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Abstract 
 
  

In this paper we provide a simple, credible method for assessing the effects of climate 
change on the quality of agricultural land and then apply this method using a rich set of data 
on the vineyards of the Mosel Valley in Germany. The basic idea is to use a simple model of 
solar radiation to measure the amount of energy collected by a vineyard, and then to establish 
the econometric relation between energy and vineyard quality.  Coupling this hedonic 
function with the elementary physics of heat and energy permits a straightforward calculation 
of the impact of any climate change on vineyard quality (and prices).  We show that the 
variability in vineyard quality in this region is due primarily to the extent to which each 
vineyard is able to capture radiant solar energy, so that these data provide a particularly 
credible “experiment” for identifying and measuring the appropriate hedonic equation.  

 Our empirical results indicate that the vineyards of the Mosel Valley will increase in 
value under a scenario of global warming, and perhaps by a considerable amount.  Vineyard 
and grape prices increase more than proportionally with greater ripeness, so that we estimate a 
3°C increase in temperature would more than double the value of this vineyard area, while a 
1°C increase would increase prices by about 20 percent.  

 
 
1 Introduction 

In this paper we provide a simple, credible method for assessing the effects of climate 

change on the quality of agricultural land and then apply this method using a rich set of data 

on the vineyards of the Mosel Valley in Germany. The basic idea is to use a simple model of 

solar radiation to measure the amount of energy collected by a vineyard, and then to establish 

the econometric relation between energy and vineyard quality.  Coupling this hedonic 

function with the elementary physics of heat and energy permits a straightforward calculation 

of the impact of any climate change on vineyard quality (and prices).  Although we show that 

this approach can, in principle, be applied to any crop grown on any land, the vineyards of the 

Mosel are a particularly attractive place to assess this method for measuring the effect that 
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expected climate changes may have on quality and relative prices. Since the vineyards of this 

Valley are situated near the far northern boundary feasible for grape production, they differ 

enormously in their suitability for grape growing.  We show that this variability is due 

primarily to the extent to which each vineyard is able to capture radiant solar energy, so that 

these data provide a particularly credible “experiment” for identifying and measuring the 

appropriate hedonic equation.   

Our approach follows and extends the so-called “Ricardian” approach applied by 

Mendelsohn, Nordhaus, and Shaw (1994) to the study of effects of climate change on 

agriculture.  Their empirical research, based as it is on hedonic models from highly 

aggregated data, has been critiqued and extended to consider difficult issues of functional 

form and specification by Schlenker, Hanemann, and Fisher (2005) and (2006), and 

Deschenes and Greenstone (2006).  These more recent studies generally find considerable 

heterogeneity in the expected effects of climate change.  Depending on the region considered, 

climate change may lead to either positive or negative effects on land values, with 

considerable uncertainty about the aggregate effect.  Our approach follows this more recent 

work by studying a very specific area and type of crop and by establishing the economic 

relation between solar radiation and farm quality for this crop type.  Our approach has the 

advantage that it provides a detailed and credible sketch of precisely how global warming 

affects crop quality, which is at the heart of discussions of climate change.  The disadvantage 

of our approach is that it provides only one component of an aggregate estimate of the overall 

effect of climate change. 

Our empirical results indicate that the vineyards of the Mosel Valley will increase in 

value under a scenario of global warming, and perhaps by a considerable amount.  Vineyard 

and grape prices increase more than proportionally with greater ripeness, so that we estimate a 

3°C increase in temperature would more than double the value of this vineyard area, while a 

1°C increase would increase prices by about 20 percent.  

The paper is structured as follows: In Section 2 we explain how solar radiation is 

captured by a vineyard and how an energy value can be calculated for each vineyard site 

using the basic physics of solar panel construction.  Section 3 discusses the data we use for 

the analysis, including the data on vineyard quality that we have constructed and the hedonic 
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characteristics of the vineyards we study. In Section 4 we present the estimates of our hedonic 

model of vineyard site quality, while Section 5 contains our calculations of the impact of 

possible climate change on the quality distribution of vineyard sites. We summarize our 

findings in Section 6.  

 

2. Radiation Use Efficiency, Solar Panels, and Vineyards 

Commercial viticulture is found only between 350 and 500 latitude.  Located between 

49.610 and 50.340 latitude, the vineyards of Germany’s Mosel region are thus at the cold limit 

for grape growing.  As a result, all Mosel vineyards depend on special site characteristics to 

ensure winter survival and ripening (Gladstones, 1992).  As we will show, with these growing 

conditions a good vineyard site must be, among other things, a natural solar panel, 

maximizing the incoming solar radiation with its angle of incidence and orientation.  

 A.  Radiation Use Efficiency 

Surprisingly, formal research on the influence of light on crop growth dates primarily 

from the late 1950s (DeWit, 1959).  Some 20 years later Monteith (1977) provided the basis 

for calculating the quantitative relationship between intercepted solar radiation (energy) and 

the amount of dry biomass produced. This relationship is expressed by the term radiation use 

efficiency (RUE), and it measures the mass accumulation in gram dry matter per MJ-1m-2 of 

intercepted solar radiation. It is this biomass that represents the economically valuable output 

of a plant.   

Subsequent studies have estimated RUE for different crops (Sinclair and Muchow, 

1999), and this research continues today. It is likely that the RUE is fairly similar for the 

members of a specific crop but varies significantly among crop species. As shown in Table 1, 

C4 species such as maize, sorghum, and sugarcane have significantly higher RUE than do the 

C3 species, such as potatoes, wheat, barley, rice, soybeans, and sunflowers.1 The only study of 

the RUE of grapevines (vitis vinifera) of which we are aware is for the Merlot variety 

(Castelan-Estrada, 2001). With an RUE between 0.57 and 0.70 g MJ-1, this study indicates 

that, in terms of RUE, vitis vinifera belong to the least efficient plants. It follows that the 

                                                           
1 C4 crops produce less complicated nutrients, e.g. sugar and starch, whereas C3 crops produce more complex 
and higher quality nutrients like oil and protein. 
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energy intensity of a particular site is far more important for grapevines than it is for wheat or 

cauliflower.  

B.  Vineyards as Solar Panels 

Only a part of solar radiation reaches the surface of the earth directly (beam radiation). 

