-

ity measure. We assume that the econometrician’s belief distribution about lt at time t is

Gaussian and denote it by

lt| {fτ , S1(τ), S2(τ)}t
τ=0 ∼ N

(
l̂Rt , γ̄

R

l

)
,

where l̂Rt is the mean and γ̄R
l is the stationary variance level. Since the econometrician knows

the objective signal processes in equations (4) and (5), γ̄R
l is the positive root to the following

quadratic equation of γ: (
λ2

f

σ2
f

+
2
σ2

s

)
γ2 + 2λlγ − σ2

l = 0,

and the mean of his belief distribution follows

dl̂Rt = −λl(l̂Rt − l̄)dt + λfσ−1
fl γ̄R

l dẐR
f + σ−1

s γ̄R
l dẐR

s1 + σ−1
s γ̄R

l dẐR
s2,
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where

dẐR
f =

1
σf

[
dft + λf (ft − l̂Rt )dt

]
, (39)

dẐR
s1 =

1
σs

[
dS1 (t)− l̂Rt dt

]
, (40)

dẐR
s2 =

1
σs

[
dS2 (t)− l̂Rt dt

]
, (41)

are the surprises in the three corresponding sources of information. These surprises are

independent standard Brownian motions in the econometrician’s probability measure.

Standard results in asset pricing, e.g., Duffie (1996) and Cochrane (2001), state that the

stochastic discount factor’s drift rate is the negative of the risk free rate and its loading on

each source of shock is the negative of the corresponding risk premium term in the equi-

librium. Thus, to derive the stochastic discount factor process from the view point of the

econometrician, we only need to compute the Shape ratios of the risky technology and the

three financial securities in his probability measure.

According to equation (1), the Sharpe ratio corresponding to dZI is σI . To compute the

Sharpe ratio of security f, we first express the ft process in the econometrician’s measure,

using equation (39):

dft = −λf

(
ft − l̂Rt

)
dt + σfdZR

f .

By substituting this equation and equation (22) into equation (15), we obtain that

dpf

pf
=

(
rt + λfft − λf

2∑

i=1

ωi
t l̂

i
t

)
dt− λf

(
ft − l̂Rt

)
dt + σfdZR

f

=

[
rt − λf

(
2∑

i=1

ωi
t l̂

i
t−l̂Rt

)]
dt + σfdZR

f .

Thus, the Sharpe ratio corresponding to shock dZR
f is −λf

σf

(∑2
i=1 ωi

t l̂
i
t−l̂Rt

)
. Following a

similar procedure as above, we can derive the Sharpe ratios corresponding to dZR
s1 and dZR

s2

as − 1
σs

(∑2
i=1 ωi

t l̂
i
t−l̂Rt

)
. By combining these risk premium terms, we obtain the process of

the stochastic discount factor given in Proposition 5.

A.8 Proof of Proposition 6

We define agents’ wealth weighted average belief about lt as

l̂At =
ηt

ηt + 1
l̂1t +

1
ηt + 1

l̂2t .
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Then, we can rewrite the bond price of a τ -year zero-coupon bond as

Bt = e−af (τ)ft−al(τ)l̂At −b(τ)

[
ηt

ηt + 1
e
− 1

η+1
al(τ)gl(t) +

1
1 + ηt

e
η

η+1
al(τ)gl(t)

]
.

We define the expression in the bracket above as

K (gl) =
ηt

ηt + 1
e
− 1

η+1
al(τ)gl +

1
1 + ηt

e
η

η+1
al(τ)gl

Direct differentiation provides that

K ′ (gt) = − ηt

(ηt + 1)2
al(τ)

[
e
− 1

η+1
al(τ)gl − e

η
η+1

al(τ)gl

]

which is positive for gl > 0 and is negative for gl < 0. Thus, K (gl) increases as the difference

in agents’ beliefs widens. This result in turn provides that after controlling for agents’ wealth

weighted average belief l̂At , the bond price increases with agents’ belief dispersion.

Furthermore, it is direct to see that the magnitude of K ′ (gt) increases monotonically with

respect to al(τ). In addition, al(τ) increases with the bond maturity τ . Thus, the increase in

bond price in response to the widening in gl is larger for bonds with longer maturities.

