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I. INTRODUCTION

The production smoothing model of inventory behavior has a

long and venerable history. <1> Its theoretical foundations

seem very strong. All that is necessary to create a

production- smoothing motive for holding inventories is that

demand vary through time and that the short-run cost function

be convex (i.e., the short—run production function be concave).

If, in addition, there is a random element to demand,

inventories will also serve as a buffer stock.

These conditions appear to be very weak — so weak, in

fact, that it is hard to imagine how they could fail to hold.

In addition, the production smoothing model has been used with

some success in empirical work on inventories. <2> Under the

special assumption that costs are quadratic, it leads to the

"partial adjustment model that dominates empirical work on the

subject. <3>

Yet the production smoothing model is in trouble. Certain
overwhelming facts seem not only to defy explanation within the

production smoothing framework, but actually to argue that the

basic idea of production smoothing is all wrong. To elucidate

these facts, consider the following accounting identity:

(1.1) = X + Nt+l —
Nt

where Y is production, X is sales, and Nt is the stock of

inventories at the beginning of period t. If lower case
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symbols are used to denote the detrended values of the

corresponding upper case symbols, this identity leads to the

following decomposition of the variance of Y about trend:

(1.2) var(y) = var(x) + var(n) + 2cov(x,n).
The first two facts of interest pertain to equation (1.2).

FACT 1: The variance of detrended production exceeds the

variance of detrended. sales: var(y) > var(x).

If firms use inventories to smooth production in the face

of fluctuating sales, it is surprising indeed that production

is more variable than sales. This remarkable fact has been

known for a long time at the aggregate level, where y stands

for real GNP and x stands for real final sales. <4> In Blinder

(1981), I showed that var(y) exceeds var(x) for retailing as a

whole and for 7 of 8 two-digit retail industries. In Section

II, I show that production is more variable than sales in

manufacturing as a whole and in 18 of the 20 two— digit

manufacturing industries. Thus the finding that var(y) >

var(x) seems to hold quite generally. Recently, West (1983a)

has used a more elaborate version of this inequality to derive

a test of the validity of the production smoothing model in

several nondurable manufacturing industries —— with mostly

negative results.

FACT 2: The covariance between sales and inventory change

is not negative.
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If inventories are used to buffer output against shocks to

demand, then inventories should fall when sales spurt and rise

when sales slump. In fact, the covariance between sales and

inventory change is strongly positive for GNP as a whole (that

is, inventory investment is strongly procyclical) and weakly

positive in the retail sector. <5> I show in Section II that

there are only a few manufacturing industries in which cov(x,

An) is substantially negative. If inventories play a buffer

stock role at all, it must be swamped by other considerations.

<6>

FACT 3: When a partial-adjustment inventory equation of

the form:

(1.3) Nt÷i Nt = i (N÷1— N)
— (l2)(Xt — t_ixt) + Ut

where is expected sales, N1 is (some proxy for) desired

inventories, and uis a stochastic disturbance term, is

estimated, the estimated normally turns out to be quite

low while the estimated B2 turns out to be quite high.

This, of course, is not a "fact" like the others, but

depends on estimation techniques, etc. That this finding is

troublesome to the production smoothing model can be understood

best by using identity (1.1) to write (1.3) as an equation for

output:

(1.4) Yt = t.iXt +Bl(Nt+l — Nt) + B(Xt — t_1xt) + u.
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According to equation (1.4), production deviates from expected

sales according to how much inventory change is desired —— the

term 1(N* — Nt) -— and how much sales deviate from what was
t+1

expected —— the term 2(Xt t_iXt). If cost conditions

dictate a great deal of production smoothing, it would seem

that both and should be low, i.e., output should not

react much to either inventor discrnni r2

sales fluctuations. On the other hand, if cost conditions

dictate relatively little smoothing, then both i and2

should be high. Empirically, however, we find smal11 and

large 2' which seems hard to reconcile with the theory. <7>

Taken as a whole, these facts add up to a stunning

indictment of the production smoothing/buffer stock model.

Yet, as. I indicated at the outset, the theory that underlies

this model requires little more than a concave short—run

production function. There seems to be more than a little

tension here between theory and fact.

There are several ways to resolve this dilemma. In my

earlier paper on retail inventories (Blinder (1981)), I

suggested that the technology of the retail firm is not in fact

concave, and nominated the (S,s) model as a replacement for the

production smoothing model. This model, which is based on a

fixed cost of placing and receiving an order, has little

trouble accounting for the stylized facts. Furthermore, I
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showed that, under certain restrictive assumptions, it leads to

an estimating equation that is very similar to the stock

adjustment model.

Since the stylized facts of inventory behavior in

manufacturing are so similar to those in retailing, it is

tempting to adopt the same explanation for manufacturing. And

it might even be correct. But I am hesitant to do so for

several reasons.

The first is that the basic technological assumption that

underlies the (S,s) model is far less appealing on a priori

grounds for manufacturers than it is for retailers. The cost

function that makes (S,s) inventory behavior optimal is:

C(Y) = A + mY if Y>O

= 0 if Y0,

where A and m are positive constants. For retailers, A is the

fixed cost and in is the (constant) marginal cost at which they

can purchase goods from manufacturers. For manufacturers, such

a cost structure connotes a substantial set—up cost followed by

constant marginal costs thereafter. While this may be an

appealing description of costs for some industrial processes

(where production in large batches is optimal), it is far from

obvious that it typifies manufacturing technology.

Second, the (S,s) model requires that sales be beyond the

firm's control, which is quite hard to swallow in many

oligopolistic manufacturing industries. (Think, for example,

of automobiles, steel, and chemicals.)
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Third, if we give up the assumption that the production

function is concave, we give up much of neoclassical economic

thought in the bargain. Of course, if production functions
really are convex, then so much the worse for neoclassical
economics. Theory must be bent to fit facts, not the other way

around. My point is simply that abandoning concavity is not

something that should be taken lightly. <8>

In fact, one way to interpret this paper is as a last—

ditch effort to save the assumption that the (short—run)

production function is concave from the scrapheap of discarded

doctrines. I leave it to the reader to decide whether the

rescue mission was successful.

The paper is organized into four sections. Section II is

factual: it documents Facts 1 and 2 and several others as

well. Section III is theoretical: it derives the production

smoothing! buffer stock model rigorously and explains how the

riodel can be made consistent with the facts. Section IV is

econometric: estimates of stock adjustment equations derived

from the theory are presented and evaluated. Finally, Section

V is impressionistic: it reviews the theoretical and empirical

evidence and tries to draw some tentative conclusions. But

these are certainly more tentative than conclusive.
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II. THE STYLIZED FACTS ABOUT MANUFACTURING INVENTORIES

The empirical parts of this paper study monthly,

seasonally adjusted data on sales and inventories in billions

of 1972 dollars, provided by the Bureau of Economic Analysis

(BEA). Inventories are broken down by stage of processing

(materials and supplies, works in progress, and finished goods)

and by industry (10 durable sectors and 10 nondurable sectors).

The period of study runs from February 1959 (the first nonth

for which opening stocks of inventories are available) through

December 1981.

Before looking at the data, it is wise to get some

accounting identities straight. Figure 1 will help. In this

schema X denotes sales, F denotes the stock of finished goods,

and W denotes the stock of works in progress (henceforth

"works"). It indicates that:

Cl) Items that are started within the period might be

counted as works in progress (path a), finished goods (path b),

or shipments to customers (path c) by the end of the period.

(2) Items that began the period as works in progress

might still be in progress, or might be recorded as finished

goods (path d), or as sales (path e) by the end of the period.

(3) Items that started the period as finished goods are

either sold within the period (path f) or remain in inventory.
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Adding up these possibilities (using obvious notation), we

see that sales are given by:

(2.1) X=c+e+f,

while a natural definition of production is:

(2.2) Y=a-Fb+c.

Similarly, the change in the stock of finished goods is:

(2.3) F = b + d —

- l L. -afl LL ILl LLlt b LJJS. UI. WUL. S.b .1.11 I.IJLJL bb Lb

(2.4) AW=a-d-e.
Adding up (2.3) and (2.4) gives:

EF + W = a + b - Ce + f),

which, according to (2.1) and (2.2), is exactly equal to Y—X.

So we see that the concept of inventories that satisfies the

identity

(1.1) Nt÷lNt=Yt_Xt,
is the sum of finished goods plus works in progress. I will

henceforth denote this sum by the symbol N, in accord with

(1.1).