Another part is scattered by the atmosphere and reaches the surface as so-called diffuse 

radiation. The sum of both is referred to as total solar radiation. However, it is apparent that 

total solar radiation is highly dependent on the amount, kind and density of clouds, and varies 

with time and place. For the sake of simplicity engineers often calculate the so-called 

extraterrestrial radiation, that is, the radiation that would be available if there were no 

atmosphere (Duffie and Beckman, 1991).  This is precisely the simplification we will use to 

construct a measure of the differences in solar radiation input provided by the different 

vineyards of the Mosel Valley.  Since all these vineyards lie in a very small geographical 

region, we know that differences across vineyards in total radiation are due primarily to 

differences in site characteristics and not to differences in the weather. 

Figure 1 shows the extraterrestrial radiation on a horizontal surface for different 

geographical latitudes in the northern hemisphere. It is apparent that there is a large difference 

in both the total amount of energy as well as its distribution over the year. While a plane at the 

equator receives the maximum energy amount of about 13.2 GJm-2a-1, the incoming radiation 

decreases with increasing latitude. With an energy level of 9.1 GJm-2a-1 the Mosel-Saar-

Ruwer region obtains only 2/3 of the total maximum energy amount. Moreover, whereas the 

energy flux at the equator is comparatively evenly distributed, the radiation pattern becomes 

increasingly focused on June 21 the further north one gets. Daily solar radiation in the north is 

often even greater in summer than that at equatorial latitudes because of the north’s long 

summer days. As Figure 1 indicates, the farther north one goes, the less energy there is 

available during off-peak times in late spring and late summer. For instance, at the end of 

October, the main harvest time for Riesling grapes in the Mosel valley, there is only a photon 

flux of 13 MJm-2day-1 compared to 37 MJm-2day-1 at the equator, that is, only a third of the 

maximal achievable amount. 

This energy deficit at high latitudes can be remedied by the right slope. Figure 2 shows 

the solar radiation for the Mosel city of Trier (49.80 north) by inclination (assuming a 
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southern orientation). Although a plane surface only receives 9.1 GJm-2a-1 (as already shown 

in Figure 1) increasing inclination enhances the energy level significantly. A tilt of 450 

provides more than 40% more energy (12.8 GJm-2a-1), and only 3% less than the maximum 

amount achievable at the equator. Moreover, the distribution over the year strikingly 

resembles that of the equator; the energy flow from March to October is almost the same. 

Hence, a vineyard’s inclination can almost perfectly offset its unfavorable latitude. However, 

this does not mean that the steeper vineyards are always better. Vineyards that are tilted more 

than 450 receive less energy than those with less inclination (at this latitude), and the energy 

received is also more unequally distributed over the course of the year. For example, an 

inclination of 950 yields only slightly more solar radiation than a horizontal surface.  The 

optimal inclination is dependent on the latitude: The farther north, the steeper the optimal site 

must be. With respect to the Mosel valley the optimal tilt is about 450. 

The calculations thus far are based on the assumption that the tilted vineyard has a 

southern orientation. Figure 3 shows the impact of a different orientation for the vineyard on 

solar energy, holding the latitude constant (at Trier’s) and holding the inclination at its 

optimal level for this latitude, i.e., 450. A southern aspect is the ideal, and with increasing 

deviation from a southern aspect the energy yield falls dramatically. If the tilted vineyard is 

west facing, the yearly solar radiation is less than on a horizontal surface (8.9 compared to 9.1 

GJm-2a-1 given in Figure 2). A sloping vineyard with north-western aspect receives only 4.7 

GJm-2a-1, less than a horizontal plane in the arctic circle.2 

C.  Calculation of Solar Radiation 

Given data on the latitude (�), slope (�), and orientation (�) for any vineyard or 

agricultural site we show in the Appendix how to calculate a single measure of solar radiation 

for each month of the year. We aggregated these monthly figures for the vineyards of the 

Mosel to obtain measures of solar radiation during both (a) the critical ripening period for 

grapes (September and October) and (b) the full year.  These are the data we use in our 

hedonic analysis.3  Summary statistics of these measures are contained in the bottom two rows 

of Table 4.  The data indicate remarkable variability among the vineyards.  For example, the 

                                                           
2 This raises the question of why there are steep vineyards with unfavorable orientations at all: The energy yield 
is lower than on a plane surface while the labor costs are considerably higher. It seems likely that these vineyard 
sites were selected for non-economic reasons, such as their nearness to a cloister. 
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annual energy yield ranges from a high of 12.802 GJm-2 to a low of 5.568 GJm-2, or nearly a 

130% difference.  The total variability in our measure of solar radiation in the crucial ripening 

period for grapes is even greater and spans the range from 2.237 GJm-2 to 0.695 GJm-2, or 

nearly a 220% difference.  

D. Other Factors that Affect Vineyard Sites 

Gladstones (1992) provides a detailed analysis of several other factors that make 

specific geographic sites more or less suitable for the production of high quality grapes.  

Important factors include those that reduce diurnal (night-day) temperature differences.  

Nearness to a body of water and, especially, soil type are important determinants of diurnal 

fluctuations.  Thus, the heat storage capacity and solar reflectivity (measured by its albedo 

number, �) of some soils is of considerable potential importance in determining the quality of 

a vineyard site and we also measure these factors in the empirical analysis below. 

 

3. Data 

Our analysis makes use of data from two different sources on very specific vineyard 

sites.4  Unfortunately the definition of these distinct vineyard sites has changed at times so 

that our two key sources are not based on precisely the same vineyard definitions.  Stöhr et al. 

(1981) provide a comprehensive description of all the geographic characteristics of the Mosel-

Saar-Ruwer vineyard sites as they were defined in 1971.5 These data were taken as the 

baseline for our calculations.  We supplemented these data on the geographic characteristics 

of the vineyards with measures of the historical prices of the vineyards based on taxation 

records, primarily from the 19th century.  Since the latter data were based on finer divisions of 

                                                                                                                                                                                      
3 Detailed calculations for individual vineyards are available from the authors upon request. 
4 German vineyard sites have precise names to avoid duplication.  A vineyard in the town of Berncastel is a 
“Berncasteler.”  The “Doctor” vineyard in the town of Berncastel is thus known as the “Berncasteler Doctor” to 
distinguish it from any other vineyard named “Doctor.” 
 
