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1 Introduction

Persistence and low-frequency variability has been an important and ongoing empirical issue

in macroeconomics and finance. Nelson and Plosser (1982) sparked the debate in macroeco-

nomics by arguing that many macroeconomic aggregates follow unit-root autoregressions.

Beveridge and Nelson (1981) used the logic of the unit-root model to extract stochastic

trends from macro series, and showed that variations in these stochastic trends were a large,

sometimes dominant, source of variability in the series. Meese and Rogoff’s (1983) finding,

that random walk forecasts of exchange rates dominated other forecasts, focused attention

on the unit root model in international finance. And in finance, interest in the random

walk model arose naturally because of its relation to the efficient markets hypothesis (Fama

(1970)).

This empirical interest led to the development of econometric methods for testing the

unit root hypothesis, and for estimation and inference in systems that contain integrated

series. More recently, the focus has shifted towards more general models of persistence, such

as the fractional (or long memory) model and the local-to-unity autoregression, which nest

the unit root model as a special case, or in the local level model which allows an alternative

nesting of the I(0) and I(1) models. While these models are designed to explain low-

frequency behavior of time series, fully parametric versions of the models have implications

for higher frequency variation, and efficient statistical procedures thus exploit both low and

high frequency variations for inference. This raises the natural concern about the robustness

of such inference to alternative formulations of higher frequency variability. These concerns

have been addressed by, for example, constructing unit-root tests using autoregressive models

that are augmented with additional lags as in Said and Dickey (1984), or by using various

nonparametric estimators for long-run covariance matrices and (as in Geweke and Porter-

Hudak (1983) (GPH)) for the fractional parameter. As useful as these approaches are,

there still remains a question of how successful these various methods are in controlling for

unknown or misspecified high frequency variability.

This paper takes a different approach. It begins by specifying the low-frequency band of

interest. For example, the empirical analysis presented in Section 4 focuses on frequencies

lower than the business cycle, that is periods greater than eight years. Using this frequency
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cut-off, the analysis then extracts the low-frequency component of the series of interest by

computing weighted averages of the data, where the weights are low-frequency trigonometric

series. Inference about the low-frequency variability of the series is exclusively based on

the properties of these weighted averages, disregarding other aspects of the original data.

The number of weighted averages, say q, that capture the low-frequency variability is small

in typical applications. For example, only q = 13 weighted averages almost completely

capture the lower than business cycle variability in postwar macroeconomic time series (for

any sampling frequency). This suggests basing inference on asymptotic approximations in

which q is fixed as the sample size tends to infinity. Such asymptotics yield a q-dimensional

multivariate Gaussian limiting distribution for the weighted averages, with a covariance

matrix that depends on the specific model of low-frequency variability. Inference about

alternative models or model parameters can thus draw on the well-developed statistical

theory concerning multivariate normal distributions.

An alternative to the methods proposed here is to use time domain filters, such as band-

pass or other moving average filters, to isolate the low-frequency variability of the data. The

advantage of the transformations that we employ is that they conveniently discretize the

low-frequency information of the original data into q data points, and they are applicable

beyond the I(0) models typically analyzed with moving average linear filters.

There are several advantages to focusing exclusively on the low-frequency variability

components of the data. The foremost advantage is that many empirical questions are

naturally formulated in terms of low-frequency variability. For example, the classic Nelson

and Plosser (1982) paper asks whether macroeconomic series such as real GNP tend to revert

to a deterministic trend over periods longer than the business cycle, and macroeconomic

questions involving balanced growth involve the covariability of series over frequencies lower

than the business cycle. Questions of potential mean-reversion in asset prices or real exchange

rates are often phrased in terms of long “horizons” or low frequencies. Because the statistical

models studied here were developed to answer these kinds of low-frequency questions, it is

natural to evaluate the models on these terms.

In addition, large literatures have developed econometric methods in the local-to-unity

framework, and also in the fractional framework. These methods are presumably valid only
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if, at a minimum, their assumed framework accurately describes the low-frequency behavior

of the time series under study. The tests developed here may thus also be used as specification

tests for the appropriateness of these methods. Other advantages, including robustness to

high frequency misspecification and ease of implementation (because the methods rely on

simple properties of the multivariate normal distribution), have already been mentioned.

An important caveat is that reliance on low-frequency methods will result in a loss of in-

formation and efficiency for empirical questions involving all frequencies. Thus, for example,

questions about balanced growth are arguably properly answered by the approach developed

here, while questions about martingale difference behavior involve a constant spectrum over

all frequencies, and focusing only on low frequencies entails a loss of information.

Several papers have addressed other empirical and theoretical questions in similar frame-

works. Bierens (1997) derives estimation and inference procedures for cointegration rela-

tionships based on a finite number of weighted averages of the original data, with a joint

Gaussian limiting distribution. Phillips (2006) pursues a similar approach with an infinite

number of weighted averages. Phillips (1998) provides a theoretical analysis of ’spurious

regressions’ of various persistent time series on a finite (and also infinite) number of deter-

ministic regressors. Müller (2004) finds that long-run variance estimators based on a finite

number of trigonometrically weighted averages is optimal in a certain sense. All these ap-

proaches exploit the known asymptotic properties of weighted averages for a given model of

low-frequency variability. In contrast, the focus of this paper is to test alternative models of

low-frequency variability and their parameters.

The plan of the paper is as follows. The next section introduces the three classes of mod-

els that we will consider: fractional models, local-to-unity autoregressions, and the local level

model, parameterized as an unobserved components model with a large I(0) component and

a small unit root component. This section discusses the choice of weights for extracting the

low-frequency components and the model-specific asymptotic distributions of the resulting

weighted averages. Section 3 develops tests of the models based on these asymptotic distri-

butions. Section 4 uses the methods of Section 3 to study the low-frequency properties of

twenty macroeconomic and financial time series.1 Section 5 offers some concluding remarks.

1As it turns out, slight modifications of the weighting function and test statistics of Sections 2 and 3 result
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2 Models and Low-Frequency Transformations

Let yt, t = 1, · · · , T denote the observed time series, and consider the decomposition of yt

into unobserved deterministic and stochastic components

yt = dt + ut.

This paper focuses on the low-frequency variability of the stochastic component ut; the

deterministic component is modelled as a constant dt = μ, or as a constant plus linear trend

dt = μ+ βt, with unknown parameters μ and β.

We consider three leading models used in finance and macroeconomics to model low-

frequency variability. The first is a fractional (“long-memory”) model; stationary versions

of the model have a spectral density S(λ) ∝ |λ|−2d as λ → 0, where d is the fractional

parameter. We consider stationary and integrated versions of the model. The second model

is the AR model with largest root close to unity; using standard notation we write the

dominant AR coefficient as ρT = (1− c/T ), so that the process is characterized by the local-

to-unity parameter c. For this model, normalized versions of ut converge in distribution to

an Ornstein-Uhlenbeck process with diffusion parameter −c, and for this reason we will often
refer to this model as the OU model. We consider level and integrated versions of the OU

model. The third model that we consider decomposes ut into an I(0) and I(1) component,

ut = wt + (g/T )
Pt

s=1 ηt, where (wt, ηt)
0 are I(0) with long-run covariance matrix σ2I2, and

g is a parameter that governs the relative importance of the I(1) component. In this "Local

Level" (LL) model (c.f. Harvey (1989)) both components are important for the low-frequency

variability of ut. Again, we consider level and integrated versions of the LL model.

2.1 Asymptotic Representation of the Models

As shown in Theorem 1 below, the low-frequency variability implied by each of these models

can be characterized by the stochastic properties of the partial sum process for ut, so for

our purposes it suffices to define each model in terms of the behavior of these partial sums.

in considerable compuational simplifications. These simplifications, while not used in the empirical analysis

reported in Section 4, may be useful to applied researchers and are described in the appendix. A description of

the computational details together with replication files may be found under www.princeton.edu/∼mwatson.
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Letting W denote a Wiener process and σ a generic non-zero scalar constant, the specific

assumptions for each model, and their integrated counterparts are:2

1(a) Stationary fractional model (FR): ut follows a stationary fractional model with

parameter −1/2 < d < 1/2, where T−1/2−d
P[·T ]

t=1 ut ⇒ σW d(·), where W d is a “type I”

fractional Brownian motion defined as W d(s) = A(d)
R 0
−∞
£
(s− λ)d − (−λ)d

¤
dW (λ)+

A(d)
R s
0
(s− λ)ddW (λ) and A(d) =

³
1

2d+1
+
R∞
0

£
(1 + λ)d − λd

¤2
dλ
´−1/2

.

1(b) Integrated fractional model: ut follows a fractional model with parameter 1/2 <

d < 3/2, when the first differences ut−ut−1 (with u0 = 0) follow a stationary fractional
model with parameter d− 1.

2 Local-to-unity model (OU ): ut = ρTut−1 + ηt, ρT = 1− c/T and T−1/2
P[·T ]

t=1 ηt ⇒
σW (·). Assumptions about the initial condition, u0, depend on whether the model is
stable (c > 0) or not (c ≤ 0). In the stable model, u0 is drawn from the stationary limit-
ing distribution and T−1/2u[·T ] ⇒ σJc(·), where Jc is the stationary Ornstein-Uhlenbeck
(OU ) process Jc(s) = Ze−sc/

√
2c +

R s
0
e−c(s−λ)dW (λ), with Z ∼ N (0, 1) independent

of W . In the unstable model (c ≤ 0), u0 = 0, and T−1/2u[sT ] ⇒ σ
R s
0
e−c(s−λ)dW (λ).

3 Integrated local-to-unity model (I-OU ): ut follows an integrated local-to-unity

model with parameter c if the first differences ut − ut−1 (with u0 = 0) follow a local-

to-unity model, where for simplicity we restrict the analysis to the stable model with

c > 0.

4 Local level model (LL): ut follows a local level model with parameter g ≥ 0, when
ut = wt +

g
T

Pt
s=1 ηs, and (T

−1/2P[·T ]
t=1wt, T

−1/2P[·T ]
t=1 ηt)

0 ⇒ σ(W1(·),W2(·))0, where
W1 and W2 are independent standard Wiener processes.

5 Integrated local level model (I-LL): ut follows an integrated local level model with

parameter g ≥ 0 if the first differences ut−ut−1 (with u0 = 0) follow a local level model
with parameter g.

2Formally, the specifications (2)-(5) require ut and yt to be modelled as double arrays, but we omit any

dependence on T to ease notation.
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Table 1 summarizes the assumptions about convergence of the partial sum process for

each model and provides a description of the covariance kernel of the limiting process. A

large number of primitive conditions have been used to justify these limits. Specifically, for

the stationary fractional model (1a), weak convergence to the fractional Wiener process W d

has been established under various primitive conditions for ut by Taqqu (1975) and Chan and

Terrin (1995)–see Marinucci and Robinson (1999) for additional references and discussion.

Mandelbrot and Ness (1968) showed thatW d so defined has almost surely continuous sample

paths. Model (1b) uses Velasco’s (1999) definition of a fractional process for 1/2 < d < 3/2.

The local-to-unity model (2) and local level model (4) rely on a functional central limit

theorem applied to (wt, ηt)
0; various primitive conditions are given, for example, in McLeish

(1974), Wooldridge and White (1988), Phillips and Solo (1992), and Davidson (2002); see

Stock (1994) for general discussion.