Data on shipments and inventories of finished goods and

works in progress were used, in conjunction with identity (1.1)

to create a series on production for each industry. <10> Then

all the series were detrended by the following model of the

trend component:

log(Z) = a0 + a1TIME + a2DTIME + a3 D66 + Ut,

where TIME is a time trend beginning at I in January 1959,

DTIME is a second time trend beginning at 1 at the first OPEC
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shock (October 1973), and D66 is a dummy variable equal to 1

for all observations in 1966—1982. (D66 is motivated by a data

revision that went back only to 1966.) To get more efficient

estimates of the trends, estimation was by generalized least

squares with u assumed to follow a second—order autoregressive

scheme. <11> This is exactly the same procedure I used earlier

on the retailing data (Blinder (1981)), which facilitates

comparisons.

With these definitions understood, Table 1 shows the

decomposition of the variance of detrended production as in

equation (1.2). <12> A number of conclusions are apparent.

First, and most important, the variance of production is

generally larger than the variance of sales, and sometimes much

larger. Primary metals is the only industry in which sales has

a bigger variance that production. The ratio of var(y)/var(x)

ranges from a high of 2.40 to a low of 0.95, and is 1.14 for

manufacturing as a whole. (The corresponding ratio for

retailing was 1.15.)

Second, notice from (1.2) that var(y) cannot possibly be

less than var(x) unless the covariance between x and tn is

negative enough to overwhelm the variance of tin. In the

durables sector, this covariance is negative in only 2 of 10

industries; and the only nontrivial negative value occurs in

primary metals (where =—.22). By contrast, large positive

covariances are found in electrical machinery (p.33),

non—electrical machinery (p=.45), and transportation equipment
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Table 1

Summary of Variances and Covariances

(1) (2) (3) (Lj.) (5) (6) (7)
var(yi var(t)

Sector var(y) var(x) var(An) 2cov(x4n) p(x,A) var(jY var(x3

All Manufacturing 10.22 8.90 .177 .999 1.14 .020

Durable Goods 6.23 5.21 .1147 .775 .414 1.20 .028

Primary metals .21414 .257 .011 —.0214 —.22 .95 .0142
Fabricated metals .1146 .131 .012 .00149 .06 1.11 .092
Electrical machinery .197 .163 .0097 .026 .33 1.21 .060
Non-elect. machinery .230 .154 .021 .051 .145 1.'49 .138
Transportation equip. .802 .657 .0141 .096 .29 1.22 .063
Lumber C Wood Products .0146 .0130 .0019 -.00027 -.03 1.12 .148
Furniture F, Fixtures .0046 .0036 .00064 .00032 .10 1.27 .176
Stone, Clay, C Glass

Products .0098 .0086 .00103 .00015 .02 1.14 .120
Instruments C Related

Products .0096 .0057 .0030 .0012 .14 1.69 .537
Miscellaneous Manufact-

uring Industries .0037 .0025 .00093 .00017 .06 1.46 .371

Nondurable Goods 0.728 0.694 .032 .0029 .01 1.05 .0146

Food C Kindred Prods. .01449 .0365 .0108 —.0025 —.06 1.23 .296
Tobacco Manufacturing .00133 .00056 .00078 .000005 .00 2.40 1,405
Textile Mill Products .0134 .0124 .0012 —.00064 -.08 1.08 .098
Apparel Products .0208 .0149 .0042 .0015 .09 1.40 .283
Leather C Leather

Products .00130 .00097 .00029 .000056 .05 1.34 .300
Paper C Allied Prods. .00958 .009l7 .00051 —.000078 -.02 1.04 .056
Printing C Publishing .0162 .0136 .0020 .00014 .01 1.18 .149
Chemicals C Allied

Products .0538 .0522 .0048 —.0030 —.09 1.03 .092
Petroleum C Coal Prods..0207 .0207 .0016 —.0012. —.11 1.00 .078
Rubber C Plastic Prods. .0181 .0162 .0010 .00066 .08 1.12 .064
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(p=.29). Thus Fact 2 in the introduction holds particularly

strongly in the durables sector. Things are more mixed in the

nondurables sector: the covariance is positive half the time

and negative half the time, but generally of trivial magnitude.

Believers in a buffer stock role for inventories will

raise several questions about this finding. First, recall that:

cov(x,tn) = cov(x,Af) + cov(x,w).
Could it be that a negative covariance between sales and

changes in finished goods inventories (evidence for a buffer

stock role for inventories) is hidden by an even stronger

positive covariance between sales and changes in works in

progress? Regrettably, the answer is no. The correlation

between x and Lf is negative in only 7 of 20 industries, and

more negative than —.10 in only 3 industries.

Second, would the buffer stock role of finished goods

inventories look more important if we replaced the deviation of

sales from trend by the change in sales, or by unexpected

sales? Only a little. Coy (Ax,isf) is negative in only 9 of 20

industries. The same is true of cov(x,Af), where x is a

proxy fOr unexpected sales explained later in the paper.

Once the disaggregation of inventories by stage of

processing is brought up, several additional questions arise.

Tables 2 and 3 address some of these questions.

which of the three types of inventory is most important

quantitatively? As Tables 2 and 3 show, there are some

systematic differences between durable and nondurable



Table 2

Inventories by Stage of Pràcessirig: Means

Mean Inventory Investment Mean Inventory/Sales Ratio
(1) (2) (3) (4) (5) (6)Sector Finished Works Materials Finished Works Materials

All Manufacturing .084 .108 .096 .60 .60 .65

Durable Goods .047 .095 .065 .57 .93

Primary metals .0037 .0098 .0088 .65 .77 .92
Fabricated metals .0040 .0078 .0068 .57 .80 .97
Electrical machinery .0077 .0212 .0120 .56 1.02 .611
Non-electrical machinery .0171 .0256 .0179 .82 1.28 .78
Transportation equipment .0046 .0216 .0069 .21 1.16
Lumber C Wood Products .0012 .0009 .0022 .69 .38 .60
Furniture C Fixtures .0014 .0014 .0016 .58 .148 .92
Stone, Clay, C Glass

Products .0024 .0009 .0031 .82 .22 .56
Instruments C Related

Products .0038 .0048 .0042 .67 1.06 .69
Miscellaneous Manufact-

uring Industries .0021 .0010 .0015 .96 .60 .80

Nondurable Goods .036 .013 .031 .63 .21 .57

Food C Kindred Products .0084 .0023 .0059 .62 .09 .38
Tobacco Manufacturing .0002 .0001 .0007 .42 .09 5.27
Textile Mill Products .0026 .0020 .0015 .71 .52 .59
Apparel Products .0041 .0013 .0038 .70 .31 .55
Leather C Leather Prods. .0003 -.0001 -.0002 .73 .40 .60
Paper C Allied Products .0041 .0009 .0047 .48 .15 .73
Printing C Publishing .0023 .0012 .0024 .36 .24 .40
Chemicals C Allied Prods. .0106 .0027 .0081 .74 .22 .55
Petroleum C Coal Prods. .0013 .0009 .0012 .72 .29 .31
Rubber C Plastic Prods. .0024 .0013 .0030 .84 .25 .53
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Inventories by Stage of Processing: Variances and Covariances

Durable Goods

Nondurable Goods

.016 .040 .17 .03 14

Sector

All Manufacturing

Variances of Inventory

(1) (2)

Investment

(3)

Correlation Coefficients

(4) (5) (6)
Finished Works Materials PFW FM WM

.058 .09 .03 .15

.43 .04 .03

.28 —.29 —.22

.25 .35 .35

.16 .05 .24
—.00 .30 —.23
.08 —.05 —.08
.21 —.01 —.17

.13 —.19 .11

.036 .047

Primary metals .0028 .0021 .0023
Fabricated metals .0014

•

.0031 .0050

Electrical machinery .0011 .0021 .0017

Non-electrical mach. .0024 .0049 .0024

Transportation equip. .0027 .0193 .0110
Lumber & Wood Products .0077 .00031 .00054
Furniture & Fixtures .00012 .00012 .00015

Stone, Clay & Glass
Products .00048 .00006 .00017

Instruments Related
Products .00036 .00056 .00045 .01 —.03 —.25

Miscellaneous Manufact-
uring Industries .00026 .00011 .00017 .21 —.03 .16

.016 .0019 .010 .11 —.07 .02

Food g Kindred Prods. .0070 .00038 .0042 .06 —.03 .04

Tobacco Manufacturing .000036 .000030 .00092 -.01 -.35 .01
Textile Mill Products .00056 .00018 .00045 .09 —.18 .01

Apparel Products .0015 .00045 .0011 .22 -.21 —.12
Leather & Leather Prods. .00013 .000029 .000055 .09 -.12 .09

Paper & Allied Prods. .00029 .000077 .00033 —.22 —.03 —.06

Printing & Publishing .00037 .00035 .00046 .01 .04 .08
Chemicals S Allied Prs. .0017 .00031 .00082 .14 —.12 .04

Petroleum & Coal Prods. .00092 .00016 .00016 .06 .04 —.01
Rubber S Plastic Prods. .00043 .000069 .00026 .16 —.11 .11
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industries in this respect. <13>

Over the period 1959—1981, 6 of the 10 durables industries

did more investment in works in progress than in any other type

of inventory; 3 of the remaining 4 industries invested most in

materials and supplies. (The largest number in each line is

underlined.) However, if we look at stocks instead of flows,

that is, at inventory/sales ratios, the picture is more mixed.