5 The Mosel River is the largest tributary of the Rhine.  The grape growing region known as the Mosel, which 
runs with the river roughly 206 kilometers northeast from Trier to Koblenz, actually consists of a system of river 
valleys that includes the tributaries the Saar and the Ruwer.  Thus, the official term for this wine area is “Mosel-
Saar-Ruwer.” 
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vineyards, that is, smaller vineyard sites, we lose some information by aggregating to the 

1971 benchmark.6  

A. Vineyard Price and Quality 

The most difficult aspect of our data construction is the ranking by price of the 

respective vineyards. Prices of vineyard sites have been assessed for taxation purposes in the 

Mosel since the 17th century.  An early example of such a ranking that was made by the 

French, who controlled the Mosel area in the early part of the 19th century, is contained in 

Table 2.  A “repurchase price” was set for the wines of each vineyard, and this formed the 

basis for its taxation.  However, we rely primarily on the work of the Prussian tax 

administration during the mid-19th century for our ranking of vineyards by price.  Using the 

work started by the French, the Prussians completed a meticulously detailed land register in 

the 1830s in order to tax the land according to the value of its production. Using a method 

very similar to that used for the classification of Bordeaux wines in 1855 (Penning-Roswell, 

1986; Markham, 1998), the value of vineyard sites was taken as proportional to the average 

prices for the wines of each vineyard over a 24 year period from 1837 to 1860 (Beck, 1869)7.  

The Prussian tax administration distinguished 8 different net yield grades, and in 1869, this 

ranking was published by the Government of the King of Prussia (Beck, 1869, 26-33). This 

list distinguishes between different vineyards within the various villages. To provide the 

detailed location of the vineyard sites the government also published a map of these sites for 

the administrative district of Trier, i.e., the upper Mosel, in 1868 (Clotten, 1868); and a 

similar map for the lower Mosel, i.e., for the district of Koblenz, in 1897 (Lintz, 1897).  

We use these maps to construct a price-based ranking of the vineyards.  Unfortunately 

the vineyard sites ranked by price in Beck (1869) are not necessarily identical to those used 

by Stöhr et al. (1981) to provide vineyard site characteristics.   Accordingly, the maps of 1868 

and 1897, respectively, as well as the maps provided by Stöhr et al., were used to apply the 

Prussian ranking to contemporary vineyard sites.  

                                                           
6 For instance, in 1910 there were about 4550 defined vineyard sites within a demarcated area of 6,800 hectares 
(Goldschmidt, 1925). The German wine law of 1971 defines only 523 vineyard sites within an area of 11,985 
hectares (Stöhr et al., 1981; Statistisches Bundesamt, 1998). 
7 In order to avoid distortions caused by differences in prices across different vintages the optimal estimation 
period and the appropriate computational method were discussed in great detail at the time (e.g., Lindauer, 1815; 
Flotow, 1820; Gebhard 1824, Schimmelfennig, 1831).  
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The estimates we obtained were compared to the vineyard size figures published by 

the Prussian government (Beck, 1869). The comparison of these figures as well as the maps 

ensures a certain degree of consistency. In addition, any “new vineyards” that did not exist 

during the period of the 1869 ranking were excluded from the analysis.  As a result, of the 523 

currently recognized vineyards, only a total of 344 vineyard sites are included in our analysis. 

Finally, the results of our analysis were cross-checked with the “new” vineyard classification 

constructed by Stuart Pigott (1995), which is also based on the older Prussian ranking. Our 

ranking, like those before, distinguishes eight ordinal grades of vineyard quality, where rank 

one denotes the highest quality and rank eight denotes the lowest quality.  

Table 3 provides the frequency distribution of our rankings.  It is obvious that the 

larger average vineyard site size in the current definitions leads to a leveling out of the quality 

distribution compared to older definitions. While the Prussian ranking had 60 vineyards 

comprising 44 hectares ranked in the top quality group, the application of the Prussian ranking 

to current vineyard sites shows that only one, the Berncasteler Doctor, is ranked wholly in the 

top quality category.8  With today’s list of vineyard sites only 10% of all vineyard sites belong 

to even the first three ranks, while most fall into ranks six and seven. 

 
 B.  Physical Vineyard Site Characteristics 

Data on physical vineyard attributes were taken from Stöhr et al. (1981). For each site 

they report the latitude, slope, altitude, orientation, depth of soil, type of soil, and size of the 

vineyard. The slope is given as a fraction of the vineyard that is steep, middle or flat. We 

constructed the variable “slope” as a weighted average of these slope measures, where 450 is 

take as steep, 22.50 is middle, and 00 is flat.  Table 3 shows the basic results of our 

calculations.  The average slope of a Mosel vineyard is very steep, at 380, which is not far 

from the optimum of 450, although at least one vineyard is entirely flat. 

Stöhr et al. provide the “prevailing orientation” of the vineyards in 12 categories 

according to the entries on a compass.  These are, for example, south or south-west. We 

assigned a value to the variable “orientation” by the degrees of deviation of the vineyard from 

south:  00 for southern orientation, 900 for west or east, and 1800 for north. For instance, an 

                                                           
8 The size of this vineyard is only 1.0 hectare, which is much smaller than the average vineyard size of 21.2 
hectares. 
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aspect given as south-south-west (SSW) would be measured as 300, which we assume is the 

average orientation of the vineyard.  When a vineyard had a compound orientation measure, 

such as “south and west” we simply assumed a 50/50 relation and defined the deviation from 

south as 45o. Overall, the data in Table 3 show that while a south-south-west orientation is the 

average, there is considerable variation, with at least one vineyard facing northwest  (1350).   

The altitude of a vineyard is given in meters at its lowest and its highest point. The 

altitude of these Mosel vineyards ranges between 320m in the Saar valley and 65m near the 

Rhine River.  Altitude alone seems unlikely to affect a Mosel vineyard’s quality given that all 

these vineyards are well below 500 meters (Gladstones, 1992). However, since the impact of 

large water bodies on diurnal air circulation is considered important for quality (Gladstones, 

1992) we used data on the altitude of the Mosel River to calculate the altitude difference 

between the vineyard and the water body. We expect a large difference to have a negative 

effect on wine quality and a vineyard’s ranking. 