The unit root and I(0) models are nested in several of the models in Table 1. The unit

root model corresponds to the integrated fractional model (1b) with d = 1, the OU model

(2) with c = 0, and the integrated local level model (5) with g = 0. Similarly, the I(0) model

corresponds to the stationary fractional model (1a) with d = 0 and the local level model (4)

with g = 0.

The objective of this paper is to assess how well these specifications explain the low-

frequency variability of ut. Since the deterministic component dt is unknown, we restrict

attention to statistics that are functions of the least-square residuals of a regression of yt on

a constant (denoted uμt ) or on a constant and time trend (denoted uτt ). Because {uit}Tt=1,
i = μ, τ are maximal invariants to the groups of transformations {yt}Tt=1 → {yt+m}Tt=1 and
{yt}Tt=1 → {yt +m+ bt}Tt=1, respectively, there is no loss of generality in basing inference on
functions of {uit}Tt=1 for tests that are invariant to these transformations.
We extract the information about the low-frequency variability of ut by considering a

fixed number (q) of weighted averages of uit, i = μ, τ , where the weights are known and de-

terministic low-frequency trigonometric series. We discuss specific choices for these functions

below, but first provide a general result about the joint asymptotic distribution of these q

weighted averages. Here and below, the limits of integrals are understood to be zero and

one, if not indicated otherwise.
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Theorem 1 Suppose there exists α and σ > 0 such that T−α
P[·T ]

t=1 ut ⇒ σG(·), where G

is a mean-zero Gaussian process with almost surely continuous sample paths and k(r, s) =

E[G(r)G(s)]. Define

kμ(r, s) = k(r, s)− rk(1, s)− sk(r, 1) + rsk(1, 1)

kτ(r, s) = kμ(r, s)− 6s(1− s)
R
kμ(r, λ)dλ

−6r(1− r)
R
kμ(λ, s)dλ+ 36rs(1− s)(1− r)

R R
kμ(ν, λ)dνdλ,

and let Ψ(·) = (Ψ1(·), · · · ,Ψq(·))0, where Ψl : [0, 1] 7→ R, l = 1, · · · , q, are functions with
continuous derivatives ψl. Then

XT ≡ T−α
TX
t=1

Ψ(t/T )uit ⇒ X ∼ N (0, σ2Σ)

where the j, lth element of Σ is given by
R R

ψj(r)ψl(s)k
i(r, s)drds.

The joint distribution of the q weighted averages of uit, i = μ, τ is thus asymptotically normal

with a covariance matrix that is, up to scale, determined by the covariance kernel of G.

If XT captures the information in yt about the low-frequency variability of ut, then the

question of model fit for a specific stochastic model becomes the question whether XT is

approximately distributed N (0, σ2Σ). For the models introduced above, Σ = Σ(θ) is a

known function of the model parameter θ ∈ {d, c, g} for the models in Table 1, and σ2 is

an unknown constant governing the low-frequency scale of the process. (For example, σ2

is the long-run variance of ηt in the local-to-unity model.) Because q is finite, that is our

asymptotics keep q fixed as T →∞, it is not possible to estimate σ2 consistently using the q
elements in XT . This suggests restricting attention to scale invariant tests of XT . Imposing

scale invariance has the additional advantage that the value of α inXT = T−α
PT

t=1Ψ(t/T )u
i
t

does not need to be known.

Thus, consider the following maximal invariant to the group of transformation XT →
aXT , a 6= 0,

vT = XT/
p
X 0

TXT .

Under the conditions of Theorem 1, by the Continuous Mapping Theorem, vT ⇒ X/
√
X 0X.

The density of v = (v1, · · · , vq)0 = X/
√
X 0X with respect to the uniform measure on the
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surface of a q dimensional unit sphere is given by (see, for instance, Kariya (1980) or King

(1980))

fv(Σ) = C|Σ|−1/2
¡
v0Σ−1v

¢−q/2
(1)

where the positive constant C = 1
2
Γ(q/2)π−q/2, and Γ(·) is the Gamma function. For a given

model for ut, the asymptotic distribution of vT depends only on q and the model parameter

θ. Our strategy therefore is to base inference about the models in Table 1 using tests based

on vT , Σ(θ), and the probability density function (1).

2.2 Continuity of the Fractional and Local-to-Unity Models

Before discussing the choice of functions Ψ and test statistics, it is useful to take a short

detour to discuss the continuity of Σ(θ) for two of the models. In the local-to-unity model,

there is a discontinuity at c = 0 in our treatment of the initial condition and this leads to

different covariance kernels in Table 1; similarly, in the fractional model there is a disconti-

nuity at d = 1/2 as we move from the stationary to the integrated version of the model. As

it turns out, these discontinuities do not lead to discontinuities of the density of v in (1) as

a function of c and d.

This is easily seen in the local-to-unity model (2). Location invariance implies that it

suffices to consider the asymptotic distribution of T−1/2(u[·T ]−u1). As noted by Elliott (1999),
in the stable model T−1/2(u[·T ]−u1)⇒ Jc(·)−Jc(0) = Z(e−sc−1)/

√
2c+

R s
0
e−c(s−λ)dW (λ),

and limc→0(e
−sc − 1)/

√
2c = 0, so that the asymptotic distribution of T−1/2(u[·T ] − u1) is

continuous at c = 0.

The calculation for the fractional model is somewhat more involved. Note that the density

(1) of v remains unchanged under reparametrizations Σ→ aΣ for any a > 0. Because Σ(d)

is a linear function of kμ(r, s), it therefore suffices to show that

lim
�↓0

kμFR(d−�)(r, s)

kμI-FR(d+�)(r, s)
= a (2)

for some constant a > 0 that does not depend on (r, s), where kFR and kI−FR are the

covariance kernels for the stationary and integrated fractional models. As shown in the

appendix, (2) holds with a = 2, so that the density of v is continuous at d = 1/2.3

3This result suggests a definition of a demeaned fractional process with d = 1/2 as any process whose
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2.3 Choice of Ψ and the Resulting Σ(θ)

Our choice of Ψ = (Ψ1, · · · ,Ψq)
0 is guided by two goals. The first goal is that Ψ should

extract low-frequency variations of ut and, to the extent possible, be uncontaminated by

higher frequency variations. The second goal is that Ψ should produce a diagonal (or nearly

diagonal) covariance matrix Σ, as this facilitates the interpretation of XT and simplifies the

testing problem. In particular, when Σ is diagonal, the models’ implications for persistence

in ut become implications for specific forms of heteroskedasticity in XT .

Many choices of Ψ (Fourier expansions, cosine transforms, etc.) do a good job extracting

low-frequency variability, but do not produce diagonal Σ. (For example, see Akdi and Dickey

(1998) for an analysis of the unit root model using Fourier expansions.). Eigenfunctions of

the covariance kernel of the demeaned/detrended Wiener process do a good job on both

fronts. By construction, these functions yield a diagonal Σ for the I(1) model, and because

they are orthogonal, the also yield a diagonal Σ in the I(0) model. Thus, these functions

yield a diagonal Σ for all values of g in the local level model. For the fractional model,

the eigenfunctions produce a diagonal Σ when d = 0 and d = 1, and as we show below, a

nearly diagonal Σ for other values of d. A similar result holds for the local-to-unity model.

Moreover, because of the trigonometric form of the eigenfunctions, they can be used to isolate

the low-frequency variation in the data.

Let kμW (r, s) and kτW (r, s) denote the covariance kernels of the demeaned and detrended

Wiener process. The following theorem characterizes their eigenfunctions:

Theorem 2 Let

ϕμ
l (s) =

√
2 cos(πls), for l ≥ 1

ϕτ
l (s) =

⎧⎨⎩
√
2 cos(πs(l + 1)) for odd l ≥ 1q

2ωl/2
ωl/2−sin(ωl/2)

(−1)(l+2)/2 sin(ωl/2(s− 1/2)) for even l ≥ 2

partial sums converge to a Gaussian process with covariance kernel that is given by an appropriately scaled

limit of kμFR as d ↑ 1/2; see equations (11) and (12) in the appendix. The possibility of a continuous extension
across all values of d renders Velasco’s (1999) definition of fractional processes with d ∈ (1/2, 3/2) as the
partial sums of a stationary fractional process with parameter d− 1 considerably more attractive, as it does
not lead to a discontinuity at the boundary d = 1/2, at least for demeaned data with appropriately chosen

scale.
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ϕμ
0(s) = ϕτ

−1(s) = 1 and ϕ
τ
0(s) =

√
3(1− 2s), where ωj is the jth positive root of cos(ω/2) =

2 sin(ω/2)/ω. The set of orthonormal functions {ϕμ
l }∞l=0 and {ϕτ

l }∞l=−1 are the eigenfunctions
of kμW (r, s) and k

τ
W (r, s) with associated eigenvalues {λ

μ
l }∞l=0 and {λτl }∞l=−1, respectively, where

λμ0 = 0 and λμl = (lπ)
−2 for l ≥ 1 and λτ−1 = λτ0 = 0, λτl = (lπ + π)−2 for odd l ≥ 1 and

λτl = (ωl/2)
−2 for even l ≥ 2.

In the empirical analysis we use Ψl(s) = ϕμ
l (s) for demeaned series and Ψl(s) = ϕτ

l (s) for

detrended series.

To see how well these functions extract low-frequency variability, consider the R2 of a

continuous time regression of a generic periodic series sin(πϑs + φ) on Ψ1(s), · · · ,Ψq(s),

where ϑ ≥ 0 and φ ∈ [0, π). Ideally, this R2 should equal unity for ϑ ≤ ϑ0 and zero for

ϑ > ϑ0, for all phase shifts φ ∈ [0, π), where ϑ0 corresponds to the pre-specified cut-off

frequency. With Ψl = ϕμ
l and ϑ0 = q in the mean case and with Ψl = ϕτ

l and ϑ0 = q + 1 in

the trend case, regressing sin(πϑs+ φ) on Ψ yields the following values of R2

R2μ =
8ϑ3

π(2πϑ+ sin(2φ)− sin(2(φ+ ϑπ)))

qX
l=1

(cos(φ)− (−1)l cos(φ+ ϑπ))2

(ϑ2 − l2)2

R2τ =
8ϑ

2πϑ+ sin(2φ)− sin(2(φ+ ϑπ))

⎡⎣ϑ2
π

[q/2+1/2]X
l=1

(cos(φ)− cos(φ+ ϑπ))2

(ϑ2 − 4l2)2

+4π(cos(πϑ/2 + φ))2
[q/2]X
l=1

ωl
(ωl cos(ωl/2) sin(πϑ/2)− πϑ cos(πϑ/2) sin(ωl/2))

2

(ω2l − π2ϑ2)2(ωl − sinωl)

⎤⎦
(with these expressions extended by continuous limits at discontinuity points of ϑ). R2μ and

R2τ converge to zero as ϑ → ∞ for all fixed values of q and φ, so that these choices for Ψ

do not extract any high frequency information. Figure 1 depicts R2μ as a function of ϑ for

ϑ0 = 14. In the top panel, for each value of ϑ, R2μ is averaged over all values for the phase

shift φ ∈ [0, π), in the middle panel, R2μ is maximized over φ and in the bottom panel, R2μ
is minimized over φ. The eigenfunctions come reasonably close to the ideal of extracting

all information about cycles of frequency ϑ ≤ ϑ0 (R2 = 1) and no information about cycles

of frequency ϑ > ϑ0 (R2 = 0). Also shown in the figures are the R2 using the Fourier

expansions Ψl(s) =
√
2 sin(π(l + 1)s) for l odd and Ψl(s) =

√
2 cos(πls) for l even, and
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these have comparable performance. Results for R2τ are similar, although they show lower

R2 values for small values of ϑ.