Inventory holdings are mostly stocks of works in progress in 4

industries, mostly finished goods in 3, and mostly materials

and supplies in the remaining 3.

In the nondurables industries, works in progress

inventories are rather unimportant. Six of the 10 nondurables

sectors did most of their inventory investment in the form of

finished goods, and the others concentrated on materials and

supplies. This picture changes but slightly if we focus on

stocks (inventory/sales ratios) rather than on flows.

Variances, rather than means, are more important for

business cycle analysis. Table 3 continues to show that

inventory investment in works in progress is quite unimportant

in nondurable goods industries, but quite important in

durables. (In each line of Table 3, the largest of the three

variances is underlined.) However, it is noteworthy (given

this paper's concentration on finished goods) that inventories

of finished goods look more important in the durables

industries when we consider variances instead of means.

It is natural to ask whether the different types of
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inventories display different behavior or tend to march in lock

step with one another. For this purpose, Table 3 displays

correlation coefficients among the three types of inventory

change. The major conclusion, I think, is that these numbers

are very small; each type of inventory movement seems to have

a life of its own.

Changes in finished goods and changes in works in progress

typically are positively correlated; but the correlation is

large only in the primary metals industry. Few other

generalizations can be made. Changes in finished goods and

changes in materials and supplies are negatively correlated in

14 of 20 sectors, but the strongest correlations are positive

(in electrical machinery and transportation equipment).

Changes in works and materials are nearly orthogonal in the

nondurable industries, but show mixed results in the durable•

industries.

Before leaving these data, one further fascinating

observation should be made. Look at the second column of Table

1. While the variance of sales in the durables sector is 5.21,

the sums of the variances in the 10 industries that comprise

this sector is only 1.40. The remaining 3.81 or

three—quarters of the total variance —— is accounted for by the

covariances among the sales of the 10 industries. Much the

same pattern holds in the nondurables sector, where the

variances of sales of the 10 industries sum to only .177 while

the variance of nondurable sales as a whole is .694. This
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domination by the covariances suggests, but does not prove,

that there is a dramatic common "business cycle" element in the

sales of the various manufacturing industries. <14>

To what conclusions are we led by this quick perusal of

the facts? First, the production smoothing/buffer stock model

looks dubious at best. Consequently, the next section is

devoted to modifying the theory so as to make it more

consistent with the facts.

Second, all three types of inventories appear to make

independent contributions to the variance of total inventory

investment. This suggests seeking separate empirical

explanations for each type of inventory. The empirical work

reported in Section IV deals only with finished goods; research

on the other two types of inventory investment would be

worthwhile.

Third, there are enough differences across industries in

Tables 1-3 to make aggregation look hazardous; hence I adopt a

disaggregated approach to the empirical work in Section IV.

Fourth, most of the variance in manufacturing sales and

output is contributed by pervasive positive covariances among

the sales and output of component industries, which suggests a

very strong common business cycle element in U.S. manufacturing

industries.
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III. THE THEORY OF PRODUCTION SMOOTHING

1. Concepts and Notation

The model used here is a generalization of Blinder (1982),

and uses the notation employed there. Specifically, consider a

value— maximizing firm with linear demand curve:

(3.1) X = 2d0
—

2dPt + 2d

where P is the price in period t and X is the quantity sold.

The demand shock,rlt, has a complex structure that will be

specified presently.

The firm is assumed to have quadratic costs of production:

(3.2) C(Yt) = c0 + Cc1 +)Y + cL/2c)Y ,

where is output and Ft is a cost shock representing

stochastic disturbances to either technology or factor prices.

The curvature parameter c is critical to the production

smoothing issue. A low value of c connotes a steeply

increasing marginal cost curve, and hence a strong motive to

smooth production.

Similarly, the firm is assumed to have quadratic costs of

holding inventories:

(3.3) B(Nt) = b0 + biNt + (b/2)N ,

where Nt is the stock of inventories at the beginning of

period t. The model treats only inventories of finished goods,

which is why the empirical work is restricted to this type of
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inventory. The curvature parameter b is again critical to the

production smoothing issue. A large value of b makes it costly

to vary inventories, and hence will discourage the firm from

using inventory movements to smooth production.

If D=l/(l+i) is the discount rate, the firm seeks to

maximize:

(3.4) Et E D5 { Pt —
C(Yt÷5) B(Nt+ )},s0

where X, C(Y), and B(N) are as given above. Before solving the

problem, it is useful to define production smoothing precisely,

because that is the central issue of the paper. One obvious
definition is:

DEFINITION 1: A firm is said to smooth production if the
(unconditional) variance of production is less than the

(unconditional) variance of sales: var(Y) < var(X).

For obvious reasons, I call this "long—run production
smoothing." Fact 1 in the introduction can be interpreted as
saying, that firms do not smooth production by this definition.

For "short—run production smoothing," I offer two
definitions. •The first is more useful in empirical
applications, while the second is easier to work with

theoretically.

DEFINITION 2: A firm is said to smooth production if, in
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response to a positive (negative) demand shock, production

rises (falls) less than sales so that inventories decline

(rise):

(Y -X)
t t <0.

1-1t

DEFINITION 3: A firm is said to smooth production if its

production responds less to a sales shock than it would if it

could not carry inventories:

t ( t

ant ant

where the * denotes a firm that cannot carry inventories.

If either inequality is reversed, I will say there is

production "bunching" instead. It is easy to show that if

production is smoothed by Definition 3, then it is also

smoothed by Definition 2. But, the converse does not hold.

2. The Informational Structure

Because expectations are assumed to be rational, the

information structure is critical to the solution. I assumed

that the firm observes its cost shock for period t before

making its decisions on production and price for period t. This

seems a natural specification if cost shocks represent

fluctuations in input prices, but not so natural if they

represent stochastic aspects of the technology.

For the demand shock, I employ a general structure that
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admits of several interpretations. Specifically, the demand

shock is assumed to have two independent components:

1 2t = +

which differ only in that the firm can observe , but not,
before it makes its decisions on Pt and Y . The idea is that

what the econometrician, using monthly or quarterly data,

labels as "unanticipated sales" is only partly unanticipated by
-. - - - -- - 1tfle tirm, wiuch actually knowsnt.

Two polar cases are evident. If the shock is absent,

then the firm knows its demand curve before making its

decisions and the sales "surprise" is a surprise only to the

econometrician. If the 't shock is absent, the firm must make

its decisions before it knows its demand curve, and sales

surprises really are surprises. <15> The distinction between

these two versions of "unanticipated" sales turns out to be

critical to reconciling the theory with the data. I interpret

the empirical evidence as suggesting that shocks are far

nore important than shocks.

To recapitulate briefly, the firm inherits an opening

stock of inventories (Nt) which is the legacy of the past. It

then observes its cost shock (re) and part of its demand shock

() before choosing its level of production (Yt), price

and expected sales. After these decisions are made, the rest

of the demand shock (ri) is observed and actual sales (Xt) are

determined. The beginning—of--period inventory for period t+1

then follows from the identity:



Page 18

(3.6) Nt÷i
= Nt + X

and the whole process repeats.