 Stöhr et al. provide measures of the soil’s depth as deep, moderate and flat. We 

calculated the depth of the soil as a single variable ranging from 0 to 1 where 1 is deep and 0 

is flat. For instance a vineyard like the Erdener Praelat, which is described as deep to 

moderately deep, was assigned the value 0.75. The impact of soil depth on wine quality is not 

well understood. On the one hand, shallow and rocky soils limit potential vine rooting depth 

and provide only restricted water storage capacity. On the other hand, shallow and rocky soils 

provide fine drainage and resistance to soil erosion, which is particularly important on slopes. 

Since the Mosel region is not characterized as a particularly dry climate, the latter may be the 

more important effect (Gladstones, 1992).    

Besides the depth of the soil we also have measures of the kind of soil. This is 

particularly important because of the heat storage capacity of certain soils: Heat is absorbed 

during the day, which is followed by marked and prolonged re-radiation of warmth at night. 

Slate is one of the most heat absorbent soils.9  In fact, the entire Mosel-Saar-Ruwer region is 

characterized primarily by different forms of slate, although other soils prevail in the valley 

around Trier (sandstone) and between Trier and the border with Luxembourg (limestone). 

                                                           
9 Because of its low reflectivity of solar radiation (measured by its albedo value) slate is also considered an 
important building material for the passive usage of solar energy. Common albedo values are: slate 0.10, wet 
sand 0.15, dry sand 0.25, concrete 0.30, and limestone 0.40 (SolVent, 2001). 
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However, single vineyards often contain many alternative soil types. We distinguish 12 kinds 

of soil: weathered slate, slate quartzite, clay slate, greywacke sandstone, quartzite, sandstone, 

limestone, gravel, finesoil, alluvial soil, sand, and clay/loam. We simply constructed a set of 

dummy variables for these soil types, where the variable takes on a 1 if this soil type exists in 

the vineyard and 0 otherwise.  

All these variables are assumed to reflect the average characteristics of the vineyard. 

However, within a single vineyard conditions can deviate substantially from this average, and 

the deviation is likely to be larger the larger the size of the vineyard.  We therefore also 

included in our hedonic analyses a measure of the total size of the vineyard.  If the uncertainty 

associated with vineyard quality leads to lower quality and prices, then we expect larger 

vineyards to, other things the same, be of lower quality.  

Though most of the vineyards of the Mosel-Saar-Ruwer region are near one of the 

rivers for which they are named, there are a small number of remote vineyards that are 

typically located near castles or cloisters.  Since these vineyards do not benefit from the 

smaller diurnal temperature fluctuations due to proximity to a large water body, we also 

introduced a dummy variable that takes on the value unity when a vineyard is remote, and 0 

otherwise.  We expect it to have a negative effect on vineyard quality. 

 

4.  Hedonic Model of Vineyard Quality 

 Given the discrete natural order of the dependent variable and the fact that the 

differences between the ranks are not necessarily equivalent, we fit our hedonic model using 

an ordered probit function.10  In this set up the observed response is taken to depend on a 

latent variable yi*, which depends linearly on the explanatory variables Xi: 

 

(1)  )1,0(~,* Nwithy iii εε+= �Xi  

 

The observed category of yi is based on yi* and can take on eight values: 

                                                           
10 See Greene (2003), for example. 
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where �(.) denotes the cumulative normal distribution function. 

The results of the estimation are contained in Table 5 for several specifications of the 

basic set of independent variables (X) that determine quality.  These vineyard quality 

variables, discussed earlier, are listed as the row labels in Table 5.  In a first specification 

(column 1) we include variables related to soil characteristics and include as separate 

variables the three determinants (slope, orientation, and latitude) of our measure of the solar 

energy captured by the vineyard.  This is a reduced form regression that we use to test the 

basic predictions of our model of energy retention.  In order to extrapolate the impact of a 

change in climate on vineyard quality it is essential that this model of energy retention 

provides a reasonable approximation of how heat affects vineyard site quality. 

The results in columns 2-3 reflect the imposition of the constraint that the three energy 

variables are captured by the specific formula contained in the Appendix.   Comparing the 

unconstrained results in column 1 to the results in columns 2-3 provides a basic empirical test 

of the accuracy of this formula for predicting how solar energy affects vineyard prices. 
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In fitting the constrained model we aggregated the variables slope, orientation, and 

latitude in two different ways to determine a measure of potential energy.  In column 2 we use 

a formula that assumes that the energy the plant receives throughout the entire year is the 

appropriate measure, while in column 3 we assume that the energy the plant receives in the 

fall is the appropriate measure.  Neither of these measures is likely to be ideal, but they are 

very highly correlated in any event.   Moreover, these two extreme cases span all the 

reasonable alternatives. 

 A comparison of the results indicates that the constrained measure of “fall energy” in 

column 3 provides a slightly better fit to the data (judging from the maximized likelihood 

ratio) than the measure of “annual energy,” and so we rely on it for further analyses.  A 

straightforward way to assess the goodness-to-fit qualities of an ordered probit model is a 

comparison of predicted and actual results.  In Table 6 we use the results of column 3 of Table 

5 to assess the model’s predictive quality.  Predicted quality ranks are listed in the first 

column, while the distribution of the deviations of the actual from the predicted ranks is listed 

in the remaining columns for each predicted rank.  For example, 85 vineyards are predicted to 

be in the largest category, rank 6, of which 54 predictions are correct, 28 are off by one rank, 

and 3 are off by two ranks. Overall, the ranks of 50.9% of all vineyards are predicted 

correctly, while 42.2% of the predictions are off by a deviation of one rank.  Taken together, 

the average deviation is only 0.57 quality ranks.  

A test of the constraint that “energy” determines vineyard quality in the precise form 

we have assumed may be based on a comparison of twice the difference in the log likelihood 

between columns 1 and 3 of Table 5.  This test rejects the precise constraint at any reasonable 

level of statistical significance, but it is apparent from Table 6 that the constrained measure 

captures the major variability in the data.  As a result, we use the basic results in column 3 of 

Table 5 in simulating the effects of climate change in the analysis below. 