Table 2 summarizes the size of the off-diagonal elements of Σ for various values of θ ∈
{d, c, g} in the FR, OU and LL models. It presents the average absolute correlation when

ϑ0 = 15, a typical value in the empirical analysis. The average absolute correlation is zero

or close to zero for all considered parameter values.

Because Σ is (essentially) diagonal, the models can be compared by considering the diag-

onal elements of Σ. Figure 1 plots the square roots of these diagonal elements for the various

models considered in Table 2. Evidently, more persistent models produce larger variances

for low-frequency components, a generalization of the familiar ‘periodogram’ intuition that

for stationary ut, the variance of
p
2/T

PT
t=1 cos(πlt/T )ut is an approximately unbiased es-

timator of the spectral density at frequency l/2T . For example, for the unit root model

(d = 1 in the fractional model or c = 0 in the local-to-unity model), the standard deviation

of X1 is 15 times larger than the standard deviation of X15. In contrast, when d = 0.25 in

the fractional model the relative standard deviation of X1 falls to 2, and when c = 5 in the

local-to-unity model, the relative standard deviation of X1 is 7. In the I(0) model (d = 0

in the fractional model or g = 0 in the local level model), Σ = Iq, and all of the standard

deviations are unity.

3 Test Statistics

This section discusses several test statistics for the models. As discussed above, under

the conditions of Theorem 1, the transformed data satisfies vT ⇒ v = X/
√
X 0X, where

X ∼ N (0,Σ). The low-frequency characteristics of the models are summarized by the

covariance matrix Σ, so we derive optimal tests based on v against specific alternatives for

Σ. Since vT ⇒ v, these tests are asymptotically valid for a definition of the models as

described in Table 1 above.

Three specific tests are discussed. First, relative persistence in the models is associated

with the relative size of diagonal elements of Σ, so the first test focuses on the form of

heteroskedasticity in X. Second, while the limits in Table 1 obtain also for certain forms
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of heteroskedasticity in ut, the limits change when ut has slowly varying second moments,

and this leads to changes in Σ. Thus, the second test asks whether there is pronounced

enough low-frequency heteroskedasticity in ut as to invalidate the partial sum limits shown

in Table 1 and Theorem 1. Third, because each of the models implies that the distribution

of v is characterized by a single parameter, it is straightforward to derive point-optimal

tests, and we provide such tests for the I(1) and I(0) models. The section concludes with

a discussion of the potential for discriminating between the various models as such, that is

without specifying specific parameter values.

3.1 Testing for Alternative Forms of Heteroskedasticity in XT

Let Σ0 denote the value of Σ under a particular null model and parameter θ0. We consider

tests against alternatives of the form Σ = ΛΣ0Λ where Λ is a diagonal matrix. The relative

values of the diagonal elements of Λ amplify or attenuate the relative variance of the elements

of X, and represent ut-processes with a different persistence structure than what is implied

by the null model. Power can be achieved for a range of alternatives by considering a range

of values for Λ. A convenient way to specify the range of alternatives is to represent Λ as

Λ = diag(exp(δ1), · · · , exp(δq)), where δ = (δ1, · · · , δq)0 is a mean zero Gaussian vector with
E[δδ0] = γ2Ω. Under the null hypothesis γ = 0 and Σ = Σ0, while under the alternative

γ 6= 0, and the deviation from the null depends on the realization of δ. The covariance matrix
Ω determines which kind of deviations are more likely. Modelling δ as a random vector allows

the alternative to flexibly capture a wide range of specific alternatives. Conditional on δ,

the alternative covariance matrix ΛΣ0Λ has the lth diagonal elements multiplied by exp(2δl)

compared to Σ0, while the correlation structure remains unchanged.

Formally, consider the null and alternative hypotheses

H0 : v has density fv(Σ0)

H1 : v has density Eδfv(ΛΣ0Λ)
(3)

where Eδ denotes integration over the measure of δ and fv is defined in (1). Let e be a q× 1
vector of ones, and ιj the q × 1 vector with a one in the jth row and zeros elsewhere. After
calculations that closely mirror those of Nyblom (1989), one obtains that the locally best
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test at γ = 0 rejects for large values of

LB = (q/2 + 1)
b0Ωb

(v0Σ−10 v)2
+ 2

e0Ωb

v0Σ−10 v
− trBΩ

v0Σ−10 v
(4)

where b and B are a q × 1 vector and a q × q matrix, respectively, with elements

bj = vjι
0
jΣ
−1
0 v

Bjl =

(
vlvjι

0
lΣ
−1
0 ιj for l 6= j

vjι
0
jΣ
−1
0 v + v2j ι

0
jΣ
−1
0 ιj for l = j

In our empirical analysis we have used several choices for Ω associated with stochastic

processes for δ characterized by “breaks” of a random size, “trends” with random slopes,

and random walk variation. All provided similar empirical conclusions, and to save space we

will only present results for the test in which δ follows the demeaned random walk (denoted

LBIM): δl = δ̃l − q−1
Pq

j=1 δ̃j, where δ̃l = δ̃l−1 + εl with δ̃0 = 0 and εl ∼ iidN (0, 1).
The demeaning centers the alternative model for Σ at the null model, and also results in a

simplification of the statistic because e0Ω = 0 for a demeaned δ.

3.2 Testing for Low-Frequency Heteroskedasticity in ut

Limiting results for partial sums like those shown in Table 1 are robust to time varying

variances of the driving disturbances, as long as the time variation is a stationary short

memory process; this implies that the values of Σ in Theorem 1 are similarly robust to

such forms of heteroskedasticity. However, instability in the second moment of financial and

macroeconomic data is often of quite persistent (e.g., Bollerslev, Engle, and Nelson (1994)

and Andersen, Bollerslev, Christoffersen, and Diebold (2006), Balke and Gordon (1989),

Kim and Nelson (1999) and McConnell and Perez-Quiros (2000)), and it is interesting to

ask whether second moments of ut exhibit enough low-frequency variability as to invalidate

limits like those shown in Table 1. To investigate this, we nest each of the models considered

thus far in a more general model that allows for such low-frequency heteroskedasticity, derive

the resulting value of Σ for the more general model, and construct an optimal test using this

as the alternative.
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Thus, for each of the low-frequency models, consider a version of the model with low-

frequency heteroskedastic driving disturbances in their natural moving average representa-

tions: let h(·) be a continuous function on the unit interval, and consider models for {ut}
that satisfy T−α

P[·T ]
t=1 ut ⇒ σG̃(·), where

FR :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G̃(s) = A(d)

R 0
−∞((s− λ)d − (−λ)d)dW (λ)

+A(d)
R s
0
(s− λ)dh(λ)dW (λ), d ∈ (−1/2, 1/2)

G̃(s) = A(d−1)
d

R 0
−∞((s− λ)d − (−λ)d−1(sd− λ))dW (λ)

+A(d−1)
d

R s
0
(s− λ)dh(λ)dW (λ), d ∈ (1/2, 3/2)

OU :

(
G̃(s) = 1

c

R 0
−∞(e

cλ − e−c(s−λ))dW (λ) + 1
c

R s
0
(1− e−c(s−λ))h(λ)dW (λ), c > 0

G̃(s) = 1
c

R s
0
(1− e−c(s−λ))h(λ)dW (λ), c ≤ 0

(5)

LL : G̃(s) =
R s
0
h(λ)dW1(λ) + g

R s
0
(s− λ)h(λ)dW2(λ), g ≥ 0

I-OU :
G̃(s) = c−2

R 0
−∞(e

−c(s−λ) − (1− cs)ecλ)dW (λ)

+c−2
R s
0
(e−(s−λ) − c(s− λ)− 1)h(λ)dW (λ), c > 0

I-LL : G̃(s) =
R s
0
(s− λ)h(λ)dW1(λ) +

1
2
g
R s
0
(s− λ)2h(λ)dW2(λ), g ≥ 0

With h(s) = 1, these definitions for G̃(s) yieldG(s) as defined in Table 1. Note that the func-

tion h only affects the stochastic component of G̃(s) that stems from the in-sample innova-

tions, but leaves unaffected terms associated with initial conditions, such as 1
c

R 0
−∞(e

−c(s−λ)−
ecλ)dW (λ) in the stable local-to-unity model. The idea is that h(t/T ) describes the square

root of the time varying long-run variance of the in-sample driving disturbances at date t ≥ 1,
while maintaining the assumption that stable models were stationary prior to the beginning

of the sample. This restriction allows to write the covariance kernel of G̃(s) as the sum of

two pieces, and the one that captures the pre-sample innovations remains unaffected by h.

Especially in the fractional model, such a decomposition is computationally convenient, as

noted by Davidson and Hashimadze (2006).

For any of the models and any continuous function h, it is possible to compute the

covariance kernel for G̃, and via Theorem 1, the covariance matrix of X. For example,

suppose that ut is I(0) and h(s) =
p
1 + 2a cos(πs) and |a| < 1/2. For this process, the j, lth

element of Σ is given by
R
Ψj(s)Ψl(s)h

2(s)ds, and in the mean case with Ψl(s) =
√
2 cos(πls)
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for l = 1, · · · , q, we obtain

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a 0 · · · 0 0

a 1 a · · · 0 0

0 a 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · a 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Evidently low-frequency heteroskedasticity in ut leads to autocorrelations in X, and for this

example the autocorrelation has the form of an MA(1) model.

Let Σ(θ0, h) denote the value of Σ associated with a model with parameter θ0 and het-

eroskedasticity function h. The homoskedastic versions of the models from Table 1 then lead

to Σ = Σ(θ0, 1) while their heteroskedastic counterparts lead to Σ = Σ(θ0, h). The power of

a test of the null hypothesis Σ = Σ(θ0, 1) against the alternative Σ = Σ(θ0, h) depends on

the assumed form of the function h. To produce a test with good power for a wide range

of h, we consider a flexible model for h in which h = eκW
∗
, where W ∗ is a standard Wiener

process on the unit interval independent of G, and κ is a parameter. Thus, we consider the

hypotheses
H0 : v has density fv(Σ(θ0, 1))

H1 : v has density EW∗fv(Σ(θ0, e
κW∗

)).
(6)

The constant κ governs whether tests maximize power against models with very pronounced

low-frequency heteroskedasticity (κ large) or model with barely noticeable low-frequency

heteroskedasticity (κ small). By the Neyman-Pearson Lemma and the form of fv (1), an

optimal test of (6) rejects for large values of

H =
EW∗ [|Σ(θ0, eκW

∗
)|−1/2[v0Σ(θ0, eκW

∗
)−1v]−q/2]

[v0Σ(θ0, 1)−1v]−q/2
. (7)

In the empirical section below, we implement this test with κ = 1.3. This value is motivated

by the observation that for the mean case and q = 15, the 10% level optimal test with

κ = 1.3 achieves power of approximately 50% against the alternative for which it is optimal.