3. The Solution: Optimal Inventory Policy

Details of the solution are presented in a lengthy

mathematical appendix available on request. Here I confine

myself to establishing the notation and stating the resuLts.

t....-.1_ . i_%.._. ......4 V V D liaFii. I... i_'Ji. va.&. t+s t+s t+s t+s '

lower case symbols denote the expectations of the corresponding

upper case symbols. All expectations are conditional on the

information available when the period t decision is made. For

example:

= EtYt+S,
where the information set available at time. t includes Nt,l't,

4, and all variables dated t—l or earlier. Similar definitions

hold for r+' and Analogously, let the new

symbols:
=

i=l,2.
i i

= Etnt÷

denote the expected values of the period t+s shocks.

If is defined as the shadow value of inventories,

i.e., the costate variable attached to the dynamic constraint

(3.6); ÷5 is the period t expectation of Q; and is the

deviation of from its nonstochastic steady state; then
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the appendix shows that the first—order conditions for

maximizing (3.4) subject to the sequence of constraints (3.6)

are as follows for s0:

(7) = y + c(At _r)

(3.8) x = X÷d(ct
—

(3•9) — (1+i)At = b(n÷i i)

where Y, X, and N are respectively the nonstochastic steady

state values of output, sales, and inventories (naturally,

Y=X).

These first—order conditions have straightforward

interpretations. Equation (3.7) equates marginal cost to the

shadow value of inventories; equation (3.8) equates expected

marginal revenue to the shadow value of inventories; and

equation (3.9) states that the increase in the shadow value

must just compensate the firm for both the interest costs and

explicit holding costs of carrying inventories.

Notice that (3.7) is a decision rule for actual

production, but (3.8) is a rule only for expected sales.

Actual sales are related to expected sales by:

(3.10) X — x = 2d(nt
— Etflt)

which follows from (3.1).

To make these rules operational, we must solve for the

initial value of the shadow value of inventories,Xt . This is

a tedious calculation which is done in the appendix. The

result is:
1-z

(3.11) = c+d )(N— Nt + d(Et + Ft) + c(r + Gt)]
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where z1 is the stable root of the quadratic equation:

(3.12) z2 — [2+i+b(c+d)]z ÷ (l+i) = 0 , and where:

Ft =
s1

Gt = s1
where OE l/z2 and z2 is the unstable root of (3.12) Clearly,

the exact solution depends on the specific nature of the

shocks.

Shortly, I will deal with a series of more particular

cases, but to start I assume that both demand shocks are

ARMA(l,1) processes:

= pri3 + mv + v 1=1,2

and the cost shock is AR(1):
= rr1+w

Under these assumptions, the appendix shows that (3.11)

becomes:

(3.13) A = -
Nt +

1—Op
+ mOv + pn_1 + mv1) +

Using this result in (3.7) and (3.8), the decision rules for

optimal output and sales are:

(3.14) - = C(lZ) ( - N) + ()(io)[En + mOv]
- (1 -

c:d I:)cr

(3.15) - = -d(1-z1) ( - N) + d(1 - I:)Efl- dmOv + 2dv

- cd 1-z1
c+d 1-Or
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where, it will be recalled:

1 2 2

Er1
= + ÷ mv1

Together with the identity (3.6), these imply the following

inventory investment equation:

(3.16) Nt+i - Nt
= (1_zi)(_N) - d(i+1 )Etn + d(1 ')mOv - c(l+1;r)rt -

2dv

where use has been made of the fact z1z2=l+i.

Equation (3.16) is the basis for the effort to reconcile

the theory with the stylized facts that follows. It also

provides the theoretical underpinning for the econometric work

in Section IV.

4. Short—Run Production Smoothing

More apparatus is necessary before we can deal with

long—run production smoothing, but we already know enough to

study short—run production smoothing. First note that a firm

with no inventories would solve a static profit— maximization

problem and equate marginal cost:

MCt = C1 + (l/c)Yt +

to expected marginal revenue. Since the inverse demand curve

is:

Pt = (d0/d)
— (i/2d)Xt+ nt'

expected marginal revenue is:

= (d0/d)
- (l/d)Xt +
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Equating the two and noting that Yt=E(Xt) in the absence of

inventories yields:

•
- Y = (dc/(d+c))( .t -

From Definition 3, a natural quantitative measure of the

degree of production smoothing is:

•S =1—
Y

Using this formula and the above expression for Y, we find:
9Y4-

S = 1 - ((c+d)/cd)y t

Using (3.14), this is readily seen to be:
l—z z —Op—mO(1—z 1s = - (i+inO) =

1-Op for v type shocks;

s,,
= 1 for v type shocks.

Thus production smoothing is complete for truly unexpected

sales, but production bunching is actually possible for the

econometrician's version of "unexpected sales." Remembering

that 0 =1/z2, we see that some smoothing will take place if and

only if:

(3.17) 1-I-i — P > m(l—z1) ,

which must be true for AR(1) demand shocks (m=O), but can be

false if m is large enough.

The inuition behind this result is as follows. Consider

the implied moving average coefficients when the stochastic

process is ARMA(l,l):

= pr1_1 + mv +
We have:

an—=1
a

= P + m

p(p+m)
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So if p+m>l, the response pattern "builds" at first before

decaying.

Suppose a firm sees a positive value of v, connoting a

good period for sales. If the shock is AR(l), the firm will

expect the ensuing periods to also be good, but not quite as

good as period t. Hence it has an incentive to sell out of

inventory, i.e., to smooth production. However, if the shock

is ARMA(l,l), the firm will expect next period to be even

better than this period (if P+m>l). If P+m exceeds 1 by enough

(as defined by (3.17)), the firm will actually want to build

inventories for future sale. So it will bunch, rather than

smooth, production.

Naturally, a firm that smooths production will "bunch"

sales, and conversely. It is easy to show that a smoothing

measure for sales, that is defined analogously to S,, is

related to S, by the simple formula:

S = _(d/c)S.
Equally naturally, a firm will smooth its price behavior only

if it bunches its sales, that is, only if it also smooths its

production. <16> In the model, a measure of price smoothing

defined analogously to Sy is related to S by the simple formula:
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S = (d/(2d+c))Sp y

Thus condition (3.17) is pivotalto the firm's behavior.

If it holds, as it must unless demand shocks have a strong

moving— average component, the firm smooths both produOtion and

sales and plans to draw down inventories when demand is high.

These reactions are just what we expect. But if (3.17) fails

to hold, the firm's optimal behavior is counterintuitive. It

smooths sales, not production (nor price), and plans to build

inventories in periods when demand is unusually high.

With this analysis complete, we are now ready to address

the four stylized facts mentioned in the introduction.

5. Fact 3: Puzzling Regression Estimates

I begin with Fact 3, which was that econometric inventory

investment equations like:

(1.3) Nt+i — Nt = 1(N1 — N)t) — (l2)(Xt — t_lXt) +

tend to produce low estimates of the parameter and high

estimates of the parameter 2 It is useful to compare the

theoretical equation (3.16) to the empirical specification

(1.3).

Notice first that (3.16) does have the partial adjustment

form assumed in (1.3). In the absence of shocks, inventory

change is a fixed fraction of the gap between N and Nt. This

fraction —— "the speed of adjustment" —— depends on the

curvatures of the revenue and cost functions, and on the rate
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of interest (see (3.12)). Low estimated adjustment speeds,

therefore, suggest a high value of z1.

However, N is not the firm's desired inventory stock. A

natural definition of the desired inventory stock, call it

N+l, is the value of Nt that makes desired inventory change

equal to zero, conditional on. the information available at time

t. Equating the expectation of the righthand side of (3.16) to

zero, we can express Nt+i as a function of N and the stochastic

shocks that are known at time t. If this definition of N1 is

then substituted back into (3.16), a little algebra shows that

(3.16) can be written as:

Nt÷i — Nt =
(1—z1) (Nt+i — Nt) - (n — Etnt),

where (3.10) has been used to replace 2dv by unexpected

sales.

Thus we have two distInct concepts of "target" or

"desired" inventories. i is the steady state level; its value

depends on cost parameters, the rate of interest, and the mean

position of the demand curve. We may assume that it moves

rather slowly through time and is quite insensitive to

fluctuations in sales. By contrast, N+l is the current

target. Because it responds to new information, it may well

exhibit rapid swings from one period to the next. The

distinction between N and N1 is reminiscent of Feldstein and

Auerbach's (1976) notion that actual inventories adjust rapidly

to their target, but that the target itself adjusts only

slowly. The model therefore provides a rigorous justification
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for inventory behavior that is consistent with the spirit, but

not the letter, of Feldstein and Auerbach's analysis.