Since the vineyard ranking is defined as 1 being best and 8 being worst, a positive 

influence of an independent variable on the quality of the vineyard is indicated by a negative 

sign. It is apparent that the potential solar radiation variable has a very significant effect on 

the rating of a vineyard site.  In addition, slate of any type increases the quality of the 

vineyard, especially weathered slate and clay slate.  As expected, sand, gravel, and loam have 
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a far lower ability to store heat, and are, by comparison with slate, less advantageous for the 

vineyard’s quality.   

The results in Table 5 also provide evidence for the importance of a water body close 

to the vineyard. Vineyards that are remote from the Mosel River, and those that are far above 

the river, suffer from these features.  Both of these factors lead to larger diurnal temperature 

fluctuations and thus to lower quality vineyard sites.   

Finally, the estimates confirm the hypothesis that larger sized vineyards, given our 

measurements of the other measures of a vineyard’s qualities, do suffer a disadvantage in 

quality.  

 The estimated coefficients of an ordered probit model must be interpreted with some 

care. The sign of 
∧
� shows the direction of the change in the probability of falling in the 

endpoint rankings (yi=1) and (yi=8) when X changes. Pr(yi=1) changes in the opposite 

direction of the sign of 
∧
�  and Pr(yi=8) changes in the same direction as the sign of  

∧
� . The 

effects on the probability of falling in any of the middle rankings are unclear, a priori. 

 

Table 7 reports the marginal effects of the significant variables of the model listed in column 

3 of Table 5 that uses the fall radiation variable. Marginal effects are measured relative to the 

baseline probabilities given in the first line.  As the Table shows, the percentage of vineyard 

sites expected to be ranked number one is 0.27%, while the percentage for rank two is 3.32%.  

The following set of rows report the effect of a change of ten percent in the value of an 

independent variable on these percentages. Thus, an increase in potential solar radiation by 

10% will increase the vineyard’s probability of being ranked number one by 1.19% to 1.46%. 

Similarly, the probability of being ranked number two will increase from 3.34% to 9.33%.  

Since the changes sum up to zero, energy increases entail a drop in the likelihood of being in 

rank number six, seven, or eight. Similarly, deeper soil, a greater altitude difference between 

the vineyard and the Mosel River, and a larger vineyard size decrease the probabilities of 

being in high quality ranks. However, it is apparent that the marginal effect of the solar 

radiation variable is very substantial compared to the effects of each of these other variables. 



14 
 

 The marginal effects of the dummy variables were calculated as the effect of the 

difference between the values zero and one while holding the other variables at their mean 

values.  The marginal effects of these variables show the great importance of soil type on 

vineyard quality and also the great importance of having a vineyard site that is influenced by 

proximity to the Mosel River. 

 

5. Solar radiation and global warming 

 Since vineyard quality is dependent on solar energy absorption, it follows that, in a 

place like the Mosel Valley, climate change that leads to warmer temperatures will lead to 

higher quality wines and prices.  Land prices, which represent the capitalized value of these 

wine prices, less other costs of production, should therefore also increase.  It follows that the 

many recent studies that predict that climate change is leading to warmer temperatures also 

predict increased land values in areas like the Mosel Valley.  In what follows we set out a 

simple model that permits us to estimate what the effect of climate change would be on the 

overall quality of the Mosel’s vineyards and thus on their prices.  

 Most scenarios about global temperature change11 provide a summary measure of 

expected temperature changes, whereas we have established the connection between solar 

energy reception and vineyard quality.  Although there is, of course, a relationship between 

solar energy and the Earth’s temperature, the relationship involves a comparison of energy 

inflow and outflow.  Absorbed energy from the sun is converted to heat, which causes the 

Earth to warm up. However, the temperature maximum does not occur at the time of 

maximum solar energy input, but later. This lag is the result of the energy storage system and 

the resistance to energy flows. Figure 4 shows that, in a simple model, temperature is the 

result of the influx of solar energy and the energy radiated by the Earth. Thus, as long as the 

net influx is positive temperatures will rise and vice versa. The result is that the temperature 

maximum is attained after the influx maximum. 

 We use the following simplified model to establish the interrelations between solar 

radiation and temperature (see Hartmann (1994) and Andrews (2000)) for the purpose of 

simulating the effect of various global warming scenarios on vineyard quality and prices.  

                                                           
11 See Johns, et. al. (1997). 
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 With radius R and the Earth’s receptive surface 2Rπ  , the energy absorbed by the 

planet is equal to 

 

(4) SR2)1( πα− = (energy absorbed by the Earth) 

 

where � is the albedo number of the Earth’s atmosphere and S is the solar constant.   We 

assume that �=.3, which implies that the Earth reflects 30% of the incoming solar energy back 

to space.  

 If the Earth is assumed to emit like a blackbody 12 the energy radiated from the planet 

is, according to the Stefan-Boltzmann law, equal to 

 

(5) 
42 )4( sTR σπ = (energy radiated from the Earth), 

where Ts is the planet’s surface temperature and � is the Stefan-Boltzmann constant.13 

 Setting (6) and (7) equal and solving for the equilibrium temperature yields 

 

(6) 4 4/)1( σα STs −=  

 

According to equation (8) the Earth’s surface temperature is equal to 255K (or –18oC) which 

is well below the measured average temperature of approximately 288K (or 15oC).  

 To make this model more realistic it is necessary to incorporate the atmospheric 

effects that are associated with the Earth and which act like a greenhouse.  If we assume an 

atmosphere that absorbs all long-wave terrestrial radiation but is transparent to short-wave 

solar radiation, at the top of this atmospheric layer the energy balance remains the same with 

 

(7) 4/)1(4 STa ασ −=  

                                                           
12 A blackbody absorbs all the radiant energy it receives, regardless of the wavelength. 
13 The Stefan-Boltzmann constant is equal to 5.67*10-8 JK-1. 
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where Ta is the atmospheric temperature.  Assuming further that  
44 2 as TT σσ = , that is, 

half of the energy absorbed by the atmosphere is reflected back to the Earth, we get 

 

(8) 4 2/)1( σα STs −=  

 

Equation (8) predicts an average temperature of 303K (or 30oC) for the Earth, which is much 

closer to the observed value. 