15



3.3 Low-Frequency POI Tests for the I(0) and I(1) Models

Finally, we test the I(0) and I(1) null hypotheses using low-frequency point-optimal tests.

Specifically, in the context of the local-to-unity model we test the unit root model c = c0 = 0

against the alternative model with c = c1 using the likelihood ratio statistic

LFUR = v0Σ(c0)
−1v/v0Σ(c1)

−1v

where the values of c1 are those suggested by Elliott, Rothenberg, and Stock (1996) (c1 = 7

for demeaned series and c1 = 13.5 for detrended series). We label the statistic LFUR as a

reminder that it is a low-frequency unit root test statistic.

We similarly test the I(0) null hypothesis against the point alternative of a local level

model with parameter g = g1 > 0 (which is the same nesting of the I(0) model as employed

in Nyblom (1989) and Kwiatkowski, Phillips, Schmidt, and Shin (1992)). A calculation

shows that the likelihood ratio statistic rejects for large values of

LFST =

Ã
qX

l=1

v2l

!
/

Ã
qX

l=1

v2l
1 + g21λl

!

where λl are the eigenvalues defined in Theorem 2. We follow Stock (1994) and set g1 = 8

in the mean case and g1 = 13 in the trend case.

3.4 Discrimination Between Models

So far, we have discussed tests that seek to establish whether a low-frequency model with

a specific parameter value is a plausible data generating mechanism for the transformed

data vT . Alternatively, one might ask whether a model as such, with unspecified parameter

value, is rejected in favor of another model. A large number of inference procedures have

been developed for specific low-frequency models, such as the local-to-unity model and the

fractional model. Yet, typically there is considerable uncertainty about the appropriate low-

frequency model for a given series. A high-power discrimination procedure would therefore

have obvious practical appeal.

In the following, we focus on the problem of discriminating between the three continuous

bridges between the I(0) and the I(1) model: the fractional model with 0 ≤ d ≤ 1, the
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local-to-unity model with c ≥ 0 and the local level model with g ≥ 0. These models are
obviously similar in the sense that they all nest (or arbitrarily well approximate) the I(0)

and I(1)model. More interestingly, a recent literature has pointed out that (non-degenerate)

regime switching models and fractional models are similar along many dimensions–see, for

example, Parke (1999), Diebold and Inoue (2001), and Davidson and Sibbertsen (2005).

Since the local level model can be viewed as a short memory model with time varying mean,

this question is closely related to the similarity of the fractional model with 0 < d < 1 and

the local level model with g > 0.

This suggests that it will be challenging to discriminate between low-frequency models

using information contained in vT . A convenient way to quantify the difficulty is to compute

the total variation distance between the models. Recall that the total variation distance

between two probability measures is defined as the largest absolute difference the two prob-

ability measures assign to the same event, maximized over all possible events. Let Σ0 and

Σ1 be the covariance matrices of X induced by two models and specific parameter values.

Using a standard equality (see, for instance, Pollard (2002), page 60), the total variation

distance between the two probability measures described by the densities fv(Σ0) and fv(Σ1)

is given by

TVD(Σ0,Σ1) = 1
2

Z
|fv(Σ0)− fv(Σ1)|dη

where η is the uniform measure on the surface of a q dimensional unit sphere. There is no

obvious way to analytically solve this integral, but it can be evaluated using Monte Carlo

integration. To see how, write

TVD(Σ0,Σ1) =

Z
1[fv(Σ1) < fv(Σ0)](fv(Σ0)− fv(Σ1))dη

=

Z
1[LR < 1](1− LR)fv(Σ0)dη (8)

where LR = fv(Σ1)/fv(Σ0). Thus, TVD(Σ0,Σ1) can be approximated by drawing v’s under

fv(Σ0) and averaging the resulting values of 1[LR < 1](1− LR).4

4It is numerically advantageous to rely on (8) rather than on the more straightforward expression

TVD(Σ0,Σ1) = 1
2

R
|1 − LR |fv(Σ0)dη for the numerical integration, since 1[LR < 1](1 − LR) is bounded

and thus possesses all moments, which is not necessarily true for |1− LR |.
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Let Σi(θ) denote the covariance matrix of X for model i ∈ {FR,OU,LL} with parameter
value θ, and consider the quantity

Di,j(θ) = min
γ∈Γ

TVD(Σi(θ),Σj(γ))

where Γ = [0, 1] for i =FR and Γ = [0,∞) for i ∈ {OU,LL}. If Di,j(θ) is small, then there

is a parameter value γ0 ∈ Γ for which the distribution of v with Σ = Σj(γ0) is close to the

distribution of v with Σ = Σi(θ), so it will be difficult to discriminate model i from model j

if indeed Σ = Σi(θ). More formally, consider any model discrimination procedure between

models i and j based on v, which correctly chooses model i when Σ = Σi(θ) with probability

p. By definition of the total variation distance, the probability of the event “procedure

selects model i” under Σ = Σj(γ) is at least p−TVD(Σi(θ),Σj(γ)). If Di,j(θ) is small, then

either the probability of mistakenly selecting model i is large for some Σ = Σj(γ0), γ0 ∈ Γ,

or the probability p of correctly selecting model i is small. In the language of hypothesis

tests, for any test of the the null hypothesis that Σ = Σj(γ), γ ∈ Γ against the alternative

that Σ = Σi(θ), θ ∈ Θ, the sum of the probabilities of Type I and Type II error are bounded

below by 1−maxθ∈ΘDi,j(θ).

The value of Di,j(θ) is an (increasing) function of q. Figure 2 plots Di,j(θ) for each of

the model pairs for q = 15, which corresponds to 60 years of data with interest focused on

frequencies lower than 8-year cycles. Panel (a) plots DFR,OU (d) and DFR,LL(d) and panels

(b) and (c) contain similar plots for the OU and LL models. Evidently Di,j(θ) is small

throughout. For example, for all values of d, the largest distance of the fractional model to

the local-to-unity and local level model is less than 30%, and the largest distance between

the OU and LL models is less than 50%. For comparison, the total variation distance

between the I(0) and I(1) model for q = 15 is about 92%. Total variation distance using

detrended data is somewhat smaller than the values shown in Figure 2. Evidently then,

it is impossible to discriminate between these standard models with any reasonable level

of confidence using sample sizes typical in macroeconomic applications, at least based on

the below business cycle variability in the series summarized by vT . Indeed, to obtain, say,

max0≤d≤1DFR,OU (d) ≈ 0.9, one would need a sample size of 480 years (corresponding to

q = 120).
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4 Empirical Results

4.1 Data

In this section we study twenty macroeconomic and financial time series using the low-

frequency methods discussed in the last section. We analyze post-war quarterly versions

of important macroeconomic aggregates (real GDP, aggregate inflation, nominal and real

interest rates, productivity, and employment) and longer annual versions of related series

(real GNP from 1869-2004, nominal and real bond yields from 1900-2004, and so forth).

We also study several cointegrating relations by analyzing differences between series (such

as long-short interest rate spreads) or logarithms of ratios (such as consumption-income or

dividend-price ratios). A detailed description of the data is given in the Appendix. As usual,

several of the data series are transformed by taking logarithms, and as discussed above, the

deterministic component of each series is modeled as a constant or a linear trend. Table A.1

summarizes these transformations for each series.

Figure 4 shows a three-panel plot for each series. The first two panels show times series

plots of the demeaned/detrended values of the series (uμt or u
τ
t ) as appropriate, and the first

differences of the series. The third panel shows plots vT , the low-frequency transformations of

the series, where q, the number of elements in vT , was chosen to isolate frequencies lower than

the business cycle. Using the standard 6-32 quarter definition of business cycle periodicity,

this means that attention is restricted to frequencies lower than 2π/32 for quarterly series and

2π/8 for annual series. The post-war quarterly series span the period 1952:1-2005:3, so that

T = 215, and q = [2T/32] = 13 for the demeaned series and q = 12 for the detrended series.

Each annual time series is available for a different sample period (real GNP is available from

1869-2004, while bond rates are available from 1900-2004, real exchange rates from 1791-

2004, for example), so the value of q is series-specific. One series (returns on the SP500)

contains daily observations from 1928-2005, and for this series q = 17.

4.2 Results

The relatively short sample (less than 60 years of data for many of the series), makes it

impossible to carry out sharp statistical inference about model parameters. That is, because
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of the nature of the data, confidence sets will often contain a wide ranges of values for d, c,

and g. With this in mind, the empirical analysis is guided by four key questions:

1. (a) Is the unit root model (d = 1 in the fractional model, c = 0 in the local level

model, g = 0 in the integrated local level model) consistent with data?

(b) Is the I(0) model (d = 0 in the fractional model, g = 0 in the local level model)

consistent with data?

2. Are some models rejected for all parameter values? If so, does this arise because they

inadequately describe the persistence in the data (that is, provide poor fits for the

diagonal elements of Σ), or rather because they ignore low-frequency heteroskedasticity

(that is, provide poor fits for the off-diagonal elements of Σ)?

3. Which models fit the data better?

4. Are inferences about the models based on the low-frequency components of the data

similar to inferences from standardmethods (unit root tests, estimators of the fractional

parameter d, and so forth)?

The empirical results for all twenty series are summarized in Tables 3-4 and Figures 5-6.

These tables and figures are organized to provide answers to the four key questions. Table 3

shows p-values for tests of the I(0) and I(1) models. Results are shown for each series and

for the LBIM, H and LFUR and LFST tests. Figure 5 plots the p-values for the LBIM and

H tests for each series, for each of the five models and for a fine grid of parameter values:

−0.49 ≤ d ≤ 1.49 for the fractional model, 0 ≤ c ≤ 30 for the local-to-unity model, and
0 ≤ g ≤ 30 for the local level model. Figure 6 plots the log-likelihood values for each series
and for each of the five models. Finally, results for standard statistical tests and estimators

are summarized in Table 4. This table shows p-values for the DFGLS unit-root test of

Elliott, Rothenberg and Stock (1996) and the stationarity test of Nyblom (1989) (using a

HAC covariance matrix as suggested in Kwiatkowski, Phillips, Schmidt, and Shin (1992)).

It also shows estimated values of d and standard errors from the sort of regressions suggested

in Geweke and Porter-Hudak (1983) (GPH). The GPH-regression estimators and standard

errors are implemented as described in Robinson (2003).
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The remainder of this section discusses the empirical results for each of the series.