Next consider the parameter in (1.3). The model offers

two possible theoretical interpretations of "unexpected sales."

The most natural definition is 2dv —— the difference between

what the firm sells and what it expected to sell when it made

its production and price decisions. By this definition,

unexpected sales enters the inventory equation with a

coefficient of exactly —1. However, the econometrician's

version of "unexpected sales" is likely to include both and

v. As noted earlier, the theoretical coefficient of a v

shock is negative if and only if (3.17) holds.

Putting all this together, we have the following potential

explanation for Fact 3:

(a) Technological conditions produce a high value of

z1, that is, a slow speed of adjustment. This will occur if

b(c+d) is fairly small, which means either that inventory

storage costs are nearly linear or that the marginal cost

and/or marginal revenue schedules are quite steep.

(b) Much of what looks like unexpected sales to the

economëtriCiafl is not actually unexpected by the firm, and

condition (3.17) fails to hold. The empirical coefficient

will then be a weighted average of -1 and the (positive)

coefficient of a v demand shock. Therefore, with v shocks

quantitatively more important than shocks, it would not be

surprising to find a very small estimated value of
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On this view, the coefficients of initial inventories arid

unexpected sales in an econometric inventory equation depend

upon fundamentally different characteristics of the firm. The

former depends on technology and demand parameters, while the

latter depends principally on how quickly the firm learns about

demand shocks. Accordingly, no relationship between the two

coefficients can possibly refute the production smoothing

model, in contradiction to the claim made by Feldstein and

Auerbach (1976) and others.

6. Fact 1: Var(Y) Exceeds Var(X)

The remaining stylized facts mentioned in the introduction

involve the unconditional variances and covariances of X, Y,

and N. Some fairly tedious manipulations detailed in the

appendix lead to the following expression for the shadow value

of inventories:

____ c 1—OrL 1-z1 d i+me-{ep(l+m)-m(l—e)}L , 1
(3.18) (l_ziL)X = i-eral—rL )w + l—ep l-pL JV

l—z1. d 2(1-Op)++m — 2p-Op(p-m)}L
]+ l—OpZ l-pL t-l

Given this expression for the shadow value, and equations

(3.7) and (3.8) for Y and X, can the model ever rationalize

the fact that var(Y) > var(X)? Clearly it can, if cost shocks

are big enough. Intuitively, it seems clear that demand shocks

tend to produce high variance in X while cost shocks tend to
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produce high variance in Y. More specifically, the appendix

establishes the following:

PROPOSITION 1: In a simplified version of the model with

no demand shocks and r=O (serial correlation of the cost shock

is an unnecessary complication for this purpose), var(Y) >

var(X) for any admissible values of the parameters.

Hence cost shocks are always a potential explanation of

Fact 1 if the variance of cost shocks is large enough relative

to the variance of demand shocks. However, this explanation

comes perilously close to assuming the conclusion, and for this

reason is not very satisfying.

The remaining propositions, all proven in the appendix,

pertain to a model in which cost shocks are absent.

PROPOSITION 2: In a simplified version of the model with

no cost shoôks and a serially independent demand shock which

the firm sees before deciding on production, var(X) > var (Y)

for any admissible values of the parameters. However, as

approaches zero, the ratio var(X)/var(Y) approaches 1. <17>

Together, Propositions 1 and 2 provide a potentially more

satisfying explanation of the fact that var(Y) > var(X).

Suppose the technology makes z1 very small, so that in the

absence of cost shocks var(X) would be only slightly larger
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than var(Y). Then even relatively minor cost shocks could tip

the balance and turn var(Y) > var(X).

The problem with this explanation is that the empirical

evidence suggests rather slow adjustment speeds, that is,

rather high values of z1. According to the logic of

Proposition 2, a high value of z1 will leave var(X)

substantially larger than var(Y). An alternative explanation

of Fact 1 would be desirable. One is provided by the next

proposition.

PROPOSITION 3: In a simplified version of the model with

no cost shock and an AR(l) demand shock which is known before

output is set, var(X) > var(Y) for any admissible parameter

values. However, the ratio var(X)/var(Y) approaches 1 as the

autoregressive parameter p approaches 1, that is, as demand

shocks become permanent. This holds for any value of z1. <18>

The intuition behind Proposition 3 is clear. As the stochastic

structure of the demand shock gets closer to a random walk,

demand disturbances become more permanent. Hence the firm is

more likely to adjust its production fully.

Propositions 1 and 3 together provide a potentially better

explanation of the fact that var(Y)>var(X). The speed of

adjustment can be as slow as we please. But as long as p is

close to unity, as it is empirically, var(Y) will be nearly as

large as var(X). In that case, only minor cost shocks are
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necessary to make var(Y) greater than var(X).

For example, in a numerical example with z1=.85, no cost

shocks, dc, b.013c, and a zero rate of interest,

var(Y)/var(X) is only 0.55 when Q=.9. But if P gets as high as

.98, var(Y)/var(X) rises to .95.

To summarize, a combination of a rapid speed of adjustment

(i.e., low z1) and high serial correlation in demand

disturbances (i.e., high P ) can leave var(Y) so close to var(X)

that it takes only very minor cost shocks to make var(Y) >

var(X).

7. Fact 2: Sales and Inventory Change Do Not Covary Negatively

The fact that cov(X,EN) is typically zero or positive is

the hardest to deal with, because conflicting factors produce

theoretically ambiguous results. The reader is spared the

detailed analysis. Suffice it to say that a positive cov(X,tN)

can be produced by cost shocks or by demand shocks that are

seen before sales decisions are made and that "build" before

decaying. Other types of demand shocks produce a negative

cov(X,N). Thus, cov(X,N) can have either sign, depending on

which types of shocks dominate.

8. The Stylized Facts: Summary

In summary, then, the production smoothing/buffer stock

model seems compatible with with all three facts mentioned in

the introduction under the following circumstances:
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(a) Cost shocks are present, though they need not be

large.

(b) Most demand shocks are seen by firms before they must

make their production and pricing decisions.

Cc) Demand shocks build before they decay. (ARMA(l,l) and

AR(2) processes are simple examples.)

Cd) Either the technology parameters dictate a rapid speed

of adjustment or demand disturbances have strong positive

A.

None of these requirements seem outlandish and, most

importantly, none forces us to jettison the basic idea that the

production function is concave. In this respect, then, the

production smoothing/buffer stock model is "saved," though with

rather little emphasis on the buffer stock aspects.
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IV. ECONOMETRIC INVENTORY EQUATIONS

This section presents econometric estimates of inventory

investment equations for finished goods based on the

theoretical specification (3.16). I concentrate on finished

goods because that is the only type of inventory for which we

have a coherent and operational theory. However, the stylized

facts show that works in progress are just as important.

The data are monthly, real, and seasonally adjusted, and

(after allowing for lags) span the period December 1960 — March

1981. <19> In accord with the findings in Section II, each

two—digit industry is treated separately. However, as a kind

of convenient summary, I also present results for all

manufacturing and for the durable and nondurable sectors. The

theoretical equation (3.16) was made operational as follows.

Demand disturbances were proxied by two variables:

expected sales, 4, is the one-period-ahead forecast from a

12—th order autoregressive fit to each industryvs actual data

on shipments; and unexpected sales, X, is the residual from

this autoregression. Thus expectations are assumed to be

"rational," albeit in a limited sense. Experimentation with

other expectational proxies led to substantially identical

results. In 13 of the 20 industries, data on new orders were
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available. For these industries, the collinearity between the

two sales measures was almost always too great to include both,

so two versions of the regressions were run. Normally, a better

fit was obtained using shipments.

Cost disturbances were treated by including both the real

product wage and the real cost of raw materials in each

ev a a 4 , m1- — , 4 1 .., a 4 — a vm a 1- — — 1
J_ .1. .Jfl • .1 LSC Sfl'_ItflIJ. LA .L fla C - CCS SC•j nt4C LAC a V CA. C Lfl' SS .I_J

earnings series specific to that industry or sector. The

nominal materials cost series was the PPI for Crude Materials

for Further Processing (and is the same for every industry).

Each nominal factor price was deflated by an industry— specific

price index.