 Equation (8) allows us to compute changes in radiant energy associated with any 

given temperature variation. Accordingly, a temperature increase of 1oC is associated with 

additional radiation energy of 47.43 MJ/month. Similarly, a temperature increase of 2oC or 

3oC translates into radiation energy increases of 94.87 and 142.82 MJ/month, respectively.  

 Table 8 reports the changes in a vineyard’s probability of being in a certain rank 

using the results in Table 7 and various assumptions about the likely magnitude of climate 

change.  For example, a  temperature increase of 1oC corresponds to an increase in potential 

solar radiation of 47.43 MJ/month, which changes the likelihood of an average vineyard being 

rated number one by 0.32%, that is, from 0.25% to 0.57%. Similarly, the likelihood of being 

rated number eight will decrease by 2.13%, that is, from 9.74% to 7.61%. Predicted 

temperature increases in the Mosel area for the near term are around 2° C. for moderate 

warming scenarios, with higher predicted temperature increases in the longer term.  These 

three scenarios should provide a general indication of magnitudes to be expected.14 

  As also reported in Table 8, the number of vineyards in each category will 

change with increased warming. While in the base scenario only 10 vineyards were rated 

quality one, two, or three, a temperature increase of 1oC will lift this number to 18. In 

comparison, if temperatures increased by 3oC, 68 vineyards would be rated within the best 

three categories. 

 In order to convert these changes in vineyard quality ranking into changes in 

vineyard prices we weight land values in each quality category by the size of the respective 

                                                           
14 See, for example, the Hadley Center’s work in Johns, et al. (1997). 
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vineyards. While the size of each vineyard is given in Stöhr et al. (1981), the land value of 

each quality class was taken from land sales surveys provided by the governments of the four 

counties that cover the Mosel area (Landkreis Bernkastel-Wittlich, 2004; Landkreis Cochem-

Zell, 2004; Landkreis Mayen-Koblenz, 2004; Landkreis Trier, 2004). The surveys provide 

average sales prices of vineyard land in 2003, differentiated by municipality and vineyard 

quality level.  This permits us to estimate vineyard specific market prices15.  From these data 

we calculated average land values for each quality category. The land values range from � 

0.50 per m2 for vineyards in quality category 8 to � 130 per m2 for vineyards in quality 

category 116. 

 Table 9 reports the hectares of vineyards in each quality category and in each 

scenario. While in the baseline scenario only 30 hectares of vineyards are within the top three 

quality ranks, a temperature increase of 1oC would put more than 100 hectares in these 

categories.  These temperature increases also lead to higher predicted land values. In fact, 

because of the steeply increasing land prices as we move from lower to higher quality 

vineyards, the change in land values is proportionally greater than the increase than the mere 

increase in temperatures.  While a 1oC increase results in an increase in the total vineyard land 

value of 20% (from � 231 million to � 276 million), a 3oC increase in temperature will double 

the overall land value.  

 

 

7. Conclusion 

 The basic results in this paper show how the link between temperature and solar 

radiation can be used to construct a structural model to predict changes in agricultural land 

prices and crop values associated with climate change.  The key to building this relationship is 

to establish the hedonic relation between the determinants of solar radiation received by an 

area and land values.  For vineyard areas many of the key hedonic characteristics of the 

vineyard are related to energy absorption, which leads to an important effect of climate 

                                                           
15 The reported sales prices reflect only the land value and do not include the value of vines that might be planted 
on it. 
16 Our calculations are based on the following land values per m2: � 130 (rank 1), � 20 (rank 2), � 10 (rank 3), � 
7 (rank 4), � 4 (rank 5), � 2 (rank 6), � 1 (rank 7), and � 0.50 (rank 8).  It is apparent from these calculations that 
the prices drop dramatically with quality. 
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change on crop quality.  Grape vines have very low radiation use efficiency (RUE), and no 

doubt the hedonic relationship we estimate is related to this fact.  It seems that further 

research might be usefully guided by measuring the hedonic relationship of solar energy 

received for crops with different RUE’s.   

 Although our purpose here has been to use this hedonic relationship to evaluate the 

effect of climate change on land values, it should be clear that, to the extent other 

undeveloped vineyard areas may exist in the world, this relationship could be used to evaluate 

the economic viability of new planting.  In short, this hedonic relationship could be used for 

determining vineyard site selection in undeveloped areas. 

 Our empirical results indicate that climate change may result in considerable 

increases in the value of the Mosel Vineyard region because of increasing wine quality.  A 

moderate 1°C temperature increase would lead to an aggregate increase in land value of 20 

percent, while an increase of 3°C would more than double the land value. 

 There are several limitations of these results.  First, our empirical analysis does not 

take account of general equilibrium effects that might result in a restructuring of land prices.  

The Mosel Valley is suited primarily for grape growing only, so a chance in the relative price 

of vineyards of different quality induced by climate change could have a dramatic effect on 

our calculations.  Second, our results provide only a small part of an overall appraisal of the 

role of climate change on agricultural values.   
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Appendix 
 
From Duffie and Beckman (1991) as well as Iqbal (1983) we calculate the daily 
extraterrestrial solar radiation βγOH  as 
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( )δφω tantancos 1 −= −
s . 

 
 
With 

SCI  Solar Constant (4.921 MJ/m2 hr) 
Eo Eccentricity Correction Factor  (tables for each day of the year) 
β  Slope, the angle between the plane of the surface and the horizontal, oo 1800 ≤≤ β , 

( o90>β implies that the surface is downward facing). 
δ  Declination, the angular position of the sun at solar noon (i.e., when the sun is on the 

local meridian) with respect to the plane of the equator, north positive, 
oo 45.2334.23 ≤≤− δ (tables for each day of the year) 

φ  Latitude, the angular location north or south of the equator, north positive 
oo 9090 ≤≤− φ  

γ  Surface azimuth angle, the deviation of the projection on an horizontal plane of the 
normal to the surface from the local meridian, with zero due south, east positive, and 
west negative; oo 180180 ≤≤− γ  

ssω  Sunset hour angle for a tilted surface 

srω  Sunrise hour angle for a tilted surface 

sω  Sunrise hour angle for a horizontal surface. 
 