Real GDP/GNP. The post-war quarterly real GDP data are consistent with a unit-

root model, but not the I(0) model. From Table 3, the p-values is 0.02 for the LBIM statistic

for the I(0) and the p-value for the LFST statistic is similarly small. In contrast, p-values

for the test statistics for the I(1) null are large. Heteroskedasticity is evident in the plot

for (1− L)yt shown in Figure 4 (associated with the decrease in volatility in the post-1983

period), but evidently this heteroskedasticity is not so severe that the I(1) model is rejected

using the H statistic. From Figure 5, confidence intervals for the persistent parameters in

the models are wide: The LBIM 90% confidence intervals include all values of d greater than

0.16 in the fractional model, all values of c considered in the the local-to-unity (OU ) model,

and values of g greater than 5.5 in the local level model. As discussed above, these wide

confidence intervals are associated with the limited amount of low-frequency information in

the 54-year sample period. Figure 6 indicates that the fractional model with d = 0.75, the

OU model with c = 7, the local level model with g = 30, and the integrated local level model

with g = 0, provide roughly equivalent fits to the models. (The log-likelihood values for these

models differ by less than 0.2.) Finally, Table 4 suggests that similar conclusions would be

reached used a battery of standard procedures: the unit root null is not rejected by the

DFGLS test, the I(0) null is rejected by the Nyblom/KPSS test, and GPH regressions yield

point estimates of d similar to the low-frequencyMLE, although the GPH confidence intervals

are narrower than those obtained using the LBIM test. However, the GPH regressions use

only [n0.5] = 14, and [n0.65] = 32 observations, so that these confidence intervals might have

less coverage than suggested by asymptotic theory.

The results are different using the annual observations on real GNP from 1869-2004.

From Table 3, both the I(1) and I(0) models are rejected for this series. Indeed, from

Figure 5, the H-statistic rejects all parameter values for all of the models. Apparently,

the low-frequency heteroskedasticity in the series is so severe, that the limits in Table 1

and Theorem 1 are not relevant for the long-annual GNP series. This heteroskedasticity is

evident in Figure 4 and coincides with the post-World War II decline in volatility, and the

resulting serial correlation in vT is also evident in the figure. This conclusion–that low-

frequency heteroskedasticity in the time series is so severe that it leads to rejection of the
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models–will be repeated for several of the series studied here. Finally, Table 4 shows that

standard statistics are inconclusive about the appropriate process for this series. Neither

the unit root or stationarity tests reject at the 5% level, and the GPH statistics are rather

nonsensical.

Inflation. The unit-root model for inflation is not rejected using the post-war quarterly

data, while the I(0) model is rejected. Results are shown for inflation based on the GDP

deflator, but similar conclusions follow from the PCE deflator and CPI. Stock and Watson

(2005) document instability in the “size” of the unit root component (corresponding to the

value of g in the local level model) over the post-war period, but apparently this instability

is not so severe that it leads to rejections based on the tests considered here. Figure 5 shows

that the fractional model with d ≥ 0.4, the OU model with c ≤ 15, and local level model
with g ≥ 5 are not rejected, and Figure 6 shows that models with d = 0.8, c = 5, and g = 30,
provide comparably good fits. Table 4 indicates that the same qualitative results follow from

standard methods.

Quite different results are obtained from the long-annual (1869-2004) series. Notably, the

long-annual series shows less persistence than the postwar quarterly series: Figure 6 shows

that the best fitting models are the fractional model with d = 0.30 and the local level model

with g = 30; Table 3 shows that both the I(0) and I(1) models are rejected; and Figure 4

shows that the LBIM statistics reject the OU model for all values of c < 30, and the LBIM

confidence set for d is 0.04 ≤ d ≤ 0.49. Figure 4 shows pronounced heteroskedasticity in the
series, again associated with postwar decrease in volatility. This volatility leads a rejection

of many of the models using the H-statistic, and Figure 4 shows essentially no overlap in

the LBIM and H confidence sets. Again, the severe low-frequency heteroskedasticity in the

series yields statistics that are not consistent with the standard partial sum limits shown in

Table 1.

Labor productivity and employee hours. Labor productivity is very persistent.

The I(0) model is rejected but the I(1) model is not. Figure 5 shows that values of d less

than 0.95 and values of c greater than 3 are rejected by the LBIM test. From Figure 6, the

best fitting model is the I-OU model with c = 12 which fits the low-frequency data slightly

better than the fractional model with d = 1.49 and much better than the OU and local
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level models. This persistence is evident in the plot of the first differences in Figure 4: there

are long-swings in trend productivity growth in the post-war period associated with the

productivity slowdown of the 1970s and 1980s and the productivity rebound of the 1990s.

The standard statistics reported in Table 4 understate this persistence; for example, the

GPH confidence intervals for d are more concentrated around the unit root model.

The behavior of employee hours per capita has received considerable attention in the

recent VAR literature (see Gali (1999), Christiano, Eichenbaum, and Vigfusson (2003), Pe-

savento and Rossi (2005), and Francis and Ramey (2006a)). The results shown here are

consistent with unit-root but not I(0) low-frequency behavior. This result is evident from

the low-frequency results summarized in Table 3 and Figure 5, and from the standard proce-

dures in Table 4. Francis and Ramey (2006b) discuss demographic trends that are potentially

responsible for the high degree of persistence in this series.

Interest rates. Postwar nominal interest rates are consistent with a unit-root but not

an I(0) process. Figure 4 shows heteroskedasticity in the series, most notably an increase in

the volatility of long-rates in the second half of the sample (see Watson (1999) for discussion)

and this leads to low p-values for the H-statistic for many models. The long annual bond

rates (1900-2004) show even more heteroskedasticity, and this, together with the longer

sample period for the long-annual data, yields H-statistics with p-values that are essentially

zero for all the models considered. Again, low-frequency heteroskedasticity is so pronounced

that the overall low-frequency behavior of this series is not well described by any of the

models.

The results for real interest rates are similar. The statistics that focus on persistence, such

as the LBIM tests or the statistics reported in Table 4, suggest relatively little persistence

in ut. (For example, the I(0) model not rejected.) However, there is evidence for low-

frequency heteroskedasticity in these series, and there is little overlap in the H-statistic and

LBIM-statistic confidence intervals.

Real exchange rates. A large empirical literature has examined the unit root or near

unit root behavior of real exchange rates. The data used here–annual observations on the

real dollar/pound real exchange rate from 1791-2004–come in large part from one important

empirical study in this literature, Lothian and Taylor (1996). Table 4 shows that standard
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tests reject both the I(0) and unit root models, and GPH regressions suggest values for d

around 0.5. Table 3 and Figure 5 shows that the low-frequency LBIM tests yield similar

conclusions. Figure 5 shows that local-to-unity models with large values of c are not rejected

by the LBIM statistic, but Figure 6 shows that these model fits the data poorly relative

to the fractional model with d close to 0.5 or a local level model with a reasonably large

random walk component (g = 30). The H-statistics reject for few models, suggesting that

low-frequency heteroskedasticity in these real exchange rates is not very pronounced.

Cointegrating relations. Several of the data series, such as the spread between

10-year and 1-year Treasury bond rates, represent error correction terms from putative coin-

tegrating relationships. Under the hypothesis of cointegration, these series should be I(0).

The I(0) model is not rejected for long-short interest rate spread, and models with little

persistence (the fractional model with values of d close to zero or the local level model with

small values of g) provide the best fits to the low-frequency components of the series. This

is not the conclusion that would be reached using standard tests: from Table 4 the Ny-

blom/KPSS statistic has a p-value of only 0.01, and the confidence interval for d depends

critically on whether [n0.5] or [n0.65] observations are used in the regression.

Real unit labor costs (the logarithm of the ratio of labor productivity to real wages,

y−n−w in familiar notation) exhibit limited persistence: the I(1) model is rejected by the

LBIM test, but the I(0) model is not rejected, and models with a low degree of persistence

provide the best fits. However, the LFST statistic has a p-value of only 0.01 providing some

evidence against the I(0) null. That said, looking across all of the results, models with

low persistence are not rejected, and a cointegration model for y − n− w appears generally

consistent with the data.

The “balanced growth” cointegrating relation between consumption and income (e.g.,

King, Plosser, Stock, andWatson (1991)) fares less well, where the I(1)model is not rejected,

but the I(0) model is rejected. This I(1) characterization of the series is consistent with

the low-frequency variation in the series summarized in Table 3 and Figures 5-6, and with

results from the standard statistics reported in Table 4. The apparent source of this rejection

is the large increase in the consumption-income ratio over the 1985-2004 period, a subject

that has attracted much recent attention (for example, see Lettau and Ludvigson (2004) for
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an explanation based on increases in asset values.) The investment-income relationship also

appears to be at odds with the null of cointegration, although this rejection depends in part

on the particular series used for investment and its deflator.

Finally, the stability of the logarithm of the earnings-stock price ratio or dividend-price

ratio, and the implication of this stability for the predictability of stock prices, has been

an ongoing subject of controversy (see Campbell and Yogo (2006) for a recent discussion).

Using Campbell and Yogo’s (2006) annual data for the SP500 from 1880-2002, both the I(0)

and I(1) models are rejected. Confidence intervals constructed using the LBIM statistic

suggest less persistence than a unit root (for example the LBIM confidence interval for the

fractional model includes 0.38 ≤ d ≤ 0.89). However the low-frequency heteroskedasticity
in the series leads to a rejection of essentially all of the models using the H statistic. The

shorter (1928-2004) CRSP dividend-yield (also from Campbell and Yogo (2006)), displays

more low-frequency persistence, less heteroskedasticity, and is consistent with the I(1) model

but not the I(0) model.

V olatility of stock returns.Ding, Granger, and Engle (1993) analyzed the absolute

value of daily returns from the SP500 and showed that the autocorrelations decayed in a

way that was remarkably consistent with a fractional process. Low frequency characteristics

of the data summarized in Figures 5 and 6 are consistent with this finding. Both the unit-

root and I(0) models are rejected by the LBIM statistic, but models with somewhat less

persistence than the unit root, such as the fraction model with 0.13 < d < 0.73, are not

rejected. The GPH statistics (which are now based on a large number of observations,

n = 20643 so that [n0.5] = 143, and [n0.65] = 637) suggest some instability across frequencies:bd = 0.38 using [n0.65] and bd = 0.46 using [n0.5], and Figure 6 shows the best fitting model
based on the low-frequency data has d = 0.48. This suggests an important role for the role

of the frequency cut-off for the analysis, a point made by Andersen and Bollerslev (1997) in

the context of volatility modeling and by Bollerslev and Mikkelsen (1999) in their study of

long-term equity anticipation securities (LEAPS) on the SP500. Low-frequency changes in

the volatility in the series are evident in Figure 4, and Figure 5 shows that the H-test rejects

all of the models considered.
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5 Conclusions

Standard specification tests for time series examine a model’s appropriateness over the whole

spectrum. In contrast, the methodology developed here isolates a model’s low-frequency

implications by focusing exclusively on the properties of a finite number of weighted averages

of the original data. For example, by choosing the weights as trigonometric series with

periods larger than eight years, our empirical analysis considers whether any of five standard

models of persistence successfully explain the variability of twenty macro and financial time

series at frequencies lower than the business cycle.

Three main findings stand out. First, despite the narrow focus, very few of the series are

compatible with the I(0) model. This hold true even for some putative cointegration error

correction terms. Most macroeconomic series and relationships thus exhibit pronounced

non-trivial dynamics below business cycle frequencies. In contrast, the unit root model is

often consistent with the observed low-frequency variability.

Second, our theoretical results on the similarity of the low-frequency implications of al-

ternative models imply that it is essentially impossible to discriminate between these models

based on low-frequency information using sample sizes typically encountered in emprical

work. When using any one of these one parameter low-frequency models for empirical work,

one thus must either rely on extraneous information to argue for the correct model choice, or

one must take these models seriously over a much wider frequency band. Neither of these two

options is particularly attractive for many applications, which raises the question whether

econometric techniques can be developed that remain valid for a wide range of low-frequency

models.