In addition, the interest rate was included as a

potentially important determinant of the nonstochastic steady

state level of desired inventories. For reasons described in

Blinder (1981), the nominal interest rate (bank prime rate) and

the expected rate of inflation (generated by an autoregression)

were entered as separate variables rather than combined into a

real interest rate.

Before presenting the estimates, a word on autocorrelation

is in order. It has been well known for years that econometric

procedures have a hard time distinguishing between partial

adjustment and autocorrelation (Griliches (1967)). Write the

basic stock adjustment model of inventory change as:

(4.1) Nt÷i - Nt = (N —
Nt) + Ut

Variables other than Nt are irrelevant for present purposes,
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and hence ignored. If the error term follows an AR(i) scheme:

(4.2) u = P
ut_i + e '

the natural procedure is to quasi—difference (4.1) before

estimating to get:

(4.3) = (P — + l)Nt — P(l_8)Nti + e.
This is an AR(2) model for the stock of inventories. But

ntt-r th fnnimn1-1 ni-ifit-f-irn nrt-h1ini. Snnnt- 0 ntR B--

are approximately equal, then the two coefficients in (4.3) are

approximately 1 and —l). Hence, we cannot tell from l—.

For example, if either P= =.9 orP .l,. then the coefficients

in (4.3) are respectively 1.0 and —.09. Thus any estimation

technique will have trouble distinguishing between a model with

strong serial correlation and fast adjustment and one with

little serial correlation but slow adjustment. <20>

All the equations reported in this section were fit by

nonlinear least squares under the assumption that the error

term was AR(1). <21> In several cases, two local minima of the

sum of squared residuals function were found. In such cases,

one of the minima always had high p and rapid adjustment while

the other had low p and slow adjustment, precisely as suggested

by this simple argument. This point is important because the

extremely high adjustment speeds recently found by Maccini and

Rosanna (1984) result from an estimation technique that, I

believe, settles on the local minimum with high p . The

estimation method used here typically shows that the low p

solution is the global minimum.



Page 35

The model in Section III recognized the existence of only

one type of inventory. But, in fact, there are three types and,

in many industries, also backlogs of unfilled orders.

Preliminary regressions showed clearly that investment in

finished goods inventories reacts differently to the initial

stock of each kind of inventories, so Table 4 presents

estimates of the following extended stock adjustment model of

finished goods inventories:

(4.4) = F+ 2 W + +
X +c*2 X +yiRt + +

+

where is the stock of unfilled orders and the error term, u
is assumed to be generated by (4.2). (In the table, t—ratios

are in parentheses. Asterisks indicate variables for which

distributed lags were found to be significant, as will be

explained later.)

First, note that the initial stock of finished goods

always enters with a significant negative coefficient,

indicative of partial adjustment. However, in accord with much

previous work (see Fact 3), most of the estimated speeds of

adjustment are rather slow. among the 17 industries for which

the "low p" solution was the global minimum, the speeds of

adjustment range from 5% to 38% per month. These speeds are

slightly faster than those typically found in work at a more

aggregative level, but are not out of line with earlier

estimates. <22> In this context it is interesting to observe
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that aggregation seems to bias the speed of adjustment

downward. The estimated adjustment speeds for durables and

nondurables as a whole are lower than those of most of the

constituent industries.

In the remaining three industries —— instruments, food,

and textiles —- the global minimum turned out to be the "high

2" solution, and estimated adjustment speeds were very rapid

(104%, 79%, and 100% per month, respectively).

The cross—adjustment coefficients, and 31 are more

novel and display a rather consistent pattern across

industries. High opening stocks of either works in progress

(Wt) or raw materials (Mt) usually are associated with higher

investment in finished goods inventories, that is, with higher

production. Whether or not this empirical regularity implies

causation, of course, is another matter entirely. For example,

higher planned production could induce stockpiling of works in

progress and materials.

Studies that merge all three types of inventory into a

single stock necessarily produce an estimated "adjustment

speed" that is an amalgam of the three adjustment coefficients,

Since one of these is negative and the other two are

positive, we should expect this procedure to understate the

speed of adjustment if the three types of inventories covary

positively. To test this idea, a version of (4.4) was run in

which all three types of inventory were lumped together into a

single aggregate. The results were as expected: estimated
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adjustment speeds generally declined, sometimes dramatically.

Turning to specifics, the coefficient of works in progress

is positive in 17 of 20 industries, though it is significantly

positive in only 4 of these. The petroleum refining industry

is the only important exception to this rule; here, hIgh stocks

of work in progress apparently lead to lower levels of output.

The coefficient of the opening stock of materials and

supplies inventory is positive in 18 of 20 industries, and is

significantly positive in 10 of these. The only exceptions are

the primary metals and transportation equipment industries,

where high levels of raw materials apparently lead to cutbacks

in production.

In contrast to these rather good results, the stock of

unfilled orders performed poorly. Ainong the 13 industries

reporting data on unfilled orders, the estimated coefficient

was positive. 7 times (the "correct" sign, it seems to me) and

negative 6 times. Only three coefficients were significant; and

they were all negative.

As noted already, sales were measured alternatively by

shipments and, in those industries offering such data, unfilled

orders. Fortunately, the estimated equations proved quite

insensitive to the choice of a sales measure. Since shipments

performed slightly better than new orders, and are available

for all industries, Table 4 reports only the results with

shipments. <23>

In general, results for the sales variables were somewhat
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disappointing and not always in line with a priori

expectations. For example, many of the coefficients were

insignificantly different from zero, suggesting either that

production reacts virtually one—for—one to sales (whether

expected or unexpected) or that the difference between

production and sales shows up mostly in works in progress

rather than in finished goods. <24>

Specifically, the coefficient of expected sales,X , is
normally quite small (values of .05 or less are typical) and

insignificantly different from zero. Its sign is positive in

14 cases and negative in 6, and only 8 of the 20 industries

(all in durables) display significant coefficients.

The unexpected sales variable is significant in only 7

industries. A positive coefficient for this variable is

impossible to interpret in the context of the model; taken

literally, it implies that inventories of finished goods rise

when there is an unexpected surge in sales. Presumably, a

positive coefficient means that the sales fluctuations which we

label "unexpected" are really expected by firms, in accord with

the discussion in Section III. Yet the point estimate is

positive in 11 of 20 industries. There is evidence of a strong

negative effect of X on LFt in only 6 industries.

Interest rates, represented here by the (monthly) nominal

interest rate (Rt) and the (monthly) industry—specific expected

rate of inflation ( Fit) do not perform as the theory suggests.

The expected signs are negative for Rt and positive for but
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only 4 of 20 industries display this pattern. Taking the two

variables individually, we see that Rt gets the expected

negative coefficent in only 10 of 20 cases and gets the

expected positive coefficient in only 9 of 20 cases. Only 5 of

the 19 correctly—signed coefficients are significant; as are 5

of the 21 incorrectly—signed coefficients. This is not much

better than what you would expect if the coefficients were

randomly distributed around zero, so the overall conclusion

seems to be that interest rates do not matter. This finding is

consistent with older empirical work on inventory investment,

but contradictory to some newer work in which significant

inventory effects have been found. <25>

The wage rate is probably the least successful variable of

all. Of the 20 industries, only 4 estimates get the expected

negative sign. Of the 16 positive coefficients, 9 are

significantly different from zero. The results here strongly

suggest reverse causation running from higher production to

higher wages, perhaps due to overtime premia. Thus, I conclude

that wage rates are not good representations of cost shocks.

Raw materials costs are far more successful in this role.

The estimated coefficient of c is negative in 15 of 20 cases,

and is significant in about half the industries. And many of

the coefficients are of an economically meaningful size. For

example, the coefficient for all manufacturing indicates that a

10% rise in raw materials prices (the variable c is an index

number with January 1972=100) will lower the desired stock of
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finished goods inventories by $2 billion (in 1972 dollars), or

about 5% of the mean inventory stock.

Finally, I note in passing that the fits of the

regressions —— as measured by R2 —— are modest at best. Time

series analysis of noisy, virtually trendless series like A
Ft

encourages humility.

One objection to the standard stock adjustment model is

that it assumes that all the righthand variables enter only

contemporaneously. But if there are lags in adjustment,

noncontemporaneous values of variables like interest rates and

raw materials costs may also matter. <26> In fact, Irvine

(1981c) has argued that omission of such variables may bias

estimated adjustment speeds downward. There are so many

possible combinations of distributed lags that might be added

to (4.4) that I adopted a sequential search procedure to

economize on computing costs. The results are summarized in

Table 5.