A.9 Proof of Proposition 7

To replicate the price dynamics in the heterogeneous-agent economy, we need to make the

representative agent’s stochastic discount factor is the same as group-2 agents’ after adjusting

for the difference in their probability measures. That is, the representative agent’s marginal

utility have the following property in any future state:

u′(c2
t ) = ηA

t u′(cA
t ),

where u′(c2
t ) is group-2 agents’ marginal utility from consumption, u′(cA

t ) is the representative

agent’s marginal utility, and ηA
t is the change of measure from the representative agent’s

measure to group-2 agents’ measure. Therefore, ηA
t has the following property

dηA
t

ηA
t

=
(
~µA

t − ~µ2
t

)′
Σ−1d~Z2 (t) , (42)

where ~µA
t is the representative agent’s expected returns

~µA
t =




µf (t)− λf (ft − l̂At )
µs1(t) + l̂At
µs2(t) + l̂At


 .
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Note that agents with a logarithmic preference always consume a fixed fraction of their

wealth over time: c2 = βW 2
t and cA = β(W 1

t + W 2
t ). Thus, we can derive the difference in

the probability measures of group-2 agents and the representative agents:

ηA
t =

cA
t

c2
t

=
W 1

t + W 2
t

W 2
t

= ηt + 1.

This further implies that

dηA
t = dηt,

and
dηA

t

ηA
t

=
ηt

ηA
t

dηt

ηt
=

ηt

1 + ηt

dηt

ηt
.

Substituting in the dynamics of dηt

ηt
(Proposition 1), we obtain

dηA
t

ηA
t

=
(

λf
ηt

1+ηt
gl

ηt

1+ηt
gl

ηt

1+ηt
gl.

)
Σ−1d~Z2 (t) . (43)

Comparing (42) and (43), we obtain

l̂At = l̂2t +
ηt

1 + ηt
gl =

ηt

1 + ηt
l̂1t +

1
1 + ηt

l̂2t .

Note that ηt

1+ηt
and 1

1+ηt
are the wealth shares of group-1 and group-2 agents.

B An Extension with Price Inflation

The model presented in the main context has only the real side of the economy, i.e., agents’

consumptions and wealth are all measured in units of consumption good. In this section,

we extend the model with price inflation and agents’ heterogeneous expectations of future

inflation rates. In particular, we assume that the dollar price of one unit of consumption

good, pt, changes over time according to an exogenous process:

dpt

pt
= πtdt, (44)

where πt is the inflation rate.

B.1 Time-varying inflation rate

The inflation rate πt fluctuates according to a linear diffusion process:

dπt = −λπ(πt − θt)dt + σπ

[√
1− ρ2

πdZπ(t) + ρπdZI(t)
]
, (45)
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where λπ is a parameter governing the speed that πt reverts to its long-run mean θt, and σπ

is the volatility of πt. The innovation to πt has a correlation of ρπ with dZI(t), the innovation

to the production growth. Zπ(t) is a standard Brownian motion independent of other shocks

in the economy. The long-run mean of the inflation rate, θt, is unobservable and follows an

Ornstein-Uhlenbeck process:

dθt = −λθ(θt − θ̄)dt + σθ

[√
1− ρ2

θdZθ(t) + ρθdZI(t)
]

, (46)

where λθ is a parameter governing the speed at which θt reverts to its long-run mean θ̄, and

σθ is the volatility of θt. The innovation to θt has a correlation of ρθ with the innovation to

the production growth. Zθ(t) is a standard Brownian motion independent of other shocks

in the economy. Note that θt determines future inflation rates. Intuitively, we can interpret

θt as the central bank’s inflation target, which is not directly observable. We introduce

correlations between the innovations to the inflation related variables and the innovation to

the production growth because such correlations are useful in capturing a positive slope of

the yield curve, as suggested by Piazzesi and Schneider (2006a).

B.2 Agents’ expectation of future inflation rates

Next, we discuss agents’ expectations about future inflation rates. In addition to observing

πt, we assume that agents also receive two public signals Ψ1(t) and Ψ2(t) about the long-run

mean of inflation rates θt. These signals have the following processes:

dΨ1(t) = θtdt + σΨdZΨ1(t), (47)

dΨ2(t) = θtdt + σΨdZΨ2(t). (48)

These two signals have the same noise volatility parameter σΨ, but are subjective to inde-

pendent noise, ZΨ1(t) and ZΨ2(t).