Third, maybe the most important empirical conclusion is that for many series there seems

to be too much low-frequency variability in the second moment to provide good fits for any of

the models. From an economic perspective, this underlines the importance of understanding

the sources and implications of such low-frequency volatility changes. From a statistical

perspective, this finding motivates further research into methods that allow for substantial

time variation in second moments.
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A Appendix

A.1 Proofs of Theorems 1 and 2

Proof of Theorem 1:

Define St =
Pt

s=1 us and Si
t =

Pt
s=1 u

i
s, i = μ, τ . With T−αS[·T ] ⇒ σG(·), we find by least

squares algebra and the CMT

T−αSμ
[sT ] = T−αS[sT ] − sT−αST +Rμ

T (s)

T−αSτ
[sT ] = T−αSμ

[sT ] − 6s(1− s)
R
T−αSμ

[λT ]dλ+Rτ
T (s)

where sups∈[0,1] |Ri
T (s)|

p→ 0 for i = μ, τ . Thus, by the CMT

T−ασ−1Sμ
[sT ] ⇒ G(s)− sG(1) ≡ Gμ(s) (9)

T−ασ−1Sτ
[sT ] ⇒ Gμ(s)− 6s(1− s)

R
Gμ(λ)dλ ≡ Gτ(s) (10)

and

E[Gμ(r)Gμ(s)] = E[(G(r)− rG(1))(G(s)− sG(1))] = kμ(r, s)

and similarly, kτ(r, s) = E[Gτ (r)Gτ(s)]. By summation by parts

TX
t=1

Ψl(t/T )u
i
t = Si

TΨl(1)−
TX
t=1

Si
t−1(Ψl(t/T )−Ψl((t− 1)/T ))

= −
R
Si
[sT ]ψl(s)ds+

R
Si
[sT ](ψl(s)−

Ψl([sT ]/T + T−1)−Ψl([sT ]/T )

T−1
)ds,

since Si
T = 0 for i = μ, τ . Application of the mean-value theorem yields

sup
s∈[0,1]

|ψl(s)−
Ψl([sT ]/T + T−1)−Ψl([sT ]/T )

T−1
| ≤ sup

s∈[0,1]
sup

s0∈[0,1],|s0−s|≤2T−1
|ψl(s)− ψl(s

0)|→ 0

and the uniform convergence follows from continuity (and hence uniform continuity) of ψl(·)
on [0, 1]. Thus

T−α|
R
Si
[sT ](ψl(s)−

Ψl([sT ]/T + T−1)−Ψl([sT ]/T )

T−1
)ds|

≤ sup
s∈[0,1]

|ψl(s)−
Ψl([sT ]/T + T−1)−Ψl([sT ]/T )

T−1
|
R
|T−αSi

[sT ]|ds
p→ 0
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since
R
|T−αSi

[sT ]|ds ⇒ σ
R
|Gi(s)|ds by the CMT. Using this result row by row and the

convergences (9) and (10), we obtain by the CMT

XT = T−α
TX
t=1

Ψ(t/T )uit

= −
R
T−αSi

[sT ]ψ(s)ds+ op(1)⇒ −σ
R
Gi(s)ψ(s)ds

where ψ(·) = (ψ1(·), · · · , ψq(·))0, and the result follows.

The proof of Theorem 2 relies in part on the following Lemma.

Lemma 1 Suppose {φl}∞l=0 is an orthonormal basis of L2[0, 1], and ς l ∈ L2[0, 1], l =

0, 1, 2, . . . are orthonormal. If
R 1
0
φl(s)ς l(s)ds > 1/

√
2 for all l ≥ 0, then {ς l}∞l=0 is an

orthonormal basis of L2[0, 1], too.

Proof. For f1, f2 ∈ L2[0, 1], write hf1, f2i for
R 1
0
f1(s)f2(s)ds.

Suppose otherwise. Then there exists a function f ∈ L2[0, 1] with hf, fi = 1 such

that for all l ≥ 0, hf, ς li = 0. Since {φl}∞l=0 is a basis, there exists a real sequences cl withP∞
l=0 c

2
l = 1 so that limn→∞

R
(f(s)−

Pn
l=0 clφl(s))

2ds = 0. Let f̃ =
P∞

l=0 clς l. Since {ς l}∞l=0 is
orthonormal, hf̃ , f̃i = 1. Denote ς∗l = ς l−hφl, ς liφl and note that hς∗l , ς∗l i = 1−hφl, ς li2 < 1/2.
We have

hf, f̃i = hf,
∞X
l=0

clφli+ hf,
∞X
l=0

clς
∗
l i.

By the Cauchy-Schwarz inequality, hf,
P∞

l=0 clς
∗
l i2 ≤

P∞
l=0 c

2
l hς∗l , ς∗l i ≤ 1/2. But hf,

P∞
l=0 clφli =P∞

l=0 c
2
l hφl, ς li > 1/

√
2, so that hf, f̃i > 0, which contradicts hf, ς li = 0 for all l ≥ 0.

Proof of Theorem 2:

Standard calculations show that

kμW (r, s) = min(s, r) + 1
3
− (r + s) + 1

2
(r2 + s2)

kτW (r, s) = min(s, r) + 2
15
+ 6

5
rs− 11

10
(r + s) + 2(r2 + s2)− (r3 + s3)

−3(r2s+ rs2) + 2(r3s+ rs3).
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Noting that for any real λ 6= 0, s > 0 and φZ s

0

sin(λu+ φ)udu = (sin(λs+ φ)− λs cos(λs+ φ)− sin(φ))/λ2Z s

0

sin(λu+ φ)u2du = (2sλ sin(λs+ φ) + (2− λ2s2) cos(λs+ φ)− 2 cos(φ))/λ3Z s

0

sin(λu+ φ)u3du = (3(λ2s2 − 2) sin(λs+ φ) + λs(6− λ2s2) cos(λs+ φ) + 6 sin(φ))/λ4

it is straightforward, but highly tedious, to confirm that
R 1
0
E[W i(s)W i(r)]ϕi

l(s)ds = λilϕ
i
l(r)

for l = 0, 1, . . . when i = μ and for l = −1, 0, 1, 2, . . . when i = τ .

To show that {ϕμ
l }∞l=0 and {ϕτ

l }∞l=−1 are the complete set of eigenfunctions, it suffices to
show that they form a basis of L2[0, 1]. This is a well known result for {ϕμ

l }∞l=0, because the
cosine expansion is the real part of the usual Fourier expansion. For {ϕτ

l }∞l=−1, note that
ϕτ
−1 = ϕμ

0 and ϕτ
l = ϕμ

l+1 for odd l ≥ 1. Furthermore,
R
ϕτ
0(s)ϕ

μ
1(s)ds = 4

√
6/π2 > 1/

√
2.

It is not hard to see that the jth positive root ωj of cos(ω/2) = 2 sin(ω/2)/ω satisfies

(2j+1)π−π/6 < ωj < π(2j+1). Therefore, 1 <
p
ωj/(ωj − sin(ωj)) <

p
17π/(17π − 3) <

1.03 for all j ≥ 1, and by an exact second order Taylor expansion of sin(ω(s− 1/2)) around
ω = π(2j + 1)

sup
s∈[0,1]

¯̄̄̄
ϕτ
l (s)−

r
ωl/2

ωl/2 − sin(ωl/2)
ϕμ
l+1(s)

−
r

ωl/2

ωl/2 − sin(ωl/2)
(−1)(l+2)/2

√
2 sin(π(l + 1)s)(s− 1

2
)(ωl/2 − lπ − π)

¯̄̄̄
≤ 1.03

√
2π2

144
< 0.1

for all even l ≥ 2. Since
R
sin(πls) cos(πls)(1 − 2s)ds = (2lπ)−1 for l ≥ 1, by the Cauchy-

Schwarz inequality, we thus find
R
ϕτ
l (s)ϕ

μ
l+1(s)ds > 0.9− 1.03/24 > 0.85 for all even l ≥ 2.

Completeness of {ϕτ
l }∞l=−1 now follows from Lemma 1.

A.2 Continuity of fractional process at d = 1/2:

By the definition of kμFR(d)(r, s) and kμI-FR(d)(r, s), we find for s ≤ r

kμFR(d)(r, s) =
1
2
[s1+2d + r1+2d − (r − s)1+2d + 2rs

− s(1− (1− r)1+2d + r1+2d)− r(1− (1− s)1+2d + s1+2d)]
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and

kμI-FR(d)(r, s) =
1

4d(1 + 2d)
[−r1+2d(1− s)− s(s2d + (r − s)2d + (1− r)2d − 1)

+ r(s1+2d + 1− (1− s)2d + (r − s)2d) + sr((1− s)2d + (1− r)2d − 2))]

so that

lim
d↑1/2

kμFR(d)(r, s) = lim
d↓1/2

kμI-FR(d)(r, s) = 0.

Now for 0 < s < r, using that for any real a > 0, limx↓0(a
x − 1)/x = ln a, we find

limd↑1/2
kμFR(d)(r,s)

1/2−d = −(1− r)2s ln(1− r)− r2(1− s) ln r − r(1− s)2 ln(1− s)

+(r − s)2 ln(r − s) + (r − 1)s2 ln(s)
(11)

and

lim
d↑1/2

kμFR(d)(r, r)

1/2− d
= 2(1− r)r(−(1− r) ln(1− r)− r ln r). (12)

Performing the same computation for kμI-FR(d)(r, s) yields the result.

A.3 Some Simplifications of the Methodology

The empirical analysis in Section 4 is based on the weighting functions Ψl(s) = ϕμ
l (s) and

Ψl(s) = ϕτ
l (s) for the mean and trend case, and the tests described in Section 3. While

conceptually straightforward, some of the tests are tedious to perform, and here we suggest

three simplifications that yield similar results.

First, note that ϕτ
l in differ from ϕμ

l+1 only for even l, and not by very much: if ωj was

defined by the roots of cos(ω/2) = 0, one would obtain ϕτ
l = ϕμ

l+1 also for even l. Especially

for l large, the additional term 2 sin(ω/2)/ω in the definition of ωj only leads to a minor

distortion. One might hence avoid the computation of ωj and set Ψτ
l = ϕμ

l+1 for l = 1, · · · , q,
without generating large off-diagonal elements in Σ in the I(1) model. Unreported results

show that with Ψτ
l so defined, Σ remains very close to diagonal in most models.

Second, the critical value of the LB statistic (4) depends on Σ0, and hence must be

computed by simulation for each null model. An alternative is to base the test instead on

v∗ = Qv/
√
v0Q0Qv for some matrix Q satisfying QΣ0Q0 = Iq; in this case the null hypothesis
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about the parameter Σ∗ of the density of v∗ becomes H0 : Σ
∗ = Iq, and v∗ ∼ Z/

√
Z 0Z under

the null hypothesis, where Z ∼ N (0, Iq). We suggest choosing Q lower triangular, so that

Q−1 is the Choleski decomposition of Σ0. Because Σ(θ) is approximately diagonal for most

empirically relevant models, there are only small differences between tests based on v and

tests based on v∗.