First, I tested for whether expectations of sales more

than one month ahead contribute anything to the explanation of

inventory change by adding +2' and to the

regression. <27> Column (1) of Table 5 reports the appropriate

likelihood ratio tests, showing that these additional variables

were significant in 8 of the 20 industries. <28> However,

adding these variables to the regression led to a meaningful

change in the estimated adjustment speed in only two

industries. One of these (miscellaneous manufacturing) jumped
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All Manufacturing

(1)

Expected
Sales

1.364

(2)
Interest
Rates

15.llO**

(3)
Materials
Costs

9.9l5

Wages

9.175*

*Denotes significant at 5% level.

**Denotes significant at 1% level.

Durable Goods 6.833* 17.204** 4.963 0.001

Primary metals l7.177** l3.757 1.191 3.150
Fabricated metals 3.701 5.920 10.439* 0.946
Electrical machinery 2.794 l7.485 6.293 1.962
Nonelectrical machinery
Transportation Equipment

0.O'O
3.588

27.52g**
8.377

6.453
1.531

4.056
2.778

Lumber S Wood Products
Furniture S Fixtures

6.554*
l4.975

3.656
5.32

6.544
0.148

3.402
1.734

Stone, Clay S Glass Products 7•3Q9* 4.047 1.081 9.057*
Instruments S Related Prods.
Miscellaneous Manufacturing

4.454 6.230 2.312 2.176

Industries 6.127* 6.029 l1.74l** 4.110

Nondurable Goods 0.712 25.663** 4.340 8.020*

Food S Kindred Products 6.032* 10.494* 7.004 0.998
Tobacco Manufacturing
Textile Mill Products

0.215
0.72l

0.708
6.165

0.401
4.125

0.420
1.890

Apparel Products 0.305 2.108 26.431** 0.579
Leather S Leather Products 9.162* 29.22l** 11.186* 5.639
Paper & Allied Products 4.670 10.100* 6.406 0.580
Printiiig S Publishing 2.995 3.676 0.832 3.523
Chemicals & Allied Products 3.569 3.145 0.989 0.599
Petroleum & Coal Products 9.442** 10.580* 3.934 0.101
Rubber S Plastic Products 0.883 4.640 4.873 7.403*
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from the "low p" solution to the "high p" solution, with a

correspondingly large increase in the estimated speed of

adjustment. <29>

In the second step, expectations of future sales were

retained in these 8 industries, but dropped in the other 12,

and I tested for the effects of lagged interest rates by
appropriate likelihood ratios. <30> Column (2) reports the
results. Lagged interest rates proved to be significant in 7

industries. Inspection of the results shows that it was usually

the lagged values of Rt, not of , that obtained significant

coefficients. While several estimated adjustment speeds'changed

in this step, there was no clear pattern —— some increased

while others decreased.

In the next step, the lagged values of interest rates were

retained in the 7 industries in which they proved to be

significant, but dropped in the remaining 13, and I tested for

the inclusion of lagged raw materials prices. The results of

the likelihood ratio tests are reported in column (3) of Table
2

5. The X value is significant in 4 xndustries but, with one

exception, inclusion of lagged c had only minor effects on the

estimates of p and l• <31> The exception was miscellaneous

manufacturing, which returned to the "low p" solution.

The last step was to retain lagged materials costs in

these 4 sectors, drop them from the remaining 16, and go on to

look for significant effects of lagged wages. <32> Lagged

wages proved to be significant in only two industries, and did
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not change the estimates of p and substantially in either

case.

Table 6 reports the end results of this search procedure

for each industry and aggregate in which at least one

significant distributed lag effect was found. Once a final

specification was selected, the computing algorithm was started

from different initial points to see if it would converge to a

different local minimum in the sum of squared residuals

function. This never happened. Among the 20 industries, only

food jumped from one local minimum to another between Tables 4

and 6. Consequently, in the end only two industries are

estimated to have rapid adjustment speeds (instruments and

textiles) and severely autocorrelated disturbances. The

remaining 18 have adjustment speeds ranging from 5% to 38% per

month and autocorrelation parameters ranging from —.21 to +.32.

However, it is worth reemphasizing that our ability to pin down

the speed of adjustment is not nearly so good as the

t—statistic indicates. <33>

Comparing Tables 4 and 6. shows that —- except in the one

case in which the global minimum shifts from one local minimum

to another —— the inclusion of distributed lags does not have

any notable effects on the estimated speed of adjustment.

Sometimes it goes up, sometimes it goes down, but it never

changes dramatically. The same is more or less true of the

coefficients of the other three stock variables: no dramatic,

or even terribly systematic, changes in coefficients were
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observed.

For each of the other variables, Table 6 reports the

coefficient of the contemporaneous value and the sum of the

remaining coefficients. The few systematic changes that can be

observed in going from Table 4 to Table 6 are easily

summarized:

EXPECTED SALES: In the 8 industries in which future

expected sales were significant, there was a clear tendency for

the contemporaneous coefficient to change in the negative

direction when future expected values were added.

INTEREST RATES: The distributed lag specification

typically yielded larger (in absolute value) coeffients for

both nominal rates and expected inflation than the simpler

specifications in Table 4. In the case of nominal rates, the

coefficients of current and lagged interest rates typically

were of opposite sign. While this suggestion of intertemporal

substitution (temporarily high rates lead to temporary

inventory liquidation) is tantalizing, it is easy to resist
given the imprecision of the estimates.

MATERIALS COSTS: In those few cases in which lagged

materials prices were significant, the coefficient of current

price was usually positive while the sum of the coefficients of

past prices was negative.

In general, however, the results in Table 6 do not change

the overall impression left by Table 4, although the

regressions with distributed lags generally fit better.
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V. CONCLUSION

It is easy enough to see why the production smoothing

model looks so bad at first blush. Consider a trivially simple

fixed— price macro model of aggregate supply and demand based

.I_ 1._ — — .. — .1. • — — — — — .— 1— .2 .. — . -pruuth.LloLl irnouc.uirig iUtci;

Supply:. Y= + IX
Demand: X=X+e,

where Y is production and X is sales. Here e is. the random

demand shock that drives the model and I<l captures the idea

that production is smoothed relative to sales.

In this model, var(Y)/var(X) = 2, which is certainly less

than unity. Further, since inventory change is:

= Y — X = + (—l)X+ (-l)e,

it is clear that X and EN are perfectly negatively correlated

in the model. In the data, as we know, var(Y) exceeds var(X)

and X and tN are nearly orthogonal. The contradiction between

the model and reality could hardly be more complete.

This paper has shown, however, that it is possible to

amend the production smoothing model in ways that make it

consistent with the facts. Section 111.8 summarized how this

can be done. The two critical ingredients are serially

persistent demand disturbances of a particular type and the

addition of a cost shock.
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It is easy to see how these amendments help. Adding a

cost shock changes the model to:

Supply: Y = + 3x + u

Demand: X=X+e,

and Section III showed that, for any given cost structure,

serial correlation in demand disturbances has the effect of

pushing towards unity. Assuming that u is independent of e at

all lags, trivial calculations establish that:

var(Y)/var(X) = 2+T2

corr(X, N) = 2 -
Cr +(l—B) ]2

where is the ratio var(u)/var(e). Now, if is big enough,

the variance ratio can exceed unity; and the correlation

between X and AN, while still negative, can at least be small.

This, in essence, is now Section III attempts to reconcile

the production smoothing model with the data. Furthermore, the

econometric estimates of inventory equations in Section IV are

broadly consistent with the theoretical reconciliation in that

(a) the stochastic processes describing demand are highly

autocorrelated, (b) the estimated adjustment speeds are quite

low, and Cc) econometric proxies for unexpected sales appear

not to be unexpected by firms. At some level, therefore, the

exercise must be judged a success. The production smoothing

model, or at least the concavity of the production function,

has been saved.

Yet there are some lingering doubts. A skeptic may recall
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that Ptolemaic astronomy was "saved" many times by the addition

of epicycles specifically designed to accommodate each new

fact. In addition, many features of the econometric estimates

are less than satisfactory, including the tenuous basis for

pinning down the adjustment speed parameters, the previously—

noted fact that slow adjustment is hard to explain, and the

poor results obtained with key variables like unexpected sales,

wages, and interest rates. One suspects that Copernicus may be
waiting in the wings.