Similar to the setup of the real side, we assume that agents in the two groups have different

perceptions about these two signal processes. Agents in group 1 believe that the innovation

to dΨ1(t) is partially correlated with the shock to dθt, thus under-estimate the amount of

noise in the signal. More specifically, they believe that Ψ1(t) has the following process:

dΨ1(t) = θtdt + σΨ

[
φθdZθ(t) +

√
1− φ2

θdZΨ1(t)
]

, (49)

where parameter φθ ∈ [0, 1] measures the fraction of the innovation to dΨ1(t) that comes

from dZθ(t). Symmetrically, group-2 agents under-estimate the noise in signal Ψ2(t), i.e.,
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they believe that φθ fraction of the innovation to dΨ2(t) comes from dZθ(t):

dΨ2(t) = θtdt + σΨ

[
φθdZθ(t) +

√
1− φ2

θdZΨ2(t)
]

. (50)

In summary, while the two signals Ψ1(t) and Ψ2(t) follow processes (47) and (48) in the

econometrician’s mind, group-1 agents use equations (49) and (48), and group-2 agents use

equations (47) and (50).

Agents’ information set at time t about θt includes {πτ , Ψ1(τ), Ψ2(τ)}t
τ=0 . Again, we

assume that agents have Gaussian prior distributions about θt. As a result, their posterior

distributions are also Gaussian. We focus on the stationary equilibrium, in which agents’

belief variance has already reached its stationary level γ̄θ, which is the positive root to the

following quadratic equation of γ:

[
λ2

π

(1− ρ2
π) σ2

π

+
2

σ2
Ψ

]
γ2 + 2


λθ +

φθσθ

√
1− ρ2

θ

σΨ


 γ − (

1− ρ2
θ

) (
1− φ2

θ

)
σ2

θ = 0.

We denote θ̂i
t as the mean of group-i agents’ posterior distribution about θt at time t (i ∈

{1, 2}). The mean is determined by

dθ̂i
t = −λθ(θ̂i

t−θ̄)dt + ρθσθdZI +
1√

1− ρ2
π

λπσ−1
π γ̄θdẐi

π

+σ−1
Ψ

(
γ̄θ + φθσΨσθ

√
1− ρ2

θ

)
dẐi

Ψi + σ−1
Ψ γ̄θdẐi

Ψj (51)

where j ∈ {0, 1} and j 6= i. dẐi
π, dẐi

Ψi and dẐi
Ψj are “surprises” in the three sources of

information:

dẐi
π =

1
σπ

√
1− ρ2

π

[
dπt − ρπσπdZI(t) + λπ(πt − θ̂i

t)dt
]
,

dẐi
Ψi =

1
σΨ

[
dΨi(t)− θ̂i

tdt
]
,

dẐi
Ψj =

1
σΨ

[
dΨj(t)− θ̂i

tdt
]
.

Note that Ẑi
π, Ẑi

Ψ1 and Ẑi
Ψ2 are independent standard Brownian motions in group-i agents’

probability measure. Group-i agents “over-react” to dẐi
Ψi, the surprise in signal Ψi, and thus

have a different belief from group-j agents.

In group-i agents’ probability measure, variables πt, Ψ1(t) and Ψ2 (t) follow

dπt = −λπ(πt − θ̂i
t)dt + ρπσπdZI(t) + σπ

√
1− ρ2

πdẐi
π, (52)

dΨ1 = θ̂i
tdt + σΨdẐi

Ψ1(t), (53)

dΨ2 = θ̂i
tdt + σΨdẐi

Ψ2(t), (54)
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Thus, the difference in agents’ beliefs about θt translates into different views about the

dynamics of these variables and, subsequently, into different expectations of future inflation

rates.

B.3 Speculation about future inflation

Agents’ disagreement about future inflation rates would lead agents to additional speculative

positions against each other. To complete the markets, we introduce three more financial

securities to facilitate agents’ trading need. For our analysis, we first derive the price processes

and agents’ wealth processes in units of real consumption good, and then derive prices of

nominal bonds by adjusting for price inflation. The price processes of the three additional

financial securities are

dpπ

pπ
= µπ(t)dt + (dπt − ρπσπdZI) , (55)

dpΨ1

pΨ1
= µΨ1(t)dt + dΨ1 (t) , (56)

dpΨ2

pΨ2
= µΨ2(t)dt + dΨ2 (t) . (57)

These securities are continuously marked to the fluctuations of dπt − ρπσπdZI , dΨ1 (t) and

dΨ2 (t), respectively. We call them security π, security Ψ1, and security Ψ2, respectively.

Their contract terms µπ(t), µΨ1(t), and µΨ2(t) are continuously determined so that the ag-

gregate demand for each of the securities is zero at any instant. Now agents can trade in six

securities instead of three. We can repeat our derivation of the equilibrium in Section 2.4, by

solving each agent’s optimal position in each security and then imposing the market clearing

condition for each security. To save space, we skip the proof and summarize the results in

the following theorem.