For Σ∗ = Iq, bl = v∗2l and B becomes a diagonal matrix with elements Bll = 2v∗2l ,

resulting in a test statistic for martingale variation in δ which simplifies to

LBIM∗ = (q/2 + 1)

qX
l=1

(
lX

j=1

v∗2j − v∗2)2 − 1

3q

qX
l=1

[6l2 − 6l(1 + q) + (1 + q)(1 + 2q)]v∗2l .

where v∗2 = q−1
Pq

l=1 v
∗2
l . The first term, which dominates the statistic for large q, is the

usual Nyblom (1989) locally best test statistic for a martingale variation in the mean of v∗2l .

Third, recall from the discussion in Section 3.2 that severe heteroskedasticity in ut gen-

erates autocorrelated X. This motivates the simple test statistic

H∗ =
1

q

qX
l=1

|ρ̂∗l |
l

where ρ̂∗l = q−1
Pq

l=1 v
∗
l . Results not reported here show that for q = 15 in mean case, a

10% level test based on H∗ has in most models about 6 percentage points less power than

the 10% level optimal test (7) against the alternative the test (7) is optimal against. The

critical value of H∗ again only depends on q.

A.4 Data Appendix

Table A1 lists the series used in section 4, the sample period, data frequency transformation,

and data source and notes.

31



References

Akdi, Y., and D. Dickey (1998): “Periodograms of Unit Root Time Series: Distributions

and Tests,” Communications in Statistics: Theory and Methods, 27, 69—87.

Andersen, T., and T. Bollerslev (1997): “Heterogeneous Information Arrivals and Re-

turn Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,” Journal

of Finance, 52, 975—1005.

Andersen, T., T. Bollerslev, P. Christoffersen, and F. Diebold (2006): Volatil-

ity: Practical Methods for Financial Applications. Princeton University Press, Princeton.

Balke, N., and R. Gordon (1989): “The Estimation of Prewar Gross National Product:

Methodology and New Evidence,” Journal of Political Economy, 94, 38—92.

Beveridge, S., and C. Nelson (1981): “A New Approach to Decomposition of Economics

Time Series Into Permanent and Transitory Components with Particular Attention to

Measurement of the Business Cycle,” Journal of Monetary Economics, 7, 151—174.

Bierens, H. (1997): “Nonparametric Cointegration Analysis,” Journal of Econometrics,

77, 379—404.

Bollerslev, T., R. Engle, and D. Nelson (1994): “ARCH Models,” in Handbook of

Econometrics Vol. IV, ed. by R. Engle, and D. McFadden. Elsevier Science, Amsterdam.

Bollerslev, T., and H. Mikkelsen (1999): “Long-Term Equity Anticipation Securities

and Stock Market Volatility Dynamics,” Journal of Econometrics, 92, 75—99.

Campbell, J., and M. Yogo (2006): “Efficient Tests of Stock Return Predictability,”

forthcoming in Journal of Financial Economics.

Chan, N., and N. Terrin (1995): “Inference for Unstable Long-Memory Processes with

Applications to Fractional Unit Root Autoregressions,” Annals of Statistics, 23, 1662—

1683.

32



Christiano, L., M. Eichenbaum, and R. Vigfusson (2003): “What Happens After a

Technology Shock,” NBER Working Paper 9819.

Davidson, J. (2002): “Establishing Conditions for the Functional Central Limit Theorem

in Nonlinear and Semiparametric Time Series Processes,” Journal of Econometrics, 106,

243—269.

Davidson, J., and N. Hashimadze (2006): “Type I and Type II Fractional Brownian

Motions: A Reconsideration,” mimeo, University of Exeter.

Davidson, J., and P. Sibbertsen (2005): “Generating Schemes for Long Memory

Processes: Regimes, Aggregation and Linearity,” Journal of Econometrics, 128, 253—282.

Diebold, F., and A. Inoue (2001): “Long Memory and Regime Switching,” Journal of

Econometrics, 105, 131—159.

Ding, Z., C. Granger, and R. Engle (1993): “A Long Memory Property of Stock

Market Returns and a New Model,” Journal of Empirical Finance, 1, 83—116.

Elliott, G. (1999): “Efficient Tests for a Unit Root When the Initial Observation is Drawn

From its Unconditional Distribution,” International Economic Review, 40, 767—783.

Elliott, G., T. Rothenberg, and J. Stock (1996): “Efficient Tests for an Autoregres-

sive Unit Root,” Econometrica, 64, 813—836.

Fama, E. (1970): “Efficient Capital Markets: A Review of Theory and Empirical Work,”

Journal of Finance, 25, 383—417.

Francis, N., and V. Ramey (2006a): “Is the Technology-Driven Business Cycle Hypoth-

esis Dead?,” forthcoming in Journal of Monetary Economics.

(2006b): “Measures of Per Capita Hours and their Implications for the Technology-

Hours Debate,” mimeo, U.C. San Diego.

Gali, J. (1999): “Technology, Employment, and the Business Cycle: Do Technology Shocks

Explain Aggregate Fluctuations?,” American Economic Review, 89, 249—271.

33



Geweke, J., and S. Porter-Hudak (1983): “The Estimation and Application of Long

Memory Time Series Models,” Journal of Time Series Analysis, 4, 221—238.

Harvey, A. (1989): Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge University Press.

Kariya, T. (1980): “Locally Robust Test for Serial Correlation in Least Squares Regres-

sion,” Annals of Statistics, 8, 1065—1070.

Kim, C.-J., and C. Nelson (1999): “Has the Economy Become More Stable? A Bayesian

Approach Based on a Markov-Switching Model of the Business Cycle,” The Review of

Economics and Statistics, 81, 608—616.

King, M. (1980): “Robust Tests for Spherical Symmetry and their Application to Least

Squares Regression,” The Annals of Statistics, 8, 1265—1271.

King, R., C. Plosser, J. Stock, and M. Watson (1991): “Stochastic Trends and

Economic Fluctuations,” American Economic Review, 81, 819—840.

Kwiatkowski, D., P. Phillips, P. Schmidt, and Y. Shin (1992): “Testing the Null Hy-

pothesis of Stationarity Against the Alternative of a Unit Root,” Journal of Econometrics,

54, 159—178.

Lettau, M., and S. Ludvigson (2004): “Understanding Trend and Cycle in Asset Values:

Reevaluating the Wealth Effect on Consumption,” American Economic Review, 94, 276—

299.

Lothian, J., and M. Taylor (1996): “Real Exchange Rate Behavior: The Recent Float

from the Perspective of the Past Two Centuries,” Journal of Political Economy, 104,

488—509.

Mandelbrot, B., and J. V. Ness (1968): “Fractional Brownian Motions, Fractional Noise

and Applications,” SIAM Review, 10, 422—437.

Marinucci, D., and P. Robinson (1999): “Alternative Forms of Fractional Brownian

Motion,” Journal of Statistical Planning and Inference, 80, 111—122.

34



McConnell, M., and G. Perez-Quiros (2000): “Output Fluctuations in the United

States: What Has Changed Since the Early 1980’s,” American Economic Review, 90,

1464—1476.

McLeish, D. (1974): “Dependent Central Limit Theorems and Invariance Principles,” The

Annals of Probability, 2, 620—628.

Meese, R., and K. Rogoff (1983): “Empirical Exchange Rate Models of the Seventies:

Do They Fit Out of Sample?,” Journal of International Economics, 14, 3—24.

Müller, U. (2004): “A Theory of Robust Long-Run Variance Estimation,” mimeo, Prince-

ton University.

Nelson, C., and C. Plosser (1982): “Trends and RandomWalks in Macroeconomic Time

Series – Some Evidence and Implications,” Journal of Monetary Economics, 10, 139—162.

Nyblom, J. (1989): “Testing for the Constancy of Parameters Over Time,” Journal of the

American Statistical Association, 84, 223—230.

Parke, W. (1999): “What is Fractional Integration?,” Review of Economics and Statistics,

81, 632—638.

Pesavento, E., and B. Rossi (2005): “Do Technology Shocks Drive Hours Up or Down?

A Little Evidence from an Agnostic Procedure,” Macroeconomic Dynamics, 9, 478—488.

Phillips, P. (1998): “New Tools for Understanding Spurious Regression,” Econometrica,

66, 1299—1325.

(2006): “Optimal Estimation of Cointegrated Systems with Irrelevant Instruments,”

Cowles Foundation Discussion Paper 1547.

Phillips, P., and V. Solo (1992): “Asymptotics for Linear Processes,” Annals of Statis-

tics, 20, 971—1001.

Pollard, D. (2002): A User’s Guide to Measure Theoretic Probability. Cambridge Univer-

sity Press, Cambridge, UK.

35



Robinson, P. (2003): “Long-Memory Time Series,” in Time Series with Long Memory, ed.

by P. Robinson, pp. 4—32. Oxford University Press, Oxford.

Said, S., and D. Dickey (1984): “Testing for Unit Roots in Autoregressive-Moving Aver-

age Models of Unknown Order,” Biometrika, 71, 2599—607.

Stock, J. (1994): “Unit Roots, Structural Breaks and Trends,” in Handbook of Econo-

metrics, ed. by R. Engle, and D. McFadden, vol. 4, pp. 2740—2841. North Holland, New

York.

Stock, J., and M. Watson (2005): “Has Inflation Become Harder to Forecast?,” mimeo,

Princeton University.

Taqqu, M. (1975): “Convergence of Integrated Processes of Arbitrary Hermite Rank,”

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50, 53—83.

Velasco, C. (1999): “Non-Stationary Log-Periodogram Regression,” Journal of Econo-

metrics, 91, 325—371.

Watson, M. (1999): “Explaining the Increased Variability in Long-Term Interest Rates,”

Federal Reserve Bank of Richmond—Economic Quarterly, 85, 71—96.

Wooldridge, J., and H. White (1988): “Some Invariance Principles and Central Limit

Theorems for Dependent Heterogeneous Processes,” Econometric Theory, 4, 210—230.

36





Table 2 
Average Absolute Correlations for Σ(θ) 

 
Fractional Model 

 
d = −0.25 d = 0.00 d = 0.25 d = 0.75 d = 1.00 d = 1.25 

Demeaned 0.03 0.00 0.01 0.01 0.00 0.03 
Detrended 0.03 0.00 0.01 0.01 0.00 0.02 

 
Local-to-Unity Model c = 30 c = 20 c = 15 c = 10 

 
c = 5 c = 0 

Demeaned 0.02 0.02 0.02 0.02 0.02 0.00 
Detrended 0.02 0.02 0.02 0.02 0.01 0.00 

 
Local Level Model 

 
g = 0 g = 2 g = 5 g = 10 g = 20 g = 30 

Demeaned 0.00 0.00 0.00 0.00 0.00 0.00 
Detrended 0.00 0.00 0.00 0.00 0.00 0.00 

 
Notes: Entries in the table are the average values of the absolute values of the correlations 
associated with Σ(θ) with q = 15 for the demeaned model and q = 14 for the detrended 
model.  