 
 
The daily extraterrestrial solar radiation was multiplied by the number of days of the 
respective month in order to obtain the monthly value. Data for the characteristic average day 
for each month are contained in Klein (1977), and values for the eccentricity correction factor, 
Eo , and the declination, δ , respectively, are given in Appendix Table 1. 
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Appendix Table 1 
Characteristic Eccentricity Correction Factor and Declination 

 
month day of the 

month 
Day of the 

year 
Eo δ  

January 17 17 1.0340 -20.88 
February 16 47 1.0251 -12.53 
March 16 75 1.0108 -1.93 
April 15 105 0.9932 9.60 
May 15 135 0.9780 18.77 
June 11 162 0.9692 23.09 
July 17 198 0.9673 21.34 
August 16 228 0.9746 13.94 
September 15 258 0.9885 3.27 
October 15 288 1.0058 -8.30 
November 14 318 1.0222 -18.11 
December 10 344 1.0319 -22.28 
 
According to Klein (1977) and Duffie and Beckman (1991). 
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Table 1 
 

Solar Radiation Efficiency of Selected Crops 

 crop  RUEmax
a) 

C4 species Sugarcane   2.0 

 Maize   1.8 

 Grain Sorghum  1.7  

C3 species Potato  1.7 

 Wheat  1.6 

 Sunflower   1.6 

 Rice  1.4 

 Soybean  1.3 

Other Tomato  1.5b) 

 Cauliflower   1.1b) 

 Apple  0.8b) 

 Grapevine (Merlot)  0.7c) 

According to Sinclair and Muchow (1999), a) maximum RUE in gram dry matter MJ-1m-2 of 
intercepted solar radiation; b) Environmental Protection Agency (2002); c) Castelan-Estrada 
(2001). 
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Table 2 

French ranking of Mosel vineyards in 1804 
10 grades by village and repurchase price  

 
Grade Name of the village Repurchase price 

in Francs/1000 liter 
1 Dusemond (Brauneberg) 172 
2 Piesport, Wehlen, Machern, Graach, Zeltingen, Erden, Lösenich 150 
3 Niederremmel, Müstert, Reinsport, Berncastel, Grünhaus, Kesten, 

Oberremmel, Minheim 
140 

4 Kous (Cues), Lieser, Winterich, Ürzig, Kröf, Köwerich, Mülheim, Thron, 
Kinheim, Kindel, Wolf, Kasel, St. Matthias, Okfen, Kastel, Staadt, Neumagen 

129 

5 Trittenheim, Mehring, Monzel, Waltrach, Isselbach, Konz 118 
6 Rachtig, Awelsbach, Mertesdorf, Veldenz, Thörnich, Reul, Maring, Burgen, 

Olewig, Krutweiler, Ayl, Bibelhausen, Irsch/Saar 
107 

7 Pfalzel, Pichter, Merzlich, Niederleuken, Klüsserath, Wawern, Pölich, 
Köwerich, Platten, Filzen/Mosel, Neudorf, Trier, Hamm, Komlingen, Nennig, 
Mies, Helfand, Detzem, Schweich, Longen, Lörsch, Ensch, Longuich, Osan 

96 

8 Niedermennig, Leiwen, Schleich, Fell, Löwenbrück, Kreutz, Kürenz, Feyen, 
Palzem, Rölingen, Fasterau, Beurig, Perl, Sendorf 

86 

9 Wittlich, Andel, Pallien, Erang, Metzdorf, Euren, Zewen, Oberkirch, Monaise, 
Niederkirch, Ruwer, Pellingen, Irsch-Olewig, Kenn, Feilz, Plein, Luxem, 
Kernscheid, Issel, Bekond, Hetzrath, Rivenich, Riol 

75 

10 Bengel, Springirsbach, Korlingen, Drees, Bergweiler, Hupperat, Flusbach, 
Bausendorf, Olkenbach 

64 

According to Heger (1905). 
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Table 3 

Distribution of Vineyard Site Ranking 
Rank Number Percent 

1 1 0.29 

2 11 3.20 

3 23 6.69 

4 59 17.15 

5 63 18.31 

6 85 24.71 

7 69 20.06 

8 33 9.59 

total 344 100.00 
 
Own calculations. 
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Table 4 

Descriptive Statistics of Variables 
 

Variable Mean Std. Deviation Minimum Maximum 
     
Rank 5.52 1.56 1 8 
Slope (degree) 38.28 7.97 0 45 
Orientation1 46.71 28.68 0 135 
Latitude degree) 49.95 0.20 49.61 50.34 
Altitude (in meters) 120.02 43.83 22 226 
Hectare 26.31 37.99 0.2 420 
Energy (GJm-2 per year) 11.27 1.47 5.57 12.8 
Energy (MJm-2 in Sept/Oct) 1872.3 318.0 694.6 2237.4 
1 deviation from southern orientation in degrees 
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 Table 5 
Determinants of the Vineyard Site Ranking 

Results of the Ordered Probit Model 
 

Variable  (1) (2) 
(Annual Energy) 

(3) 
(Fall Energy) 

Slope -3.13*** (-6.44)   

Orientation 0.04*** (12.71)   
Latitude 0.29 (0.57)   
Energy (KJm-2)  -0.86*** (-11.50) -4.10*** (-11.53) 
Clay Slate -2.35*** (-7.21) -2.09*** (-6.79) -2.13*** (-6.89) 
Weathered Slate -1.59*** (-5.92) -1.32*** (-5.10) -1.35*** (-5.20) 
Slate Quartzite -0.72* (-2.23) -0.53+ (-1.71) -0.57+ (-1.86) 
Sandstone -0.38 (-0.97) -0.17 (0.32) -0.20 (-0.41) 
Finesoil -0.11 (-0.41) -0.27 (-1.19) -0.26 (-1.15) 
Sand 1.05*** (3.48) 1.12*** (4.38) 1.08*** (4.21) 
Clay, Loam 0.86*** (3.88) 0.91*** (4.10) 0.89*** (4.04) 
Quartzite 0.65+ (1.70) 0.81* (2.15) 0.80* (2.14) 
Gravel -0.04 (-0.08) 0.17 (0.37) 0.12 (0.25) 
Graywacke -0.03 (-0.12) 0.13 (0.88) 0.10 (0.68) 
Limestone -0.20 (-0.31) 0.17 (0.25) 0.06 (0.09) 
Alluvial Soil -0.08 (-0.20) 0.02 (0.07) -0.04 (-0.13) 
Depth of Soil 1.70*** (6.06) 1.94*** (6.97) 1.91*** (6.87) 
Altitude 
Difference1 0.01*** (3.57) 0.01*** (2.83) 0.01*** (2.88) 