Theorem 3 In equilibrium, the real short rate is the same as the short rate provided in

Theorem 1. The contract terms µf (t), µs1(t), µs2(t) of securities f, S1 and S2 remain the

same as the corresponding ones in Theorem 1, while the contract terms µπ(t), µΨ1(t), and
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µΨ2(t) of securities π, Ψ1, and Ψ2 are determined by

µπ = rt +
2∑

i=1

ωi
tλπ(πt − θ̂i

t), (58)

µΨ1 = rt −
2∑

i=1

ωi
tθ̂

i
t, (59)

µΨ2 = rt −
2∑

i=1

ωi
tθ̂

i
t. (60)

The aggregate wealth in the economy fluctuates in the same way as given in Theorem 1.

We also repeat our derivation of the wealth ratio process between agents in groups 1 and

2, as in the following proposition.

Proposition 8 If we denote the belief dispersion between agents in groups 1 and 2 about lt

and θt by

gl (t) ≡ l̂1t − l̂2t , gθ (t) ≡ θ̂1
t − θ̂2

t ,

then the wealth ratio process ηt evolves in group-2 agents’ probability measure according to

dηt

ηt
= gl

[
λf

σf
dẐ2

f (t) +
1
σs

dẐ2
s1(t) +

1
σs

dẐ2
s2(t)

]

+gθ

[
λπ

σπ

√
1− ρ2

π

dẐ2
π(t) +

1
σΨ

dẐ2
Ψ1(t) +

1
σΨ

dẐ2
Ψ2(t)

]
(61)

Given agents’ disagreement about future inflation rates, their wealth ratio now also fluc-

tuates with shocks to the monetary side of the economy, such as dẐ2
π(t), dẐ2

Ψ1(t) and dẐ2
Ψ2(t).

More importantly, Proposition 8 shows that both agents’ belief dispersion about future tech-

nology returns (|gl|) and inflation rates (|gθ|) increase the volatility of the wealth ratio.

With the updated wealth ratio process in Proposition 8, we can show that the wealth

ratio can still serve as the Randon-Nikodyn derivative of group-1 agents’ probability measure

with respect to group-2 agents’ measure. Furthermore, we can also show that Theorem 2 still

holds for asset prices measured in units of real consumption good.

B.4 Pricing nominal bonds

Proposition 9 At time t, the dollar price of a nominal bond, which pays off one dollar at

time T , is given by

Bt = ω1
t B

1
t + ω2

t B
2
t ,
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where

Bi
t = Ei

t

[
MH

T

MH
t

pt

pT

]

is the dollar value of the bond in a homogeneous economy, whereby only group-i agents are

present.

Proof. One dollar at time T can buy 1
pT

units of real consumption. Thus, its value in

real term at time t, from the perspective of group-2 agents, is E2
t

[
MT
Mt

1
pT

]
, which corresponds

to ptE
2
t

[
MT
Mt

1
pT

]
in dollars. Although this value is derived from group-2 agents’ perspective,

group-1 agents must share the same valuation to avoid arbitrage. Therefore, the dollar price

of the nominal bond is

Bt = E2
t

[
MT

Mt

pt

pT

]
.

Using the expansion of group-2 agents’ stochastic discount factor given in Theorem 2, we

obtain that

Bt = E2
t

[
MT

Mt

pt

pT

]
= E2

t

[(
ω1

t

ηT

ηt
+ ω2

t

)
MH

T

MH
t

pt

pT

]

= ω1
t E

2
t

[
ηT

ηt

MH
T

MH
t

pt

pT

]
+ ω2

t E
2
t

[
MH

T

MH
t

pt

pT

]

= ω1
t E

1
t

[
MH

T

MH
t

pt

pT

]
+ ω2

t E
2
t

[
MH

T

MH
t

pt

pT

]
.

Note that in deriving the last equation, we use the fact that ηT
ηt

is the Randon-Nikodyn

derivative of group-1 agents’ probability measure with respect to the measure of group-2

agents.

Proposition 9 allows us to express the dollar price of a nominal bond as a wealth weighted

average of each group’s bond valuation in a homogeneous economy, just like how we analyzed

prices of real bonds in the main text. The following proposition provides the price of a

nominal bond in a homogeneous economy.