Certainly there are other models of inventory behavior

that might be used to explain the stylized facts. For example,

the (S,s) model was mentioned in Section I, but judged

implausible on a priori grounds. <34> But perhaps the

explanation for the puzzling behavior of inventories does not

lie in inventory behavior at all. To see what I mean, consider
the following trivial "Keynesian cross" model in which demand

creates its own supply and inventories never change:

Supply: Y = X

Demand: X=a+bY+e.
Obviously, in this model var(Y)/var(X)=1. And since there are

no changes in inventories, var(tN)O and cov(X,tN)O in a

trivial sense. Clearly, this model cannot be quite right

because it ignores some empirically important movements in

inventories. Nonetheless, it makes a promising start at

"explaining" the first three stylized facts enumerated in

Section I.
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It does not take much imagination to integrate the

Keynesian specification of aggregate demand with the production

smoothing model of aggregate supply to get:

Supply: Y = ci. + X + U,

Demand: Xa+bY+e.
In this hybrid model, the critical variance ratio is:

var(Y) = var(u)+ 2var(e)
var(X) 2

b var(u)+ var(e)

This expression clearly shows that demand shocks lead to a

variance ratio smaller than 1 (depending on the degree of

production smoothing) while supply shocks lead to a variance

ratio bigger than 1 (depending on the MPC). The variance ratio

will exceed 1 if and only if:

2
T >

2
1-b

If is larger than b, this may not require large cost shocks.

The covariance between sales and inventory change is:

b(1-b)var(u) - (1—)var(e)
cov(X,N) = 2

—
(l-b)

which can have either sign —— an empirically pleasing

prediction, given the mixed results in the data.
Thus it would appear that attaching a Keynesian demand

side to our production- smoothing supply side may help the

latter account for the stylized facts. Metzler probably knew

this forty years ago.
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FOOTNOTES

1. See, for example, Holt, Modigliani, Muth, and Simon (1960).

2. Lovell (1961) began this tradition, and many have followed.

3. For a precise derivation, see Blinder (1982).

4. For the period 1947:2—1981:1 (quarterly data), Blinder
(1981, p. 446) reports that the variance of real GNP around
trend is 32% larger than the variance of real final sales
around trend.

5. See Blinder (1981).

6. The time period is obviously crucial here. If the period is
a day, for example, it is clear that inventories will serve
primarily as buffer stocks whether or not they are held for
this purpose. The data I use are monthly.

7. This problem was noticed by Orr (1967), and received
prominent attention from Carison and Wehrs (1974) and from
Feldstein and Auerbach (1976).

8. In intermediate position was suggested to me by Geoffrey
Heal. It is possible that the production function is convex at
low output levels and then becomes concave. This is
consistent, for example, with the U—shaped cost curves of
elementary textbooks.

9. Alternatively, we could count a portion of a and a portion
of d as production. This leads to more cumbersome accounting
identities.

10. In doing this, data on inventory stocks were adjusted to
ref lect the fact that one dollar of inventory stock represents
more physical units than one dollar of shipments because
inventories are valued at cost rather than market. Part of the
appropriate adjustment to convert the data from real values
into physical units is presented and explained by West (1983b).
The rest is described in Blinder and Holt—Eakin (1983). The
adjustment has the effect of making the variances of y and n
larger than they appear in the raw data. However, var(y)
exceeded var(x) in 18 of the 20 idustries (plus all three
aggregates) even before the adjustments were made.

11. However, detrending by ordinary least squares led to very
similar results, as did entirely different detrending
procedures.

12. Since each series was detrended independently, and in logs,
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the identity (1.2) does not hold exactly even though (1.1)
does.

13. For these comparisons, it was thought that data on (real)
dollar values were more meaningful than physical quantities, so
the adjustment mentioned in footnote 10 was not made.

14. By contrast, a breakdown of real final sales into
consumption, fixed investment, government purchases, and net
exports reported in Blinder (1981, P. 448) shows that the sum
of the variances of the components is 80% larger than the
variance of final sales (the covariances are pervasively
negative). For retail sales, the picture is more similar to
manufacturing: the individual variances account for 39% of the
overall variance.

15. The latter is the case dealt with in Blinder (1982).

16. This statement summarizes succinctly the main point of
Blinder (1982).

17. In the case of a v demand shock wh.ich is unknown to the
firm when it makes its production decision, the ratio
var(X)/var(Y) - (l+(d/c)) + (d/c) > 1 as z 0. If d is much
smaller than c, this will not exceed 1 by much.

18. This proposition does not apply to a V2 demand shock which
is unknown to the firm when it makes its poduction decision.
If demand shocks are of this type, var(X)/var(Y) exceeds 1 even
as p approaches 1.

19.Had they been available, I would have preferred to use data
that were not seasonally adjusted, since the production
smoothing model presumably applies to seasonal fluctuations in
sales. However, such data are not available.

20. Since there are other regressors in (4.1), it is not
impossible to distinguish between the two models. But it is
difficult.

21. Experiments with more complicated error structures bore
little fruit.

22. Feldstein and Auerbach (1976), for example, reported
adjustment speeds between 5% and 7% per quarter for finished
goods inventories in durable manufacturing. This was fairly
typical of work up to that time. Auerbach and Green (1980) got
much faster adjustment speeds (from 12% to 85% per quarter)
using data on four two-digit industries and a model that
treated finished goods and works in progress separately.
Blanchard's (1983) study of the divisions of U.S. auto firms
found adjustment speeds ranging from 0% to 35% per month.
Finally, Maccini and Rossana (1984) found very fast adjustment
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speeds (62% to 96% per month).

23. A few cases in which new orders proved to be significant
are given in Table 6 below.

24. Recall that Y - X = F + W , so if F
+1 does not

change when X rises either muse rise or f1 must fall.

25. The earlier literature, summarized, e.g., by Irvine (1981a)
found little evidence for a significant effect of interest
costs on inventory holdings. However, recent work by Irvine
(198la, 198lb) has detected such effects for retailers and
merchant wholesalers, while Rubin (1980) and Akhtar (1983) have
found aggregate inventories to be interest sensitive. Only
Lieberinan (1980), using micro data on a small sample of firms
and a specially— constructed cost of capital variable, has
found any evidence for interest sensitivity in manufacturing.

26. For example, in the discussion following Blinder (1981)
Benjamin Friedman justifiably criticized my work on retail
inventories for this reason, and suggested that adjustment
speeds might be faster if distributed lags were allowed for.

27. All expectations were based on the information set
available for period t (that is, data from period t-l and
earlier). Since expeàtations are generated by a pure
autoregression, each future expectation, like Xe itself, is
simply a linear combination of lagged X's. Theteffect of
adding future expectations is thus simply to loosen the
constraints on how past X's affect current inventory
investment.

28. The three distributed lead coefficients were constrained to
fall along a straight line, reducing the number of paraeters
to be estimated from three to two. Thus the relevant x
statistic has two degrees of freedom. The critical values are
5.99 at the 5% level and 9.21 at the 1% level.

29. In these regressions, I also tried using current and
expected future new orders in the 13 industries for which such
data were available. These variables rarely were significant.

30. In dealing with interest rates, R and were always
treated symmetrically. For each variable, lags ranging from 1
to 11 months were allowed in the regression, with the lag
coefficients constrained to fall along a straight line. Hence,
the hypothesis that lagged interest rates do not ente imposes
four zero restrictions. The critical points of the x
distribution are 9.49 at the 5% level and 13.3 at the 1% level.

31. In dealing with materials costs, 11 months was again
assumed to be the longest lag and lag coefficients were
constrained to fall along a quadratic. Hence the relevant
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statistic has three degrees of freedom. The 5% critical point
is 7.81 and the 1% critical point is 11.3.

32. For wages a linear lag shape was assumed, so the null
hypothesis that lagged wages have no effect imposes two zero
restrictions. As before, the longest ag was assumed to be 11
months. The critical points for the x are 5.99 at 5% and 9.21
at 1%.

33. For example, if we constrain =1 (by estimating the
equation in first— difference form), estimated adjustment
•speeds are extremely high; indeed, many are above 100%.

34. However, the technological assumption mentioned in footnote
8 is not implausible, and is worth exploring.
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