Vineyard Size 0.01*** (5.39) 0.01*** (6.71) 0.01*** (6.61) 
Remote Vineyard 1.36*** (3.98) 1.41*** (4.31) 1.29*** (3.80) 
   
�1 8.48 (0.35) -13.63*** (-11.65) -11.84*** (-11.60) 
�2 9.98 (0.41) -12.19*** (-11.06) -10.38*** (-11.00) 
�3 10.80 (0.45) -11.38*** (-10.81) -9.56*** (-10.73) 
�4 11.97 (0.50) -10.31*** (-10.06) -8.46*** (-9.83) 
�5 13.05 (0.54) -9.34*** (-9.34) -7.47*** (-8.96) 
�6 14.65 (0.61) -7.846*** (-8.28) -5.926*** (-7.59) 
�7 16.81 (0.70) -5.782*** (-6.56) -3.826*** (-5.31) 
    
Log Likelihood -376.0 -397.3 -393.5 
    
Pseudo R2 (in %) 39.7 36.3 36.9 
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Table 6 

Prediction and Deviation by Rank 

 Deviation by number of ranks  

Rank 0 1 2 3 4 5 6 7 Sum 

1 0 0 1 0 0 0 0 0 1 

2 5 0 4 1 1 0 0 __ 11 

3 0 19 3 1 0 0 __ __ 23 

4 33 20 6 0 0 __ __ __ 59 

5 24 35 4 0 0 __ __ __ 63 

6 54 28 3 0 0 0 __ __ 85 

7 41 28 0 0 0 0 0 __ 69 

8 18 15 0 0 0 0 0 0 33 

Sum 175 145 21 2 1 0 0 0 344 

In % 50.9 42.2 6.1 0.6 0.3 0.0 0.0 0.0 100.0 

Own calculations. 
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Table 7 
Marginal Effects of Model Using Fall Solar Radiation 

 
  

Probability (in %) 
 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 
         
Baseline 0.27 3.32 6.52 16.79 18.95 24.61 19.65 9.74 
         
 Change in Probability (in %) 
Continuous 
Variables1          

Fall Energy 1.19 5.96 5.17 3.35 -2.07 -5.06 -5.45 -3.09 
Depth of Soil -0.02 -0.25 -0.44 -0.71 -0.21 0.24 0.60 0.78 

Altitudea -0.02 -0.24 -0.34 -0.44 -0.04 0.32 0.42 0.36 
Vineyard Size -0.01 -0.08 -0.12 -0.19 -0.04 0.23 0.05 0.15 

         
Dummy Variables2         

Clay Slate 4.46 14.90 9.68 7.42 -0.38 -9.69 -15.92 -10.48 
Weathered Slate 1.85 6.02 5.98 8.31 2.46 -5.36 -10.60 -8.66 

Slate Quartzite 0.56 3.41 3.59 3.30 -0.65 -3.27 -3.91 -3.04 
Sand -0.26 -2.87 -4.83 -9.13 -4.14 4.38 8.60 8.26 

Clay, Loam -0.24 -2.67 -4.44 -7.78 -2.82 4.17 8.13 5.65 
Quartzite -0.23 -2.44 -3.99 -7.01 -2.35 3.99 6.29 5.74 

Remote  -0.26 -3.13 -5.64 -11.66 -6.44 5.29 10.99 10.86 
         
1 effect of a 10% increase, 2 difference between the values zero and one,  a difference in altitude 
between vineyard and Mosel River. 
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Table 8 
Global Warming and Vineyard Ranking 

 
  

Probability (in %) 
 Rank 

 1 
Rank 

2 
Rank 

3 
Rank 

4 
Rank 

 5 
Rank 

6 
Rank 

7 
Rank 

 8 
         
Baseline 0.27 3.32 6.52 16.79 18.95 24.61 19.65 9.74 
         
 Change in Probability (in %) 
temperature 

increase 
energy increase   
(MJ/month)         

1oC 47.43 0.32 2.19 2.46 2.45 -0.29 -2.21 -2.79 -2.13 
2oC 94.87 0.95 5.21 4.95 3.88 -1.23 -4.50 -5.44 -3.82 
3oC 142.82 2.06 9.02 7.10 4.22 -2.54 -6.80 -7.93 -5.24 

         
 Number of Vineyards 

Baseline 0 6 4 79 64 94 69 28 
1oC increase 0 13 5 111 43 91 62 19 
2oC increase 0 30 11 121 37 83 47 15 
3oC increase 2 56 10 115 39 73 36 13 
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Table 9 
Global Warming and Land Values 

in 2003 prices 
 

 Baseline Simulation 1oC Simulation 2oC Simulation 3oC 
     
Hectares     

Rank 1 0.0 0.0 0.0 7.8 
Rank 2 19.3 71.1 375.5 851.6 
Rank 3 10.8 32.1 212.8 134.6 
Rank 4 1283.4 1958.2 2317.2 2338.0 
Rank 5 1365.5 995.8 965.2 1086.4 
Rank 6 2384.9 2640.6 2582.7 2366.2 
Rank 7 2851.1 2431.9 1843.7 1550.5 
Rank 8 1134.6 919.9 752.5 714.5 

Total 9049.6 9049.6 9049.6 9049.6 
     
Value in Mill � 231.3 276.1 371.0 467.4 
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 Figure 1 

Solar Radiation by Latitude
 on a horizontal surface in the northern hemisphere
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Figure 2 

Solar Radiation by Inclination
on a southwards oriented surface in Trier (49.8o north)
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Figure 3 

Solar Radiation by Orientation
on a 45o tilted surface in Trier (49.8o north)
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