Proposition 10 In a homogeneous economy with only group-i agents, the dollar price of a

nominal bond with a maturity τ is determined by

BH
(
τ, ft, l̂

i
t,πt,θ̂

i
t

)
= e−af (τ)ft−al(τ)l̂it−aπ(τ)πt−aθ(τ)θ̂i

t−b(τ)
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where af (τ) and al(τ) are given in equations 27 and 28, and

aπ(τ) =
1
λπ

(
1− e−λπτ

)
, (62)

aθ(τ) =
1
λθ

(
1− e−λθτ

)
+

1
λπ − λθ

(
e−λπτ − e−λθτ

)
, (63)

b(τ) =

τ∫

0

F (s)ds, (64)

with

F (s) = λl l̄al(s)− 1
2
σ2

faf (s)2 − 1
2

(
σ2

l − 2λlγ̄l

)
al(s)2 − λf γ̄laf (s)al(s) + λθθ̄aθ(s)

−1
2
σ2

πaπ(s)2 − 1
2

(
σ2

θ − 2λθγ̄θ

)
aθ(s)2 − (λπγ̄θ + ρθρπσθσπ) aπ(s)aθ(s)

−ρθσθσIaθ(s)− ρπσπσIaπ(s)− σ2
I .

Proof. Here we provide a sketch of the proof. The dollar price of the nominal bond in a

homogeneous economy has the following function form:

Bi
t = BH

(
τ,ft, l̂

i
t, πt, θ̂

i
t

)
.

To derive this function, we first convert the price into real term: yt = Bi
t

pt
. Thus, dyt/yt is

the bond’s real return. The real return has to satisfy the following relationship with the

stochastic discount factor in the homogeneous economy:

Ei
t

(
dyt

yt

)
+ Ei

t

(
dMH

t

MH
t

)
+ Ei

t

(
dyt

yt
.
dMH

t

MH
t

)
= 0.

By applying Ito’s lemma to dyt

yt
and dMH

t

MH
t

and substituting these terms back into the equation

above, we obtain the following differential equation for BH
(
τ,ft, l̂

i
t, πt, θ̂

i
t

)
:

0 = −BH
τ

BH
− λf (ft − l̂it)

BH
f

BH
− λl(l̂it − l̄)

BH
l

BH
− λπ(πt − θ̂i

t)
BH

π

BH
− λθ(θ̂i

t − θ̄)
BH

θ

BH
+

1
2
σ2

f

BH
ff

BH

+
1
2

(
σ2

l − 2λlγ̄l

) BH
ll

BH
+ λf γ̄l

BH
fl

BH
+

1
2
σ2

π

BH
ππ

BH
+ (λπγ̄θ + ρθρπσθσπ)

BH
πθ

BH

+
1
2

(
σ2

θ − 2λθγ̄θ

) BH
θθ

BH
− πt − ft + σ2

I − σI

(
ρθσθ

BH
θ

BH
+ ρπσπ

BH
π

BH

)
.

Then, by conjecturing the following solution

BH
(
τ, ft, l̂

i
t,πt,θ̂

i
t

)
= e−af (τ)ft−al(τ)l̂it−aπ(τ)πt−aθ(τ)θ̂i

t−b(τ),
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and substituting this function back into the differential equation, we obtain the following

ordinary differential equations for af (τ), al(τ), aπ(τ), aθ(τ), and b (τ):

a′f (τ) + λfaf (τ)− 1 = 0,

a′l(τ)− λfaf (τ) + λlal(τ) = 0,

a′π(τ) + λπaπ(τ)− 1 = 0,

a′θ(τ)− λπaπ(τ) + λθaθ(τ) = 0,

b′(τ)− λl l̄al(τ)− λθθ̄aθ(τ) +
1
2
σ2

faf (τ)2 +
1
2

(
σ2

l − 2λlγ̄l

)
al(τ)2 + λf γ̄laf (τ)al(τ)

+
1
2
σ2

πaπ(τ)2 +
1
2

(
σ2

θ − 2λθγ̄θ

)
aθ(τ)2 + (λπγ̄θ + ρθρπσθσπ) aπ(τ)aθ(τ)

+σ2
I + ρθσθσIaθ(τ) + ρπσπσIaπ(τ) = 0.

By further imposing the boundary conditions

af (0) = al(0) = aπ(0) = aθ(0) = b (0) = 0,

we obtain the bond price formula given in Proposition 10.

By combining Propositions 9 and 10, we can expand the price of a nominal bond in a

similar way as in equation (29). The only difference is that there are now two sources of belief

dispersion, one about future technology returns and the other about future inflation rates.

Other than this feature, the basic structure of the bond pricing formula is the same. We are

also able to derive, based on the extended model, similar effects of agents’ belief dispersion

as those discussed in Section 3.
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