 
Table 3: P-values for I(0) and I(1) Models 

 
I(0) I(1) Series 

LBIM H LFST LBIM H LFUR 
Real GDP (PWQ) 0.02 0.12 0.01 0.50 0.89 0.34 
Real GNP (Long Annual) 0.00 0.00 0.01 0.30 0.00 0.01 
Inflation (PWQ) 0.00 0.03 0.02 0.92 0.28 0.22 
Inflation (Long Annual) 0.05 0.09 0.01 0.00 0.00 0.00 
Productivity  0.00 0.19 0.00 0.15 0.71 0.94 
Hours 0.01 0.61 0.00 0.50 0.53 0.45 
10YrTBond 0.00 0.22 0.00 0.92 0.10 0.49 
1YrTBond 0.00 0.17 0.01 0.43 0.14 0.24 
3mthTbill 0.00 0.21 0.01 0.43 0.07 0.25 
Bond Rate 0.00 0.00 0.00 0.97 0.00 0.32 
Real Tbill Rate 0.19 0.11 0.26 0.19 0.04 0.06 
Real Bond Rate  0.24 0.01 0.16 0.00 0.00 0.00 
Dollar/Pound  Real Ex. Rate 0.00 0.09 0.00 0.00 0.22 0.00 
Unit Labor Cost 0.30 0.45 0.01 0.00 0.50 0.03 
TBond Spread 0.99 0.10 0.19 0.00 0.06 0.00 
real C-GDP 0.00 0.15 0.00 0.39 0.55 0.85 
real I-GDP 0.00 0.03 0.00 0.65 0.03 0.65 
Earnings/Price  (SP500) 0.00 0.00 0.00 0.02 0.01 0.07 
Div/Price  (CRSP) 0.00 0.01 0.00 0.73 0.31 0.51 
Abs.Returns  (SP500) 0.01 0.01 0.01 0.00 0.05 0.01 
 
 
Notes:  This table shows p-values for the I(0) and I(1) model.  



Table 4: DFGLS, Nyblom/KPSS and GPH Results 
 

GPH Regressions: d̂  (SE) 
Levels Differences 

Series DFGLS 
p-value 

Nyblom/ 
KPSS 

p-value 
n0.5 n0.65 n0.5 n0.65 

Real GDP (PWQ) 0.16 <0.01 1.00 (0.17) 0.98 (0.11) -0.19 (0.17) -0.09 (0.11) 
Real GNP (Long Annual) 0.07 0.10 0.98 (0.19) 0.98 (0.13) -0.84 (0.19) -0.46 (0.13) 
Inflation (PWQ) 0.14 0.02 0.84 (0.17) 0.91 (0.11) -0.10 (0.17) -0.02 (0.11) 
Inflation (Long Annual) 0.09 0.01 0.52 (0.19) 0.30 (0.13) -0.85 (0.19) -0.93 (0.13) 
Productivity  0.84 <0.01 0.95 (0.17) 0.97 (0.11) 0.07 (0.17) -0.03 (0.11) 
Hours 0.50 <0.01 0.75 (0.17) 0.99 (0.11) -0.11 (0.17) 0.09 (0.11)  
10YrTBond 0.21 <0.01 1.05 (0.17) 1.08 (0.11) 0.13 (0.17) 0.10 (0.11)  
1YrTBond 0.09 0.01 0.85 (0.17) 0.95 (0.11) -0.05 (0.17) -0.03 (0.11) 
3mthTbill 0.13 0.01 0.74 (0.17) 1.00 (0.11) -0.21 (0.17) 0.04 (0.11)  
Bond Rate 0.17 <0.01 1.07 (0.20) 1.22 (0.14) 0.08 (0.20) 0.09 (0.14)  
Real Tbill Rate 0.01 0.04 0.72 (0.17) 0.79 (0.11) -0.19 (0.17) -0.12 (0.11) 
Real Bond Rate  <0.01 0.21 0.46 (0.20) 0.35 (0.14) -0.55 (0.20) -0.65 (0.14) 
Dollar/Pound Real Ex. Rate 0.03 <0.01 0.54 (0.17) 0.43 (0.11) -0.44 (0.17) -0.55 (0.11) 
Unit Labor Cost 0.00 <0.01 0.57 (0.17) 0.75 (0.11) -0.55 (0.17) -0.31 (0.11) 
TBond Spread <0.01 0.01 0.18 (0.17) 0.61 (0.11) -0.80 (0.17) -0.41 (0.11) 
real C-GDP 0.91 <0.01 0.96 (0.17) 0.96 (0.11) 0.19 (0.17) -0.10 (0.11) 
real I-GDP 0.39 <0.01 0.62 (0.17) 0.87 (0.11) -0.74 (0.17) -0.25 (0.11) 
Earnings/Price (SP500) 0.02 0.01 0.70 (0.19) 0.62 (0.14) -0.36 (0.19) -0.35 (0.14) 
Div/Price (CRSP) 0.59 0.01 0.72 (0.23) 0.72 (0.16) -0.28 (0.23) -0.43 (0.16) 
Abs.Returns (SP500) <0.01 <0.01 0.46 (0.05) 0.38 (0.03) -0.52 (0.05) -0.61 (0.03) 
 
Notes:  The entries in the column labeled DFGLS are p-values for the DFGLS test of 
Elliott, Rothenberg and Stock (1996). The entries in the column labeled Nyblom are p-
values for the Nyblom (1989) I(0) test (using a HAC covariance matrix as suggested in 
Kwiatkowski, Phillips, Schmidt and Shin (1992)). Results are computed using a Newey-
West HAC estimator with 0.75×T1/3 lags.  The results in the columns labeled GPH 
Regressions are the estimated values of d and standard errors computed from regressions 
using the lowest  n0.5 or n0.65 periodogram ordinates.  The GPH regressions and standard 
errors were computed as described in the Robinson (2003): specifically, the GPH 
regressions are of the form ln(pi) = β0 + β1ln(ωi) + error, where pi is the i’th periodogram 
ordinate and ωi is the corresponding frequency, the estimated value of 1

ˆ ˆ / 2d β= − , 

where 1̂β  is the OLS estimator, and the standard error of d̂  is SE( d̂ ) = π/ 24m , where 
m is the number of periodogram ordinates used in the regression. 
 



Table A1 
Data Description and Sources 

 
Series Sample 

Period 
F Tr Source and Notes 

Real GDP  1952:1-2005:3 Q ln τ DRI:  GDP157 
Real GNP (Long 
Annual) 

1869-2004 A ln τ 1869-1928: Balke and Gordon (1989) 
1929-2004: BEA (Series are linked in 1929) 

Inflation  1952:1-2005:3 Q lev μ DRI: 400×ln(GDP272(t)/GDP272(t−1)) 
Inflation (Long 
Annual) 

1870-2004 A lev μ GNP Deflator (PGNP): 
1869-1928: Balke and Gordon (1989) 
1929-2004: BEA (Series are linked in 1929) 
Inflation Series is 100×ln(PGNP(t)/PGNP(t−1)) 

Productivity  1952:1-2005:2 Q ln τ DRI: LBOUT (Output per hour, business sector) 
Hours 1952:1-2005:2 Q ln τ DRI: LBMN(t)/P16(t) (Employee hours/population) 
10YrTBond 1952:1-2005:3 Q lev μ DRI: FYGT10 
1YrTBond 1952:1-2005:3 Q lev μ DRI: FYGT1 
3mthTbill 1952:1-2005:2 Q lev μ DRI:FYGM3 
Bond Rate 1900-2004 A lev μ NBER: M13108 (1900-1946) 

DRI: FYAAAI (1947-2004) 
Real Tbill Rate 1952:1-2005:2 Q lev μ DRI: FYGM3(t)-400×ln(GDP273(t+1)/GDP273(t)) 
Real Bond Rate  1900-2004 A lev μ R(t) – 100×ln(PGNP(t)/PGNP(t−1)) 

R(t) = Bond Rate (described above) 
PGNP = GNP deflator (described above) 

Dollar/Pound Real 
Ex. Rate 

1791-2004 A ln μ 1791-1990: Lothian and Taylor (1996) 
1991-2004: FRB (Nominal Exchange Rate) 
                   BLS (US PPI Finished Goods) 
                   IFS (UK PPI Manufactured Goods) 

Unit Labor Cost 1952:1-2005:2 Q ln μ DRI: LBLCP(t)/LBGDP(t) 
TBond Spread 1952:1-2005:3 Q lev μ DRI: FYGT10-FYGT1 
real C-GDP 1952:1-2005:3 Q lnrμ DRI: GDP 158/GDP157 
real I-GDP 1952:1-005:3 Q lnrμ DRI: GDP 177/ GDP 157 
Earnings/Price 
(SP500) 

1880-2002 A lnrμ Campbell and Yogo (2006) 

Div/Price (CRSP) 1926-2004 A lnrμ Campbell and Yogo (2006) 
Abs.Returns 
(SP500) 

1/3/1928-
1/22/2005 

D lnrμ SP: SP500(t) is the closing price at date t. Absolute 
returns are |ln[SP500(t)/SP500(t−1)]| 

 
Notes: The column labeled F shows the data frequency (A: annual, Q: quarterly, and D: 
daily). The column labeled Tr (transformation) show the transformation: demeaned levels 
(lev μ), detrended levels (lev τ), demeaned logarithms (ln μ), detrended logarithms (ln τ), 
and lnr denotes the logarithm of the indicated ratio. In the column labeled Source and 
Notes, DRI denotes the DRI Economics Database (formerly Citibase) and NBER denotes 
the NBER historical data base.  
 
  



Figure 1 
R2 regression of sin(πϑs+φ) onto Ψ1(s) … Ψ14(s)  

 

 
 
 

 
Notes:  These figures show the R² of a continuous time regression of a generic periodic 
series sin(πϑs+φ) onto Ψ1(s) , … , Ψ14(s). Panel (a) shows the R2 value averaged over 
values of φ ∈[0, π), panel (b) shows the R2 maximized over these values of φ for each ϑ, 
and panel (c) shows the R2 minimized over these values of φ for each ϑ.  The solid curve 
shows results using the eigenfunctions ( )l sμϕ  from Theorem 2, and the dashed curve 
shows results using Fourier expansions. 



Figure 2 
Standard Deviation of Xl Implied by Different Models  

 

 
 

 
                   
 
Notes: These figures show the square roots of the diagonal elements of Σ(θ) for different 
values of the parameter θ  = (d, c, g), where Σ(θ) is computed for the demeaned data. 
Larger values of d and g, and smaller values of c, yield relatively larger standard 
deviations of X1. 



Figure 3  
Total Variation Distance  

 
 

 
 
 

 
Notes: Results are shown for the demeaned case with q = 15. 



Figure 4 
Detrended/Demeaned Levels, First Differences, and Ψ Transformed Data 
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Figure 4 (Continued) 
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Figure 5 
p-values for LBIM (solid line) and H (dotted line) tests 
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Figure 5 (continued) 
p-values for LBIM (solid line) and H (dotted line) tests 
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Figure 6 

Low-Frequency Log-Likelihood Values 
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Figure 6 (Continued)  
Low-Frequency Log-Likelihood Values 
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Notes to Figures 
 
Figure 4: For each series the first panel plots the demeaned/detrended value of the series, 
the second panel plots the first difference of the series, and the final panel plots the low-
frequency transformation vT. 
 
Figure 5: Each plot shows the p-value for the LBIM test (solid blue curve) and the H test 
(dotted red curve) computed using a fine grid of parameter values. 
 
Figure 6: Each panel shows the log-likelihood value computed from the low-frequency 
maximal invariant vT  The likelihood values are normalized so that the value of the 
maximized log-likelihood across models is equal to 10. 
 




